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Abstract
We study skew-products of the form (x,u) 7→ ( fx,u+φ(x)) where f is a non-
uniformly expanding map on a manifold X and φ : X→ S1 is piecewise C1. If
the systems satisfies mild assumptions (in particular singular behaviour of φ
is permitted) then we prove that the map mixes exponentially with respect to
the unique SRB measure. This extends previous results by allowing singular
behaviour in the fibre map.
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1. Introduction

A deceptively simple transformation on [0,1)2 is defined as the skew-product (x,u) 7→
([2x], [u+ dist(x,b)a]) for some a ∈ (0,1), b ∈ [0,1). Although simple to write this example
presents an interesting and non-trivial difficulty. This is the motivating example for this work.
The present work is devoted to exploring the technology which can be used to prove expo-
nential mixing for this and other settings. We will permit a rather general setting (arbitrary
dimension, general classes of maps). Relatively few concrete examples which have a neutral
direction are known to mix exponentially, here we increase this collection.

Skew products with some resemblance to this example have been studied by observing
that there is an invariant unstable cone field (in [15] this was explicit, in [3, 10] this idea
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was still present in the assumptions). However this is not satisfied by the above mentioned
system. The singular behaviour which we permit in this present work is a significant problem
for the established methods because it is impossible to have an invariant unstable cone field
which is uniformly bounded away from the neutral direction. For present purposes we call
this ‘unbounded twist’. Nevertheless we show that the singular behaviour does not prevent
good limit theorems and, in particular, our results prove that the motivating example mixes
exponentially.

In this present work we solve the unbounded twist issue by inducing: instead of working
with the original skew-product transformation we will partition the domain and for each par-
tition element choose an iterate under which we see good behaviour. We present a general
framework and then develop the application to a specific example. In cases like the above
example we will induce even though it seems that the base map does not need any inducing.
This ‘over-inducing’ suffices to solve the unbounded twist issue. The key idea is to, if required,
view the singularities of the fibre map as artificial singularities of the map in the construction
of the induced system. All of this means that we demonstrate that a very large class of partially
hyperbolic systems mix exponentially.

Let f be a transformation on a compact manifold X and let φ : X→ S1 be a function from
manifold to the circle S1.Wewill call f the base map andφ the fibre map. This article is devoted
to the study of partially hyperbolic systems defined as the skew-product fφ : X× S1 → X×S1,

fφ : (x,u) 7→ ( fx,u+φ(x)) .

In order to prove the results we will use the existence of an induced system (Young tower
with exponential tails) in the sense that there exists a connected subset Y⊂ X and a piece-
wise constant inducing time R : Y→ N such that the induced map F : x→ fR(x)(x) is a full
branch Markov map, C2 on partition elements. Defining the induced fibre map as Φ(x) =∑R(x)−1

k=0 φ( fkx) we consider the induced skew-product FΦ : Y×S1 → Y× S1,

FΦ : (x,u) 7→ (Fx,u+Φ(x)) .

The principal aim of this work is to allow weak control on the fibre map, in particular to allow
D(φ ◦ f|−1

ω ) to be unbounded. In one part of this work we will show that if the induced skew-
product satisfies certain assumptions then the original systemmixes exponentially. In the other
part we introduce assumptions (with the emphasis on verifiability) which suffice to show that
the induced system satisfies the previously mentioned assumptions.

The problem of exponential mixing for partially hyperbolic maps like these skew-products
(similar to flows) is rather difficult because of the neutral direction and the singularities which
we permit in the fibre map. Because of the neutral direction, in order to study the rate of
mixing and other strong statistical properties, we must use some form of Dolgopyat estimate
and observe oscillatory cancellations [19]. Recent years have seen significant progress for such
results for systems with a neutral direction (e.g. [2, 15, 17, 18, 33, 36, 37]), all using methods
based on the work of Dolgopyat to some extent. In particular the results have been extended
to the Lorenz flow and systems inspired by it [6–8, 11, 14]. Our purpose here is to give a
general result for skew-products with (possibly) some degree of singular behaviour and in the
process clarify exactly the reach and limits of the notions. Similar systems to the ones studied
here were previously introduced [31] as a model for the Lorenz flow (in this reference it was
claimed that these systems mix exponentially but there was a gap in the proof).

Although the neutral direction causes significant technical difficulty, in our case we for-
tunately can use (to a large extent) the work of Gouezel [28] which includes the study of
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induced skew-products, in particular used to obtain results concerning Farey sequences. As
observed before, a key point here is that we induce even if the base map is already uniformly
hyperbolic, in order to obtain the required property for the induced fibre map. In some applic-
ations, including the motivating example, a large deviations result for the expanding map (for
a function based on distance to singularity) implies that the (artificially) induced system has
trajectories which behave well with respect to the singularities of the fibre map. Using this
together with the fact that the singularities of the fibre map are not worse than distance to
some negative power, means that the induced fibre map has the required regularity.

Remark 1.1. Most likely these results would extend easily to the hyperbolic case when the
stable foliation is at least C1 by disintegration along the stable foliation (e.g. using [16] in a
similar way as was done in [12]). However such regularity is arguably not typical in relevant
settings [29].

Remark 1.2. We will mostly avoid the details related to possible discontinuities in the system.
Discontinuities require delicate control, particularly in higher dimension when oscillatory can-
cellation arguments are required (e.g. [21–23, 35]). However, inducing, as we do here for other
motives, can be useful for avoiding the problems related to discontinuities (e.g. [32]).

Remark 1.3. Suspension semiflows and skew products as we study here share many similarit-
ies, in particular the investigation of the rate of mixing requires similar estimates (the ‘twisted
transfer operators’ are identical). As such, the methods and results here are closely related to
the corresponding suspension semiflow setting. Alternatively, the extension to general com-
pact group extensions (see e.g. [20]) is feasible although non-trivial and in this work we choose
not to take this road.

Remark 1.4. In this present work we assume that the base map is at least C2. Most likely the
results can be extended to the C1 plus Hölder derivative case by already established ideas (e.g.
[6, 17]).

Remark 1.5. In this present work our focus is on exponential mixing but there are various other
relevant statistical properties, for example, central limit theorem, local limit theorem, almost-
sure invariance principal, etc. It is to be expected that the main estimates we obtain during this
work and which are used for proving the exponential mixing can also be used for proving the
other statistical limit laws (see e.g. arguments contained in [6, 8]). (See also [24–26] for some
related results.)

2. Setting & results

Although not part of themotivating example, technology developed for non-uniformly expand-
ing (NUE) systems will be invaluable for tackling the problem. The following four conditions
are as introduced by Young [38, 39] and this structure is often called a Young tower structure.

Definition 2.1. We say that f : X→ X is NUE in the sense of Young to mean the tuple
( f,X,µ,Y,R) where:

• X is a compact Riemannian manifold (possibly with boundary), endowed with a Borel meas-
ure µ (called the reference measure);

• f is a nonsingular1 transformation on X;

1 In this context we say that f is nonsingular if it maps sets of measure 0 to sets of measure 0.
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• Y (called the base of the induced system) is a connected open subset of X with finite measure
and there exists a finite or countable partition {Yℓ}ℓ∈Λ of a full measure subset of Y;

• R : Y→ N (called the return time) is a function constant on each partition element Yℓ;

Such that the following properties are satisfied:

Y1: For each ℓ ∈ Λ letRℓ denote the constant value thatR takes on Yℓ. For all ℓ ∈ Λ, the restric-
tion of fRℓ to Yℓ is a diffeomorphism between Yℓ and Y, satisfying κ‖v‖⩽ ‖DfRℓ(x)v‖⩽
Cℓ ‖v‖ for any x ∈ Yℓ and for any tangent vector v at x, for some constants κ> 1 (inde-
pendent of ℓ) and Cℓ. We denote by F : Y→ Y the map which is equal to fRℓ on each set
Yℓ.

Y2: LetHn
F denote the set of inverse branches of F

n. Let J(x) be the inverse of the Jacobian of
F at x with respect to µ. We assume that there exists a constant C> 0 such that, for any
ξ ∈H1

F, ‖D((logJ) ◦ ξ)‖⩽ C.
Y3: There exists a constantC> 0 such that, for any ℓ, if ξℓ : Y→ Yℓ denotes the corresponding

inverse branch of F, for any k⩽ Rℓ, then ‖f k ◦ ξℓ‖C1(Y) ⩽ C.

Definition 2.2. Suppose that f : X→ X is NUE in the sense of Young. Then f is said to have
exponential tails if there exists σ0 > 0 such that

´
Y e

σ0R dµ <∞.

If f : X→ X is NUE in the sense of Young with exponential tails then it is known [38] that
there exists a probability measure µ̃ on X which is absolutely continuous with respect to µ,
invariant under f and ergodic. Moreover, if f is mixing for µ̃, then it is exponentially mixing
(for Hölder continuous observables).

Definition 2.3. An open subset of a Riemannian manifold U is said to have the weak Federer
propertywith respect to a finite Borelmeasure ν, if, for any γ > 1, there existsD= D(U,γ)> 1
and η0(γ)> 0 such that, for any η ∈ (0,η0(γ)),

• There exists a set of points {xj}kj=1 such that the balls B(xj,γη) are disjoint and compactly
included in U;

• There exists a set of sets {Aj}kj=1 whose union covers a full measure subset of U and Aj ⊂
B(xj,γηD);

• For any yj ∈ B(xj,(γ− 1)η), we have ν(B(yj,η))⩾ D−1ν(Aj).

Definition 2.4. A family of open sets {Un}n is said to uniformly have the weak Federer prop-
erty for the measure ν if, for all γ > 1, supnD(Un,γ) is finite.

Definition 2.5. Suppose that f : X→ X is NUE in the sense of Young. We say that the trans-
formation has the weak Federer property if, for each h ∈

⋃
n∈NHn

F, the sets h(Y) uniformly
have the weak Federer property with respect to µY (the probability measure induced by µ
on Y).

If {Un}n is a family of open intervals then the uniform Federer property is trivially satisfied
by Lebesgue measure (see [28, section 6.1] for a general criterion for the weak Federer prop-
erty and see [10, remark 2.1] for additional comments). In order to prove exponential mixing
uniformity in the Federer assumption is not required [28, remark 2.5].

Definition 2.6. Let Y be a set as above with partition {Yℓ}ℓ∈Λ. A function Φ : Y→ S1 is said
to be cohomologous to a locally constant function if there exists a C1 function ψ : Y→ S1 such
that Φ −ψ +ψ ◦F is constant on each set Yℓ, ℓ ∈ Λ.
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The skew product transformation fφ : (x,u) 7→ ( fx,u+φ(x)) is an isometry in the fibres
and hence preserves the measure ν = µ̃×m (where m denotes Lebesgue measure on S1).

Theorem 1. Suppose that f : X→ X is NUE in the sense of Young with exponential tails and
satisfying the weak Federer property. Suppose thatφ : X→ R is C1 on the interior of X, that the
induced function Φ(x) =

∑R(x)−1
k=0 φ( fkx) is not cohomologous to a locally constant function

and ‖DΦ(x)DF(x)−1‖ is uniformly bounded for x ∈ Y.
Then fφ mixes exponentially for observables on Y×S1 in the sense that: For any α> 0

there exists θ ∈ (0,1), C> 0 such that, for all functions g, h from Y×S1 to C, bounded and
Hölder continuous with exponent α, and for all n ∈ N,∣∣∣∣ˆ g ◦ fnφ · h dν−

(ˆ
g dν

)(ˆ
h dν

)∣∣∣∣⩽ Cθn ‖g‖L∞ ‖h‖Cα .

This theorem is essentially the work of Gouëzel [28, theorem 1.7] although the work of
the reference requires the fibre map φ to be C1 on X whereas we allow unbounded derivative.
However we require the induced fibre map Φ to satisfy the same conditions as are actually
required during the proof in the reference. On the other hand the result stated here is only for
observables supported on the base of the tower Y. Details concerning the modification of the
reference in order to prove the theorem are given in section 3.

Remark 2.7. The restriction that the observables are supported on Y×S1 can, to some extent,
be mitigated in a standard way by considering observables which map to observables suppor-
ted on Y× S1 in finite steps. As such, typically exponential mixing results can be extended
to observables supported on the complement of the singular set (depending on the exact con-
struction of the inducing scheme).

The assumptions of the above theorem are overly abstract from our point of view and so
we would like to obtain some more verifiable conditions. (For the origin of the following
assumptions see [1, 4, 27].)We use the following notation: For δ > 0, set distδ(x,S) = dist(x,S)
if dist(x,S)< δ, and distδ(x,S) = 1 otherwise2.

Definition 2.8. Let f be amap on a compact RiemannianmanifoldX (possibly with boundary).
We assume that there exists a closed subset S⊂M, with zero Lebesgue measure (containing
possibly discontinuities or critical points of f and with ∂X⊂ S), such that f is a C2 local dif-
feomorphism on X \ S. We say that f is NUE in the sense of a controlled singular set if the
following assumptions are satisfied:

(S1): (non-degeneracy close to S) We assume that there exist B> 1 and β > 0 such that, for
any x ∈M \ S and every v ∈ TxM \ {0},

1
B
dist(x,S)β ⩽ ‖Df(x)v‖

‖v‖
⩽ Bdist(x,S)−β

.

Assume also that, for all x,y ∈ X with dist(x,y)< dist(x,S)/2,∣∣∣log‖Df(x)−1‖− log‖Df(y)−1‖
∣∣∣⩽ B

dist(x,y)

dist(x,S)β

2 The quantity distδ(·, ·) is not continuous but this is as intended, see for example [27, p.3]. Other variants of distδ(·, ·)
would work but this present choice has some conveniences in the estimates and is the one used by all the cited works.
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and ∣∣log |detDf(x)−1 | − log |detDf(y)−1 |
∣∣⩽ B

dist(x,y)

dist(x,S)β
.

(S2): (points which are too close to S or have not yet experienced expansion) Let δ : (0, ϵ0)→
R+, λ> 0,

Pϵ,N =

{
x ∈ X :

1
n

n−1∑
k=0

− logdistδ(ϵ)
(
fkx,S

)
> ϵ, for somen⩾ N

}
,

Qϵ,N =

{
x ∈ X :

1
n

n−1∑
k=0

log
∥∥∥Df( fkx)−1

∥∥∥−1
< λ, for somen⩾ N

}
.

We assume that there exists C> 0 and θ ∈ (0,1) such that, for all ϵ ∈ (0, ϵ0), the
Lebesgue measure of Pϵ,N ∪Qϵ,N is not greater than CθN.

In order to take advantage of the above assumptions and build Young tower structures, the
key concept of hyperbolic times is used. In this present work we further take advantage of
this notion to deal with potential problems in the fibre map. As such, let us now recall the
definition of hyperbolic times. For the purpose of this definition f : X→ X is a differentiable
transformation and S⊂ X is the singularity set. The following definition is exactly as used by
Alves, Luzzatto & Pinheiro [4], including the same notation.

Definition 2.9. Let b> 0, σ ∈ (0,1), δ > 0. We say that n ∈ N is a (b,σ,δ)-hyperbolic time3

for x if, for all 1⩽ k⩽ n

n−1∏
j=n−k

∥∥∥Df( fjx)−1
∥∥∥⩽ σk and distδ

(
fn−kx,S

)
⩾ σbk.

We will denote by Hn(b,σ,δ) the set of points for which n is a (b,σ,δ)-hyperbolic time.

The following is due to Gouëzel (result described in [28, proposition 1.16] with a proof
which uses mostly [27]).

Theorem ([28, proposition 1.16]). Suppose that X is a compact Riemannian manifold and
that f : X→ X is NUE in the sense of a controlled singular set (definition 2.8) and let b> 0
sufficiently small. There exists σ ∈ (0,1), δ > 0 and there exists an open and connected subset
Y of X such that f is NUE in the sense of Young (definition 2.1) (on base Y with respect to
Lebesgue measure) with exponential tails and satisfying the weak Federer property. Moreover
the return times for the Young tower are (b,σ,δ)-hyperbolic times.

Note that the final statement is not highlighted in the statement of the result in the cited
reference although it is described in the argument [27, section 2]. For us this detail is important
as already hinted, since we will use these hyperbolic times to control the singular behaviour
of the fibre maps.

3 In the reference the terminology ‘(σ,δ)-hyperbolic time’ is used and dependence on b is suppressed.
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Theorem 2. Let f : X→ X be NUE in the sense of a controlled singular set S⊂ X (defini-
tion 2.8). Suppose that φ : X→ R is C1 on the connected components of X \ S and that there
exists C> 0, s⩾ 0 such that, for all x,

∥∥Dφ(x)Df(x)−1
∥∥⩽ Cdist(x,S)−s. Further suppose that

the induced function Φ(x) =
∑R(x)−1

k=0 φ( fkx) is not cohomologous to a locally constant func-
tion. Then there exists a subset Y⊂ X such that the assumptions of theorem 1 are satisfied.

The above result is proven in section 4, using an argument based on hyperbolic times and
which controls the regularity of the induced fibre map Φ.

In the case of our motivating example (x,u) 7→ ([2x], [u+ dist(x,1)a]) we choose the singu-
larity set S= {1} even thought 1 is not a singular point in any sense for the base transformation
x 7→ 2x. In cases like this one needs to know that the NUE property of the system still holds,
even when the singularity set is enlarged in order to consider also the singularities of the fibre
map. This can be done with minor restrictions and follows from a type of large deviations
estimate. The statement and proof of this in a general setting is the content of section 5 (as
done in [9]).

Returning to our motivating example, we have the following result.

Theorem 3. Let X= [0,1] and f : X→ X is defined as f : x 7→ 2x mod 1 and let φ : X→ S1 be
defined as φ : x 7→ dist(x,1)a for some a ∈ (0,1). Then the skew-product fφ : (x,u) 7→ ( fx,u+
φ(x)) mixes exponentially for observables supported on the complement of a neighbourhood
of {1}× S1.

Section 6 contains the proof of the above and discussion related to showing the property of
the fibre map not being cohomologous to a local constant function in diverse settings. Since we
can for this specific example, we take a very hands-on approach to the argument and explicitly
construct the tower and prove the required properties so that the above results can be applied.

3. Singular skew-products

In this section we assume that the induced skew-product map satisfies the assumptions and
show that this implies exponential mixing for the original skew-product. This means that we
prove theorem 1. As made clear by Ruelle [34] it is important to have some condition for the
fibre map. A common way to prove the results that we would like is to obtain a spectral gap for
the transfer operator of the system (acting on a suitable Banach space) but the neutral direction
complicated this problem (except for the work of Tsujii [36, 37]).

Let f be NUE in the sense of Young with exponential tails and preserving the probability
measure µ. Assume that µY has full support in Y. Let φ : X→ S1 be a C1 function such that the
induced fibre map Φ(x) is not cohomologous to a locally constant function. Let ν = µ⊗Leb.
Since fφ is an isometry in the fibre themeasure ν is fφ-invariant.We consider the skew-product
fφ : (x,u) 7→ ( fx,u+φ(x)).

This result is essentially what Gouëzel proved [28, section 3] however there is something
that needs to be observed about their assumption on the fibre map. Their results are stated for
the case when the fibre map is C1 but such a strong condition is not required in the proof. Here
we demonstrate how their argument suffices for the result which is required in this present
context. As described previously, we started with a skew-product fφ : X×S1 → X× S1,

fφ : (x,u) 7→ ( fx,u+φ(x))

and then introduced the induced skew-product FΦ : Y×S1 → Y×S1,

FΦ : (x,u) 7→ (Fx,u+Φ(x))

7



Nonlinearity 37 (2024) 115018 O Butterley

Table 1. Comparison of notation.

Gouëzel [28, section 3] Present text

NUE map T : X→ X f : X→ X
Fibre map ϕ : X→ R φ : X→ R
Skew-product T : X× S1 → X× S1 fφ : X× S1 → X× S1
Base of tower Y⊂ X Y⊂ X
Partition of base {Wℓ} {Yℓ}
Inducing times rℓ Rℓ

Induced map TY : Y→ Y F : Y→ Y
Induced fibre map ϕY : Y→ R Φ : Y→ R
Tower X(n) X̃
Tower map U(n) : X(n) → X(n) f̃ : X̃→ X̃
Tower skew-product U (n) : X(n) × S1 → X(n) × S1 f̃φ : X̃× S1 → X̃× S1

where Φ(x) =
∑R(x)−1

k=0 φ( f kx) and F : x→ fR(x)(x) is a full branch Markov map. Since F is
uniformly expanding and Φ satisfies the bounded twist property we have good estimates on
the associated transfer operators. This holds precisely for our setting since it only requires the
properties of the induced system.

Following Young we will introduce a map on the tower which is a model for f and then,
following Gouëzel [28, section 3.1], we introduce a skew-product version of the model. (See
table 1 for a comparison between the notation of the reference and that of the present text.)

Let

X̃= {(x, ℓ) : x ∈ Y,0⩽ ℓ < R(x)} ,

together with the tower map

f̃ : (x, ℓ) 7→

{
(x, ℓ+ 1) if ℓ+ 1< R(x)

(Fx,0) if ℓ+ 1= R(x).

We therefore define the tower skew-product f̃φ : X̃× S1 → X̃× S1 as

f̃φ : (x, ℓ,u) 7→

{
(x, ℓ+ 1,u) if ℓ+ 1< R(x)

(Fx,0,u+Φ(x)) if ℓ+ 1= R(x).

We also write the same definition as

f̃φ : (x, ℓ,u) 7→
(̃
f(x, ℓ) ,u+ φ̃(x, ℓ)

)
where φ̃(x, ℓ) is equal to Φ(x) when ℓ= R(x) and equal to 0 otherwise.

Using the tower and the above transfer operator estimates we prove the exponential mixing
result. This requires modification of Gouëzel’s argument because of our weaker assumptions
on the fibre map φ. In particular we prefer to see the action in the fibre only when we arrive at
the top of the tower, not incrementally at each step as is done in the reference. The (possibly)
many-to-one map π : X̃→ X is defined as (x, ℓ) 7→ fℓx. This has the consequence that π ◦ f̃=
f ◦π. For convenience, here and subsequently, we use the notation Snφ =

∑n−1
ℓ=0φ ◦ fℓ and,

similarly, Snφ̃=
∑n−1

ℓ=0φ ◦ f̃ℓ. Abusing notation since no confusion can arise, let π : X̃×S1 →
X×S1 be defined as (x, ℓ,u) 7→ ( fℓx,u+ Sℓφ(x)). This has the consequence that π ◦ f̃φ = fφ ◦

8
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π. For each ℓ we define X̃ℓ to be the subset of X̃ such that the second coordinate is equal to ℓ.
In each case this is a copy of {x ∈ X : R(x)> ℓ}. There is a fR-invariant (F- invariant) measure
ν̃0 on X̃0 (which is a copy of Y). This then extends to ν̃ on X̃. We then define the f -invariant
measure ν on X as ν = π∗ν̃. We denote by m the Lebesgue measure on S1. The fφ-invariant
measure on X×S1 is given by ν×m. That it is invariant is a simple consequence of fφ being
an isometry in the second coordinate.

By definition of π, ν̃ and f̃φ,∣∣ν (g ◦ fnφ · h
)
− ν (g)ν (h)

∣∣= ∣∣∣ν̃(g̃ ◦ f̃ nφ · h̃
)
− ν̃ (g̃) ν̃

(
h̃
)∣∣∣

where g̃= g ◦π and similarly for h (observables on the tower). Let L denote the transfer oper-
ator associated to f̃. To take advantage of the possibility of a Fourier decomposition in the
neutral direction we write

g(x, ℓ,u) =
∑
k∈Z

ĝk (x, ℓ) , where ĝk (x, ℓ) =
ˆ
g(x, ℓ,u)e−iku du.

Denote by Jn the Jacobian associated to f̃. The twisted transfer operator is equal to, for any
h : X̃→ R,

Mn
kh(x) =

∑
f̃ny=x

Jn (y)h(y)e
−ikSnφ̃(y).

In order to study correlation one considers the full transfer operator but then only the diagonal
terms remain [28, (3.4),(3.5)] and so,

ν̃
(
g̃ ◦ f̃ nφ · h̃

)
=
∑
k∈Z

ν̃
(
g̃−k ·Mn

k h̃k
)
.

Following Gouëzel [28, section 3] (the operators R, T, A, B, C are identical with identical
notation as the reference) we define the following operators which we later use to reconstruct
Mn,k:

Rn,kh(x) =
∑
f̃ ny=x

y∈Y,̃fy,...,̃f n−1y/∈Y,̃f ny∈Y

Jn (y)h(y)e
−ikSnφ̃(y),

Tn,kh(x) =
∑
f̃ ny=x

y∈Y,̃f ny∈Y

Jn (y)h(y)e
−ikSnφ̃(y),

An,kh(x) =
∑
f̃ ny=x

y∈Y,̃fy,...,̃f ny/∈Y

Jn (y)h(y)e
−ikSnφ̃(y),

Bn,kh(x) =
∑
f̃ ny=x

y,...,̃f n−1y/∈Y,̃f ny∈Y

Jn (y)h(y)e
−ikSnφ̃(y),

Cn,kh(x) =
∑
f̃ ny=x

y,...,̃f ny/∈Y

Jn (y)h(y)e
−ikSnφ̃(y).
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In words these are, respectively, the cases where: (R) The orbit y, f̃y . . . , f̃ny starts and ends in
Y but is not in Y in the meantime; (T) The orbit starts and ends in Y; (A) The orbit starts in
Y but does not finish in Y; (B) The orbit is not in Y until the last iterate when it is in Y; (C)
The orbit is never in Y. Consequently, cutting the orbit at the first and last time it belongs to Y
means that

Mn
kh(x) = Cn,k+

∑
a+i+b=n

Aa,kTi,kBb,k

and cutting according to each time the orbit belongs to Y implies that

Tn,k =
∞∑
p=1

∑
j1+···+jp=n

Rj1,k · · ·Rjp,k.

Since we will work with observables h which are supported in Y we can discard the oper-
ators Bn,k and Cn,k. The major part of the argument is the study of the operators Tn,kh [28,
section 3.3] and consequently the result of exponential mixing on the tower [28, theorem 3.6].
The same result holds in the present setting because we defined the dynamics on the tower in
such a way that we see the action in the fibre only when we arrive at the top of the tower, not
incrementally at each step as is done in the reference. Moreover the assumption on Φ match
those required in the reference. Finally we must understand the argument which deduces expo-
nential mixing for fφ : X×S1 → X×S1 from exponential mixing of f̃φ : X̃× S1 → X̃×S1.
Consider some Cr observable g : Y× S1 → C and the corresponding observable on the tower
g ◦π : X̃×S1 → C. Note that π is defined differently here compared to in the reference since
it must compensate for the fact that the tower only sees the action in the fibre at the top of the
tower (i.e. (x, ℓ,u) 7→ ( fℓx,u+ Sℓφ(x))). However, since we work with observables supported
on Y, the base of the tower, we do not see this discrepancy. Consequently the argument of the
reference, with the modifications of the present setting, proves theorem 1.

4. Twist control

In this section we show that the mild control of singular behaviour of the fibre map suffices
to give good control for the twist of iterates at hyperbolic times. This type of argument was
previously used by Araújo & Varandas [9, section 4.2.2] and the later results on Lorenz flows
relied on it [7, 8]. In this section we use it in order to prove theorem 2.

Let X be a compact Riemannian manifold (possibly with boundary), endowed with a Borel
measure µ (called the reference measure). For the purposes of this section we suppose that
the base transformation f : X→ X is a nonsingular transformation and that both it and the fibre
map φ : X→ S1 are piecewise C1 in the sense of being C1 on each partition element of a fixed
open partition of a full measure subset of X. The object of interest is the skew-product fφ :
X×S1 → X× S1,

fφ : (x,u) 7→ ( fx,u+φ(x)) .

It would be convenient to assume that ‖D(φ ◦ f|−1
ω )‖ is uniformly bounded (whereω ⊂ X is any

open set such that f : ω→ X is invertible) because this would imply the existence of a cone field
which is forward invariant under fφ (in the sense that the cones are mapped within themselves)
and uniformly bounded away from the neutral direction (see e.g. [15]). Unfortunately, in cases
like the one we wish to consider here, it would be impossible to have such a uniform bound.

10
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The reality is that, at a full measure set of points, any tangent vector will approach arbitrarily
close to the neutral direction under the action of the partially hyperbolic dynamics. Known
results for systems with singularities similar to those being investigated here [6, 9, 28] suggest
that the singular nature does not hinder the system having good statistical properties but it does
cause difficulties with some of the machinery we would like to use.

We consider the singularity points of the fibre map as artificial singularities of the base map
and use the notion of hyperbolic times (definition 2.9). At hyperbolic times we know that the
orbit hasn’t been too often too close to any singularity and this is sufficient for our purposes.

Lemma 4.1. Suppose that there exists C> 0, s⩾ 0 such that, for all4 x,∥∥∥Dφ(x)Df(x)−1
∥∥∥⩽ Cdist(x,S)−s

.

Suppose that b ∈ (0,s−1), σ ∈ (0,1), δ > 0. There exists C ′ > 0 such that, whenever n is a
(b,σ,δ)-hyperbolic time for x then, letting Φ(x) =

∑n−1
k=0 φ( f

kx),∥∥∥DΦ(x)Df n (x)−1
∥∥∥⩽ C ′.

Proof. We observe that, since Φ(x) =
∑n−1

ℓ=0φ( f
ℓx),

DΦ(x)Df n (x)−1
=

n−1∑
ℓ=0

Dφ
(
fℓx

)
Df

(
fℓx

)−1
Dfn−ℓ−1

(
fℓ+1x

)−1
.

We can use the assumption of the theorem which controls the quantity Dφ( fℓx)Df( fℓx)−1.
Consequently

∥∥∥DΦ(x)Df n (x)−1
∥∥∥⩽ C

n−1∑
ℓ=0

dist
(
fℓ+1x,S

)−s
‖Dfn−ℓ−1

(
fℓ+1x

)−1
‖ .

Observe that ‖Dfn−ℓ−1( fℓ+1x)−1‖⩽
∏n−1

j=ℓ+1

∥∥Df( fjx)−1
∥∥. Since, by assumption, n is a

(b,σ,δ)-hyperbolic time for x, this quantity is bounded from above as
∏n−1

j=ℓ+1 ‖Df( f
jx)−1‖⩽

σn−ℓ−1. Additionally distδ( f
ℓ+1x,S)⩾ σb(n−ℓ−1). We observe that dist(·, ·)⩾ Cdistδ(·, ·) for

some C> 0 and immediately absorb this quantity into the previous C. Since, by assumption,
bs< 1,

∥∥∥DΦ(x)Df n (x)−1
∥∥∥⩽ C

n−1∑
ℓ=0

σ−b(n−ℓ−1)sσn−ℓ−1

= C
n−1∑
k=0

σ(1−bs)k ⩽ C
1−σ1−bs

.

This estimate is independent of x and n, as required by the statement of the lemma.

Proof of theorem 2. The combination of lemma 4.1 and theorem [28, proposition 1.16] is the
claimed result.

4 To be precise, for each x contained within a partition element of the smoothness partition.
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Remark 4.2. As per the following example,
∥∥Dφ(x)Df(x)−1

∥∥might be unbounded even when
φ is a bounded function. Let X= R/Z and let f : X→ X be defined as x 7→ 2x. The fibre map
φ : X→ R is defined for the fundamental domain, x ∈ [0,1),

φ(x) =

{
2− 2x− (1− 2x)

1
2 ifx< 1

2

2− 2x+(2x− 1)
1
2 ifx⩾ 1

2 .

Observe that φ is smooth and continuous. However
∥∥Dφ(x)Df(x)−1

∥∥ is unbounded at x= 1
2 .

5. Enlarging the singularity set

In this section we describe the relevant argument to use if we have a uniformly expanding
transformation and then we need to enlarge the singularity set because of the singularities of
the fibre map. We can then use a large deviations argument to show that the system is NUE in
the sense of a controlled singular set (definition 2.8) even with the enlarged singular set.

Lemma 5.1. Suppose that f : X→ X is NUE in the sense of a controlled singular set S⊂ X
(definition 2.8). Further suppose that S ′ ⊂ X \ S is a finite union of C1 manifolds with boundary
of dimension strictly less than the dimension of X. Let S ′ ′ = S∪ S ′ ⊂ X.
Then f : X→ X is NUE in the sense of a controlled singular set, with respect to the set

S ′ ′ ⊂ X.

Proof. Observe that S∩ S ′ = ∅. Consequently all the inequalities of assumption (S1) remain
satisfied. Also, the second part of assumption (S2) (relating toQϵ,N) remains satisfied since it
does not depend on the singular set. It remains to consider the property which is sometimes
described as slow recurrence to the singular/critical set. We must show that the set{

x ∈ X :
1
n

n−1∑
k=0

− logdistδ(ϵ)
(
fkx,S ′)> ϵ, for somen⩾ N

}

is small in Lebesgue measure. We can see this estimate as a question of large deviationswhere
our ‘observable’ is x 7→ − logdistδ(ϵ)(x,S ′). Consequently the desired estimate follows from
the relevant large deviations result [5, theorem E].

6. Uniform non-integrability

In this section we show how information about the original map can be used to show that the
induced fibre map is not a coboundary with respect to the induced base map. In the termino-
logy used in several of the key references, we show that the uniform non-integrability (UNI)
condition holds.

As far as this author is aware, there are just two different ways that the fibre map is
not cohomologous to a locally constant function. One approach is to check using periodic
orbits and obtain a contradiction (e.g. [28, remark 1.15/lemma 6.5/lemma A.8/1st paragraph
of section 1.4]). Such arguments are also convenient for establishing that the fibre map not
being cohomologous to a locally constant function can be obtained by arbitrary small perturb-
ations (e.g. [2, 9, 17]). An alternative approach is to take advantage of the unbounded nature of

12
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the fibre map (or its derivative) in order to obtain a contradiction and hence prove that the fibre
map is not cohomologous to a locally constant function. (See e.g. [9, section 4.2.3 & erratum],
[8, proposition 3.4] and [6, lemma 4.2, corollary 4.3], often using some type of Livšic type
argument [13].) In this section we take this point of view and try to exploit the unbounded
nature of the fibre map in order to prove the required property.

Firstly we introduce an example to remind ourselves that we need to take care in this
argument. Let X= R/Z and let f : X→ X be defined as x 7→ 2x. Fix some a> 0 and define,
for x ∈ [0,1], the fibre map φ(x) = (x)−a− ( f x)−a. Observe that φ(ϵ)→+∞ as ε→ 0 and
φ( 12 + ϵ)→−∞ as ε→ 0. Consequently φ is unbounded yet, by definition, is cohomologous
to a constant. The skew-product, although rather disguised, is simply the identity in the fibre.

Remark 6.1. We can also construct an example which is inspired by the Lorenz flow. Let
f : [−1,1]→ [−1,1] be a ‘Lorenz-like’ map [30]. In particular unbounded derivative at x= 0.
Furthermore, for x ∈ [−1,1], let φ(x) = log |fx| − log |x|. The functions goes to +∞ at x= 0,
like seen in the Lorenz case, but, differently to the Lorenz case, goes to−∞ at the two preim-
ages, f−1(0). (The proof of [8, theorem 3.4] considers f(0+), f 2(0+) and so would not see the
difference with the present example and so it is subtle where such is ruled out in that work
where not being cohomologous to a locally constant function is proved. However there they
take advantage of the possibility of a Young tower where the base is an open interval containing
the singularity [9, theorem 4.3].)

For the remainder of this section we consider the setting assumed in theorem 3. In particu-
lar, X= [0,1] and f : X→ X is defined as f : x 7→ 2x mod 1. Furthermore φ(x) = dist(x,1)a

for some a ∈ (0,1). We will take advantage of the fact that in this setting we are able to
define an explicit inducing scheme. Let Y= (0, 12 )⊂ X, and, for all ℓ ∈ N, let aℓ = 2−1 − 2−ℓ,
Yℓ = (aℓ,aℓ+1). By definition, {Yℓ}ℓ∈N is a partition of a full measure subset of Y. Moreover
f j(Yℓ)∩Y= ∅whenever 1⩽ j ⩽ ℓ− 1 and fℓ : Yℓ → (0,1) is a bijection. In words, ℓ is the first
return time to Y for each x ∈ Yℓ. Following the notation earlier in this work, R(x) is defined to
be ℓ for each x ∈ Yℓ and F : Y→ Y is defined as F : x 7→ fR(x)x. Let S= {1} ⊂ X. Although this
point is not a singularity in any sense for f it is a singularity for the fibre map φ.

Lemma 6.2. For all b> 1 there exists δ > 0 such that, for all ℓ ∈ N, ℓ is a (b, 12 , δ)-hyperbolic
time for x ∈ Yℓ (with respect to the map f : X→ X and the singularity set S= {1} ⊂ X).

Proof. Let x ∈ Yℓ. For the first property of hyperbolic times, we observe that∏ℓ−1
j=ℓ−k

∥∥Df( fjx)−1
∥∥= 2−k, consistent with the choice of σ = 1

2 . For the other property we
must consider how close orbits can approach the singularity set. It remains to show that
distδ( f

ℓ−kx,1)⩾ σbk. It suffices to consider k< ℓ since k= ℓ implies that dist( fℓ−kx,1) =
dist(x,1)⩾ 1

2 . We calculate that,

dist
(
fℓ−kx,1

)
⩾ dist

(
fℓ−kaℓ+1,1

)
= 1− fℓ−k

(
2−1 − 2−(ℓ+1)

)
= 1−

(
1− 2−(k+1)

)
= 1

22
−k.

Since we assumed that b> 1 by choosing δ > 0 we obtain, uniformly, the required estimate
(i.e. 1

22
−k ⩾ 2−bk whenever k is sufficiently large that 1

22
−k < δ).
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Lemma 6.3. The induced fibre map Φ : Y→ R is not cohomologous to a function constant on
each Yℓ.

Proof. Let x ∈ Y1, x ′ ∈ Y2 be defined as the points which satisfy Fx= x, Fx ′ = x ′. Let y ∈ Y1
be such that y ′ = Fy ∈ Y2 and Fy ′ = F 2y= y. Explicitly,

x= 0, f x= x,

x ′ = 1
3 , fx ′ = 2

3 , f
2x ′ = x ′,

y= 1
7 , y ′ = f y= 2

7 , f 2y= 4
7 , f 3y= y.

Suppose, for the sake of contradiction, that Φ : Y→ R is cohomologous to a locally constant
function in the sense that there exists a C1 function Φ̃ : Y→ R such that Φ − Φ̃+ Φ̃ ◦F is con-
stant on each set Yℓ (and this extends to Yℓ). Considering the three periodic orbits introduced
above, this implies that Φ(x)+Φ(x ′) = Φ(y)+Φ(y ′) and so,

φ(x)+φ(x ′)+φ( f x ′) = φ(y)+φ(y ′)+φ( f y ′) . (1)

Since φ(x) = dist(x,1)a this implies that

φ(0)+φ
(
1
3

)
+φ

(
2
3

)
−φ

(
1
7

)
−φ

(
2
7

)
−φ

(
4
7

)
= χ(a) = 0

where, for convenience we defined

χ(a) = 1+
(
2
3

)a
+
(
1
3

)a− (
6
7

)a− (
5
7

)a− (
3
7

)a
.

An analysis of this function shows that χ(0) = χ(1) = 0 but that χ(a)< 0 for all a ∈ (0,1).
This completes the required contradiction (1).

Remark 6.4. Contradicting the equality (1) obtained during the previous proof was the crucial
step. The same argument could be performed choosing x ∈ Yn, x ′ ∈ Ym then the equation to
contradict would become,

n−1∑
j=0

φ
(
f jx

)
−φ

(
f jy

)
=

m−1∑
j=0

φ
(
f jy ′

)
−φ

(
f jx ′

)
.

However this, or similar, can be contradicted by many different choices of assumptions on
φ. For example, if φ were constant on Y but monotone elsewhere and strictly increasing in a
neighbourhood of 1 the required contradiction would also hold.

Proof of theorem 3. Lemma 6.2 implies that, for any b> 1 there exists δ > 0 such that the
induced system has return times which are (b, 12 ,σ)-hyperbolic times. Since φ(x) = dist(x,1)a

we know that
∥∥Dφ(x)Df(x)−1

∥∥⩽ 1
2 dist(x,S)

−(1−a). We may choose b ∈ (0,(1− a)−1) and
so lemma 4.1 applies and proves the required control on DΦ. This, together with the proof
that Φ is not cohomologous to a locally constant function, as shown in lemma 6.3, means that
theorem 2 applies in the setting and gives the proof of exponential mixing.
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[8] Araújo V, Melbourne I and Varandas P 2015 Rapid mixing for the Lorenz attractor and statistical
limit laws for their time-1 maps Commun. Math. Phys. 340 901–38
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[13] Bruin H, HollandM and Nicol M 2005 Livšic regularity for Markov systems Ergod. Theor. Dynam.
Syst. 25 1739–65

[14] Butterley O 2014 Area expanding C1+α suspension semiflows Commun. Math. Phys. 325 803–20
[15] Butterley O and Eslami P 2017 Exponential mixing for skew-products with discontinuities Trans.

Am. Math. Soc. 369 783–803
[16] Butterley O and Melbourne I 2017 Disintegration of invariant measures for hyperbolic skew-

products Isr. J. Math. 219 171–88
[17] Butterley O and War K 2020 Open sets of exponentially mixing Anosov flows J. Eur. Math. Soc.

22 2253–85
[18] Castorrini R and Liverani C 2022 Quantitative statistical properties of two-dimensional partially

hyperbolic systems Adv. Math. 409 1–122
[19] Dolgopyat D 1998 On decay of correlations in Anosov flows Ann. Math. 147 357–90

15

https://doi.org/10.1007/s002220000057
https://doi.org/10.1007/s002220000057
https://doi.org/10.1090/proc/13055
https://doi.org/10.1090/proc/13055
https://doi.org/10.1007/s10240-006-0001-5
https://doi.org/10.1007/s10240-006-0001-5
https://doi.org/10.1016/j.anihpc.2004.12.002
https://doi.org/10.1016/j.anihpc.2004.12.002
https://doi.org/10.1016/j.aim.2011.06.014
https://doi.org/10.1016/j.aim.2011.06.014
https://doi.org/10.1007/s00023-016-0482-9
https://doi.org/10.1007/s00023-016-0482-9
https://doi.org/10.1112/blms.12037
https://doi.org/10.1112/blms.12037
https://doi.org/10.1007/s00220-015-2471-0
https://doi.org/10.1007/s00220-015-2471-0
https://doi.org/10.1007/s00220-012-1445-8
https://doi.org/10.1007/s00220-012-1445-8
https://doi.org/10.1090/S0002-9939-04-07671-3
https://doi.org/10.1090/S0002-9939-04-07671-3
https://doi.org/10.1007/s10955-018-2093-y
https://doi.org/10.1007/s10955-018-2093-y
https://doi.org/10.1007/s00220-019-03423-6
https://doi.org/10.1007/s00220-019-03423-6
https://doi.org/10.1017/S0143385705000179
https://doi.org/10.1017/S0143385705000179
https://doi.org/10.1007/s00220-013-1835-6
https://doi.org/10.1007/s00220-013-1835-6
https://doi.org/10.1090/tran/6761
https://doi.org/10.1090/tran/6761
https://doi.org/10.1007/s11856-017-1477-z
https://doi.org/10.1007/s11856-017-1477-z
https://doi.org/10.4171/jems/964
https://doi.org/10.4171/jems/964
https://doi.org/10.1016/j.aim.2022.108625
https://doi.org/10.1016/j.aim.2022.108625
https://doi.org/10.2307/121012
https://doi.org/10.2307/121012


Nonlinearity 37 (2024) 115018 O Butterley

[20] Dolgopyat D 2002 On mixing properties of compact group extensions of hyperbolic systems Isr. J.
Math. 130 157–205

[21] Eslami P 2017 Stretched-exponential mixing for C1+a skew products with discontinuities Ergod.
Theor. Dynam. Syst. 37 146–75

[22] Eslami P 2022 Inducing schemes formulti-dimensional piecewise expandingmapsDiscrete Contin.
Dyn. Syst. 42 353

[23] Eslami P, Melbourne I and Vaienti S 2021 Sharp statistical properties for a family of multidimen-
sional non-Markovian nonconformal intermittent maps Adv. Math. 388 107853

[24] Galatolo S 2018 Quantitative statistical stability, speed of convergence to equilibrium and partially
hyperbolic skew products J. Ec. Polytech. Math. 5 377–405

[25] Galatolo S and Pacifico M J 2010 Lorenz-like flows: exponential decay of correlations for the
Poincare map, logarithm law, quantitative recurrence Ergod. Theory Dyn. Syst. 30 1703–37

[26] Galatolo S, Rousseau J and Saussol B 2015 Skew products, quantitative recurrence, shrinking tar-
gets and decay of correlations Ergod. Theory Dyn. Syst. 35 1814–45
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