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Abstract
Taking inspiration from what is commonly done in single-objective optimization,
most local algorithms proposed for multiobjective optimization extend the classical
iterative scalar methods and produce sequences of points able to converge to single
efficient points. Recently, a growing number of local algorithms that build sequences
of sets has been devised, following the real nature of multiobjective optimization,
where the aim is that of approximating the efficient set. This calls for a new analysis
of the necessary optimality conditions for multiobjective optimization. We explore
conditions for sets of points that share the same features of the necessary optimality
conditions for single-objective optimization. On the one hand, from a theoretical point
of view, these conditions define properties that are necessarily satisfied by the (weakly)
efficient set. On the other hand, from an algorithmic point of view, any set that does not
satisfy the proposed conditions can be easily improved by using first-order information
on some objective functions. We analyse both the unconstrained and the constrained
case, giving some examples.
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1 Introduction

We consider multiobjective optimization problems of the following form:

min
x∈F

f (x) = ( f1(x), . . . , fm(x))T , (1)

where fi : R
n → R, i = 1, . . . ,m, are continuous functions and F ⊆ R

n . The
set F is commonly known as the decision space of the problem, while the image of
points in F through the function f is called the image space (or criterion space). To
characterize the solutions of Problem (1), we use the standard optimality notion based
on the dominance in the image space. In particular, given two points x ′, x ′′ ∈ F , we
say that x ′ dominates x ′′ and f (x ′) dominates f (x ′′) if fi (x ′) ≤ fi (x ′′), i = 1, . . . ,m
and f (x ′) �= f (x ′′). A subset N of R

m is stable with respect to the partial ordering
≤, or simply, stable, if z � z′ for all z, z′ ∈ N . We also say that a subset N ′ of R

m

is weakly stable if z �< z′ for all z, z′ ∈ N ′. Given a vector z ∈ R
m and a subset of

indices I ⊆ {1, . . . ,m}, we denote by zI the subvector of z with components in I .

Definition 1.1 ((weakly) efficient and (weakly) nondominated point) A feasible point
x∗ ∈ F is called an efficient point for Problem (1) if there is no point x ∈ F such that

fi (x) ≤ fi (x
∗) for i = 1, . . . ,m and fk(x) < fk(x

∗) for some k ∈ {1, . . . ,m}.

The image f (x∗) is called nondominated point. Moreover, a feasible point x̂ ∈ F is
called a weakly efficient point for Problem (1) if there is no point x ∈ F such that

fi (x) < fi (x̂) for i = 1, . . . ,m.

The image f (x̂) is called weakly nondominated point.

Algorithms for multiobjective optimization aim at approximating the set of all
nondominated points, called nondominated set and the efficient set:

Definition 1.2 (efficient and nondominated set) The set of (weakly) efficient points of
Problem (1) is called (weakly) efficient set and is denoted by E (Ew). The image set
of all (weakly) efficient points is the (weakly) nondominated set and is denoted byN
(Nw) (also known, specifically for m = 2, as Pareto front).

Now, we report the so called weak domination property (see [20, Chapter 4, Defi-
nition 4.9]), which will be used in the next sections.

Definition 1.3 We say that the weak domination property holds for Problem (1) if, for
every u ∈ F , either u ∈ Ew or there is some y ∈ Ew such that fi (y) < fi (u) for all
i = 1, . . . ,m.

A sufficient condition for the weak domination property to hold is the existence of
compact level sets for (at least) one objective function, as shown in the following
proposition.
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Proposition 1.1 Let us consider Problem (1) and assume that there exists j ∈
{1, . . . ,m} such that the level sets L j (α) := {x ∈ F : f j (x) ≤ α} are compact
for all α ∈ R. Then, the weak domination property holds.

Proof Take any u ∈ F \ Ew. We want to show that there exists y ∈ Ew such that
fi (y) < fi (u) for all i = 1, . . . ,m. To this aim, consider the following problem:

min
x∈F

ϕ(x) :=
m∑

i=1

fi (x)

s.t. fi (x) ≤ fi (u), i = 1, . . . ,m.

(2)

Since u ∈ F \Ew, then there exists v ∈ F such that fi (v) < fi (u) for all i = 1, . . . ,m,
implying that the feasible set of Problem (2) is nonempty. Moreover, the feasible set
of Problem (2) is compact since L j ( f j (u)) is compact by hypothesis. Hence, since
ϕ(x) is continuous, then an optimal solution y of Problem (2) exists by Weierstrass
Theorem. Now, assume by contradiction that y /∈ Ew. Since y ∈ F , then z ∈ F exists
such that fi (z) < fi (y) for all i = 1, . . . ,m, implying that z is feasible for Problem
(2) and ϕ(z) < ϕ(y). This contradicts the optimality of y and leads to the desired
result. 	


As in single-objective optimization we can divide algorithms for multiobjective
optimization into global and local algorithms. Global algorithms are based on the
use of sequences of sets, in order to get information on the global behavior of the
problem. It is a debated topic what can be considered as a proper approximation of the
nondominated set (see [24] for an overview). We recall, for example, the concept of
enclosure defined in [8–11], essentially being a well-structured set in the image space
such as a union of boxes, which contains the nondominated set as a subset.

On the other hand, taking inspiration from what is commonly done in single-
objective optimization, local algorithms for multiobjective optimization use the fact
that if a point does not satisfy suitable necessary optimality conditions, then it can
be easily improved, in the sense that a “better” new point can be easily defined, with
respect to a specific qualitymeasure, which is usually the objective function value. The
majority of algorithms proposed in this respect, both for unconstrained and constrained
multiobjective problems, extend the classical iterative scalar optimization algorithms,
such as the steepest descent [13], Newton [12, 16], external penalty [14], interior point
[15], just to name a few. The mentioned approaches produce sequences of points able
to converge to single efficient points. In particular, at every iteration, these algorithms
look for a new “improved” point, that is, a point that dominates the previous one.

Recently, local algorithms that build sequences of sets have been proposed [3–6,
17–19], trying to go back to the real aim of multiobjective optimization, which is
approximating a set (and not a single point). Producing sequences of sets instead of
single points necessarily leads to explore new algorithmic approaches. Indeed, at every
iteration, such algorithms look for a new “improved” set, namely either a larger set or
a set containing points that dominate at least one point from the previous set.

The aim of this work is that of exploring the necessary optimality conditions in
multiobjective optimization from a new perspective, namely, the definition of condi-
tions associated to a set of points, instead of a single point. In particular, this can be of
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interest from both a theoretical and an algorithmic point of view. As in single-objective
optimization, these conditions play a twofold role:

• from a theoretical point of view, they define properties that are necessarily satisfied
by a global solution, that is, by the (weakly) efficient set Ew;

• from an algorithmic point of view, they characterize sets that cannot be “easily”
improved, in the sense that, for example, the standard use of first-order information
may not be enough to get a new better set.

Therefore, in the multiobjective optimization context, we look for conditions on
sets of points that approximate the efficient set and share the above two features. Such
conditions, as stated before, should help to define algorithms that build sequences of
stable sets. Furthermore, in presence of many objective functions, such conditions
could give a stronger characterization of Pareto stationarity, so that they can be par-
ticularly useful in the context of many-objective optimization.

In order to introduce our analysis, we start with the following definition.

Definition 1.4 (Efficiency-describing collection) Let S ⊆ F be a set whose image
points with respect to f form a weakly stable set. Given x ∈ S, we say that the
collection of sets TS(x) = {I 1, . . . , I p} �= ∅ is an efficiency-describing collection of
x if it satisfies the following two conditions:

(i) I j ⊆ {1, . . . ,m}, j = 1, . . . , p, are subsets of objective indices such that there is
no point y ∈ S for which

fi (y) < fi (x) ∀i ∈ I j ;

(ii)
⋃

i �= j

I i � I j for all j ∈ {1, . . . , p}, if p ≥ 2.

Remark 1.1 Note that TS(x) = {I 1} with I 1 = {1, . . . ,m} is always an efficiency-
describing collection of x , for all x ∈ S, meaning that an efficiency-describing
collection always exists for any point x ∈ S. However, it may not be unique. Indeed,
in case we are able to detect a proper subset of {1, . . . ,m} satisfying condition (i) of
Definition 1.4, we can also choose a different TS(x), not containing the whole set of
objective functions, as condition (ii) requires. This means that either TS(x) is made of
the whole set {1, . . . ,m} or it is made of proper subsets of {1, . . . ,m}.
Example 1.1 In Fig. 1.1, the image space of a bi-objective instance is depicted. The
image of the feasible points through f (x) = ( f1(x), f2(x)) is represented by f (F)

and the nondominated setN is highlighted with a bold line. Let S = {x1, x2, x3}, the
images f (x1), f (x2), f (x3) belong toN , so that in particular they form a stable set.
The following sets TS(xi ) are efficiency-describing collections of xi for i = 1, 2, 3:

TS(x1) = {
I 1 = {1}}, TS(x2) = {

I 1 = {1, 2}}, TS(x3) = {
I 1 = {2}}.

We can notice that since f1(x1) is the minimum with respect to f1(x) for x ∈ F ,
we have that f (x1) is a nondominated point in f (S) “thanks to” f1, while f2 does
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Fig. 1 Image set of a bi-objective instance

not play any role. Equivalently, since f2(x3) is the minimum with respect to f2(x),
we have that f (x3) is nondominated with respect to the images of the other points in
S. On the other hand, f (x2) is nondominated with respect to the images of the other
two points as f1(x2) < f1(x3) and f2(x2) < f2(x1), meaning that TS(x2) needs to
include both indices.

Example 1.1 highlights that, in order to characterize a point whose image is (weakly)
nondominated with respect to the images of other points in a set, we do not necessarily
have to consider all the objective functions. A trivial case is when we have a set includ-
ing the minimizer of one objective function. This calls for new necessary optimality
conditions when dealing with a set of points. Such conditions should reflect the fact
that specific subsets of objective functions might be used to claim that the image of a
point is (weakly) nondominated with respect to the images of other points in a set.

The difference with respect to classical conditions is more relevant when consider-
ing more than two objective functions, as the following example shows.

Example 1.2 Let us consider a multiobjective problem with five objective functions.
Let S = {x1, x2, x3, x4} ⊂ F with

f (x1) =

⎛

⎜⎜⎜⎜⎝

3
1
3
2
1

⎞

⎟⎟⎟⎟⎠
, f (x2) =

⎛

⎜⎜⎜⎜⎝

2
4
1
3
2

⎞

⎟⎟⎟⎟⎠
, f (x3) =

⎛

⎜⎜⎜⎜⎝

3
2
2
2
2

⎞

⎟⎟⎟⎟⎠
, f (x4) =

⎛

⎜⎜⎜⎜⎝

5
2
1
3
5

⎞

⎟⎟⎟⎟⎠
.
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The set N = { f (x1), f (x2), f (x3), f (x4)} is a stable set. The following sets TS(xi ),
are efficiency-describing collections of xi , i = 1, . . . , 4:

TS(x1) = {
I 1 = {2}, I 2 = {5}, I 3 = {4}},

TS(x2) = {
I 1 = {1}, I 2 = {3}},

TS(x3) = {
I 1 = {4}, I 2 = {2, 3}, I 3 = {3, 5}},

TS(x4) = {
I 1 = {3}}.

Note that the fact that f (x1) is (weakly) nondominated with respect to the images
of the other points in S can be deduced from f2 or f5, which attain their least value.
Furthermore, f4(x1) ≤ f4(xi ) for i �= 1. This suggests that the characterization of
the fact that f (x1) is (weakly) nondominated with respect to the images of the other
points in S can be described by the local behavior of these three functions only (i.e.,
f2, f5, f4). Indeed, the behavior of f1 can be ignored for x1 since f1(x1) is worse than
values attained in other points, like f1(x2). In order to describe that f (x3) is (weakly)
nondominated with respect to the images of the other points in S, we can consider
either f4, for which x3 attains its minimum value, or the subsets made of f2, f3 and
f3, f5. Indeed the index 2 needs to belong to I 2 in order to have x3 nondominated
with respect to x2, the index 3 is needed in order to have x3 nondominated with
respect to x1 and the index 5 is needed in combination with 3 in order to have x3

nondominated with respect to x4. Note that, in the definition of TS(xi ), i = 1, . . . , 4,
we are not considering the natural choice of the whole set of objective function indices
{1, . . . , 5}.

2 The Unconstrained Case

We start by analyzing multiobjective unconstrained problems (i.e., F = R
n) of the

form

min
x∈Rn

( f1(x), . . . , fm(x))T . (3)

In the following, we assume that the objective functions fi : R
n → R, i = 1, . . . ,m,

are continuously differentiable. In the literature, to characterize (weakly) efficient
points, the following condition has been proposed [23].

Proposition 2.1 If Ew ⊆ R
n is the weakly efficient set for Problem (3), then, for all

x∗ ∈ Ew we have that, for all d ∈ R
n, there exists an index j ∈ {1, . . . ,m} such that

∇ f j (x∗)�d ≥ 0.

According to Proposition 2.1, we can introduce the following definition [12]:

Definition 2.1 (Standard Pareto stationary set) Let S ⊆ R
n be a non-empty set such

that f (S) is a weakly stable set. We say that S is a standard Pareto stationary set for
Problem (3) if, for all x ∈ S and all d ∈ R

n , there exists an index i ∈ {1, . . . ,m} such
that ∇ fi (x)�d ≥ 0.
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As already mentioned in the introduction, the fact that the image of a point is nondom-
inated with respect to the image of the other points within a set can be characterized
by a subset of objective functions. This suggests that we can characterize the (weakly)
efficient set of Problem (3) using stronger conditions than those in Proposition 2.1.
In particular, there is no need of considering the whole set of objective functions.
This can be important when the number of objective functions is large. In those cases,
Definition 2.1 poorly characterize sets of efficient points. Indeed, it equivalently states
that a set of points is standard Pareto stationary if, for every point in the set, there is
no direction that is a descent direction for every objective function, implying that the
higher the number of objective functions is, the easier the definition can be satisfied.
This is highlighted in the following example.

Example 2.1 Let us consider an unconstrained multiobjective problem with the fol-
lowing objective functions fi : R

2 → R. i = 1, . . . , 5,

f1(x) = (x1 − 2)2 + (x2 − 3)2 − 7, f2(x) = x21 + x1, f3(x) = x22 + 3x2,
f4(x) = (x1 − 1)2 + (x2 − 1)2 + 1, f5(x) = (x1 + 1)2 + (x2 − 1)2.

Their gradients are

∇ f1(x) =
(
2(x1 − 2)
2(x2 − 3)

)
, ∇ f2(x) =

(
2x1 + 1

0

)
, ∇ f3(x) =

(
0

2x2 + 3

)
,

∇ f4(x) =
(
2(x1 − 1)
2(x2 − 1)

)
, ∇ f5(x) =

(
2(x1 + 1)
2(x2 − 1)

)
.

Let S = {x1, x2, x3, x4} ⊂ F , with

x1 =
(
1
1

)
, x2 =

(
0
2

)
, x3 =

(−1
1

)
, x4 =

(
1

−1

)
.

Note that S satisfies Definition 2.1. Indeed, x1 and x3 are stationary with respect
to functions f4 and f5 respectively, so that for any direction d ∈ R

n we have that
∇ f4(x1)T d = 0 and ∇ f5(x3)T d = 0. For i = 2, 4, we have that ∇ f1(xi ), ∇ f2(xi )
and ∇ f3(xi ) can be combined with positive coefficients to obtain the zero vector.
From Gordan’s Theorem of alternative (see Table 2.4.1 [22] or Theorem A.1 in the
appendix) this implies that, for any d ∈ R

n , there is one index j ∈ {1, 2, 3} such that
∇ f j (xi )T d ≥ 0, i = 2, 4.

However, looking at the objective function values at the points in S, we can see that
the set S can be easily “improved”, for example by moving point x2 along a descent
direction with respect to f5, as it will be clarified in Example 2.2.

As shown in Example 2.1, there is room to improve the definition of standard
Pareto stationarity. One weakness in Definition 2.1 is that it does not fully exploit that
the considered set is a weakly stable set. In particular, it ignores the fact that not all
the objective functions should necessarily be taken into account. Indeed, there exist
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objective functions that can be neglected in order to characterize the fact that a point
in a weakly stable set is nondominated with respect to the others (as highlighted also
in Example 1.2). In this respect, Definition 1.4 comes into play and allows us to state
the following result, giving stronger optimality conditions for Problem (3) that include
Proposition 2.1.

Proposition 2.2 Let Ew ⊆ R
n be the weakly efficient set of Problem (3), x∗ ∈ Ew and

TEw
(x∗) be any efficiency-describing collection of x∗. If the weak domination property

holds for Problem (3), then, for all d ∈ R
n and all I ∈ TEw

(x∗), there exists an index
i ∈ I such that ∇ fi (x∗)�d ≥ 0.

Proof Assume by contradiction that there exists x∗ ∈ Ew, d ∈ R
n and I ∈ TEw

(x∗)
such that

∇ fi (x
∗)�d < 0 ∀i ∈ I .

Then, there exists ᾱ > 0 such that, for any α ∈ (0, ᾱ], we have

fi (x
∗ + αd) < fi (x

∗) ∀i ∈ I . (4)

From the definition of I it follows that, for all y ∈ Ew, an index ı̂ ∈ I exists such that

fı̂ (y) ≥ fı̂ (x
∗)

and, using (4), we also have

fı̂ (x
∗ + αd) < fı̂ (x

∗).

Hence, for all y ∈ Ew, there exists ı̂ such that

fı̂ (x
∗ + αd) < fı̂ (y), (5)

implying that (x∗ + αd) ∈ R
n \ Ew. Then, from the weak domination property, we

get that ŷ ∈ Ew exists such that for all i we have

fi (ŷ) < fi (x
∗ + αd),

leading to a contradiction with (5). 	

Remark 2.1 Proposition 2.2 allows us to define different necessary optimality con-
ditions according to the choice of TEw

(x∗). If we consider TEw
(x∗) = {I 1} with

I 1 = {1, . . . ,m} for all x∗ ∈ Ew, then Proposition 2.2 boils down to Proposition 2.1.
On the contrary, the larger the number of the subsets of indices within TEw

(x∗) and
the smaller their cardinality, the stronger the conditions. This highlights how Propo-
sition 2.2 can be particularly useful in the context of many-objective optimization.
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Remark 2.2 Condition (ii) in Definition 1.4 is not necessary within the proof of
Proposition 2.2. However, it avoids redundant information in the definition of the
efficiency-describing collection TEw

(x).

FromProposition 2.2,we introduce the followingnewdefinition of Pareto stationary
set.

Definition 2.2 (Pareto stationary set) Let S ⊆ R
n be a non-empty set such that f (S)

is a weakly stable set. We say that S is a Pareto stationary set for Problem (3) if,
for all x ∈ S, all d ∈ R

n and all I ∈ TS(x), there exists an index i ∈ I such that
∇ fi (x)�d ≥ 0.

Local algorithms for multiobjective optimization that aim at detecting one single
efficient point are generally based on the optimality conditions reported in Proposi-
tion 2.1 (see e.g. [13]). In particular, if a point does not satisfy Pareto stationarity
conditions, then it is possible to define a direction that is a descent direction for each
objective function, thus able to produce a new point that dominates the previous one.

When the aim is producing a sequence of sets of points, local algorithms can be
based on the conditions introduced in Proposition 2.2. In particular, these conditions
on the one hand allow us to certify whether a set S is Pareto stationary. On the other
hand, in case a set S does not satisfy these conditions, we can easily either increase
the cardinality of S or replace some points in S by new points dominating them, as
shown in the next result.

Proposition 2.3 Let S ⊆ R
n and let f (S) be a weakly stable set. If S is a non-Pareto

stationary set for Problem (3), then a point x ∈ S, a direction d ∈ R
n and a stepsize

α > 0 exist such that f (x + αd) is non-dominated by any f (y), y ∈ S. Namely,

� y ∈ S such that fi (y) ≤ fi (x + αd), i = 1, . . . ,m, f (y) �= f (x).

Furthermore, f (x + αd) is non-dominated by any z ∈ R
m that is dominated by some

f (y), y ∈ S.

Proof Since S ⊆ R
n is a non-Pareto stationary set, there exist x ∈ S, d ∈ R

n and
I ∈ TS(x) such that

∇ fi (x)
�d < 0 ∀i ∈ I .

Then, there exists ᾱ > 0 such that, for any α ∈ (0, ᾱ], we have

fi (x + αd) < fi (x) ∀i ∈ I . (6)

From the definition of I it follows that, for all y ∈ S, there exists an index ı̂ ∈ I such
that

fı̂ (y) ≥ fı̂ (x).
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Furthermore, from (6) we also have

fı̂ (x + αd) < fı̂ (x),

leading to

fı̂ (x + αd) < fı̂ (y). (7)

Since this holds for all y ∈ S, it follows that f (x + αd) is non-dominated by any
f (y), y ∈ S.
Now, consider any z ∈ R

m \ f (S) dominated by some f (y), y ∈ S. Namely,
fi (y) ≤ zi for all i = 1, . . . ,m and z �= f (y). Using (7), we have

fı̂ (x + αd) < fı̂ (y) ≤ zı̂ .

It follows that f (x + αd) is non-dominated by z. 	

Example 2.2 Let us consider the multiobjective problem proposed in Example 2.1,
where the set S is a standard Pareto stationary set, that is, it satisfies Definition 2.1.
Assume that this set S is produced by an algorithm that builds sequences of points. The
use of the standard Pareto stationarity definition would make the algorithm stop. On
the other hand, this would not be the case if using our new stationarity characterization
given in Definition 2.2, with TS(x) specifically chosen.

Indeed, f (S) ⊂ R
5 is the following stable set:

f (x1) =

⎛

⎜⎜⎜⎜⎝

−2
2
4
1
4

⎞

⎟⎟⎟⎟⎠
, f (x2) =

⎛

⎜⎜⎜⎜⎝

−2
0
10
3
2

⎞

⎟⎟⎟⎟⎠
, f (x3) =

⎛

⎜⎜⎜⎜⎝

6
0
4
5
0

⎞

⎟⎟⎟⎟⎠
, f (x4) =

⎛

⎜⎜⎜⎜⎝

10
2

−2
5
8

⎞

⎟⎟⎟⎟⎠
.

The following are possible choices of TS(xi ), i = 1, . . . , 4, satisfying Definition 1.4:

TS(x1) = {
I 1 = {1}, I 2 = {4}},

TS(x2) = {
I 1 = {1}, I 2 = {2}},

TS(x3) = {
I 1 = {2}, I 2 = {5}},

TS(x4) = {
I 1 = {3}}.

Note that even if x1 is stationary with respect to f4, since I 1 = {1} belongs to
TS(x1) and x1 is non stationary with respect to f1, then a direction d ∈ R

n such
that ∇ f1(x1)T d < 0 exists. Hence, Definition 2.2 is not satisfied and S is a non-
Pareto stationary set for Problem (1). From Proposition 2.3, the set S can be easily
“improved” as a direction d ∈ R

n and a stepsize α > 0 exist such that f (x1 + αd) is
non-dominated by the image of any point in S. Similar arguments apply to the other
points xi , i = 2, 3, 4. For example, starting from x2, we can improve S in different
ways, using descent directions for f1 or f2, starting from x3 we can move along a

123



136 Journal of Optimization Theory and Applications (2024) 203:126–145

descent direction for f2 and, starting from x4, we can move along a descent direction
for f3.

3 The Constrained Case

In this section, we extend the above analysis to the constrained setting. We consider
the following constrained multiobjective optimization problem, where the feasible set
F is explicitly defined by inequality and equality constraints:

min
x∈F

( f1(x), . . . , fm(x))T with F = {x ∈ R
n : g(x) ≤ 0, h(x) = 0}. (8)

We assume that the functions f : R
n → R

m , g : R
n → R

p and h : R
n → R

q are
continuously differentiable. Given a point x ∈ F , we denote by A(x) the active set,
defined as follows:

A(x) := {i ∈ {1, . . . , p} : gi (x) = 0}.

In the literature, to characterize (weakly) efficient points, the following Fritz-John
necessary conditions have been proposed [7, 23].

Proposition 3.1 If Ew ⊆ R
n is the weakly efficient set for Problem (8), then, for all

x ∈ Ew, there exist multipliers σ ∗ ∈ R
m, λ∗ ∈ R

p, μ∗ ∈ R
q , with (σ ∗, λ∗, μ∗) �=

(0, 0, 0), such that

m∑

i=1

σ ∗
i ∇ fi (x

∗) +
p∑

j=1

λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0, (9a)

σ ∗
i ≥ 0, i = 1, . . . ,m, (9b)

λ∗
j ≥ 0, j = 1, . . . , p, (9c)

λ∗
j g j (x

∗) = 0, j = 1, . . . , p. (9d)

As for the unconstrained case, we can define the standard Pareto stationary set as
the set containing points satisfying first-order necessary conditions [7, 23].

Definition 3.1 (Standard Pareto stationary set) Let S ⊆ R
n be a non-empty set such

that f (S) is a weakly stable set. We say that S is a standard Pareto stationary set
for Problem (8) if all x ∈ S satisfy Fritz-John conditions, that is, for each x ∈ S,
there exist multipliers (σ, λ, μ) ∈ R

m × R
p × R

q , with (σ, λ, μ) �= (0, 0, 0), such
that (9a)–(9d) holds.

As before, Definition 1.4 comes into play and allows us to state stronger conditions for
Problem (8) than those in Proposition 3.1, without the need of considering the whole
set of objective functions. To this aim we need an intermediate result, based on sets
G(·) and H(·) introduced below.
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Definition 3.2 Given x̄ ∈ F , we define the sets G(x̄) and H(x̄) as follows

G(x̄) = {d ∈ R
n : ∇gi (x̄)T d < 0, for all i ∈ A(x̄)},

H(x̄) = {d ∈ R
n : ∇h j (x̄)T d = 0, for all j = 1, . . . , q}.

We now extend the classical result for single objective constrained optimization [1,
Theorem 4.3.1] to the multiobjective case, using the sets introduced in Definition 1.4
and in Definition 3.2.

Lemma 3.1 Let Ew ⊆ F be the weakly efficient set for Problem (8) and let x∗ ∈ Ew.
If the weak domination property holds for Problem (8) and if ∇h j (x∗), j = 1, . . . , q
are linearly independent, then, for all d ∈ G(x∗) ∩ H(x∗) and all I ∈ TEw

(x∗), there
exists i ∈ I such that ∇ fi (x∗)�d ≥ 0.

Proof Given I ∈ TEw
(x∗), let F I (x∗) be the set defined as follows

F I (x∗) = {d ∈ R
n : ∇ fi (x

∗)�d < 0, i ∈ I }.

Proving the lemma is equivalent to showing that for all I ∈ TEw
(x∗)

F I (x∗) ∩ G(x∗) ∩ H(x∗) = ∅.

This follows from the proof of [1, Theorem 4.3.1] with minor changes using the weak
domination property. 	


Thanks to Lemma 3.1 we are able to state a new characterization for a weakly
efficient point of Problem (8).

Proposition 3.2 LetEw be theweakly efficient set of Problem (8), x∗ ∈ Ew andTEw
(x∗)

be any efficiency-describing collection of x∗. If the weak domination property holds
for Problem (8), then, for all I ∈ TEw

(x∗), there exist multipliers σ ∗ ∈ R
m, λ∗ ∈

R
p, μ∗ ∈ R

q , with (σ ∗, λ∗, μ∗) �= (0, 0, 0), such that

∑

i∈I
σ ∗
i ∇ fi (x

∗) +
p∑

j=1

λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0, (10a)

σ ∗
i ≥ 0, i ∈ I , (10b)

σ ∗
i = 0, i /∈ I , (10c)

λ∗
j ≥ 0, j = 1, . . . , p, (10d)

λ∗
j g j (x

∗) = 0, j = 1, . . . , p. (10e)

Proof If∇h j (x∗) j = 1, . . . , q are linearly dependent, we can find scalarsμ∗
1, . . . , μ

∗
q

not all zeros such that
q∑

l=1

μ∗
l ∇hl(x

∗) = 0. Letting σ ∗
i = 0, i ∈ I and λ∗

j = 0, j =
1, . . . , p the result holds trivially. Now, assume that∇h j (x∗) j = 1, . . . , q are linearly
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independent. Let C be the matrix whose rows are ∇hTl (x∗), l = 1, . . . , q and D be
the matrix whose rows are ∇ f Ti (x∗), i ∈ I and ∇gTj (x∗), j ∈ A(x∗). Then, from
Lemma 3.1, we have that the following system

Cy = 0, Dy < 0

has no solution. From the Slater’s theorem of the alternative (see Table 2.4.1 [22] or
TheoremA.2 in the appendix)we have that non-negative σ ∗

i , i ∈ I andλ∗
j , j ∈ A(x∗)

not all zero and μ∗
1, . . . , μ

∗
q ∈ R exist such that

∑

i∈I
σ ∗
i ∇ fi (x

∗) +
∑

j∈A(x∗)
λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0.

Then, letting λ∗
j = 0, j /∈ A(x∗) the result holds. 	


Taking inspiration from [21], we further extend our characterization of the weakly
efficient points of Problem (8) given in Proposition 3.2, under constraint qualification.
This allows us to state the definition of Pareto stationary set and propose how to
compute a descent direction when S is not a Pareto stationary set. We first recall the
classical Mangasarian–Fromovitz conditions (CMF).

Definition 3.3 The CMF holds at x ∈ F if there is no α j ≥ 0, j ∈ A(x), βl , l =
1, . . . , q, such that

∑

j∈A(x)

α j∇g j (x) +
q∑

l=1

βl∇hl(x) = 0, (α, β) �= (0, 0).

Proposition 3.3 LetEw be theweakly efficient set of Problem (8), x∗ ∈ Ew andTEw
(x∗)

be any efficiency-describing collection of x∗. If the weak domination property holds for
Problem (8) and the CMF holds at x∗, then, for all I ∈ TEw

(x∗), there exist multipliers
σ ∗ ∈ R

m, λ∗ ∈ R
p, μ∗ ∈ R

q , with σ ∗
I �= 0, such that

∑

i∈I
σ ∗
i ∇ fi (x

∗) +
p∑

j=1

λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0,

σ ∗
i ≥ 0, i ∈ I ,

σ ∗
i = 0, i /∈ I ,

λ∗
j ≥ 0, j = 1, . . . , p,

λ∗
j g j (x

∗) = 0, j = 1, . . . , p.
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Proof From Proposition 3.2 we have that x∗ satisfies (10a)–(10e). Assume by contra-
diction that σ ∗

I = 0. Then, (10a) would become

p∑

j=1

λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0

or equivalently, since λ j = 0, j /∈ A(x∗),

∑

j∈A(x∗)
λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0,

so that we get a contradiction to the CMF conditions. 	

We are now able to state the definition of Pareto stationary set for multiobjective

constrained problems.

Definition 3.4 (Pareto stationary set) Let S ⊆ F be a non-empty set such that f (S)

is a weakly stable set. We say that S is a Pareto stationary set for Problem (8) if, for
all x ∈ S and all I ∈ TS(x), there exist multipliers σ ∈ R

m , λ ∈ R
p, μ ∈ R

q , with
σI �= 0, such that

∑

i∈I
σi∇ fi (x) +

p∑

j=1

λ j∇g j (x) +
q∑

l=1

μl∇hl(x) = 0,

σi ≥ 0, i ∈ I ,
σi = 0, i /∈ I ,
λ j ≥ 0, j = 1, . . . , p,

λ j g j (x) = 0, j = 1, . . . , p.

Now we characterize how to compute a feasible descent direction when S is not
a Pareto stationary set. For sake of simplicity, we assume that the feasible set F is
defined according to inequality constraints only. Note that, in order to prove the result,
we need to assume the CMF conditions.

Proposition 3.4 Let S ⊆ F and let f (S) be a weakly stable set. If S is a non-Pareto
stationary set for Problem (8) with inequality constraints only and if the CMF holds
at each point in S, then a point x ∈ S, a direction d ∈ R

n and a stepsize α > 0 exist
such that (x + αd) ∈ F and is non-dominated by any f (y), y ∈ S. Namely,

� y ∈ S such that fi (y) ≤ fi (x + αd) i = 1, . . . ,m, f (y) �= f (x),

Furthermore, x+αd is non-dominated by any z ∈ F that is dominated by some y ∈ S.
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Proof We start by showing that if S ⊆ F is a non-Pareto stationary set for Problem (8),
we can detect a point x ∈ S, I ∈ TS(x) and a direction d ∈ R

n such that

∇ f j (x)
�d < 0, ∀ j ∈ I and ∇gi (x)

�d ≤ 0, i = 1, . . . , p, (12)

with

∇gi (x)
�d < 0, for all i ∈ A(x). (13)

Since S ⊆ F is a non-Pareto stationary set for Problem (8), we have that a point x ∈ S
exists such that I ∈ TS(x) and no multipliers σ ∈ R

m , λ ∈ R
p exist for which

σI �= 0,
σi ≥ 0, i ∈ I ,
σi = 0, i /∈ I ,
λ j ≥ 0, j = 1, . . . , p,
λ j g j (x) = 0, j = 1, . . . , p,

and

∑

i∈I
σi∇ fi (x) +

p∑

j=1

λ j∇g j (x) = 0.

By Motzkin Theorem of alternative (see Table 2.4.1 [22] or Theorem A.3 in the
appendix), we have that d̃ ∈ R

n exists such that

∇ f j (x)
�d̃ < 0, ∀ j ∈ I and ∇gi (x)

�d̃ ≤ 0, i = 1, . . . , p.

We now show that necessarily ∇gi (x)�d̃ < 0 for all i ∈ A(x) and we proceed by
contradiction. Assume that there is no d ∈ R

n such that

∇ f j (x)
�d < 0, ∀ j ∈ I and ∇gi (x)

�d < 0, i ∈ A(x). (14)

Then, from Gordan Theorem of alternative (see Table 2.4.1 [22] or Theorem A.1 in
the appendix), we have that if (14) does not hold, then there exist ρ ∈ R

m and ρ̃ ∈ R
p,

both with non-negative entries, (ρ, ρ̃) �= (0, 0) and with

ρ j = 0, j /∈ I ρ̃i = 0, i /∈ A(x),

such that

∑

j∈I
ρ j∇ f j (x) +

∑

i∈A(x)

ρ̃i∇gi (x) = 0.
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In particular, by multiplying the above expression with the direction d̃ ∈ R
n , we

obtain
∑

j∈I
ρ j∇ f j (x)

�d̃ +
∑

i∈A(x)

ρ̃i∇gi (x)
�d̃ = 0.

Since ∇ f j (x)�d̃ < 0 for all j ∈ I , we necessarily have ρ j = 0 for all j ∈ I .
Therefore

∑

i∈A(x)

ρ̃i∇gi (x) = 0,

getting a contradiction with the fact that CMF holds at x .
So, we have proved that x ∈ S, d ∈ R

n and I ∈ TS(x) exist such that (12) and (13)
hold. In particular, for all i ∈ I , there exists αi > 0 such that

fi (x + αd) < fi (x) ∀α ∈ (0, αi ]

and

g j (x + αd) ≤ 0, ∀ j = 1, . . . , p, ∀α ∈ (0, αi ],

thanks to the fact that g j (x) < 0 for those j /∈ A(x) and∇g j (x)�d < 0 for j ∈ A(x).
Therefore, for any α ∈ (0,mini∈I αi ], we have that x + αd ∈ F and we can write

fi (x + αd) < fi (x) ∀i ∈ I . (15)

From the definition of I , it follows that for every y ∈ S there exists an index ı̂ ∈ I
such that

fı̂ (y) ≥ fı̂ (x).

Furthermore, from (15) we also have

fı̂ (x + αd) < fı̂ (x),

leading to

fı̂ (x + αd) < fı̂ (y). (16)

Since this holds for all y ∈ S, it follows that (x +αd) is non-dominated by any y ∈ S.
Now, consider any u ∈ F \ S dominated by some y ∈ S. Namely, fi (y) ≤ fi (u)

for all i = 1, . . . ,m and fi (y) �= fi (u). Using (16), we have

fı̂ (x + αd) < fı̂ (y) ≤ fı̂ (u).

It follows that (x + αd) is non-dominated by u.
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We finally mention that other constraint qualification conditions have been pre-
sented and analyzed in the multiobjective literature (see, e.g., [26] and the references
therein). In some cases, we can use them in combination with the efficiency-describing
collection to give new characterizations of a weakly efficient point. For example, we
can define the extended Mangasarian–Fromovitz (EMF) conditions, presented in [2],
in light of Definition 1.4.

Definition 3.5 Given I ⊂ {1, . . . ,m}, the EMF holds at x ∈ F if, for all s ∈ I , there
is no γi ≥ 0, i ∈ I , i �= s, α j ≥ 0, j ∈ A(x), βl , l = 1, . . . , q, such that

∑

i∈I
i �=s

γi∇ fi (x) +
∑

j∈A(x)

α j∇g j (x) +
q∑

l=1

βl∇hl(x) = 0, (γ, α, β) �= (0, 0, 0).

The extended Mangasarian–Fromovitz conditions allow us to prove the following
further characterization of a weakly efficient point of Problem (8).

Proposition 3.5 LetEw be theweakly efficient set of Problem (8), x∗ ∈ Ew andTEw
(x∗)

be any efficiency-describing collection of x∗. If the weak domination property holds for
Problem (8) and the EMF holds at x∗, then, for all I ∈ TE (x∗), there exist multipliers
σ ∗ ∈ R

m, λ∗ ∈ R
p, μ∗ ∈ R

q such that

∑

i∈I
σ ∗
i ∇ fi (x

∗) +
p∑

j=1

λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0,

σ ∗
i > 0, i ∈ I ,

σ ∗
i = 0, i /∈ I ,

λ∗
j ≥ 0, j = 1, . . . , p,

λ∗
j g j (x

∗) = 0, j = 1, . . . , p.

Proof From Proposition 3.2 we have that x∗ satisfies (10a)–(10e). Assume by contra-
diction that s ∈ I exists such that σs = 0. Then, (10a) would become

∑

i∈I
i �=s

σ ∗
i ∇ fi (x

∗) +
p∑

j=1

λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0

or equivalently, since λ j = 0, j /∈ A(x∗),

∑

i∈I
i �=s

σ ∗
i ∇ fi (x

∗) +
∑

j∈A(x∗)
λ∗
j∇g j (x

∗) +
q∑

l=1

μ∗
l ∇hl(x

∗) = 0,

so that we get a contradiction to the EMF conditions. 	
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4 Conclusions

In this paper, we have analyzed necessary optimality conditions for continuous multi-
objective problems. In particular, our goal is to extend the concept of Pareto stationarity,
usually referred to a single point, to characterize a set of points. For both unconstrained
and constrained problems, we tried to give a new, flexible and stronger characterization
of the (weakly) efficient set, using first-order information and specific subsets of objec-
tive function indices. We introduce the definition of efficiency-describing collection,
allowing us to define the concept of Pareto stationary set and show that a weakly stable
set can be algorithmically improved if it is not a Pareto stationary set. In particular, this
comes from a methodological interest recently emerged in the literature, see, e.g., [3,
5, 17]. The algorithms proposed in these works rely on the idea of improving, at every
iteration, a set of points satisfying specific requirements that can be seen as a violation
of our optimality conditions. For what concerns constrained problems, the analysis is
driven taking into account different conditions on constraint qualification. Future work
might be devoted to the use of the proposed characterization to devise local algorithms
for continuous multiobjective optimization converging to Pareto stationary sets. As a
final remark, we want to underline that finding a descent direction for all the objective
functions becomes a harder and harder task as the number of objectives increases. As
a consequence, in presence of many objective functions, the standard Pareto stationary
conditions are easier to satisfy. Therefore, our results look particularly appealing and
useful in the context of many-objective optimization.

Appendix

For reader’s convenience, we report the theorems of the alternative used in the text.

Theorem A.1 (Gordan’s Theorem [22]) Let A ∈ R
s×n be a matrix. One and only one

of the following systems has solution:

Az < 0
z ∈ R

n

AT y = 0
y ≥ 0
y �= 0
y ∈ R

s

Theorem A.2 (Slater’s Theorem [22, 25])LetC ∈ R
s1×n, D ∈ R

s2×n be twomatrices.
One and only one of the following systems has solution:

Cy = 0
Dy > 0
y ∈ R

n

CT u + DT v = 0
v ≥ 0
v �= 0
u ∈ R

s1

v ∈ R
s2
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Theorem A.3 (Motzkin’s Theorem [22]) Let A ∈ R
s1×n, C ∈ R

s2×n, D ∈ R
s3×n be

three matrices, with A non-vacuous. One and only one of the following systems has
solution:

Ay > 0
Cy ≥ 0
Dy = 0
y ∈ R

n

AT u + CT v + DT z = 0
u ≥ 0
u �= 0
v ≥ 0
u ∈ R

s1

v ∈ R
s2

z ∈ R
s3
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