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Bivariant Class of Degree One
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Abstract. Let f : X → Y be a projective birational morphism, between

complex quasi-projective varieties. Fix a bivariant class θ ∈ H0(X
f→

Y ) ∼= HomDb
c(Y )(Rf∗AX ,AY ) (here A is a Noetherian commutative ring

with identity, and AX and AY denote the constant sheaves). Let θ0 :
H0(X) → H0(Y ) be the induced Gysin morphism. We say that θhas
degree one if θ0(1X) = 1Y ∈ H0(Y ). This is equivalent to say that θ is
a section of the pull-back f∗ : AY → Rf∗AX , i.e. θ ◦ f∗ = idAY , and
it is also equivalent to say that AY is a direct summand of Rf∗AX . We
investigate the consequences of the existence of a bivariant class of degree
one. We prove explicit formulas relating the (co)homology of X and Y ,
which extend the classic formulas of the blowing-up. These formulas are
compatible with the duality morphism. Using which, we prove that the
existence of a bivariant class θ of degree one for a resolution of singular-
ities, is equivalent to require that Y is an A-homology manifold. In this
case θ is unique, and the Betti numbers of the singular locus Sing(Y ) of
Y are related with the ones of f−1(Sing(Y )).
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1. Introduction

Let f : X → Y be a projective birational morphism, between complex quasi-
projective varieties. Fix a bivariant class

θ ∈ H0(X
f→ Y ) ∼= HomDb

c(Y )(Rf∗AX ,AY ),
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where A is a Noetherian commutative ring with identity, and AX and AY

denote the constant sheaves [10]. Let θ0 : H0(X) → H0(Y ) be the induced
Gysin morphism. We say that θ has degree one if θ0(1X) = 1Y ∈ H0(Y ). This
is equivalent to say that θ is a section of the pull-back f∗ : AY → Rf∗AX , i.e.
θ ◦ f∗ = idAY

(Remark 2.1, (i)), and it is also equivalent to say that AY is a
direct summand of Rf∗AX (Theorem 3.1). We investigate the consequences of
the existence of a bivariant class of degree one. Specifically, in Sect. 4 we prove
explicit formulas relating the (co)homology of X and Y , which extend classic
formulas of the blowing-up (Propositions 4.1, 4.3, 4.4, 4.5). These formulas are
compatible with the duality morphism (Sect. 5). Using which, we prove that
the existence of a bivariant class θ of degree one for a resolution of singularities,
is equivalent to require that Y is an A-homology manifold (Theorem 6.1). In
this case θ is unique, and the Betti numbers of the singular locus Sing(Y ) of
Y are related with the ones of f−1(Sing(Y )) (Remark 6.2, (ii)).

Although elementary, Theorem 3.1 seems to have escaped explicit notice.
As far as we know, Theorem 6.1 gives a new characterization of homology
manifolds, in terms of their resolution of singularities.

2. Notations

(i) Let A be a Noetherian commutative ring with identity (e.g. A = Z or A =
Q). Every topological space V occurring in this paper will be assumed
to be imbeddable as a closed subspace of some R

N [10, p. 32] (e.g. a
complex quasi-projective variety, with the natural topology, and its open
subsets). Maps between topological spaces are assumed continuous of
finite cohomological dimension [10, p. 83] (e.g. algebraic maps between
complex quasi-projective varieties, and their restrictions on open subsets).
We denote by Hi(V ) and Hi(V ) the cohomology and the Borel–Moore
homology groups, with A-coefficients, of V [9]. We denote by Sh(V ) the
category of sheaves of A-modules on V . Let Db

c(V ) denote the derived
category of bounded constructible complexes of A-sheaves F• on V [8],
[5]. The symbol IC•

V represents the intersection cohomology complex
of V . If V is a smooth, irreducible, quasi-projective complex variety of
dimension n, then IC•

V
∼= AV [n], where AV is the constant sheaf.

(ii) Let f : X → Y be a continuous and proper map. Fix a bivariant class
[10]

θ ∈ H0(X
f→ Y ) ∼= HomDb

c(Y )(Rf∗AX ,AY ).

Let θ0 : H0(X) → H0(Y ) be the induced Gysin homomorphism. We say
that θ has degree one (for the map f) if θ0(1X) = 1Y ∈ H0(Y ) [16, p.
238].

(iii) Let V be an irreducible, quasi-projective variety of complex dimension
n. We say that V is an A-homology manifold if for all y ∈ Y and for
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all i �= 2n one has Hi(Y, Y \{y}) = 0, and H2n(Y, Y \{y}) ∼= A [3], [4]
(by Hi(Y, Y \{y}) we denote the singular homology of a pair). This is
equivalent to say that AY [n] is self-dual, or that AY [n] ∼= IC•

Y [4, p.
804–805].

(iv) An element θ ∈ Hi(X
f→ Y ) is called a strong orientation of codimension

i for the morphism f : X → Y if, for all morphisms g : Z → X, the
morphism

H•(Z
g→ X) • θ→ H•(Z

f◦g→ Y )

is an isomorphism [10, p. 26], [4, p. 803].

Remark 2.1. (i) Observe that θ has degree one if and only if θ is a section
of the pull-back f∗ : AY → Rf∗AX , i.e.

θ0(1X) = 1Y ⇐⇒ θ ◦ f∗ = idAY
.

In fact, assume that θ is of degree one. For every y ∈ H•(Y ), one
has ( [10, p. 26, (G4), (i)], [16, p. 251, 9]):

θ∗(f∗(y)) = θ∗(1X ∪ f∗(y)) = θ∗(1X) ∪ y = 1Y ∪ y = y.

By functoriality, this means that the morphism θ◦f∗ induces the identity
on the cohomology groups idH•(Y ) = θ∗ ◦ f∗ : H•(Y ) → H•(Y ). On the
other hand, we have θ ◦ f∗ ∈ HomDb

c(Y )(AY ,AY ) ∼= H0(Y ). It follows
that θ ◦ f∗ = idAY

.

Conversely, if θ◦f∗ = idAY
, then the composite H0(Y )

f∗
→ H0(X) θ0→

H0(Y ) is the identity of H0(Y ). Since f∗(1Y ) = 1X , it follows that
θ0(1X) = 1Y , i.e. θ has degree one.

(ii) Let f : X → Y be a proper map. Let θ ∈ H0(X
f→ Y ) be a bivariant class.

If θ0(1X) = d·1Y ∈ H0(Y ), and if d is a unit in A, then d−1·θ is a bivariant
class of degree one. Moreover, let i : W ⊆ Y be a non-empty subspace of
Y , and let g : f−1(W ) → W be the restriction of f on f−1(W ). Denote
by θ′ = i∗(θ) ∈ H0(f−1(W )

g→ W ) the pull-back of θ. By [10, (G2), (ii),
p. 26], we see that i∗θ0(1X) = θ′

0j
∗(1X), where j : f−1(W ) ⊆ X denotes

the inclusion. Therefore, 1W = θ′
0(1f−1(W )) ∈ H0(W ). This proves that

the pull-back of a bivariant class of degree one, is again of degree one.
And, conversely, if Y is path-connected, and θ′ is of degree one, then also
θ is of degree one.

(iii) Assume that f : X → Y is a projective, locally complete intersection mor-
phism between complex irreducible quasi-projective varieties, and that f
is birational (e.g. f is the blowing-up of Y at a locally complete inter-

section subvariety W ⊂ Y [11, p. 114]). Let θ ∈ H0(X
f→ Y ) be the

orientation class of f [11, p. 114], [10, p. 131]. Then θ has degree one. In
fact, let U be a non-empty Zariski open set of Y , such that f induces an
isomorphism f−1(U) ∼= U . Let θ′ be the restriction of θ on f−1(U) → U .
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Since θ′ is the orientation class of f−1(U) → U [11, Lemma 19.2, (a), p.
379], and f−1(U) ∼= U , it follows that θ′ has degree one. By remark (ii)
above, also θ has degree one . Compare with [1, p. 137] and [17, p. 12].

(iv) If Y is a quasi-projective A-homology manifold, and f : X → Y is a
resolution of singularities of Y , then there exists a unique bivariant class
θ ∈ HomDb

c(Y )(Rf∗AX ,AY ) of degree one. See Theorem 6.1 below.
(v) Let f : X → Y be a projective map between irreducible, complex quasi-

projective varieties of the same dimension n. Assume that Y is smooth
(or, more generally, that Y is an A-homology manifold). In this case one
has (compare with [10, 3.1.4, p. 34], [9, Lemma 2, p. 217], and the proof
of Theorem 6.1 below):

H0(X
f→ Y ) ∼= H2n(X) ∼= H0(X).

By remark (i) above, if there exists a bivariant class of degree one for f ,
then, for every k, Hk(Y ) is contained, via pull-back, in Hk(X). Therefore,

if A = Z and hk(Y ) > hk(X) for some k, then it happens that H0(X
f→

Y ) �= 0, but θ0 = 0, for every bivariant class θ. However, if, in addition,
f is birational, then the bivariant class θ corresponding to 1X ∈ H0(X)
is a bivariant class of degree one. In fact, if U is a Zariski open subset of
Y such that f−1(U) ∼= U , the restriction of θ on f−1(U) → U has degree
one. Observe that, if Y is singular, it is no longer true. For instance, let
C ⊂ P

3 be a projective non-singular curve of genus ≥ 1. Let Y ⊂ P
4 be

the cone over C, and let f : X → Y be the blowing-up of Y at the vertex.
Then one has H0(X

f→ Y ) �= 0, but there is no a bivariant class of degree
one of f . This is a consequence of Theorem 6.1. For more details, see
Remark 6.2, (iii).

(vi) Let f : X → Y be a projective map between irreducible quasi-projective
varieties. Assume there exists a bivariant class θ of degree one. Put n =
dim X, and m = dim Y . Since f∗◦θ∗ = idH•(Y), the Gysin map θ∗ induces
an inclusion H•(Y ) ⊆ H•(X). It follows that m ≤ n. Moreover, f is
surjective, otherwise the push-forward f∗ : H2m(X) → H2m(Y ) vanishes.
Since restricting θ to some special fibre, we obtain again a bivariant class
of degree one, in general it may happen that n > m. It is clear that, if
n = m, then f is birational.

3. Bivariant Class of Degree One and Decompositions

The existence of a bivariant class of degree one can be reformulated in terms of
certain decompositions in derived category. This is the content of the following
Theorem 3.1.

Theorem 3.1. Let f : X → Y be a continuous and proper map, with Y path-
connected. Let U ⊆ Y be a non-empty open subset such that f induces an
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homeomorphism f−1(U) ∼= U . Set W = Y \U , and ˜W = f−1(W ). The follow-
ing properties are equivalent.

(i) There exists a bivariant class θ ∈ HomDb
c(Y )(Rf∗AX ,AY ) of degree one.

(ii) In Db
c(Y ) there exists a cross isomorphism Rf∗AX ⊕AW

∼= Rf∗A˜W
⊕AY .

(iii) In Db
c(Y ) there exists a decomposition Rf∗AX

∼= AY ⊕ K.

In this section we are going to prove Theorem 3.1. To this purpose, we
need some preliminaries. The first one is the following lemma.

Lemma 3.2. Let T be a triangulated category, and f∗ ∈ HomT (A,B) be a
morphism in T . Assume that f∗ if left-invertible, i.e. that there exists θ ∈
HomT (B,A) such that θ ◦ f∗ = 1A. Then we have B ∼= A ⊕ C for some
C ∈ Ob(T ).

Proof of Lemma 3.2. The axiom TR1 (iii) of triangulated categories implies
that f∗ can be completed to a distinguished triangle

A
f∗

−→ B −→ C

[12, p. 12]. Thus, combining the hypothesis θ ◦ f∗ = 1A with axioms TR1 and
TR3, we have a commutative diagram of distinguished triangles

A
f∗

��

1A
��

B

θ
��

�� C

��

A
1A �� A �� 0.

The axiom TR2 provides also the following commutative diagram of distin-
guished triangles

C
δ ��

��

A[1]

1A[1]

��

�� B[1]

θ[1]

��

0 �� A[1] �� A[1],

from which we argue that δ vanishes. Then the triangle A
f∗

−→ B −→ C splits;
see e.g. [12, Exercise 1.38]. �

We are in position to prove that (i) is equivalent to (iii) in Theorem 3.1.
To this purpose, first assume there exists a bivariant class θ : Rf∗AX →

AY of degree one, and let f∗ : AY → Rf∗AX be the pull-back morphism. By
Remark 2.1, (i), we know that θ ◦f∗ = 1AY

. Therefore, we may apply previous
Lemma 3.2, with T = Db

c(Y ), A = AY , B = Rf∗AX , with the morphism f∗

as the pull-back, and θ as the given bivariant class. It follows a decomposition
like Rf∗AX

∼= AY ⊕ K.
Conversely, suppose there exists a decomposition Rf∗AX

∼= AY ⊕ K.
By projection, it induces a bivariant class η : Rf∗AX → AY . Let U ′ be a
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path-connected component of U . Since the restriction η′ of η on U ′ is an
automorphism of AU ′ , it follows that η′

0(1U ′) = d · 1U ′ ∈ H0(U ′), with some
unit d ∈ A. Therefore, d−1 · η is a bivariant class of degree one (compare with
Remark 2.1, (ii)).

This concludes the proof that (i) is equivalent to (iii) in Theorem 3.1.

Remark 3.3. In order to prove that (i) implies (iii), we do not need the exis-
tence of U .

Now we are going to prove that (i) is equivalent to (ii).
Observe that the same argument we just used to prove that (iii) implies

(i), proves that (ii) implies (i). In fact, suppose there exists a decomposition
Rf∗AX ⊕ AW

∼= Rf∗A˜W
⊕ AY . By projection, it induces a bivariant class

η : Rf∗AX → AY . Since both AW and Rf∗A˜W
are supported on W , the

restriction of η on U is an automorphism of AU . And now we may conclude as
before.

In order to conclude the proof of Theorem 3.1, we only have to prove
that (i) implies (ii). Also in this case, we need some preliminaries.

Consider the following natural commutative diagram

˜W

g

��

j
�� X

f

��

U
∂X��

1

��

W
i �� Y U

∂Y��

(1)

where g : ˜W → W denotes the restriction of f , and the other maps are the
inclusions. Denote by A (resp. B) the full subcategory of Sh(X) (resp. Sh(Y ))
supported on U .

Lemma 3.4. On the category Sh(U) we have f∗ ◦ ∂X ! = ∂Y !. Furthermore, f∗
is an exact equivalence between A and B, whose inverse is the pull-back f∗.

Proof. First we prove that f∗ ◦ ∂X ! = ∂Y ! on Sh(U).
Let F be a sheaf on U and let V ⊆ Y be an open subset. By [13, Definition

6.1, p. 106], we have

f∗(∂X!(F))(V ) = {s ∈ Γ
(

f−1(V ) ∩ U,F
)

| supp(s) is closed in f−1(V )} (2)

and

∂Y !(F)(V ) = {s ∈ Γ (V ∩ U,F) | supp(s) is closed in V }.

Since f is continuous, we have ∂Y !(F)(V ) ⊆ f∗(∂X!(F))(V ). Hence, ∂Y !(F) is
a subsheaf of f∗(∂X!(F)). As for the opposite inclusion, we argue as follows.
By the local compactness of Y , we can assume that the closure of V is compact
in Y . Fix s ∈ f∗(∂X!(F))(V ). Then s is a section of the sheaf F over the open
set f−1(V ) ∩ U of Y , whose corresponding support

C := supp(s) :=
{

y ∈ f−1(V ) ∩ U | sy �= 0
}
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is closed in f−1(V ) (compare with the definition (2)). It suffices to prove
that f(C), which is homeomorphic to C, is closed in V . Since f is a proper
morphism, f−1(V ) is compact and the map f−1(V ) → V is closed. Then we
have

C = f(C) = f(C ∩ f−1(V )) = f(C) ∩ V

and we are done.
We are left with the proof that f∗ induces an exact equivalence between

A and B. By [13, Proposition 6.4, p. 107], we know that ∂X! (∂Y ! resp.) induces
an equivalence between Sh(U) and A (B resp.), whose inverse functor is the
pull-back ∂∗

X (∂∗
Y resp.). Taking into account what we have just proved, that

is f∗ ◦ ∂X ! = ∂Y !, it follows that f∗ induces an equivalence between A and B,
whose inverse is the functor ∂X ! ◦ ∂∗

Y : B → A. On the other hand, f∗ sends B
to A [13, 4.3, p. 97], and, by functoriality, we have ∂∗

X ◦f∗ = ∂∗
Y . It follows that

f∗ : B → A is equal to ∂X ! ◦ ∂∗
Y : B → A, which is the inverse of f∗ : A → B.

As for the exactness, f∗ first of all is left-exact by [13, p. 97]. Now, consider
an exact sequence of sheaves in A: D → H → 0. By [13, Proposition 6.4, p.
107], we have D = ∂X!DU and H = ∂X!HU , with DU = ∂∗

XD and HU = ∂∗
XH.

Therefore, since f∗ ◦ ∂X ! = ∂Y !, by [13, (6.3) p. 106] we deduce

f∗∂X!DU

=

��

�� f∗∂X!HU

=

��

�� 0

��

∂Y !DU
�� ∂Y !HU

�� 0

and we are done. �

Lemma 3.5. Consider a triangulated category T , and two commutative dia-
gram of distinguished triangles in T

A
∂ �� B1

�� C1

A

1A

��

∂ �� B

f∗
��

�� C

g∗
��

A
∂ ��

1A
��

B1
��

θ

��

C1

η

��

A
∂ �� B �� C.

Assume moreover that θ◦f∗ = 1B, η◦g∗ = 1C , and that HomT (A,C1[−1]) = 0.
Then we have a “ cross” isomorphism

B1 ⊕ C ∼= B ⊕ C1.

Remark 3.6. If the category T is the derived category of an abelian category
A with enough injectives (e.g. Db

c(Y )), and A ∈ Ob(A), and C1 is a complex
in degree ≥ 0, then the assumption HomT (A,C1[−1]) = 0 is verified.
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Proof of Lemma 3.5. Consider the following commutative diagram:

A
1A ��

∂

��

A ��

∂

��

0 ��

��

A [1]

��

B
f∗

��

��

B1
��

��

B2
��

��

B [1]

��

C
g∗

��

��

C1
��

��

C2
��

��

C [1]

��

A [1]
1A[1]

�� A [1] �� 0 �� A [2]

where the first and second columns are the ones given in the hypothesis, and
the fourth column is obtained by the first one by means of TR2. The first row,
which gives the fourth one by means of TR2, is given by TR1. The second
and third rows are given by completion of f∗ and g∗, respectively, by means of
TR1. Lastly, the arrows in the third column are given by TR3. Observe that
the third column, a priori, is not a distinguished triangle.

Since θ ◦ f∗ = 1B and η ◦ g∗ = 1C , by Lemma 3.2 and its proof, we know
that B1

∼= B ⊕ B2, and that C1
∼= C ⊕ C2. Therefore, it suffices to prove that

B2
∼= C2. To this purpose, we are going to use TR4 [8, p. 11] as follows.

Consider the composition A
∂→ B → B1 in the top left-square of the dia-

gram, and the distinguished triangles given by the first column, the second row
and the second column. Then, TR4 says there exist a distinguished triangle

C
γ→ C1 → B2 → C [1] (3)

and a triangle morphism:

A ��

=

��

B ��

f∗

��

C ��

γ

��

A [1]

=

��

A �� B1
�� C1

�� A [1] .

The same diagram appears in our assumptions, with g∗ instead of γ. It follows
that g∗ = γ, because HomT (A,C1[−1]) = 0 [2, Proposition 1.1.9., p. 23]. Now,
comparing (3) with the third row of the diagram at the beginning of the proof,
we see that B2

∼= C2, because the third object in a distinguished triangle is
unique, up to isomorphism. �

We are in position to prove that (i) implies (ii) in Theorem 3.1. We keep
the notations introduced in the diagram (1).
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First notice that the pull-back induces a natural commutative diagram
of distinguished triangles in Db

c(Y ) [8, p. 46]:

Rf∗(∂X !AU )
∂X �� Rf∗AX

j∗
�� Rf∗A˜W

∂Y !AU

1

��

∂Y �� AY

f∗

��

i∗
�� AW .

g∗
��

(4)

In view of Lemma 3.4, the vertical map ∂Y !AU
1−→ Rf∗(∂X !AU ) on the left is

an isomorphism in Db
c(Y ). Now consider the following diagram:

Rf∗(∂X !AU )
∂X ��

1

��

Rf∗AX
j∗

��

θ

��

Rf∗A˜W

∂Y !AU
∂Y �� AY

i∗
�� AW .

Since the pull-back diagram is commutative, and θ has degree one (so θ ◦f∗ =
1AY

), it follows that previous square commutes. In fact:

θ ◦ ∂X = θ ◦ (f∗ ◦ ∂Y ◦ 1) = (θ ◦ f∗) ◦ ∂Y ◦ 1 = 1AY
◦ ∂Y ◦ 1 = ∂Y ◦ 1.

Then, by axiom TR3, previous diagram extends to a “ Gysin” morphism of
triangles, induced by the bivariant class θ:

Rf∗(∂X !AU )
∂X ��

1

��

Rf∗AX
j∗

��

θ

��

Rf∗A˜W

η

��

∂Y !AU
∂Y �� AY

i∗
�� AW .

(5)

In this diagram, by [2, loc. cit.] (keep in mind that Rf∗(∂X !AU ) ∼= ∂Y !AU , and
compare with Remark 3.6), the morphism η is unique. For the same reason,
since composing this diagram with the diagram induced by the pull-back, we
get the identity on both ∂Y !AU and AY , we also have η ◦ g∗ = 1AW

. At this
point, it is clear that the decomposition appearing in (ii) follows from Lemma
3.5 and Remark 3.6. This concludes the proof of Theorem 3.1.

Remark 3.7. Bivariant Theory provides a pull-back morphism η1 := i∗(θ) [10,
(3), p. 19], with:

η1 : Rf∗A˜W
→ AW .

We are not able to prove that η = η1, i.e. that the Gysin diagram, with η1
instead of η, commutes. However, we will prove, later, that η and η1 induce
the same morphism in (co)homology. Notice that also η1 has degree one, and
so we also have η1 ◦ g∗ = 1AW

. Therefore, if a morphism of degree one was
unique, then η = η1.
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4. Consequences for the (Co)homology

Keep the same assumption of Theorem 3.1, and suppose there is a bivariant
class of degree one for f . Then we have a cross isomorphism Rf∗AX ⊕ AW

∼=
Rf∗A˜W

⊕AY . Taking hypercohomology (hypercohomology with compact sup-
port resp.), we deduce isomorphisms in cohomology (Borel–Moore homology
resp.):

H•(X) ⊕ H•(W ) ∼= H•(˜W ) ⊕ H•(Y ), H•(X) ⊕ H•(W ) ∼= H•(˜W ) ⊕ H•(Y ).

Using the triangle morphisms (4) and (5), we can make these isomorphisms
explicit as follows.

First, taking hypercohomology [8, p. 46], the triangle morphisms (4) and
(5) induce commutative diagrams with exact rows:

Hk(X, ˜W ) ��

��

Hk(X)
j∗

�� Hk(˜W )
∂X �� Hk+1(X, ˜W )

��

Hk(Y,W ) ��

=

��

Hk(Y ) i∗
��

f∗

��

Hk(W )
∂Y ��

g∗

��

Hk+1(Y,W )

=

��

and

Hk(X, ˜W ) ��

=

��

Hk(X)
j∗

��

θ∗
��

Hk(˜W )
∂X ��

η∗
��

Hk+1(X, ˜W )

=

��

Hk(Y,W ) ��

��

Hk(Y ) i∗
�� Hk(W )

∂Y �� Hk+1(Y,W )

��

for every k ∈ Z. Since these diagrams commute, and θ∗ ◦ f∗ = idH•(Y ) and
η∗ ◦ g∗ = idH•(W ), a diagram chase shows that the sequence:

0 → Hk(X) α∗
→ Hk(˜W ) ⊕ Hk(Y )

β∗
→ Hk(W ) → 0,

with

α∗(x) := (j∗(x), −θ∗(x)), β∗(w̃, y) := η∗(w̃) + i∗(y),

is exact (compare with [11, Proposition 6.7, (e), p. 114-115]). Moreover, the
map

w ∈ Hk(W ) → (g∗(w), 0) ∈ Hk(˜W ) ⊕ Hk(Y )

is a right section for the sequence, and so we get an explicit isomorphism:

Proposition 4.1. The map

ϕ∗ : Hk(X) ⊕ Hk(W ) → Hk(˜W ) ⊕ Hk(Y ),

with

ϕ∗(x, w) := (j∗(x) + g∗(w), −θ∗(x)),

is an isomorphism.
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We may interpret the map ϕ∗ as a matrix product (compare with [14, p.
328]):

[

w̃
y

]

=
[

j∗ g∗

−θ∗ 0

]

·
[

x
w

]

.

Since

ϕ∗(−f∗y, i∗y) = (0, y),

the matrix defining the inverse map (ϕ∗)−1 has the following form:
[

x
w

]

=
[

λ∗ −f∗

μ∗ i∗

]

·
[

w̃
y

]

,

where the functions:

λ∗ : H•(˜W ) → H•(X), μ∗ : H•(˜W ) → H•(W )

are uniquely determined by the condition that the two matrices above are the
inverse each other, i.e. by the equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λ∗ ◦ j∗ + f∗ ◦ θ∗ = idH•(X)

λ∗ ◦ g∗ = 0
μ∗ ◦ j∗ − i∗ ◦ θ∗ = 0
μ∗ ◦ g∗ = idH•(W),

(6)

which in turn are equivalent to the equations:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

j∗ ◦ λ∗ + g∗ ◦ μ∗ = id
H•(˜W)

θ∗ ◦ λ∗ = 0
j∗ ◦ f∗ = g∗ ◦ i∗

θ∗ ◦ f∗ = idH•(Y).

(7)

Since we also have η∗ ◦j∗ −i∗ ◦θ∗ = 0 and η∗ ◦g∗ = idH•(W), by the uniqueness,
it follows that η∗ = μ∗.

Remark 4.2. Let η1 := i∗(θ) be the pull-back of θ on W . By properties of
bivariant classes [10, (G2), p. 26], we see that (η1)∗ ◦ j∗ − i∗ ◦ θ∗ = 0 and
(η1)∗ ◦ g∗ = idH•(W). As before, this proves that η∗ = (η1)∗. Similarly, for the
maps induced in homology, one sees that η∗ = (η1)∗ (see below). Recall that
we do not know whether η = η1 (compare with Remark 3.7).

Using these equations, we are able to explicit also the isomorphism in-
duced in cohomology by the decomposition appearing in (iii) of Theorem 3.1.
First observe that, since η∗ ◦ g∗ = idH•(W), we may see Hk(W ), via g∗, as a
direct summand of Hk(˜W ) for every integer k. Denote by

Hk(˜W )
Hk(W )

the corresponding quotient.
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Proposition 4.3. For every k, the map

x ∈ Hk(X) → (θ∗x, j∗x) ∈ Hk(Y ) ⊕
[

Hk(˜W )
Hk(W )

]

is an isomorphism, whose inverse is the map

(y, w̃) ∈ Hk(Y ) ⊕
[

Hk(˜W )
Hk(W )

]

→ f∗(y) + λ∗w̃ ∈ Hk(X).

Proof. First observe that the map

x ∈ Hk(X) → (θ∗x, x − f∗θ∗x) ∈ Hk(Y ) ⊕ ker θ∗

is an isomorphism. Next, observe that previous Eqs. (6) and (7) imply that j∗

induces an isomorphism

j∗ : ker θ∗ → ker η∗,

whose inverse acts as λ∗. On the other hand, we also have an isomorphism:

w̃ ∈ ker η∗ → w̃ ∈ Hk(˜W )
Hk(W )

.

�

Similarly, taking hypercohomology with compact support, the triangle
morphisms (4) and (5) induce commutative diagrams with exact rows involving
Borel–Moore homology:

Hk+1(U)
∂X ��

=

��

Hk(˜W )
j∗ ��

g∗
��

Hk(X) ��

f∗
��

Hk(U)

=

��

Hk+1(U)
∂Y ��

��

Hk(W )
i∗ �� Hk(Y ) �� Hk(U)

��

and

Hk+1(U)
∂X ��

��

Hk(˜W )
j∗ �� Hk(X) �� Hk(U)

��

Hk+1(U)
∂Y ��

=

��

Hk(W )
i∗ ��

η∗

��

Hk(Y ) ��

θ∗

��

Hk(U)

=

��

for every k ∈ Z. Since these diagrams commute, and f∗ ◦ θ∗ = idH•(Y ) and
g∗ ◦ η∗ = idH•(W ), a diagram chase shows that the sequence:

0 → Hk(W ) α∗→ Hk(˜W ) ⊕ Hk(Y )
β∗→ Hk(X) → 0,

with

α∗(w) := (η∗(w), −i∗(w)), β∗(w̃, y) := j∗(w̃) + θ∗(y),
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is exact (compare with [6, pp. 264-266, Proposition 2.5]). Moreover, the map

(w̃, y) ∈ Hk(˜W ) ⊕ Hk(Y ) → g∗w̃ ∈ Hk(W )

is a left section for the sequence, and so we get an explicit isomorphism:

Proposition 4.4. The map

ϕ∗ : Hk(˜W ) ⊕ Hk(Y ) → Hk(X) ⊕ Hk(W ),

with

ϕ∗(w̃, y) := (j∗(w̃) + θ∗(y), g∗(w̃)),

is an isomorphism.

We may interpret the map ϕ∗ as a matrix product:
[

x
w

]

=
[

j∗ θ∗

g∗ 0

]

·
[

w̃
y

]

.

Since

ϕ∗(η∗w, −i∗w) = (0, w),

the matrix defining the inverse map (ϕ∗)−1 has the following form:
[

w̃
y

]

=
[

λ∗ η∗

μ∗ −i∗

]

·
[

x
w

]

,

where the functions:

λ∗ : H•(X) → H•(˜W ), μ∗ : H•(X) → H•(Y )

are uniquely determined by the condition that the two matrices above are the
inverse each other, i.e. by the equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

j∗ ◦ λ∗ + θ∗ ◦ μ∗ = idH•(X)

j∗ ◦ η∗ − θ∗ ◦ i∗ = 0
g∗ ◦ λ∗ = 0
g∗ ◦ η∗ = idH•(W),

(8)

which in turn are equivalent to the equations:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λ∗ ◦ j∗ + η∗ ◦ g∗ = id
H•(˜W)

λ∗ ◦ θ∗ = 0
μ∗ ◦ j∗ = i∗ ◦ g∗

μ∗ ◦ θ∗ = idH•(Y).

(9)

In particular, it follows that μ∗ = f∗. Using these equations, we are able to
explicit the isomorphism induced in Borel–Moore homology by (iii) of Theo-
rem 3.1. First, observe that, since g∗ ◦ η∗ = idH•(W), we may see Hk(W ), via
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η∗, as a direct summand of Hk(˜W ) for every integer k. Denote by

Hk(˜W )
Hk(W )

the corresponding quotient.

Proposition 4.5. For every k, the map

x ∈ Hk(X) → (f∗x, λ∗x) ∈ Hk(Y ) ⊕
[

Hk(˜W )
Hk(W )

]

is an isomorphism, whose inverse is the map

(y, w̃) ∈ Hk(Y ) ⊕
[

Hk(˜W )
Hk(W )

]

→ θ∗(y) + j∗λ
∗j∗w̃ ∈ Hk(X).

Proof. First observe that the map

x ∈ Hk(X) → (f∗x, x − θ∗f∗x) ∈ Hk(Y ) ⊕ ker f∗

is an isomorphism. Next, observe that previous Eqs. (8) and (9) imply that λ∗

induces an isomorphism

λ∗ : ker f∗ → ker g∗,

whose inverse acts as j∗. On the other hand, we also have an isomorphism:

w̃ ∈ ker g∗ → w̃ ∈ Hk(˜W )
Hk(W )

.

�

5. Behaviour Under the Duality Morphism

One may ask how previous decompositions given in Propositions 4.3 and 4.5,
behave under the cap product with a homology class. In this section we con-
sider only the case of the fundamental class, and algebraic maps.

Consider a map f : X → Y as in Theorem 3.1, and assume there exists a
bivariant class of f of degree one. Moreover, assume that f is onto, and that
X and Y are open subsets of complex quasi-projective varieties of the same
complex dimension n. Let [X] ∈ H2n(X) be the fundamental class of X, and
consider the map

DX : x ∈ Hk(X) → x ∩ [X] ∈ H2n−k(X) (10)

given by the cap product with [X]. When X is a compact complex variety
(e.g. a projective variety), this map is called the duality morphism [15, p.
150] (in this case X is automatically a circuit [15, p. 149]). If X is a smooth
compact complex variety, then DX is the Poincaré Duality isomorphism (the
map DX remains an isomorphism if X is smooth but not compact, because
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H2n−k(X) denotes Borel–Moore homology). In view of the decompositions
given in Propositions 4.3 and 4.5, the map DX identifies with a map

DX : Hk(Y ) ⊕
[

Hk(˜W )
Hk(W )

]

→ H2n−k(Y ) ⊕
[

H2n−k(˜W )
H2n−k(W )

]

which acts as follows:

DX(y, w̃) = (f∗([X] ∩ (f∗y + λ∗w̃)), λ∗([X] ∩ (f∗y + λ∗w̃))).

The map DX induces two projections

P1 : y ∈ Hk(Y ) → f∗([X] ∩ f∗y) ∈ H2n−k(Y ),

P2 : w̃ ∈
[

Hk(˜W )
Hk(W )

]

→ λ∗([X] ∩ λ∗w̃) ∈
[

H2n−k(˜W )
H2n−k(W )

]

.

Observe that, by the projection formula [10, p. 24], we have

f∗([X] ∩ f∗y) = [Y ] ∩ y.

Therefore, P1 = DY , i.e. P1 is nothing but the duality morphism on Y .

Corollary 5.1. The duality morphism DX : Hk(X) → H2n−k(X) is the direct
sum of DY and P2, i.e.

DX = DY ⊕ P2.

Proof. We have to prove that:

•) for every w̃ ∈ Hi(˜W )
Hi(W ) one has f∗([X] ∩ λ∗w̃) = 0, and

•) for every y ∈ Hi(Y ) one has λ∗([X] ∩ f∗y) = 0.

To this purpose, first observe that θ∗([Y ]) = [X], i.e. the Gysin map sends
the fundamental class of Y in the fundamental class of X. In fact, from the Eq.
(8) we obtained in homology (recall that μ∗ = f∗), we know that θ∗([Y ]) =
θ∗f∗[X] = [X] − (j∗ ◦ λ∗)([X]) = [X] because λ∗[X] = 0 ∈ H2n(˜W ) = {0} for
dimensional reasons.

•) Now, by [10, p. 26, G4, (ii)], we have:

f∗([X] ∩ λ∗w̃) = f∗(θ∗[Y ] ∩ λ∗w̃) = (θ∗λ∗w̃) ∩ [Y ]

which is zero because, from the Eq. (7) we obtained in cohomology, we
know that θ∗ ◦ λ∗ = 0 .
•) Next, by [10, p. 26, G4, (iii)], we have:

λ∗([X] ∩ f∗y) = λ∗(θ∗[Y ] ∩ f∗y) = λ∗(θ∗(Y ∩ y))

which is zero because, from the Eq. (9) we obtained in homology, we
know that λ∗ ◦ θ∗ = 0.

�
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6. Resolution of Singularities of a Homology Manifold

As a consequence of previous results, we are going to prove the following
Theorem 6.1. Observe that it applies to a resolution of singularities of Y , and
gives a characterization of homology manifolds, in terms of their resolution of
singularities. In the case Y has only isolated singularities, and the coefficients
are in a field, it should be compared with [7, Theorem 3.2 and Remark 6.1].

Theorem 6.1. Let f : X → Y be a projective birational morphism between com-
plex, irreducible, and quasi-projective varieties of the same dimension n. Let U
be a non-empty Zariski open subset of Y such that f induces an isomorphism
f−1(U) ∼= U . Set W = Y \U .

• If Y is an A-homology manifold, then there exists a bivariant class θ in
Hom(Rf∗AX ,AY ) of degree one. In this case, θ is unique, and there exists
a decomposition Rf∗AX

∼= AY ⊕ K, with K supported on W . Moreover,
if also X is an A-homology manifold, then K[n] is self-dual.

• Conversely, if X is an A-homology manifold and there exists a bivariant
class θ ∈ Hom(Rf∗AX ,AY ) of degree one, then also Y is an A-homology
manifold.

Proof. First assume that Y is an A-homology manifold.
By [4, Definition 3.1, Theorem 3.7], we know that the fundamental class

of Y

[Y ] ∈ H2n(Y ) ∼= H−2n(Y → pt)

is a strong orientation. Therefore, we have

HomDb
c(Y )(Rf∗AX ,AY ) ∼= H0(X

f→ Y )
•[Y ]∼=

H−2n(X → pt) ∼= H2n(X) ∼= H0(X).

Since f is birational, the bivariant class corresponding to 1X ∈ H0(X) is a
bivariant class of degree one for f , and it is unique (compare with Remark 2.1,
(ii) and (v)). By Theorem 3.1, we know there exists a decomposition

Rf∗AX [n] ∼= AY [n] ⊕ K[n]. (11)

It is clear that K is supported on W . Passing to Verdier dual, we get:

D (Rf∗AX [n]) ∼= D (AY [n]) ⊕ D (K[n]) . (12)

Now let

[X] ∈ H2n(X)

be the fundamental class of X. We have [4, p. 804-805]:

[X] ∈ H2n(X) ∼= H−2n(X → pt.) ∼= HomDb
c(X)(AX [n],D (AX [n])).

Therefore, [X] corresponds to a morphism

AX [n] → D (AX [n]) , (13)
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whose induced map in hypercohomology is nothing but the duality morphism
(10). If we assume that X is an A-homology manifold, the morphism (13) is an
isomorphism [4, Proof of Theorem 3.7]. Since D (Rf∗AX [n]) ∼= Rf∗D (AX [n])
[8, p. 69], it induces an isomorphism

Rf∗AX [n] → D (Rf∗AX [n]) ,

which in turn, via the previous decompositions (11) and (12), induces two
projections

AY [n] → D (AY [n]) , K[n] → D (K[n]) .

By Corollary 5.1, we know that the maps induced in hypercohomology by
K[n] → D (K[n]) are isomorphisms, and this holds true when restricting to
every open subset of Y . Therefore, we have K[n] ∼= D (K[n]), i.e. K[n] is self-
dual.

Conversely, assume there exists a bivariant class θ of degree one. Arguing
as before, by Corollary 5.1, we know that the isomorphism (13) induces an
isomorphism AY [n] ∼= D (AY [n]). This is equivalent to say that Y is an A-
homology manifold [4, loc. cit.].

This concludes the proof of Theorem 6.1. �

Remark 6.2. (i) With the notations as in Theorem 6.1, assume there exists
a bivariant class θ of degree one. When the coefficients are in Q, R or
C (i.e. when A = Q, R or C), we may prove that Y is an A-homology
manifold in a different manner, using the Decomposition Theorem [8,
p. 161]. In fact, by the Decomposition Theorem, there exists a certain
decomposition

Rf∗AX [n] ∼= IC•
Y ⊕ H.

Comparing with the decomposition given by Theorem 3.1

Rf∗AX [n] ∼= AY [n] ⊕ K[n],

it follows a non-zero endomorphism IC•
Y → AY [n] → IC•

Y . On the other
hand, IC•

Y belongs to the core of Db
c(Y ), which is an abelian subcate-

gory of Db
c(Y ). In this category, IC•

Y is a simple object. Therefore, by
Schur’s Lemma, the composition IC•

Y → AY [n] → IC•
Y is an automor-

phism. Observe that also the composition AY [n] → IC•
Y → AY [n] is an

automorphism, because HomDb
c(Y )(AY ,AY ) ∼= H0(Y ). So, IC•

Y
∼= AY [n].

(ii) Let f : X → Y be a map between A-homology manifolds, of the same
complex dimension n, as in Theorem 6.1. Assume A is a field. Consider
the decomposition Rf∗AX [n] ∼= AY [n] ⊕ K[n] appearing in (11). Taking
hypercohomology, we deduce that dimA Hk+n(X) − dimA Hk+n(Y ) =
dimA H

k(K[n]) for every k. On the other hand, from Theorem 6.1, we
know that K[n] is self-dual. Therefore, passing to Verdier dual in (11),
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and taking hypercohomology, we get dimA Hn−k(X) − dimA Hn−k(Y ) =
dimA H

k(K[n]). And so we have

dimA Hk+n(X) − dimA Hk+n(Y ) = dimA Hn−k(X) − dimA Hn−k(Y ).

Comparing with Propositions 4.3 and 4.5, we deduce, for every k ∈ Z,
the following formula

dimA Hk+n(˜W ) − dimA Hn−k(˜W ) = dimA Hk+n(W ) − dimA Hn−k(W ),

which relates the Betti numbers of W with the ones of ˜W .
(iii) The following example shows there exist projective birational maps f :

X → Y such that H0(X
f→ Y ) �= 0, without bivariant classes of degree

one. The coefficients are in Q.
Let C ⊂ P

3 be a projective non-singular curve of genus g ≥ 1. Let
Y ⊂ P

4 be the cone over C, and let f : X → Y be the blowing-up of Y at
the vertex y ∈ Y . By the Decomposition Theorem (see e.g. [7]) we have

Rf∗QX = Qy[−2] ⊕ IC•
Y [−2].

On the other hand, combining [13, 9.13, p. 128] with [8, Remark 2.4.5,
(i), p. 46], we have

HomDb
c(Y )(Qy,QY [2]) ∼= H2(Y, Y \{y}) ∼= H1(L),

where L is the link of Y at the vertex y. The Hopf fibration L → C
induces a Gysin sequence

0 → H1(C) → H1(L) → H0(C) → H2(C) → . . .

from which we get h1(L) = h1(C) = 2g ≥ 2. It follows that H0(X
f→

Y ) ∼= HomDb
c(Y )(Rf∗AX ,AY ) �= 0, and that Y is not a homology man-

ifold. In particular, since X is smooth, in view of Theorem 6.1, there is
no a bivariant class of degree one.

Corollary 6.3. Let f : X → Y be a projective birational morphism between
irreducible and quasi-projective complex varieties of the same complex dimen-
sion n. Let θ ∈ H0(X

f→ Y ) be a bivariant class. If θ is a strong orientation
for f , then θ is a bivariant class of degree one for f , up to multiplication by a
unit. Moreover, if X is an A-manifold and θ is a bivariant class of degree one
for f , then θ is a strong orientation for f .

Proof. First assume that θ is a strong orientation for f .
Let U ⊂ Y be a Zariski non-empty open subset of Y such that f−1(U) ∼=

U via f . Product by θ gives an isomorphism:

H0(f−1(U) → X) •θ→ H0(U → Y ).

On the other hand, by Verdier Duality [4, p. 803], and [8, Corollary 3.2.12., p.
65], we have:

H0(f−1(U) → X) ∼= H0(f−1(U)), and H0(U → Y ) ∼= H0(U).
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Therefore, θ induces an isomorphism H0(f−1(U)) → H0(U). It follows that,
up to multiplication by a unit, θ is a bivariant class of degree one.

Conversely, assume X is an A-manifold, and θ is a bivariant class of
degree one for f .

In this case, by Theorem 6.1, we know that also Y is an A-homology
manifold, and that θ corresponds to 1X in the isomorphism H0(X

f→ Y ) ∼=
H0(X). Since X and Y are A-manifolds, we get:

f !(AY ) = D(f∗(D(AY ))) = D(f∗(AY [2n])) = D(AX [2n]) = AX .

Therefore, θ corresponds to an isomorphism in

HomDb
c(X)(AX , f !

AY ) ∼= HomDb
c(X)(AX ,AX) ∼= H0(X).

By [10, 7.3.2, proof of Proposition, p. 85], we deduce that θ is a strong orien-
tation for f . �

Proposition 6.4. Let f : X → Y be a projective birational morphism between
irreducible and quasi-projective complex varieties of the same complex dimen-
sion n. Let θ ∈ H0(X

f→ Y ) be a bivariant class. If θ is a strong orientation
for f , and Y is an A-homology manifold, then also X is so.

Proof. Since Y is an A-homology manifold, we have:

f !(AY ) = D(f∗(D(AY ))) = D(f∗(AY [2n])) = D(AX [2n]).

On the other hand, if θ is a strong orientation, then [10, loc. cit.]

f !(AY ) ∼= AX .

Therefore, we get D(AX [2n]) ∼= AX . This means that AX [n] is self-dual, i.e.
X is an A-homology manifold [4, proof of Theorem 3.7]. �

Remark 6.5. Let f : X → Y be a birational, projective local complete in-
tersection morphism between complex irreducible quasi-projective algebraic
varieties. Let θ ∈ H0(X

f→ Y ) be the orientation class of f . Then θ has degree
one (Remark 2.1, (iii)). But, in general, in view of previous Proposition 6.4, θ
cannot be a strong orientation.
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[4] Brasselet, J.P., Schürmann, J., Yokura, S.: On the uniqueness of bivariant Chern
class and bivariant Riemann-Roch transformations. Adv. Math. 210, 797–812
(2007)

[5] de Cataldo, M.A., Migliorini, L.: The decomposition theorem, perverse sheaves
and the topology of algebraic maps. Bull. Am. Math. Soc. 46(4), 535–633 (2009)

[6] Di Gennaro, V., Franco, D.: Noether-Lefschetz Theory with base locus. Rend.
Circ. Mat. Palermo 63, 257–276 (2014)

[7] Di Gennaro, V., Franco, D.: On the topology of a resolution of isolated singu-
larities. J. Singul. 16, 195–211 (2017)

[8] Dimca, A. : Sheaves in Topology, Springer Universitext (2004)

[9] Fulton, W.: Young Tableaux: London Mathematical Society Student Texts, vol.
35. Cambridge University Press (1997)

[10] Fulton, W., MacPherson, R.: Categorical framework for the study of singular
spaces. Mem. Am. Math. Soc. 31(243), vi+165 (1981)

[11] Fulton, W.: Intersection theory, Ergebnisse der Mathematik und ihrer Grenzge-
biete; 3.Folge, Bd. 2, Springer (1984)

[12] Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry, Oxford
Mathematical Monographs. Oxford University Press (2006)

[13] Iversen, B.: Cohomology of Sheaves Universitext. Springer (1986)

[14] Jouanolou, J.P. : Cohomologie de quelques schémas classiques et théorie coho-
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