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Abstract
Robustness against Electronic Warfare/Electronic Defence attacks represents an
important advantage of Noise Radar Technology (NRT). An evaluation of the related
Low Probability of Detection (LPD) and of Intercept (LPI) is presented for Continuous
Emission Noise Radar (CE‐NR) waveforms with different operational parameters, that is,
“tailored”, and with various “degrees of randomness”. In this frame, three different noise
radar waveforms, a phase Noise (APCN) and two “tailored” noise waveforms (FMeth
and COSPAR), are compared by time–frequency analysis. Using a correlator (i.e. a two
antennas) receiver, assuming a complete knowledge of the band (B) and duration (T) of
the coherent emission of these waveforms, it will be shown that the LPD features of a
CE‐NR do not significantly differ from those of any CE radar transmitting deterministic
waveforms. However, in real operations, B and T are unknown; hence, assuming an
instantaneous bandwidth estimation will show that the duration T can be estimated only
for some specific “tailored” waveforms (of course, not to be operationally used). The
effect of “tailoring” is analysed with prospects for future work. Finally, some limitations
in the classification of these radar signals are analysed.
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1 | INTRODUCTION

1.1 | Operational frame and scope of this
paper

In the Electronic Defence (ED) arena [1–4], an opponent
could observe, record and exploit the victim's radar signal by
Electronic Support Measurement (ESM) and/or Electronic
Intelligence (ELINT) systems. To react against this situation,
suited radar signals must be designed and transmitted in order
to guarantee three levels of protection [5]:

(a) The signal must be difficult to be detected, that is, has to
guarantee a Low Probability of Detection (LPD).

(b) When the signal has been detected, the estimation of its
parameters must be hard, that is, the signal has to guar-
antee a Low Probability of Intercept (LPI).

(c) When intercepted, the signal must be protected from the
exploitation of its features by an opponent, that is, has to
guarantee Low Probability of Exploitation (LPE).

After a review of the state of art in the Noise Radar (NR)
field, the main aims of this paper are as follows.
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� The generation methods of “tailored” Continuous Emission
(CE) Noise Radar (CE‐NR) signals are able to improve the
radar waveform features, that is, low Peak‐to‐Average Power
Ratio (PAPR), good Peak Sidelobes Level (PSL), band oc-
cupancy, without degrading their robustness against detec-
tion, interception and exploitation. This is shown in the
ensuing section 2.

� To analyse the LPD features of a CE‐NR versus those of
any conventional radar (deterministic signals) if a “corre-
lator” type receiver (i.e. a 2 antennas) is used (section 3).
Ideal conditions for intercept are supposed, that is, (i)
absence of overlapping signals and (ii) knowledge of the
duration T of the coherence period of the waveform and of
its bandwidth occupation (from f0 − B

2 to f0 þ B
2).

� To consider that the knowledge of B and T may be very hard
and may be rendered harder by suitable resign of the own
NR emission, including agility (i.e. pseudorandom variation)
of B and T, mimicking the agility of central frequency and of
pulse repetition interval (PRI) of military pulse radars. A
possible estimation of B and T by the time–frequency
analysis is shown in section 4.

� Some limitations of the today widely used recognition and
classification methods for radar signals are shown in
section 5.

1.2 | LPI/LPD waveforms and Continuous‐
Emission Noise Radar

In principle, LPD/LPI features can be reached by spreading
the signal energy over a wide bandwidth B for a relative long
time T less or equal to TDwell, where TDwell is the time‐on‐
target (or Dwell‐Time). In doing so, the theoretical
maximum radar processing gain (equal to the bandwidth–time
product B⋅T ) overcome the gain of the ESM even when the
interceptor is at a relatively close distance. The aim of the
LPD/LPI feature is that the ESM, despite its “one way”
attenuation versus the “two way” of the radar, has to be able to
detect the radar signal only at shorter ranges than the radar
range.

Moreover, the LPD/LPI features are improved when the
radar is working in Continuous Emission (CE) mode, which
allows the radar emission to be more and more unpredictable
thanks to a lower (than the pulse radar mode) peak power.
Another relevant feature of CE radar is the lack of the “pulse
length” signature in the waveform: the trailing and leading
edges of radar pulses are one of the “classical” ESM/ELINT
data.

A common way to improve the anti‐interception perfor-
mance of a radar set is to use the “agility” of the emission
parameters (carrier frequency, pulse repetition interval, signal
coding and so on) [5, 6]. In a CE‐NR, it is possible to
randomly vary (time stagger) the duration T and also (agility)
f0 � B

2. Limiting to the time stagger, if we set T ¼ d⋅ 2Rmax
c ,

where d is a random variable with uniform law in the interval
from 4 to 6 to guarantee an acceptable mismatching loss (less
than 1 dB for d = 5), the detection will become much more

difficult with a superiority of CE‐NR over the conventional
radar in terms of LPI and LPE.

1.3 | “Randomness” of NR waveforms and
LPI features

A “randomisation” of the radar emission leads to the
Continuous‐Emission Noise Radar Technology (CE‐NRT),
where the whole radar emissions are pseudorandom wave-
forms, [7–9], with some intrinsic anti‐intercept feature related
to their “amount of randomness”, [10]. It is hard to quantify
this “randomness”, as the Information Theory and the concept
of Entropy do not seem to lead to advances beyond some basic
theoretical evaluations, [11]. Of course, from the entropy point
of view, the most LPI signals are the realisations of Gaussian
noise occupying the maximum allowed frequency band. In this
case, entropy is easy to comput being simply related to the
flatness of the power density spectrum. This feature is quan-
tified by the Spectral Flatness Measure, or SFM [12]. Unfor-
tunately, in practice, these Gaussian signals have a rather high
(around 10) PAPR (see Equation (1) in section 2), which does
not fully exploit the transmitter power and does not maximise
the signal‐to‐noise ratio (SNR). For a non‐Gaussian process,
which is the result of constrains of the amplitude for a “low
PAPR” waveform, one should compute the “reduction of
entropy” or Negentropy with respect to the Gaussian case [11].

Another element affecting the amount of randomness in
NRT is the use of pseudo random number generators
(PRNG's). The bare definition of a PRNG is “a deterministic
computational process that has one or more inputs called
“seeds”, and outputs a sequence of values that appears to be
random according to specified statistical tests” [13]. In other
terms, the output of a PRNG appears random to an external,
well‐defined observer. This black box definition brings atten-
tion to the opponent trying to mimic “our own” signals and
calls for a modelling of the interception process. However, we
believe that the “not really random” behaviour of any PRNG,
surely relevant in other applications such as cryptography, will
not practically affect the LPI of a Noise Radar. In fact, there
are substantial differences in these two domains: (i) when
trying to break a crypto code, “every bit counts” and all bits are
supposed to be error‐free, while radar interception has to cope
(not with bit streams but rather) with signal samples (with a
given digital coding) unavoidably corrupted by noise and
interference (mostly due to superimposed signals from many
radar sources); and (ii) the repetition period of a suitable digital
PRNG is much longer than a radar operation. The afore-
mentioned periodicity problem is made immaterial by genera-
tion algorithms such as the Mersenne Twister [14], whose
period is the huge 219,937−1 for 32‐bit integers. In practice, the
period of the sequence is a minor problem with respect to the
low statistical quality of some widely used PRNGs.

Finally, a flat power spectrum in the radar frequency band
corresponds to relatively high range sidelobes at the matched
filter output. Hence, both high PAPR and high sidelobes may
be mitigated by “tailoring” the waveform. Clearly, both
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compensations of the previous effects reduce the uncertainty
of the signal thereby tending to impair its LPI.

Recent works in the literature show the use of the artificial
intelligence (AI) in the waveform design to tailor the power
spectrum. In Refs. [15–17], deep neural networks (DNN) are
trained to design a phase‐coded waveform with a power
spectrum containing a low‐power notch to support spectrum
sharing.

The major advantages using a noise waveform are [18] (i)
the inherent immunity from radio frequency and electromag-
netic interference, (ii) the improved spectrum efficiency and,
finally, (iii) protection against hostile jamming as well as being
very difficult to detect.

Starting from the fact that finer range resolution in radar
imaging requires high‐bandwidth waveforms, that is, very fast
analog‐to‐digital converters (ADCs), compressive sensing is a
practical approach to lower sampling rates. In Ref. [19], noise
signals are used as transmit waveforms to validate the feasibility
of using compressive sensing for radar range imaging
applications.

In a real environment, because of the presence of clutter
and interferences from many other electromagnetic signals, the
detection/interception/identification and localisation of a ra-
dar emitter by ESM/ELINT are significant problems. Typical
approaches in a real‐time identification of a pulse radar
compare the characteristics of the pulse (synthesised in the
Pulse Description Message, PDM [2] or Pulse Description
Word, PDW) with the ESM libraries. Anyway, identification
can be a very difficult task when (i) there are no records in an
ESM library; (ii) there are overlaps of different radar parame-
ters; (iii) the environment density quickly increases (e.g.
because of Doppler radars transmitting hundreds of thousands
of pulses per second); (iv) agility of the radar features (e.g.,
pulse repetition interval, carrier frequency and codes) is
implemented; and (v) distortions and high noise levels lead to
erroneous analyses.

1.4 | Analysis of LPI radar signals

The limitations in the detection/interception of radar signals,
amplified to the wide deployment of radar systems with
complex modulations (the most widely used term in ED is
MOP: Modulation On Pulse), push research and development
efforts to investigate novel extraction methods of radar pa-
rameters in comparison with the classical parameters (i.e. the
radio frequency, the bandwidth, the pulse amplitude, the pulse
width, the time of arrival and the direction of arrival).

In Time–Frequency (TF) analysis [20, 21], the Time–
Frequency distribution (TFD) seems a powerful tool to deal
with non‐stationary signals as LPI signals. Many tools, based
on TFD, have been developed to analyse the behaviour of non‐
stationary waveforms.

Historically, the classical work on Time/Frequency distri-
bution dates back to 1932 (Wigner, [22]) and was initially
motivated by the idea to evaluate a joint time/frequency dis-
tribution of the energy to study the problem of statistical

equilibrium in quantum mechanics. Gabor [23] and Ville [24]
further developed this approach by applying it to the
communication signals by the Gabor transform and Wigner–
Ville Distribution (WVD) using the analytic signal. In 1989,
Cohen [25] generalised a wide class of TFD, introducing
different kernel functions. Subsequently, Choi and Williams,
using an exponential kernel function [26], improved the res-
olution and reduced the cross terms in comparison with the
WVD. Details on TFD's are summarised in Appendix A.

The advent of fast and memory‐efficient algorithms for
computing the TFD [27] has favoured applications for the
interception and identification of radar signals.

Generally, an automatic radar waveform recognition sys-
tem, based on Time–Frequency analysis, is composed of four
conceptual modules [28], as shown in Figure 1.

(1) Tim–Frequency (TF) Processing, that is, evaluation of the
TFD and its 2D‐image of the modulus.

(2) Image Feature Extraction that uses the 2D‐image to
extract the TF features [29].

(3) Signal Feature Estimation, obtained from the input signal
to extract the main features: power spectral density,
instantaneous frequency, bandwidth and so on [30, 31].

(4) Classifier for the classification of the victim radar signal.

A fifth block—Off‐line Training—works off‐line to train
the classifier.

There is a wide variety of classifiers to improve the radar
emitter recognition and identification [5]. Many proposed radar
emitter recognition systems incorporate competitive learning,
such as the Convolution Neural Networks (CNN) for their
parallel architecture, fault tolerance and ability to handle
incomplete radar information [32]. In Ref. [33], Wigner–Ville
distribution (WVD) is employed in a CNN to classify
incoming waveforms into Linear frequency modulation radar
signals (LFM), single carrier radar signals (SCR), phase coded
radar signals with three‐element Barker code (PCR3), fre-
quency coded radar signals with five‐element Costas code and
non‐linear frequency modulation radar signals (NLFM). They
employ time–frequency images as inputs to the network. In
Ref. [34], the I–Q time series is employed for both CNN and
LSTM (Long Short‐Term Memory) and then a transfer
learning framework is applied. Some methods use the wavelet
packet transform (WPT) to extract the features and then a
probabilistic support vector machines (SVM) to implement the
radar emitter recognition [35–37]. To improve the perfor-
mance of the signal extraction, deep learning uses multiple
hidden layers perceptron to guarantee a more effective in the
extraction of the signal, see for istance [38–44].

In principle, after transforming the TFD into a 2D‐image,
by suitable image processing algorithms, for example, en-
hancements of the TFD image, adaptive binarisation and
morphological processing of the image [45], the shape of the
TFD is a potential input to the identification and classification
of radar signals.

This approach, for a Linear FM‐CW radar signal, was
applied in Refs. [46, 47], where the WVD and the Hough
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transform (HT) were used to identify the parameters of the
modulation. In Ref. [48], LFM radar signals are described by
the PDW which assigns a label to each LFM pulse. By simu-
lation, the authors showed that the filtering of cross‐term
interference in the TFD by suited kernel functions can
degrade the performance of a Deep Learning LPI pulse clas-
sifier. In Ref. [49], a field‐programmable gate array (FPGA) is
used to design an embedded solution with low computational
complexity for a Wigner–Hough transform to detect and
extract the parameters of LFM‐CW signals.

Recent literature is flooded by many other papers on the
usage of various TFD analyses followed by Artificial Intelli-
gence (AI) processing to classify radar signals in a limited
(order of 10) number of classes. Comments on this approach
are exposed in section 5 of the present paper, and no further
references are added here.

The paper is organised as follows. Section 2 describes three
different approaches to generate CE‐NRT waveforms, and the
related TFDs are compared. Section 3 introduces the detection
of a radar source by a two antennas and correlator system as
applied to intercept pseudorandom waveforms. Section 4
shows some considerations on the generation of Continuous
Emission noise waveforms and the estimation of the
bandwidth‐duration parameters B and T. In section 5, we
underline some limitations in the classification of radar signals
using TFD. Section 6 reports final considerations.

2 | NOISE RADAR WAVEFORM
GENERATION

In this section, we approach the pseudorandom waveform
generation gradually. First, in section 2.1, the unpredictability
of the signal is considered to be passing from deterministic to
fully pseudorandom waveform. In section 2.2, two different
methods (FMeth and COSPAR) to generate “tailored” pseu-
dorandom waveforms are described.

The effectiveness of a radar waveform with a complex
envelope s(t) in terms of power (hence, of signal‐to‐noise ratio
(SNR) at the output of the matched filter) is commonly
measured by the PAPR as follows:

PAPR¼
max

k
js½k�j2

1
N
PN

k¼1
js½k�j2

ð1Þ

where s [k], with k = 1, 2,…,N, are the samples of the signal
(typically, at the Nyquist rate).

The PAPR assumes values in the range [1, PAPRMax]
where PAPRMax (in the following called “natural” PAPR) for
Gaussian statistics is of the order of 10 or slightly more [8].
The loss of SNR is related to the PAPR:

Loss ¼ 10 ⋅ log10ðPAPRÞ ð2Þ

Hence, there is no loss for PAPR ¼ 1 and about 10 dB for
natural PAPR.

2.1 | A phase noise waveform generator
based on Non‐Linear Frequency Modulation

The general expression of the complex envelope of a modu-
lated deterministic waveform of bandwidth B and duration T
(compression ratio BT = B ⋅ T ) is

sdetðtÞ ¼ aðtÞ ⋅ ejϕPMðtÞ −
T
2

≤t≤ þ
T
2

ð3Þ

where a(t) and ϕPM(t) are the Amplitude Modulation (AM) and
the phase Modulation (PM), respectively. The derivative of
ϕPM(t), in radians, is the frequency modulation function
ϕ0PMðtÞ or instantaneous frequency. A suitable choice of a(t)
(amplitude weigthing function) and ϕ0PMðtÞ, that is, a Non‐
Linear Frequency Modulation (NLFM) theoretically may con-
trol the peak sidelobe levels (PSL) of the signal reaching low
PSL. In the following, we consider two NLFM signals to
generate noise waveforms.

� First, a Hybrid‐NLFM signal where a(t) is evaluated by
applying the stationary phase principle:

F I GURE 1 Automatic radar waveform recognition system.
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aðtÞ ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2π
�
�S
�
ϕ0PMðtÞ

��
�2 ⋅
�
�ϕ00PMðtÞ

�
�

r

with S
�
ϕ0PMðtÞ

�
the spectrum of sdetðtÞ at the instantaneous

frequency ϕ0PMðtÞ and ϕ00PMðtÞ the second derivative of ϕPMðtÞ.
The law of the instantaneous frequency ϕ0PMðtÞ is supposed a
weighted sum of a Non Linear‐tangent FM term and a LFM
one (this justifies the name hybrid), [50]:

ϕ0PMðtÞ ¼ πB
�

α
1

tgðγÞ
tg
�
2γB
T

�

þ ð1 − αÞ
2t
T

�

t ∈
�

−
T
2
;þ

T
2

�

where α ∈ (0,1) is the relative weight, B is the sweep frequency,
γ is the Non‐Linear‐tangent FM rate. The weighting co-
efficients (α, γ) have been optimised (for a signal with a
Gaussian spectrum) maximising the transmission efficiency in
comparison with the rectangular amplitude (PAPR = 1). The
related loss results in 0.58 dB only, corresponding to PAPR ≅
1.14. Details on Hybrid‐Non‐Linear‐FM (HNLFM) wave-
forms are reported in Ref. [50]. These types of signals can
reach very low PSL (<−70 dB) also for BT = 128 and 256,
maintaining the PAPR close to the unity.

� Second, the well‐known Hamming NLFM signal with a
uniform amplitude and spectrum following a square root of
raised cosine‐squared.

Multiplying the deterministic signal sdetðtÞ, Equation (3),
with ejk⋅φðtÞ, where φðtÞ is a pseudorandom process (that is, for
each t, φðtÞ is a Uniform‐distributed random variable in
½0; 2π�Þ and k ∈ ½0; 1� is a parameter), we define the phase‐noise
waveform:

sðtÞ ¼ sdetðtÞ ⋅ ejk⋅φðtÞ ð4Þ

In Ref. [51] this type of signal is named as Advanced Pulse
Compression Noise (APCN).

For k ¼ 0; 0:25; 0:5 and 1:0, Figure 2 shows the related
Pseudo‐Smoothed Wigner–Ville Distribution (PSWVD) of a
HNLFM realisation when BT ¼ 5000. For k ¼ 0 (determin-
istic HNLFM signal) the PSL is reduced to a very low value
(less than −100 dB) as shown in Figure 3a. However, intro-
ducing the phase noise (k>0Þ, the performance is downgraded
(see Figures 3b,c,d). Particularly, for k ¼ 0:25 the PSL is
around −37 dB, for k ¼ 0:5 the PSL is −32 dB and for k ¼ 1:0
the PSL is around −31 dB.

Considering a Hamming NLFM signal (PSL ≅ −42.8 dB)
to generate the phase noise waveform (setting the previous
BT = 5000), Figure 4a shows the PSWVD for k = 0 which is
easily distinguishable from Figure 2a, but, when the phase
noise is introduced into the signals, k = 0.25, 0.5. 1.0, the two
waveforms gradually become less distinguishable (compare
Figures 2b,c with Figures 4b,c), becoming indistinguishable for

k = 1.0 (see Figures 2d and 4d) although the SNR is infinity.
This indistinguishable waveform is very important for the LPI
feature.

We conclude the section understanding that in literature,
there are approaches similar to APCN to generate phase noise
signals, [52].

2.2 | Tailored waveforms for NRT

The above‐referenced APCN waveforms design does not
include the PAPR and PSL control; in order to achieve these
important features, two approaches (FMeth and COSPAR
generators) are presented and analysed in the following. Other
methods, not described here, are shown in literature [15–17].

2.2.1 | FMeth pseudorandom generator

FMeth (filtering method) is a procedure to generate pseu-
dorandom waveforms starting from the generation of white
Gaussian complex sequences with a uniform spectrum, see
the block diagram of Figure 5. At the output of the spectral
shaping (Fast Convolution Generator, FCG, by filtering inside
the selected band B), the pseudorandom signal g(t) shows a
natural PAPR (around 10 or greater), with an assigned
spectrum (e.g. Blackman–Nuttall, Hamming, etc.), whose in-
verse Fourier transform (i.e. the autocorrelation function)
shows better PSL with respect to the one derived from the
uniform spectrum (13 dB only). However, high PAPRs
result, causing a low power efficiency. To improve the
transmitted mean power, the PAPR can be reduced (typically
to 1.5–2.0) by the PAPR Set by Alternating Projection block
(middle of Figure 5), maintaining an acceptable SNR (loss
around 2–3 dB). The idea behind the alternating projection
algorithm is to search for a point of intersection between the
spectral constraint and a structural constraint. In our case,
the spectral constraint is determined by the spectral occu-
pancy of the generated waveform, and the structural
constraint is the desired PAPR. The output from the PAPR
Control, g1(t), has the assigned PAPR with non‐Gaussian
distribution of the in‐phase (I) and in‐quadrature (Q) com-
ponents. A further reduction of the PSL near the mainlobe
of the autocorrelation function of g1(t) (useful to attenuate
the harmful effect of the antenna leakage and the near
clutter) can be achieved by an approach, here named FMeth,
based on the concept of “inverse filtering”, well known in
literature [53], whose main operational steps, as shown in
Figure 5, are as follows:

(i) Evaluation of the autocorrelation R(τ) of gn(t), at the
initial step n = 1.

(ii) Definition of the desired autocorrelation: ~RðτÞ ¼ RðτÞ ⋅
qðτÞ in order to suppress the range sidelobes inside the
time interval Ω = [− τ2 < τ < − τ1] ⋃ [τ1 < τ < τ2], where

the function q(τ) is qðτÞ ¼
�
0 τ ∈ Ω
1 elsewhere .
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(iii) Estimation by FFT of the Fourier transform G(f) of g1(t)

and of the spectrum ~Sðf Þ¼F

h
~RðτÞ

i
, where F ½⋅� de-

notes the Fourier transform.
(iv) Evaluation of the frequency response: Hðf Þ ¼

ffiffiffiffiffiffi
~Sðf Þ
p

jGðf Þj .
(v) Generation of the random signal ĝnðtÞ, with attenuated

sidelobes of the autocorrelation inside Ω, by
ĝnðtÞ ¼ F −1fHðf Þ ⋅ Gðf Þg.

Due to the detrimental effects related to the use of the
FFT, that is, the folding of the spectral components of q(t) into
(‐B/2, þB/2), the output ĝnðtÞ has to be iteratively processed
by the FMeth algorithm for a suitable number of times (n = 1,
2,…,niter) to improve the sidelobes suppression until the re-
quirements are satisfied.

We underline that a possibly large number of iterations is
not a practical problem for this this procedure to be designed

for an offline preparation of a large number of transmit signals.
A more detailed description of the FMeth noise waveform
generator is available in Refs. [8, 9].

2.2.2 | COSPAR generator

COSPAR is the acronym of COmbined Spectral‐shaping and
Peak‐to‐Average power ratio Reduction and denotes a wave-
form generator that uses a uniform random variable θ in (0,
2π) to generate the samples of a pseudorandom signal. This
method appears to be an easier way to create a tailored noise
waveform. Unlike FMeth, the COSPAR generator has no it-
erations for sidelobes control. Figure 6 shows the related block
diagram [54].

First, the power spectrum S(f) is selected, choosing among
suited frequency windows (i.e. Taylor, Hamming, Blackman–

F I GURE 2 Pseudo‐Smoothed Wigner–Ville Distribution (PSWVD) of an Advanced Pulse Compression Noise (APCN) with Hybrid‐Non‐Linear‐FM
(HNLFM), BT = 5000, varying the rate: (a) k = 0, (b) k = 0.25; (c) k = 0.5; (d) k = 1. Receiver noise: absent.
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Nuttall, etc.). Then, the root square of S(f) is computed to
define the amplitude of the spectrum of the pseudorandom
waveform, that is, Gðf Þ ¼

ffiffiffiffiffiffiffiffiffi
Sðf Þ

p
. The randomness of the

signal is introduced in the phase of the spectrum by a random
number generator of a uniform random phase θ ∈ (0, 2π).
Finally, the complex spectrum Z(f) = G(f) ⋅ exp{jθ} is ob-
tained. By Inverse‐Fast Fourier Transform (IFFT ), we compute
the sequence z(n) in the time domain. Because the length of z
(f) is much greater than one, applying the Central Limit the-
orem to IFFT{Z(f)}, this transformation makes the compo-
nents I and Q Gaussian‐distributed in the time domain. The
control of the PAPR is implemented using the PAPR reduc-
tion algorithm as described in Ref. [54].

We underlay that, using this method, all generated se-
quences (although pseudorandom) have the same (determin-
istic) power spectrum and autocorrelation function. Figures 7a
and 8a show, for natural PAPR and PAPR = 1.5, the spec-
trum of a single realisation (M = 1) of a pseudorandom signal
obtained by applying the FMeth (blue line) and the COSPAR
(red line) generator, starting from the same Blackman–Nuttall
frequency window with BT = 5000.

2.2.3 | Interception of FMeth and COSPAR
waveforms

An alternative interception method (aided by the spectral
analysis) for waveforms of the above‐referenced type uses the
following steps. (i) Acquisition of M realisations of the wave-
forms. (ii) Computation, via FFT, of the spectrum. (iii)
Computation of the squared modulus of the spectrum. and (iv)
Average of M squared moduli (for each frequency). The results,
with M = 100, are shown in Figures 7b and 8b. Note that the
COSPAR generator is able to produce the same power spectral
density for different PAPRs, [54].

In Figure 9 (9a and 9b for natural PAPR, 9c and 9days for
PAPR = 1.5), the Pseudo‐Smoothed Wigner–Ville distribu-
tions of a realisation are shown to compare FMeth and
COSPAR (B = 50 MHz, T = 100 μs, Blackman–Nuttall fre-
quency window). If we considered another pair of realisations,
we would observe similar images but different from the pre-
vious ones. Hence, the identification of features, which is able
to automatically recognise by time–frequency distribution
waveforms, appears to be nearly impossible.

F I GURE 3 Normalised Autocorrelation of an Advanced Pulse Compression Noise (APCN) with Hybrid‐Non‐Linear‐FM (HNLFM), varying the rate:
(a) k = 0, (b) k = 0.25; (c) k = 0.5; (d) k = 1. BT = 5000. Receiver noise: absent.
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An approach similar to COSPAR is described in Ref. [55],
where the design of pseudo‐random optimised FMCW wave-
forms is proposed using spectral shaping optimisation. The
waveform has shown good spectral containment and range

sidelobes below −75 dB. In Refs [56, 57], spectral notches were
incorporated in the spectral shaping optimisation to favour the
spectrum sharing permitting to reject narrowband
interferences.

F I GURE 4 Pseudo‐Smoothed Wigner–Ville Distribution (PSWVD) of an Advanced Pulse Compression Noise (APCN) with Hamming Non‐Linear
Frequency Modulation (NLFM), BT = 5000, varying the rate: (a) k = 0, (b) k = 0.25, (c) k = 0.5, (d) k = 1.0. Receiver noise: absent.

F I GURE 5 FMeth waveform generator.
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Summing up, the APCN generator has been useful to
describe the transition from a deterministic signal to a more and
more random signal. For the two generators, FMeth and
COSPAR, the latter is simpler to implement; however, its main
limitation with respect to FMeth is that all generated waveforms
have the same spectrum, that is, they are more easily classified.

3 | DETECTION OF A RADAR SOURCE

The detection of a radar signal by ESM or ELINT systems
differs from the conventional radar detection, where the
transmitted signal is known and the matched filtering grants
the maximum gain in signal‐to‐noise ratio (SNR).

F I GURE 6 COmbined Spectral‐shaping and Peak‐to‐Average power ratio Reduction (COSPAR) waveform generator.

F I GURE 7 Estimated spectrum of FMeth and COSPAR waveforms, B = 50 MHz, T = 100 μs, Peak‐to‐Average Power Ratio (PAPR) = natural. (a) M = 1
realisation; (b) M = 100 realisations. Receiver noise: absent.

F I GURE 8 Estimated spectrum of FMeth and COSPAR waveforms, B = 50 MHz, T = 100 μs, Peak‐to‐Average Power Ratio (PAPR) = 1.5. (a) M = 1
realisation; (b) M = 100 realisations. Receiver noise: absent.

GALATI and PAVAN - 9
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The most popular detector to intercept a spread spectrum
signal is the energy detector (ED), which ignores the structure
of the signal and simply compares its energy with a noise
threshold. To intercept coherent signals, a possible improve-
ment is to use a multiple antenna receiver. In the following,
we consider the two antennas and correlator (2A&C) receiver
[58–60] as shown in Figure 10. In Ref. [4], the statistical fea-
tures of the 2A&C are shown for deterministic radar signals.
The extension to pseudorandom signals is described in Refs.
[61–63] and synthesised in Appendix B. The basic features are
resumed in the following.

The noise contribution is uncorrelated between the two
receivers; hence, the computed correlation is only due to the
signal of interest (SOI) at the input of both receivers. By fast
ADCs (Analog‐to‐Digital Converters) with a few GS/s of the

sampling rate and FPGA (Field Programmable Gate Arrays),
the processing achieves wideband sampling and digital filtering
(each pass‐band filter intercepts the signal in the sub‐band),
whose outputs (y1,y2) represent the complex envelope of the
corresponding signal from the intercepted sub‐band.

For each sub‐band, the cross‐correlation is computed be-
tween y1 and y2, which represent the samples (at the Nyquist
rate) of the sum of s (SOI if present) with the receiver noise n1

and n2 respectively.
In Appendix B, for pseudorandom signals, the relationship

between the input/output SNR and the probability of detec-
tion PD (for the assigned probability of a false alarm, PFA) is
shown. The SNR0 at the output versus the SNRi at the input to
the 2A&C is described by Equations (5a) and (5b) for deter-
ministic and pseudorandom signals respectively, where the

F I GURE 9 PSWV Distribution of a single realisation. (a) FMeth waveform, natural Peak‐to‐Average Power Ratio (PAPR); (b) COSPAR waveform, natural
PAPR; (c) FMeth waveform, PAPR = 1.5; (d) COSPAR waveform, PAPR = 1.5. Receiver noise: absent.
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correlation time is assumed to be equal to the time duration of
the signal T and the bandwidth B of the signal is supposed
equal to the bandwidth of the receivers.

SNR0 ¼ BT
SNR2

i
1þ 2⋅SNRi

ðdeterministicÞ ð5aÞ

SNR0 ¼ BT
SNR2

i

1þ 2 ⋅ SNRi þ 2 ⋅ SNR2
i
ðrandomÞ ð5bÞ

Figure 11 shows Equations (5a) and (5b) for BT equal to
102 (red), 103 (blue) and 104 (green). Similar results of
Figure 11 are shown in Ref. [64].

Setting the probability of a false alarm PFA, the probability
of detection PD can be written for both deterministic and
pseudorandom signals as (see Appendix B) follows:

PD ¼ 1−Fχ22

�

x¼
η
β

; λ¼ 2 ⋅ SNR0

�

ð6Þ

where β ¼ 1þ2 ⋅ SNRi þ 2 ⋅ SNR2
i for pseudorandom signals

and β = 1 þ 2 ⋅ SNRi for deterministic signals. The decision
threshold is η = −2 ⋅ ln (PFA) and the function Fχ22ðx; λÞ de-
notes the cumulative distribution function of a non‐central chi‐
square random variable with 2 degrees of freedom and non‐
centrality parameter λ.

From Figure 11, when SNRi ≥ −5 dB, the SNR0 is even
greater than 15 dB for BT ≥ 1000 and both types of signals
(pseudorandom and deterministic); hence, the probability of
detection is close to one (see Figure 12, continuous lines, i.e.
Equation (6), and diamonds for the computer simulation of
FMeth signals). When SNRi < −5 dB, the SNR0 is approximated
by 2 ⋅ SNRi (dB) þ Gint (dB) and there is no substantial differ-
ence between the two cases (the high level of noise no longer
allows to distinguish between a random signal and a determin-
istic one). Summing up for a 2A&C receiver, a desiredPD ≥ 0.9 is
generally guaranteed for SNRi greater than−13.4 dB (BT = 104),
−8.3 dB (BT = 103) and −3.0 dB (BT = 102).

For comparison, Figure 12 shows the curves of PD which is
derived using the energy detector (ED); dashed lines are
referred to the theoretical evaluation shown in Ref. [4], while
circles are the estimated values by a computer simulation of
FMeth pseudorandom signals. The improvement obtained by
the 2A&C detector, versus ED, is around 1.5 dB for PD ≥ 0.9
(it is true also for deterministic signals).

The simulation data shown in Figures 11 and 12 are esti-
mated using the FMeth generator (see Section 2.2.1) with a
Blackman–Nuttall spectrum, B = 50 Mhz, natural PAPR
(values around 10), without sidelobes suppression, with a signal
duration of 100 μs.

The probability PD is estimated by the relative frequency:
P̂D ¼

nthreshold
Ntrials

(Maximum‐Likelihood unbiased estimator) where
Ntrials is the number of trials and nthreshold is the number of hits
that overcome the threshold η for an assigned probability of
false alarm PFA, see Equation (B.8) in Appendix B. For a large
number of trials, after the estimation of P̂D, its standard de-

viation can be approximated as σ̂ ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂Dð1−P̂ DÞ

Ntrials

r

. With P̂D¼0:9

and Ntrials = 1000, the standard deviation is σ̂ ≅ 0:01.
For a 2A&C receiver, Figure 13 shows the estimates of P̂D

with Ntrials ¼ 1000 varying the SNRi (dB) and the corre-
sponding error bars (�2σ̂ ), same conditions as above.

Now, with BT ¼ 1000, we verify by simulation that results
from Equation (5b) are practically independent of (a) the
pseudo‐random waveform generator used, (b) the PAPR and
(c) the spectrum used as input to the waveform generator.

Figure 14 compares the probability of detection of FMeth
and COSPAR waveforms obtained with the same starting
spectrum (Blackman–Nuttall) for high (natural) PAPR and
low PAPR (=2). In Figure 15, for FMeth waveforms, the
spectrum is varied from Hamming to Uniform.

We observe that the curves of PD (even if related to a single
realisation for each estimated probability PD) are very similar to
each other. This is due to the fact that, for very low SNRi
(negative values in dB), the receiver noise in some way masks
the different settings with which the pseudorandom

F I GURE 1 0 Two antennas and correlator
system (2A&C). ()* defines the conjugate operation.
The vectors y1 and y2 denote the generic output
from each filter (the filter indexes are omitted).

GALATI and PAVAN - 11
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F I GURE 1 1 SNRo versus SNRi for 2A&C receiver. Dashed line: deterministic signals, Equation (1a). Continuous line: pseudo‐random signals,
Equation (1b). Circles and diamonds correspond to computer simulations on 1000 trials of FMeth pseudorandom signals. BT is equal to 102 (red), 103 (blue) and
104 (green).

F I GURE 1 2 Probability of detection PD

versus SNRi, Equation (6), for PFA = 10−6.
Continuous line: 2A&C receiver. Dashed line:
Energy Detector (ED) receiver. Diamonds and
circles show the results of computer simulation,
1000 trials of FMeth signals. BT is equal to 102, 103

and 104.

F I GURE 1 3 Estimated probability of
detection (PD) versus SNRi [dB]. PAPR = natural
with Blackman–Nuttall spectrum. FMeth generator.
Simulation on Ntrials = 1000. Error bar:

�2σ̂ ≅�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂Dð1−P̂ DÞ

Ntrials

r

.
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waveforms are generated (i.e. the type of the generator, the
PAPR and the spectrum).

These results show that the detection of a pseudorandom
signal by a two antenna receivers has similar performance to
the one of a deterministic signal in the most critical cases, that
is, when the SNR is low, irrespective of the waveform gener-
ation method.

These results apply to an ideal detection process exploiting
the knowledge of the signal frequency band and duration, that
is, of the central frequency f0, the band B and the duration T of
the modulation. In a real situation, estimating these parameters

for a CE‐NR of the opponent is not an easy task, especially
concerning T. Some key aspects are discussed in the following.

4 | PARAMETERS ESTIMATION OF CE
NOISE RADAR

As the generation of long duration waveforms for noise radar
applications is not convenient, the practical solution is to
generate, see section 2, contiguous independent signals gi(t)
with bandwidth B and duration Ti, as shown in Figure 16a,

F I GURE 1 4 Estimated probability of detection (PD) versus SNRi [dB] for BT = 1000, PAPR = natural (green line) and PAPR = 2.0 (red line) with
Blackman–Nuttall spectrum. (a) FMeth generator. (b) COSPAR generator. Simulation with 1000 trials.

F I GURE 1 5 Estimated probability of detection (PD) versus SNRi [dB] for the FMeth generator, BT = 1000. PAPR = natural (green line) and PAPR = 2.0
(red line). (a) Hamming spectrum. (b) Uniform spectrum. Simulation with 1000 trials.
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where P is an integer generally much greater than one. The
duration Ti is of the order of tens or hundreds microseconds,
and it can be varied (time staggering) from gi(t) to giþ1(t), while
the total time–length Tg is generally equal to the Coherent
Processing Interval (CPI), typically of the order of some mil-
liseconds. These parameters depend on the maximum instru-
mented range and the maximum Doppler frequency, see
section 6.3 of [9, 65]. Their effects (as well as the effect of
“staggering”) on maximum instrumented range and Doppler
measurement are somewhat similar to those of the classical
Moving Target Detector (MTD), [66]. In Ref. [67] a novel
optimal algorithm, named Range Filter Bank (RFB) is
described with the aim to compute the ambiguity function in
the delay and Doppler interval of interest, avoiding any un-
necessary processing load.

The time‐intervals Ti are very likely unknown to the enemy
in both position and duration, who has to estimate them
analysing the intercepted signal. A preliminary analysis in Refs.
[62, 63] showed, for FMeth noise signals, that the bandwidth
estimation may be used to evaluate Ti only when the side lobe
suppression (SLS) function is applied (see section 2.2.1) and
when there is a large enough (at least 5 dB or 10 dB) SNR with
natural PAPR. This is easily understood when considering that
the weighting of the power spectrum is necessary to reduce the
level of the sidelobes of the autocorrelation function. In
practice, the SLS function generates a lack of continuity be-
tween gi(t) and gi þ 1(t).

As an example (see Figure 16b for the construction of the
noise waveforms), a rapid increase/decrease of the harmonic
components is visible in the PSWVD (Figure 17a) for the
FMeth signal with B = 50 MHz, SNR = 40 dB, Ti = 30 μs,
p = 4 and PAPR = 8.8. In Figure 17b, the PAPR is reduced to
2.0, and the lacks of continuity disappear. This is due to the
spectral widening effect of the non‐linearity inherent to the
PAPR reduction. Details of the analysis are as follows.

Denoting Pðt; f Þ the time/frequency distribution, the
instantaneous bandwidth BW ðtÞ of the signal is estimated as
the square root of the second central spectral moment [30, 31]:

BW ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R∞
0

�
f − f instðtÞ

�2 ⋅ Pðt; f Þ df
R∞
0 Pðt; f Þ df

v
u
u
t ð7Þ

where finst(t) is the instantaneous frequency, estimated as

f instðtÞ ¼
R∞
0 f ⋅ Pðt; f Þ df
R∞
0 Pðt; f Þ df

ð8Þ

Figure 17c shows the estimated instantaneous bandwidth
using Equations (7) and (8) with P (t,f) the Pseudo‐Smoothed
Wigner–Ville Distribution (PSWVD). For PAPR = 8.8 (blue
line), the peaks at the time‐discontinuities (i.e. 30, 60 and 90 μs
in Figure 17a) are clearly visible, while for PAPR = 2.0 (red
line), the peaks disappear (see also Figure 17b at 30, 60 and
90 μs).

Figures 18a and 18b show the estimated bandwidth
reducing the SNR at 10 and 5 dB, with natural PAPR,
respectively. In the latter case, not all time‐discontinuities are
clearly detectable.

For a noise waveform generated by COSPAR, with the
same parameters, that is, B = 50 MHz, Blackman–Nuttall
spectral window, SNR = 40 dB, Ti = 30 μs, p = 4, natural
PAPR and PAPR = 2.0, Figures 19a and 19b show the
PSWVD in similar way as in Figures 17a and 17b. In this case,
natural PAPR and PAPR = 2.0 are very similar and no time‐
discontinuity is visible. This is confirmed in Figure 19c,
where the estimated bandwidth shows the same oscillating
values without peaks in correspondence of the sub‐pulses. This
effect is due to the constant power spectrum of the COSPAR
sub‐pulses compared to the FMeth ones.

5 | SOME LIMITATIONS IN THE
CLASSIFICATION OF RADAR SIGNALS BY
TFD—THE NOISE RADAR CASE

Artificial Intelligence (AI) and neural networks are today widely
used for classification of radar signals [68]. In literature, there
are dozens, if not hundreds of publications on this subject, see
references of [69–71]. We underline some comments regarding
the radar waveform recognition system.

(i) The TFD methods were initially developed for the anal-
ysis of non‐stationary signals, whose field of application
provides for a high signal‐to‐noise ratio, for example, for
voice and image analysis, for medical applications [72] and
so on, that is, in a very different context than the radar
one, where the signals to be detected are normally
immersed in noise.

(ii) In the frame of detection/interception/identification of
LPI signals, the 2D‐image of the TFD and its following
processing and classifying has been applied (in the open
literature) for a finite set of n (≈6–12) deterministic sig-
nals, for example, LFM signals, Costas codes, BPSK
codes, Frank, P1, P2, P3 and P4 codes [33, 46–49], while
the field reality shows a much richer set of radar signal
types, especially in the modern context of MIMO (Mul-
tiple Input, Multiple Output) radar and of ISAC (Inte-
grated Sensing and Communications).

F I GURE 1 6 (a) Generation of the noise waveform for a CE noise
radar with time stagger. (b) The examined case, no time stagger, T = 30 μs,
p = 4.
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(iii) Most analyses in the open literature suppose the exact
knowledge of the trailing and leading edges for the
intercepted radar pulse, that is, for pulse‐compression

radars, the rise time tr and the fall time tf of the modu-
lation on pulse (MOP). In principle, this is not strictly
possible unless the SNR and the bandwidth B tend to

F I GURE 1 7 FMeth waveform, SNR = 40 dB.
(a) PSWVD for natural PAPR (=8.8). (b) PSWVD
for PAPR = 2.0. (c) Estimated Bandwidth by
Equations (7) and (8): PAPR = 8.8 (blue),
PAPR = 2.0 (red).

F I GURE 1 8 FMeth waveform with natural
PAPR. Estimated Bandwidth. (a) SNR = 10 dB.
(b) SNR = 5 dB.
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infinity. In all real conditions, the pulse (uncorrupted by
noise) is not rectangular but has a finite rise and fall times.
The effect of the noise, added to the pulse, is to shift the
time of threshold crossing of a random quantity ∆Tr,
whose rms error is [73], chapter 6.3:

δTr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

B ⋅ SNR

r

ð9Þ

with B the bandwidth of the IF filter, T the duration of the
signal and SNR the signal to noise ratio at the output of the
matched filter. The standard deviation δTr decreases as B in-
creases and the duration T decreases. For the simple rectan-
gular pulse, the BT product is of the order of unity, more
complex waveforms can have BT products much greater than
the unit. In these cases, once T is fixed, the bands are much
wider than the rectangular pulse, that is, permit a better pre-
cision. Equation (9) can be rewritten in terms of the statistical
loss of samples in percentage:

δTr

T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

BT ⋅ SNR

r

ð10Þ

Figure 20 shows Equation (10) for BT equal to 102, 103 and
104; for low SNR (−10 dB), the losses are 33%, 10% and 3%.
For positive SNR (>5 dB), the loss is less than 5%. The effect

of this loss on the training of a neural network is reasonably
expected to be significant.

In the Noise Radar case, it is worthy to add the following
considerations.

F I GURE 1 9 COSPAR waveform,
SNR = 40 dB. (a) PSWVD for natural PAPR (=8.1).
(b) PSWVD for PAPR = 2.0. (c) Estimated
Bandwidth by Equations (7) and (8): PAPR = 8.1
(blue), PAPR = 2.0 (red).

F I GURE 2 0 Loss of samples in percentage.
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(i) TFD seems of little (if any) use in the case of pseudo‐
random signals, that is, for CE Noise Radars, as the rela-
tionship between the time and instantaneous frequency is
random, and the number of signal types to be classified/
recognised can tend theoretically to infinity, making the
Off‐line Training of Figure 1 practically impossible.

(ii) A CE‐NR waveform is characterised by the above‐
discussed parameters (see also section 4): central fre-
quency f0, B, T, PAPR, PSL and more. In defence appli-
cations, it is reasonable (and likely) to expect some degree
of agility for f0 (not to mention B) and time stagger for T,
respecting the condition for the operational maximum
range, that is, cT

2 ¼ d ⋅ Rmax with an acceptable mis-
matching loss (e.g. equal to slightly less than 1 dB for
d = 5). Hence, varying T by time stagger, for example, with
d uniform distributed in the interval (5–6), we will prevent
the correlation receiver (Figure 10) of the opponent to
operate at the maximum SNR.

6 | CONCLUSIONS

From the mere anti‐interception point of view, an ideal Noise
Radar shall transmit a wide‐bandwidth Gaussian noise with a
flat power spectrum in a Continuous Emission mode to best
approximate a maximal entropy (minimal interceptability and
exploitability) source.

However, in the real world, practical needs and re-
quirements limit both bandwidth B and duration T of the radar
pseudorandom signal, calling for an effective exploitation of
the power transmitter, that is, a PAPR as close to the unity as
possible, with a signal‐to‐noise gain of the order of 10 dB's
with respect to the Gaussian signal. Conversely, a Peak‐to‐Side
lobe Level (PSL) better than BT is often required especially in
the close‐range interval where antenna leakage occurs. Hence,
“tailored” pseudorandom waveforms are needed in CE Noise
Radars, whose processing, necessarily applied to “blocks” or
“segments” of the signal, destroys both the Gaussian statistics
and the spectral flatness, thus reducing the uncertainty of the
signal and impairing its LPI/LPE features. To evaluate these
features, an “observer” has been defined using Time–
Frequency analysis to estimate the central frequency, the
bandwidth B and the duration T in different conditions that is,
sidelobes reduction (spectral windows) applied or not; PAPR
reduction applied or not. Note that T has been supposed
constant in this work, but it is not necessarily constant in real‐
world applications of Noise Radar Technology, which will
better resort to some “staggering”, similar to the PRF stag-
gering of conventional pulse radars.

The results (see also [63]) show that

a. Detectability of Noise Radar in different receiver noise
levels (different SNR's) does not depend on the particular
“tailoring” of the pseudorandom signal that is, it is prac-
tically the same with the PAPR reduction applied or not and
the PSL controlled or not.

b. The bandwidth estimation may be used to evaluate T when
the side lobe suppression (SLS) function is applied, that is,
for FMeth generator. However, the estimation of T is
feasible with a large enough (at least 5 dB or 10 dB) SNR.

c. The COSPAR generator, for the more regularity of the sub‐
pulses (i.e. absence of the SLS algorithm), appears more
robust to the estimation of T; however, its intrinsic weak-
ness is that all noise waveforms have the same spectrum.

In spite of the powerful time–frequency analysis (section 5
and Appendix A) and the more and more widespread use of
Artificial Intelligence (AI), the well‐known techniques of fre-
quency agility and time staggering would make the estimate of
B and T much more difficult and significantly improve the
LPD/LPI/LPE features of CE Noise Radars: This point is
worth of future research.
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APPENDIX A

Time/frequency representat ion of a signal

A.1 Time/frequency cor relat ion function,
complex ambiguity function and wigner
distr ibution
Defining the instantaneous time correlation as follows:

Rðt; τÞ ¼ s
�

t þ
τ
2

�
s∗
�

t −
τ
2

�
∀ t; τ ðA:1Þ

where the variable t is the absolute time, while τ is the relative
time or “the time lag”, the Fourier transform on t of R (t,τ)
defines the complex ambiguity function:

χðτ; νÞ ¼ F tfRðt; τÞg ¼
Z

s
�

t þ
τ
2

�
s∗
�
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τ
2
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e−j2πνtdt ∀ τ; ν

ðA:2Þ

whose amplitude is the Woodward's ambiguity function for the
radar waveform having complex envelope s(t):

jχðτ; νÞj ¼

�
�
�
�
�
�

Z þ∞

−∞
s
�

t þ
τ
2

�
s∗
�

t −
τ
2

�
e−j2πνt dt

�
�
�
�
�
�

¼

�
�
�
�
�
�

Z þ∞

−∞
sðtÞs∗ðt þ τÞej2πνtdt

�
�
�
�
�
�

ðA:3Þ

When the Fourier transform is evaluated on τ, it is defined
as the Wigner distribution function:

Wsðt; f Þ ¼ F τfRðt; τÞg ¼
Z

s
�

t þ
τ
2

�
s∗
�

t −
τ
2

�
e−j2πf τdτ ∀ t; f

ðA:4Þ

The main properties of the Wigner distribution are

(i) Ws(t,f ) is a real function, that is, W ∗
s ðt; f Þ ¼Wsðt; f Þ,

even if s(t) is a complex signal.
(ii) For real signals, it is symmetrical in the frequency domain,

that is, Ws(t,−f ) = Ws(t,f ).
(iii) It is time‐shift and frequency‐shift invariant, that is,

if gðtÞ ¼ sðt − t0Þ then Wgðt; f Þ ¼Wsðt − t0; f Þ
if gðtÞ ¼ sðtÞej2πf0t then Wgðt; f Þ ¼Ws

�
t; f − f0

�
.

(iv) Time and frequency marginal property states that
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Z

Wsðt; f Þdf ¼ jsðtÞj2;
Z

Wsðt; f Þdt¼ jSðf Þj2

Hence, the energy of the signal is

E¼
Z Z

Wsðt; f Þdtdf ¼
Z

jsðtÞj2dt¼
Z

jSðf Þj2df

Introducing the instantaneous frequency correlation of s(t)

Aðf ; νÞ ¼ S
�

f þ
ν
2

�
S∗
�

f −
ν
2

�
∀ ν; f ðA:5Þ

with Sðf Þ the Fourier transform of sðtÞ, Equation (A.5) enables
the interpretation of f as the absolute frequency, while ν is the
relative frequency or frequency shift. Aðf ; νÞ can be obtained
by the 2D‐Fourier transform on t and τ of Rðt; τÞ:

Aðf ; νÞ ¼ F t;τfRðt; τÞg ¼ ∬ Rðt; τÞe−j2πðνtþf τÞdtdτ ∀ ν; f
ðA:6Þ

Introducing Equation (A.1) in Equation (A.6), by Equa-
tion (A.2) and Equation (A.4), the instantaneous frequency
correlation function A (f,ν) can be written in terms both of the
Wigner distribution or the complex ambiguity function:

Aðf ; νÞ ¼ F tfW ðt; f Þg ¼
Z

W ðt; f Þe−j2πνtdt ðA:7aÞ

Aðf ; νÞ ¼ F τfχðτ; νÞg ¼
Z

χðτ; νÞe−j2πf τdt ðA:7bÞ

From Equation (A.7), the Wigner distribution and the
complex ambiguity function are related to each other as
follows:

W ðt; f Þ ¼∬ χðτ; νÞe−j2πðf τ−νtÞdτdν ðA:8aÞ

χðτ; νÞ ¼∬ W ðt; f Þe−j2πðνt−f τÞdtdf ðA:8bÞ

Figure A1 shows the relationships among the four bi‐
dimensional functions R (t,τ), A (f,ν), χ(τ,ν) and W (t,f).

A.2 Wigner–Vil le Distr ibution (WVD) function
In 1948 J. A. Ville introduced a complex signal, said analytic
signal zðtÞ, to represent a real (physical) signal sRðtÞ. If sRðtÞ is a
base‐band signal with spectrum Sðf Þ; the related analytic signal is

zðtÞ ¼ sRðtÞ þ jH fsRðtÞg ðA:9Þ

where the real part of z (t) is sR(t), while the imaginary part is the
Hilbert transform of sR(t), that is, the output of a filter with
impulse response hHðtÞ ¼ 1

πt . The spectrum of z(t), that is, Z(f),
is zero for negative frequencies and equal to S(f) for positive
frequencies. The Wigner distribution, evaluated using the ana-
lytic signal z(t) of Equation (A.9) instead of s(t) in Equa-
tion (A.4), is usually applied in practice today and is called the
Wigner–Ville Distribution (WVD). There are several advan-
tages using the analytic signal in the Wigner distribution.

(i) From Equation (A.4), the Wigner distribution is a
quadratic functional of s(t), hence, it produces in-
terferences between the negative and positive frequency
components of the signal, which are absent if z(t) is used.

(ii) The analytic signal guarantees that the first moment of the
Wigner–Ville distribution is the instantaneous frequency,
that is, the time derivative of the phase.

(iii) Numerical algorithms for the computation of the Wigner
distribution will have to rely on oversampling the original
waveform to avoid serious aliasing in the frequency
domain; using the analytic signal, and no oversampling is
required.

The WVD has the best possible concentration, but the
presence of the cross terms, that is, of large oscillating terms
located in the middle between the actual signal components,
affects its results. Because the WVD is a quadratic functional
of the signal s(t), when s(t) is a multicomponent signal, for
example, s(t) = s1(t) þ s2(t), the Wigner distribution results in
the sum of four terms:

F I GURE A 1 Relationship among the four bi‐dimensional functions R (t,τ), A (f,ν), χ(τ,ν) and W (t,f).
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W ðt; f Þ ¼Ws1ðt; f Þ þWs2ðt; f Þ þWs1s2ðt; f Þ þWs2s1ðt; f Þ

The presence of the two cross terms Ws1s2 (t,f) and þWs2s1
(t,f) poses a serious problem on the use of the Wigner distri-
bution, and the methods to minimise the contribution of these
terms must be employed.

The Cohen's class representation [25] allows us to reduce the
cross terms with limited effects on the useful properties of the
WVD.TheCohen's class can be thought as a 2D linear filtering in
time/frequency by the functions g1(t) and G2(f) respectively,
leading to the Pseudo‐Smoothed Wigner–Ville distribution (i.e.
with smoothing both in time and in frequency):

W PSðt; f Þ ¼ g1ðtÞ ∗ W ðt; f Þ ∗ G2ðf Þ ðA:10Þ

where W (t,f) is the Wigner–Ville distribution and the '*' de-
notes the convolution operator. If G1(ν) = 1, that corresponds
at g1(t) = δ(t), Equation (A.10) becomes the Pseudo Wigner–
Ville distribution smoothed only in the frequency domain, on
the other hand, when g2(τ) = 1, that corresponds at G2(f) = δ
(f), the Equation (A.10) becomes the Wigner–Ville distribution
only smoothed in time.

APPENDIX B

Detection test for a pseudorandom signal of
interest
Denoting with s the signal of interest (SOI) and with n1, n2 the
noise of the two receivers (see Figure 10 in section 3), the
detection procedure of the 2A&C receiver is defined by the
following binary hypothesis test:

H0 :

�
y 1 ¼ n1
y 2 ¼ n2

H1 :

�
y 1 ¼ s þ n1
y 2 ¼ a ⋅ s þ n2

ðB:1Þ

with a a complex constant describing the differential attenua-
tion and the phase shift of the receiving paths, including the
delay between the antennas (which, however, are very close, of
the order of less than 1 m in practical applications). Hence,
here, we set a = 1. Under this assumption, the output from the
cross‐correlator to test is only the zero‐lag term R of the cross‐
correlation between y1 and y2:

R¼ yH
1 ⋅ y 2 ðB:2Þ

where H denotes the Hermitian‐transpose operator.
Under the null hypothesis H0, y1 = n1 and y2 = n2 are

independent and Gaussian distributed complex vectors with
zero mean and equal covariance matrix (diagonal with ele-
ments σ2

n). The closed form of the distribution of R¼ nH
1 n2 is

not available, making it difficult to set the decision threshold η
versus the probability of false alarm (PFA). However, the dis-
tribution of nH

1 n2 for a sufficient length of the vectors, thanks
to the Central Limit theorem, is (with a good approximation)
Gaussian with zero mean and variance σ2

0 ¼
N2Tcorr

Bn
, where N is

the noise power in the bandwidth band Bn of the receivers and
Tcorr is the time of correlation that we suppose is equal to the
duration T of the signal of interest s.

Under the alternative hypothesis H1, expanding Equa-
tion (B.2), R is the sum of four terms:

R¼ sH s þ sHn2 þ nH
1 s þ nH

1 n2 ðB:3Þ

Deterministic case. If the signal of interest s is determin-
istic, the term sHs is equal to the energy S ⋅ T, where S is the
signal power entering the filter and T the duration of s. The
two cross terms sHn2 and nH

1 s are Gaussian‐distributed
complex random variables with zero mean and variance
equal to NST

Bn
, while the distribution of nH

1 n2 is Gaussian‐
distributed with zero mean and variance N2T

Bn
: Summing up in

the presence of a deterministic signal s, the test statistics R,
Equation (B.3), is a complex Gaussian random variable with
mean ST and variance: σ2

R ¼
N2T
Bn
þ 2NST

Bn
¼ NT

Bn
ðN þ2SÞ.

Hence, the signal‐to‐noise ratio at the output is

SNR0 ¼
S2T 2

NT
Bn
ðN þ 2SÞ

¼
BnTS2

N2þ 2NS
¼ BnT

SNR2
i

1þ 2 ⋅ SNRi
ðB:4Þ

being SNRi ¼
S
N the signal‐to‐noise ratio at the input of the

receiver.
Pseudorandom case. For a pseudorandom signal s, the

cross‐correlation R, applying the Central Limit theorem, is
distributed as a complex Gaussian random variable with mean
ST and variance σ2

R ¼
N2T
Bn
þ 2NST

Bn
þ 2S2T

Bn
: The added term 2S2T

Bn
takes into account the randomicity of s. Hence, the corre-
sponding SNR0 becomes

SNR0 ¼
S2T 2

T
Bn

�
N2 þ 2NSþ 2S2

�¼ BnT
S2

�
N2þ 2NSþ 2S2

�

¼ BnT
SNR2

i

1þ 2 ⋅ SNRi þ 2 ⋅ SNR2
i

ðB:5Þ

If we assume in Equation (B.4) and Equation (B.5) Bn equal
to the signal bandwidth B, the product BnT = BT is the gain
(or pulse compression gain) of the coherent processing, that is,
the matched filtering.

In the presence of SOI, both the mean and the variance of
R depend on the strength of the signal, that is, they will change
under the null (H0) and the alternative (H1) hypothesis, and the
optimal detector is quadratic.

In general, for spread spectrum and/or NRT signals, the
strength of the signal (S) is oftenmuchweaker than the noise one
(N). Thus, the variance of R is approximately constant
�

σ2
R ≅ σ2

0 ¼
N2T
Bn

�
, and the use of a simple threshold test is

convenient in comparison with the truly optimal detector that
would utilise the likelihood ratio L (y1,y2) = f (y1,y2|H1)/f (y1,
y2|H0).
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In addition, to avoid that the mean of R depends on the
unknown phase shift between the two received signal, the
statistical test used for the detection is the magnitude squared
of R normalised by the noise σ2

0.

z
�
y 1; y 2

�
¼

2
σ2
0

�
�yH

1 ⋅ y 2

�
�2 ¼

2
σ2
0
jRj2 ðB:6Þ

Under H0, the statistic is

zH0

�
y 1; y 2

�
¼ z
�
y 1; y 2

�
¼

2
σ2
0
jRj2 ðB:7Þ

The statistic zH0, being the square of a zero‐mean complex
Normal random variable with unit variance (due to the nor-
malisation factor 2=σ2

0), is distributed as a chi square variable
with 2 degrees of freedom (the signal y1,y2 are complex), that
is, an Exponential law of parameter 0.5 with distribution
FðzjH0Þ¼ 1−e−z

2 for z > 0. The probability of a false alarm is
easily computed as PFA ¼ e−1

2 η and the decision threshold is

η¼ − 2 ⋅ lnðPFAÞ ðB:8Þ

Under H1, the statistics is

zH1

�
y 1; y 2

�
¼

2
σ2
1
jRj2 ðB:9Þ

being σ2
1 ¼ β ⋅ σ2

0, with β ¼ 1þ 2 ⋅ SNRi for a deterministic
signal and β¼ 1þ 2 ⋅ SNRi þ 2 ⋅ SNR2

i for a pseudorandom
signal, Equation (B.9) becomes

zH1

�
y 1; y 2

�
¼

2
σ2
1
jRj2 ¼

1
β

⋅
2
σ2
0
jRj2 ¼

1
β

⋅ z
�
y 1; y 2

�
ðB:10Þ

The statistic zH1, being the square of a complex Normal
variable R with mean E [R] ≠ 0 and unit variance (due to the
normalisation factor 2=σ2

1), results are distributed as a non‐
central chi square random variable with 2 degrees of
freedom, where the non‐centrality parameter (λ) can be
evaluated from the mean of |R|2. In fact, starting from
R¼ sH s þ sHn2 þ nH

1 s þ nH
1 n2:

E
�
jRj2

�
¼ Var½R� þ E½R�2 ¼ σ2

1 þ S2T 2

¼ σ2
0 ⋅ βþ

S2

N2
N2T
Bn

BnT ¼ σ2
0 ⋅ β þ SNR2

i ⋅ σ2
0 ⋅ BnT

with σ2
0 ¼

N2T
Bn

. With BnT ⋅ SNR2
i ¼ β ⋅ SNR0, we have

E
�
jRj2

�
¼ σ2

0 ⋅ βð1þ SNR0Þ ¼ σ2
1ð1þ SNR0Þ

The mean of zH1 becomes

E½zH1 � ¼
2
σ2
1
E
�
jRj2

�
¼ 2þ 2 ⋅ SNR0 ðB:11Þ

For a non‐central chi square random variable with 2 de-
grees of freedom, the mean and the non‐centrality parameter
λ are related as E½zH1 �¼ 2 þ λ; hence, λ = 2 ⋅ SNR0. Then, the
probability of detection results are as follows:

PD ¼ P
�
z
�
y 1; y 2

�
> η
�
¼ P

�

zH1

�
y 1; y 2

�
>

η
β

�

¼ 1−Fχ22

�

x¼
η
β

; λ¼ 2 ⋅ SNR0

� ðB:12Þ

where Fχ22ðx; λÞ denotes the cumulative distribution function of
a non‐central chi square random variable with 2 degrees of
freedom and non‐centrality parameter λ.
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