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1 Introduction

Einstein’s general relativity (GR) is an extremely successful classical theory of gravity that
has been tested by several observations: recent tests include the discovery of gravitational
waves, whose production is consistent with coalescing black holes [1], and the images of the
black holes in the center of our galaxy and the M87 one produced by the Event Horizon
Telescope [2–6]. Furthermore, GR, appropriately extended by matter fields, is at the basis of
our current understanding of cosmology, including the early universe.

However, an extension of GR is necessary because of quantum mechanics: GR is known
to be nonrenormalizable by perturbative methods [7, 8] and to be within the regime of
validity of perturbation theory at length scales much below the Planck one. Thus, while it is
possible that GR might make sense as a quantum theory at Planckian and trans-Planckian
scales through some (yet unknown) non-perturbative approach, one must still extend it to
make contact with large-distance physics.

Another shortcoming of quantum GR is the lack of a consistent Euclidean path integral:
the Euclidean action of GR is unbounded from below, an issue that goes under the name of
the “conformal-factor problem”. This is a serious issue as all known quantum field theories of
physical relevance are consistently defined only as analytic continuations of the corresponding
Euclidean theories.
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Both the non-renormalizability and the conformal-factor problem of GR could be solved
by adding quadratic-in-curvature terms. Indeed, the resulting theory, which is often called
quadratic gravity,1 is renormalizable [11–14] and a simple application of the prescription [15]
to determine the Euclidean action indicates that is also free from the conformal-factor
problem in a sizable region of its parameter space [16].

A non-perturbative quantization leading to a well-defined Euclidean path integral has
been found in ref. [17] in the context of a simple, yet non-trivial, toy model for quadratic
gravity: an interacting version of the Pais-Uhlenbeck model [18]. This quantization is based on
the quantum treatment of canonical variables first discussed by Pauli [19], who elaborated on
a previous work by Dirac [20]; for this reason it was called the Dirac-Pauli (DP) quantization
in [17]. The model discussed in [17], however, features a finite number of degrees of freedom,
so a question that has remained unanswered so far is whether the DP quantization can be
extended to field theory, which features instead an infinite number of degrees of freedom, and
ultimately to quadratic gravity. In refs. [21–23] a real-time path integral was constructed
for quadratic gravity using an ordinary (non-DP) quantization. As we will show here, this
ordinary quantization does not allow us to construct a consistent Euclidean path integral.

As discussed in [9, 17], the DP quantization implies the presence of an indefinite inner
product. So one must ask whether consistent probabilities (non-negative numbers that sum
up to one) can be defined in such a situation; in other words, one must ask whether this
quantization respects unitarity. The answer is yes, as shown in refs. [24–26]. Indeed, by
applying the standard frequency definition of probability as in real physics experiments,
it turns out that in the Born rule one should not use the indefinite inner product but
instead positive-definite inner products, which can be constructed by inserting appropriate
linear operators inside the indefinite inner product. We will refer to these operators as
norm operators.

The existence of a different inner product in relation with the unitarity of the theory
has been discussed in a number of papers in the context of quantum mechanics and field
theory with an antilinear symmetry of the Hamiltonian (see e.g. refs. [27, 28] for applications
to the Pais-Uhlenbeck oscillator and ref. [29] for a review).

Norm operators have been used so far to provide a unitary quantization of quadratic grav-
ity through a perturbative and background dependent approach: one starts from a fixed clas-
sical background (e.g. the Minkowski or the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metrics) and then considers a semiclassical expansion where the perturbations are quantized
with these rules [25, 26, 30]. A perturbative and background-dependent approach is present in
several roads to quantum gravity, including string theory. Needless to say, such an approach
must ultimately be replaced by a non-perturbative and background-independent formulation.
Indeed, one of the most important Einstein’s messages on gravity is that the laws of physics
should be formulated in a background-independent way. The purpose of this paper is to find
a non-perturbative formulation of this type in quadratic gravity.

Note that in the perturbative background-dependent approach used so far, one first
starts from the classical theory. As will be discussed in detail in this work, the classical
Hamiltonian of quadratic gravity is unbounded from below (and above). In this sense

1Other used names include higher-derivative gravity and four-derivative gravity. See [9, 10] for reviews.
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quadratic gravity belongs to the class of higher-derivative models studied by Ostrogradsky in
ref. [31]. Nevertheless, in [32, 33] (see also [34, 35] for related works) it has been found that
the runaway rates in classical quadratic gravity can be slow enough2 to ensure agreement with
observations. This occurs when the typical length scales are much above a threshold that is
low enough to describe the whole cosmology, i.e. the resulting theory can be called metastable
rather than unstable, see ref. [32]. The possible instability that takes place when such bound
is violated not only is compatible with cosmology, but would also explain why we live in a
homogeneous and isotropic universe [32]: this is because this instability can be effectively
activated only in sufficiently inhomogeneous and anisotropic patches of the universe.

The non-perturbative and background independent formulation that we seek in this paper
can, among other things, provide us with a fully quantum and non-perturbative justification
of these classical cosmological findings. Furthermore, such a formulation can also be used to
make contact with other (apparently independent) perturbative and background-dependent
approaches to formulate quadratic gravity as a unitarity and (meta)stable renormalizable
theory: these approaches include the Lee-Wick [38–41] and the fakeon [42] programs, where
all observable degrees of freedom are quantized with standard rules.

Even in ordinary quantum theories, the real-time path integral is only a formal object,
whose consistency at the rigorous level is questionable. Therefore, we seek here a non-
perturbative and background-independent formulation of quadratic gravity with a consistent
Euclidean path integral. The real-time (Lorentzian) physics should then be defined, like in all
known physically relevant quantum field theories, as an analytic continuation of the Euclidean
theory. A formulation of this type can then be used to give a rigorous basis for quantum
cosmology, where, as proposed by Hartle and Hawking, one describes everything through
a quantum mechanical “wave function of the universe” [43]. Indeed, the Euclidean path
integral can be used to obtain eigenfunctions of the Hamiltonian that solve the Shroedinger
equation. In the context of quantum cosmology this equation is known as the Wheeler-DeWitt
equation [44, 45]. A consistent quantum cosmology in quadratic gravity would be interesting
also because this theory contains Starobinsky’s model of inflation [46], which is currently in
perfect agreement with the cosmic-microwave-background observations [47–49].

Yet another application of a non-perturbative and background-independent formulation
of quadratic gravity would be in the context of asymptotic safety [50, 51], where one attempts
to render gravity UV complete through a non-perturbative UV fixed point. Fixed points
of this type have been found for quadratic gravity in refs. [52, 53].

The paper is organized as follows. In section 2 we introduce the action of quadratic
gravity we consider in this work and the corresponding 3 + 1 formalism, where space and time
are separated. Afterwards, in section 3 Ostrogradsky’s canonical method is non-perturbatively
applied to quadratic gravity to define the canonical variables and the Hamiltonian. The
Dirac-Pauli quantization is applied to quadratic gravity in section 4 to find a consistent
Euclidean path integral. At the beginning of this section a review of the DP quantization
and consequent norm operators is provided to render the paper self-contained. The unitarity
of the theory is discussed there in the most general terms. In section 4 the Euclidean path

2In some simple cases it has even been possible to show that Ostrogradsky’s unboundedness is compatible
with absolute stability [36, 37].
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integrals for the transition amplitudes and Green’s functions are studied first in a scalar-field
four-derivative interacting model and then in quadratic gravity. In the same section the
general covariance of the theory is also discussed. Section 5 is devoted to the construction of
the (quantum) effective action in quadratic gravity, which is then used to study the classical
limit of the theory in section 6. Section 7 is an application of the previous results to quantum
cosmology. Finally, in section 8 a detailed summary of the paper and conclusions are offered.
The paper also includes two appendices, which give further details.

Regarding notation: since we will consider the classical limit we will leave ℏ explicit in
this paper. However, we will use units where the speed of light equals 1.

2 The action and the 3 + 1 formalism

The action of quadratic gravity we consider is

S =
∫
d4xL , with L = −

√
−g

(
α

2W
2 + βR2 + γR+ λ

)
. (2.1)

Here α, β, γ and λ are real coefficients, g is the determinant of the metric, R is the Ricci
scalar and W 2 ≡ WµνρσW

µνρσ is the “square” of the Weyl tensor Wµνρσ. So, in terms of
the Riemann tensor Rµνρσ and Ricci tensor Rµν

1
2W

2 = 1
2RµνρσR

µνρσ −RµνR
µν + 1

6R
2, (2.2)

or equivalently

W 2

2 = RµνR
µν − R2

3 + G

2 . (2.3)

The quantity G is the topological Gauss-Bonnet term. For simplicity we do not add to S
possible boundary terms that are also quadratic in the curvature.

One of our goals is to provide a Hamiltonian formulation of the theory. We thus adopt
a 3 + 1 formalism [44, 54, 55]. Such a formalism has been applied to quadratic gravity
in [21–23, 56]. Unlike in these works, we shall start here with a gauge condition on the metric
components to avoid dealing with complicated constraints. In this respect, our approach
resembles the one used in the context of ordinary Yang-Mills theory (see e.g. [57]). Our
gauge choice is the simple Gauss coordinate system, namely normal coordinates (zero shift)
and geodesic slicing (unit lapse function):

ds2 = gij(x)dxidxj − dt2, (2.4)

where latin indices are the spacial ones and t ≡ x0 is the time coordinate. General covariance
will be made manifest in section 4.2. The non-vanishing components of the Levi-Civita
connection

Γρ
µν = 1

2g
ρσ(∂µgσν + ∂νgσµ − ∂σgµν) (2.5)

in Gauss coordinates are then

Γ0
ij = Γ0

ji = 1
2 ġij ≡ −Kij , Γl

ij , Γl
0j = Γl

j0 = 1
2g

lmġmj ≡ −K l
j , (2.6)

where a dot represents a derivative with respect to t.
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The action S can be expressed in terms of gij , Kij and K̇ij through the following formulæ,
which can be derived with the help of those reported in appendix A:

R = R3 − 2gijK̇ij − 3KijK
ij +K2, (2.7)

RµνR
µν =

[
gij(K̇ij +KilK

l
j)
]2

− 2(DiK −DjKji)(DiK −DlK i
l )

+ ( R3 ij − K̇ij − 2KilK
l
j +KKij)gilgjm( R3 lm − K̇lm − 2KlpK

p
m +KKlm),

(2.8)
RµνρσR

µνρσ = 4(K̇ij +KilK
l
j)gilgjm(K̇lm +KlpK

p
m) − 4(DjKil −DlK

j
i)(DjK

il −DlK i
j )

+ ( R3 ijlm +KilKjm −KjlKim)( R3 ijlm +KilKjm −KjlKim). (2.9)

Here R3 ijlm, R3 ij , R3 and Di are, respectively, the three-dimensional Riemann tensor, Ricci
tensor, Ricci scalar and covariant derivative built with the three-dimensional metric gij , the
inverse three-dimensional metric is represented as usual by gij (we lower and raise the latin
indices with gij and gij , respectively) and K ≡ K i

i .
The time-reversal invariance of L is manifest in eqs. (2.7), (2.8), (2.9): the time-reversal

invariant quantity K̇ij also appears linearly, while Kij ≡ −ġij/2, which changes sign under
time reversal, only appears quadratically. The time-reversal invariant metric gij even enters
non polynomially.

3 Canonical quadratic gravity

The action S is a functional of gij , ġij and g̈ij or, equivalently, of gij , Kij and K̇ij , where
Kij has been defined in eq. (2.6). We can thus use Ostrogradsky’s canonical method [31]
(see e.g. ref. [9] for an introduction and references to previous works).

In this formalism one can treat gij and Kij as independent canonical coordinates and
then defines the momenta πij and P ij conjugate to gij and Kij , respectively, as follows:3

πij ≡ ∂L

∂ġij
− d

dt

∂L

∂g̈ij
, P ij ≡ ∂L

∂K̇ij
− d

dt

∂L

∂K̈ij
(3.1)

Since L is independent of K̈ij ,

P ij = ∂L

∂K̇ij
. (3.2)

By using eqs. (2.1), (2.7), (2.8) and (2.9) one obtains

P ij = −2
√

−g
{
GijlmK̇lm + αKijK − αgijKlmK

lm + α R3 ij

−gij
[(
α

3 + 2β
)

( R3 − 3KlmK
lm +K2) + γ

]}
, (3.3)

3The derivatives in (3.1) are taken as if the variables with i and j exchanged were independent. For
example,

∂

∂K̇ij

(glmK̇lm) = gij .

The symmetry in the exchange of i and j is then reflected in the symmetry πij = πji and P ij = P ji.

– 5 –
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where
Gijlm ≡ α

gilgjm + gimgjl

2 +
(

4β − α

3

)
gijglm. (3.4)

It is easy to check that, whenever α ̸= 0 and β ̸= 0,

Γpqij ≡ 1
α

gpigqj + gpjgqi

2 − 4β − α/3
12βα gpqgij (3.5)

is the inverse of Gijlm in the sense that

ΓpqijG
ijlm = 1

2(δl
pδ

m
q + δm

p δ
l
q), (3.6)

so we can express K̇ij in terms of P ij , gij and Kij . Inserting this expression in L one finds
a functional of gij , Kij and P ij with no dependence on πij .

Also in Ostrogradsky’s canonical method, one makes use of the standard definition of
the classical Hamiltonian density:

H ≡ πij ġij + P ijK̇ij − L . (3.7)

As usual, the spatial integral of H (namely, the Hamiltonian) is conserved, i.e. time inde-
pendent. Unlike L , the Hamiltonian density does depend on πij , as well as gij , Kij and
P ij , but the only dependence on πij is given by the term

πij ġij = −2πijKij . (3.8)

As mentioned in the introduction, the classical Hamiltonian is, therefore, unbounded from
below, but the runaway rates in classical quadratic gravity can be slow enough to ensure
compatibility with observations in our observable patch, while other highly inhomogeneous and
anisotropic patches are not compatible with observers thanks to Ostrogradsky’s instabilities
(leading to an explanation of the nearly homogeneity and isotropy of our universe). In
section 7 we will discuss the quantum counterpart of these classical findings.

4 Euclidean path integral and Dirac-Pauli variables

As usual the dynamics of the quantum theory will be encoded in a time-evolution operator
U(t) ≡ exp(−iHt/ℏ), where H is the Hamiltonian operator. As usual in a field theory, we
seek here an equivalent formulation in terms of a path integral.

The Euclidean path integral, followed by the analytic continuation to real time, provides
us with a rigorous non-perturbative definition of our physical theories. It is thus important
to construct a consistent Euclidean path integral for quadratic gravity too. In the Euclidean
theory the real time t is substituted by −iτ , where τ , called the imaginary time, is treated as
a real variable. The real-time (Lorentzian) theory is then defined by the analytic continuation
τ → it of the resulting theory.

A first problem one faces to achieve this goal is the presence of the term (3.8) in H: if
one performs an ordinary quantization where the canonical coordinates gij and Kij (and
their conjugate momenta πij and P ij) have a real spectrum the Euclidean path integral over

– 6 –
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πij diverges: this is because in the Euclidean path integral the Hamiltonian appears without
an overall i in the exponent of the path integrand.

A solution to this problem is the existence of an alternative quantization for the canonical
variables, where these operators have instead purely immaginary eigenvalues. We will refer
to this quantization as the Dirac-Pauli (DP) one [9, 17, 26], as it was first discussed by
Pauli [19] elaborating on a previous work by Dirac [20]. The existence of this alternative
quantization is due to the fact that an observable A in quantum mechanics can be more
generally defined as a physical quantity for which there is a complete set of states with a
well defined value of A [25, 26]. As a result of this more general definition, A can always be
described by a normal operator with respect to an appropriately defined positive-definite
inner product [25, 26] with eigenvectors given by the mentioned complete set of states. This
extends the usual definition of observables as A can have complex eigenvalues. This is not so
strange as we can construct normal non-Hermitian observables even in text-book quantum
mechanics: for example, the position of a particle in a plane {x, y} can always be described
by a normal operator x̂ + iŷ with complex eigenvalues. With this definition of observable
(which is adopted here) there are two possibilities to quantize a canonical variable, either
the ordinary one or the DP one. Now, if we adopt the ordinary quantization for πij and
the DP one for Kij the term in (3.8) will produce a harmless purely imaginary term in the
Euclidean path integral and the previously mentioned problem is solved.

To proceed it is now necessary to review some of the properties of this generalized
quantization procedure. First a DP canonical variable x̂ satisfies by definition x̂|x⟩ = ix|x⟩
for a complete set of states |x⟩ and real x. The operator x̂ can be considered as a Hermitian
operator with respect to an indefinite inner product for which ⟨x′|x⟩ = δ(x+ x′) rather than
δ(x − x′) [9]. For generic states |ψ⟩ and |χ⟩ such inner product is denoted ⟨χ|ψ⟩ and the
Hermitian conjugate with respect to this inner product of a generic linear operator O is
denoted O†. Calling η the linear operator such that η|x⟩ = | −x⟩, it is then clear that ⟨χ|η|ψ⟩
defines a positive-definite inner product. The completeness relation then reads

∫
dx|x⟩⟨x|η = 1,

∫
|x⟩⟨x| = η, (4.1)

where in the second equality we used η2 = 1. Also it is easy to show η† = η. If we call O†
η

the Hermitian conjugate of a generic linear operator O with respect to the positive-definite
inner product, ⟨χ|η|ψ⟩, one finds O†

η = ηO†η.
More generally, for any observable A it is always possible to define a linear operator PA

(satisfying P †
A = PA) such that for the complete set of eigenstates |a⟩ of A with eigenvalue αa

one has ⟨a′|PA|a⟩ = δa′a and thus ⟨χ|ψ⟩A ≡ ⟨χ|PA|ψ⟩ is a positive-definite inner product [25,
26] (when A is a DP canonical variable one has PA = η). For this reason we refer to PA as a
norm operator. Adopting the standard frequency definition of probability as in real physics
experiments, one finds that it is this inner product that must be used in the Born rule to
define the probability pa that a measurement of A has the outcome αa [24–26]:

pa = |⟨a|ψ⟩A|2

⟨ψ|ψ⟩A
. (4.2)

– 7 –
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Since this satisfies for any A the conditions [25, 26]

pa ≥ 0,
∑

a

pa = 1, (4.3)

where the label a ranges over all possible values, the theory is unitary.
Another property that is necessary to recall is that the conjugate momentum p̂ of a

DP canonical coordinate x̂ (satisfying the canonical commutator [x̂, p̂] = iℏ) is itself a DP
variable, namely p̂|p⟩ = ip|p⟩ for a complete set of states |p⟩ and p real and [9, 17]

⟨x|p⟩ = eipx/ℏ
√

2πℏ
. (4.4)

Therefore, the quantization that was mentioned before (the ordinary one for πij and the
DP one for Kij) tells us that the pairs of conjugated variables {gij , π

ij} and {Kij , P
ij}

are respectively ordinary variables and DP ones. This agrees with the principle proposed
in [17] in the simpler Pais-Uhlenbeck model [18]: coordinates that are invariant under time
reversal (like gij) should be quantized in the standard way, while coordinates that are odd
under time reversal (like Kij ≡ −ġij/2) should be DP quantized.4 One might worry that
this quantization will have the disastrous implication that the theory predicts an imaginary
value for the time derivative of the metric; this does not happen, as will be confirmed in
sections 5 and 6, because the expectation values of all types of canonical coordinates (both
ordinary and DP ones) are real [26].

It remains to be shown that this quantization leads to a well-defined Euclidean path
integral as anticipated. This will be done in the following subsection.

4.1 Euclidean path integral for transition amplitudes and T-products

In this section it is convenient to treat a more general framework than quadratic gravity. Let
us consider an arbitrary number of ordinary canonical variables q1, . . . , qn and Dirac-Pauli
variables q̄1, . . . , q̄m. A state with definite canonical coordinates is denoted here [9]

|q⟩ = |q1, . . . , qn, q̄1, . . . , q̄m⟩ (4.5)

and the corresponding state with definite conjugate momenta is

|p⟩ = |p1, . . . , pn, p̄1, . . . , p̄m⟩. (4.6)

We would like to evaluate the matrix element of the Euclidean time evolution operator,
exp(−(τf − τi)H/ℏ) with the imaginary initial and final times, τi and τf respectively, between
arbitrary states of definite canonical coordinates |qi⟩ and |qf ⟩:

⟨qf |η exp(−(τf − τi)H/ℏ)|qi⟩. (4.7)

Indeed, the knowledge of this object for arbitrary qi and qf is equivalent to knowing the
imaginary-time dynamics of the system. The real-time dynamics can then be defined as an

4After quantization we write TgijT
−1 = gij and T ġijT

−1 = −ġij , where T is the antilinear time-reversal op-
erator.

– 8 –
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analytic continuation from imaginary to real time. In the expression above we have inserted
the η operator so that the matrix element is taken with the positive-definite inner product
⟨χ|ψ⟩q ≡ ⟨χ|η|ψ⟩. The matrix element without the η insertion provides an object with the
same amount of information because η by definition switches the sign of all DP variables
and leaves the ordinary variables unchanged, i.e.

η|q⟩ ≡ |qη⟩ ≡ |q1, . . . , qn,−q̄1, . . . ,−q̄m⟩. (4.8)

So the desired matrix element can be written as follows:

⟨qf |ηe−(τf −τi)H/ℏ|qi⟩ = ⟨qfη, τf |qi, τi⟩, (4.9)

having defined |q, τ⟩ ≡ exp(τH/ℏ)|q⟩ and ⟨q, τ | ≡ ⟨q| exp(−τH/ℏ). After an analytic contin-
uation to real time, these matrix elements allows us to compute, among other things, the
probability density ρ(qf ) that the system is found in the state |qf ⟩ after a time tf − ti starting
from a generic state |ψ0⟩ =

∫
dq ψ0(q)|q⟩ by using eq. (4.2) with A = q:

ρ(qf ) = |⟨qfη|U(tf − ti)|ψ0⟩|2

⟨ψ0|U †(tf − ti)ηU(tf − ti)|ψ0⟩
= |⟨qfη|U(tf − ti)|ψ0⟩|2∫

dqη|⟨qη|U(tf − ti)|ψ0⟩|2
, (4.10)

where in the second step we have changed the name of the integration variable, q → qη. From
eq. (4.10) it is clear that the probability density ρ(qf ) satisfies the unitarity conditions

ρ(qf ) ≥ 0, (for any qf ),
∫
dqf ρ(qf ) = 1 (4.11)

as a consequence of the general unitarity expressed by (4.3).
We actually consider an even more general object than (4.9), where a generic time-ordered

product of ordinary canonical coordinates of the form Tq̂i1(τ1)q̂i2(τ2) . . . is inserted:

⟨qfη, τf |Tq̂i1(τ1)q̂i2(τ2) . . . |qi, τi⟩, (4.12)

where q̂(τ) ≡ exp(Hτ/ℏ)q̂ exp(−Hτ/ℏ). This generalization will allow us in section 4.3 to
construct the Euclidean path integral for Green’s functions of the metric gij , which, as
we have seen, will be quantized as an ordinary canonical coordinate. By following steps
similar to those in the absence of such insertion performed in refs. [9, 17], we obtain the
path-integral representation:

⟨qfη, τf |Tq̂i1(τ1)q̂i2(τ2) . . . |qi, τi⟩

=
∫ q(τf )=qf

q(τi)=qi

δqδp qi1(τ1)qi2(τ2) . . . exp
(1
ℏ

∫ τf

τi

dτ(ipq′ − H̄(q, p))
)
, (4.13)

where
H̄(q, p) ≡ ⟨p|H|q⟩

⟨p|q⟩
(4.14)

and the functional integration measure is given by

δq =
∏
τ

dq(τ), δp =
∏
τ ′

dp(τ)
2πℏ . (4.15)
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The products above are extended to all values of τ ∈ [τi, τf ) for momenta p and for all values
of τ ∈ (τi, τf ) for coordinates q, as the values of q at both time boundaries are fixed (we put
a prime in the second product to recall this different range). Like in any quantum theory,
this measure should be thought of as the zero lattice-spacing limit of an integration measure
over a finite number of variables obtained by discretizing time (and all spatial dimensions
in the case of field theory). As usual we can write

⟨qfη, τf |Tq̂i1(τ1)q̂i2(τ2) . . . |qi, τi⟩ = δ⟨qfη, τf |qi, τi⟩J

δJi1(τ1)δJi2(τ2) . . .

∣∣∣∣∣
J=0

, (4.16)

where ⟨qfη, τf |qi, τi⟩J is the generating functional

⟨qfη, τf |qi, τi⟩J ≡
∫ q(τf )=qf

q(τi)=qi

δqδp exp
(1
ℏ

∫ τf

τi

dτ(ipq′ − H̄(q, p) + ℏJ(τ)q(τ))
)

(4.17)

It is important to note that here the expression q(τi) = qi, q(τf ) = qf appearing on
the functional integral symbol represents boundary conditions for both the ordinary and
DP coordinates, both at initial time τi

q1(τi) = q1i, . . . , qn(τi) = qni, q̄1(τi) = q̄1i, . . . , q̄m(τi) = q̄mi, (4.18)

and final time τf

q1(τf ) = q1f , . . . , qn(τf ) = qnf , q̄1(τf ) = q̄1f , . . . , q̄m(τf ) = q̄mf . (4.19)

Another important aspect is that in the presence of DP variables H̄(q, p) does not generically
coincide with the classical Hamiltonian (the space integral of the classical H given in (3.7)
in the case of quadratic gravity) because the eigenvalues of the DP variables are imaginary.
So, in the limit ℏ → 0, where all operators commute, H̄(q, p) is the analytic continuation of
the classical Hamiltonian to imaginary values of the DP variables: q̄1 → iq̄1, . . . , q̄m → iq̄m,
p̄1 → −ip̄1, p̄m → −ip̄m. The DP coordinates are rotated anticlockwise in the complex
plane while the DP conjugate momenta are rotated clockwise because in the definition of
H̄ we are adopting, eq. (4.14), the coordinate eigenstates appear on the right, while the
momentum eigenstates are on the left.

The path integral in (4.13), or equivalently that in (4.17), is not guaranteed to converge
for any theory and for any choice of quantization. As we have anticipated at the beginning of
section 4, if we use the ordinary quantization for both {gij , π

ij} and {Kij , P
ij} in quadratic

gravity, H̄ will have a term −2πijKij , where now πij and Kij are real integration variables
in the path integral. Since this is the only term where πij appears, one would obtain
an exponential divergence of the path integral for this quantization. In general one can
only accept quantizations (and parameter values) leading to an H̄(q, p) that guarantees the
convergence of the Euclidean path integral.

Now, to specify the quantization completely we still have to uniquely define the operator
H =

∫
d3xH, without ambiguities. The analysis of section 3 was purely classical and, as well

known, classical physics cannot uniquely determine quantum physics. We now define the
operator H as the function of the canonical variable operators obtained by first putting all
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canonical momenta c-numbers on the left of all canonical coordinate c-numbers in the classical
Hamiltonian and then substituting these c-numbers with the corresponding operators. In
this way, H̄ in (4.14) can be easily computed and coincides with the classical Hamiltonian in
the absence of DP variables. In the presence of DP variables, H̄(q, p) is, now for any ℏ, the
analytic continuation of the classical Hamiltonian to imaginary values of the DP variables:
q̄1 → iq̄1, . . . , q̄m → iq̄m, p̄1 → −ip̄1, p̄m → −ip̄m.

Note that the quantum Hamiltonian H of quadratic gravity is time-reversal invariant,
THT−1 = H. The quantum theory has inherited this symmetry property from the time-
reversal invariance of the classical theory discussed in section 2.

Application to a four-derivative scalar-field theory

To understand how this formalism works in a simple context, we first consider a scalar-field
theory with Lagrangian density

L = −1
2∂µφ∂

µφ− c4
2 (□φ)2 − V (φ), (4.20)

where □ ≡ ∂µ∂
µ, c4 is a real coefficient governing the size of the four-derivative term and

V is some potential density. In the 3 + 1 formalism we have

L = 1
2 φ̇

2 − 1
2(∇φ)2 − c4

2 (φ̈− ∇2φ)2 − V (φ), (4.21)

where (∇φ)2 ≡ ∂iφ∂iφ and ∇2φ ≡ ∂i∂iφ.
Like we did for quadratic gravity, we introduce another canonical coordinate given by the

time derivative of the dynamical field φ2 ≡ φ̇. Following Ostrogradsky’s canonical method
the momenta conjugate to φ1 ≡ φ and φ2 ≡ φ̇ are, respectively,

π1 = ∂L

∂φ̇1
− d

dt

∂L

∂φ̈1
= φ̇+ c4( ...

φ − ∇2φ̇), π2 = ∂L

∂φ̇2
− d

dt

∂L

∂φ̈2
= c4(∇2φ− φ̈). (4.22)

The last equation can be used to express φ̈ in terms of the canonical variables, φ̈ = ∇2φ1 −
π2/c4.

The Hamiltonian density with the ordering specified above (all canonical momenta to
the left of all canonical coordinates5) then reads

H = π1φ̇1 + π2φ̇2 − L = π1φ2 − π2
2

2c4
+ π2∇2φ1 − 1

2φ
2
2 + 1

2(∇φ1)2 + V (φ1). (4.23)

This simple model presents some key features of quadratic gravity. The first conjugate
momentum π1 only appears in the term π1φ2 and using the ordinary quantization for both
pairs of canonical variables would lead to a divergent π1 integration in the Euclidean path
integral. Moreover, the classical theory is time-reversal invariant, as clear from eqs. (4.21)
and (4.22)–(4.23). Like for quadratic gravity (and the even simpler Pais-Uhlenbeck model,
see [9, 17]), we then use the ordinary quantization for the T -even coordinate φ1 ≡ φ

5One can note, however, that this specification is irrelevant for the scalar theory discussed here, unlike
quadratic gravity, because the momenta π1 and π2 only multiply the other coordinates or functionals of the
other coordinates, φ2 and φ1, respectively, and [π1, φ2] = [π2, φ1] = 0.
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theory ordinary variables DP variables
four-derivative scalar {φ1 ≡ φ, π1} {φ2 ≡ φ̇, π2}
quadratic gravity {gij , π

ij} {Kij ≡ −ġij/2, P ij}

Table 1. Quantization for the canonical variables in the scalar theory with Lagrangian density (4.20)
and in quadratic gravity. The conjugate momenta are defined in (4.22) and (3.1).

(i.e. TφT−1 = φ) and the DP one for the T -odd coordinate φ2 ≡ φ̇ (i.e. T φ̇T−1 = −φ̇). This
implies that π1 and π2 should be quantized in the ordinary and DP way, respectively. The
operator H is then just

∫
d3xH with H given here in (4.23) and with the quantization just

specified. Note that, like for quadratic gravity, H is time-reversal invariant, THT−1 = H, as
a consequence of the time-reversal invariance of the classical theory. Moreover, the quantity
H̄ defined in (4.14) is here

H̄(φ1, φ2, π1, π2) =
∫
d3x H̄, H̄ =

(
iπ1φ2 + π2

2
2c4

− iπ2∇2φ1 + 1
2φ

2
2 + 1

2(∇φ1)2 + V (φ1)
)
,

(4.24)
where now {φ1, π1} and {φ2, π2} are c-numbers because are integration variables in the path
integral. In table 1 the type of quantization for the canonical variables for this scalar theory
and quadratic gravity is summarized.

The previously dangerous π1φ2 has now become a harmless imaginary term iπ1φ2. The
integration over π1 and φ2 in (4.17) then sets φ2 = φ′ and multiplies the integration measure
by ∏x′

E
∆τ−1, where ∆τ is the Euclidean time element (which becomes dτ in the zero lattice-

spacing limit) and the product is over all Euclidean spacetime points xE with imaginary
time τ ∈ [τi, τf ). We put a prime on xE to distinguish this product with that for canonical
coordinates: as we have discussed below (4.15), for canonical coordinates, like φ, the product
over the imaginary time ranges over τ ∈ (τi, τf ) while for conjugate momenta over τ ∈ [τi, τf ).
The integration over π2 then reads∫

exp
(∫ τf

τi

dτ

∫
d3x

[
iπ2(∇2φ+ φ′′) − π2

2
2c4

]
/ℏ
)∏

x′
E

∆V3dπ2(xE)
2πℏ , (4.25)

where ∆V3 is the spatial volume element (which becomes d3x in the zero lattice-spacing
limit). This factor of ∆V3 appears in the measure because we have defined π1 and π2 through
the derivatives of the Lagrangian density L rather than the Lagrangian. The integral
in (4.25) converges only for c4 > 0, which we assume, and, using a standard stationary
point method, gives

C ′ exp
(

−c4
2

∫ τf

τi

dτ

∫
d3x(∇2φ+ φ′′)2

)
, with C ′ =

∏
x′

E

√
c4∆V3
2πℏ∆τ . (4.26)

So we arrive at the Lagrangian version of the Euclidean path integral

⟨qfη, τf |qi, τi⟩J =
∫ q(τf )=qf

q(τi)=qi

Cδφ exp
(

−SE/ℏ +
∫ τf

τi

dτ

∫
d3xJφ

)
, (4.27)
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where6

C =
∏
x′

E

√
c4∆V3

2πℏ∆τ3 , (4.28)

SE is the Euclidean action

SE =
∫ τf

τi

dτ

∫
d3x

(1
2∂µφ∂µφ+ c4

2 (∂µ∂µφ)2 + V (φ)
)
, (4.29)

and µ runs now over the Euclidean time and the spatial dimensions. In (4.27) the boundary
conditions can be more explicitly written as

q(τi) = qi : φ(τi) = φ1i, φ
′(τi) = φ2i, q(τf ) = qf : φ(τf ) = φ1f , φ

′(τf ) = φ2f . (4.30)

We include the factor C in the definition of the integration measure in (4.27), which then
reads Cδφ = C

∏
xE
dφ(xE).

One might wonder why we obtained precisely the Euclidean action at the end. While
φ2 ≡ φ̇ corresponds to iφ′ in Euclidean time and the eigenvalues of φ2, beeing quantized à
la DP, are indeed purely imaginary, π2, which is also quantized à la DP, corresponds to a
real quantity in Euclidean time, see eq. (4.22). The reason why we obtained the Euclidean
action is the following. After solving the Gaussian functional integral over π2 we obtain
the exponential in (4.17) computed in the stationary point of its argument with respect to
variations of π2. This stationary point satisfies the equation

iφ′
2 = ∂H̄

∂π2
, (4.31)

where now the canonical variables are c-numbers (integration variables in the path integral).
As we have seen, φ2 is set equal to φ′ by the integration over π1 and φ2. So the equation
above becomes

−φ′′ = ∂H̄
∂(−iπ2) . (4.32)

Since φ′′ is analytically continued to −φ̈ in real time, π2 is a DP variable and the momentum
eigenstates appear on the left in the definition of H̄ in (4.14), the latter equation is the
Euclidean version of the equation that allows us to express π2 in terms of φ, φ̇ and φ̈ in
classical physics but with π2 substituted by −iπ2, compatibly with the DP quantization.
As a result, the exponential in (4.17) becomes the exponential in (4.27) with SE being
the Euclidean action.

The finiteness of (4.27) requires c4 > 0, which has indeed been assumed in the derivation,
and that the potential density V be bounded from below. Also, V should diverge fast enough
to +∞ as φ → ∞. It is important to note that these conditions of convergence are on the bare
parameter c4 and the possible other bare parameters appearing in V . As in any interacting
quantum field theory, the renormalized parameters are generically different quantities, not
necessarily subject to the same conditions.

6For a standard four-dimensionally cubic lattice ∆τ = a and ∆V3 = a3, where a here is the lattice spacing,
so C =

∏
x′

E

√
c4

2πℏ .
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Now let us consider the change of variable φ(τ) ≡ φ̃(τ̃) in the path integral in (4.27),
where τ̃ ≡ τf + τi − τ and the dependence on the spatial coordinate is untouched and thus
understood. This corresponds to a time reversal. Since φ′(τ) = −φ̃′(τ̃), where a prime
denotes the derivative with respect to the displayed argument, and SE is invariant with
respect to time reversal, i.e. SE(φ) = SE(φ̃), one obtains

⟨qfη, τf |qi, τi⟩J = ⟨qi, τf |qfη, τi⟩J̃ , (4.33)

where the new current J̃ is defined by J̃(τ) ≡ J(τf + τi − τ). So when J = 0

⟨qf |η exp(−(τf −τi)H/ℏ)|qi⟩ = ⟨qfη, τf |qi, τi⟩ = ⟨qi, τf |qfη, τi⟩ = ⟨qi| exp(−(τf −τi)H/ℏ)η|qf ⟩,
(4.34)

which means H† = H, or equivalently H†
η = ηHη, because the path integral in (4.27) is

real. In words, the quantization we have performed corresponds to having H Hermitian
with respect to the indefinite inner product, ⟨χ|ψ⟩, defined at the beginning of section 4.
Nevertheless, the theory is unitary (all probabilities are non negative and sum up to one)
as described around eq. (4.2). As we will see, the conclusion H† = H holds in quadratic
gravity too and in section 7 we will discuss the physical consequences.

The quadratic gravity case

The quadratic gravity case parallels the scalar-field theory one we have just discussed, but
with some important differences that we now highlight.

As already mentioned, the quantization is specified by treating {gij , π
ij} as ordinary

variables, {Kij , P
ij} as DP variables and positioning all canonical momenta on the left of all

canonical coordinates in the quantum Hamiltonian. The c-number H̄ in (4.14) is then, for
any ℏ, the analytic continuation of the classical Hamiltonian to imaginary values of the DP
variables: Kij → iKij , P ij → −iP ij . Correspondingly, H̄ is the same analytic continuation
of the classical Hamiltonian density.

The integration over πij and Kij in (4.17) then sets Kij = −1
2g

′
ij and multiplies the

integration measure by ∏x′
E

∆τ−6. The extra power of 6 compared to the scalar-field case is
due to the fact that πij (just as gij , Kij and P ij) has a total of 6 independent components
at each spacetime point.

The integral over P ij is, like the integral over π2 in the scalar-field example, a Gaussian
integral that can be performed with a standard stationary point method. The stationary
point satisfies now the equation

iK ′
ij = ∂H̄

∂P ij
, (4.35)

which, because Kij has been set equal to −1
2g

′
ij , reads

1
2g

′′
ij = ∂H̄

∂(−iP ij) . (4.36)

Similarly to the scalar-field case, the latter equation is the Euclidean version of the Lorentzian
equation, eq. (3.2), that allows us to express P ij in terms of gĳ, ġij and g̈ij in classical
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physics but with P ij substituted by −iP ij , compatibly with the DP quantization. Note the
importance of our choice of quantization in obtaining this result. Therefore, the integral
over P ij sets the exponent in the path integral (4.17) equal to

−SE/ℏ +
∫ τf

τi

dτ

∫
d3xJ ijgij , (4.37)

where SE is the Euclidean action,

SE =
∫ τf

τi

dτ

∫
d3x

√
g

(
α

2W
2 + βR2 + γR+ λ

)
(4.38)

and adds the extra factor

C ′ =
∫

exp
(∫ τf

τi

dτ

∫
d3x

(
− 1

4√
g
ηpqΓpqijη

ij

)
/ℏ
)∏

x′
E

∏
l≥m

∆V3 dη
lm(xE)

2πℏ (4.39)

due to the remaining Gaussian integral over the fluctuation ηij of P ij around the stationary
point (recall that P ij is a DP variable). In (4.37) J ij is the external “current” corresponding
to gij in the generating functional (4.17). Moreover, in (4.38) the metric determinant g, the
square of the Weyl tensor W 2 ≡ WµνρσWµνρσ and the Ricci scalar R are now computed with
the Euclidean metric, which for Gauss coordinates reads

ds2
E = gij(x)dxidxj + dτ2. (4.40)

What remains to be done is to compute the factor C ′ in (4.39). This is done in appendix B.
For quadratic gravity one then finally obtains

⟨qfη, τf |qi, τi⟩J =
∫ q(τf )=qf

q(τi)=qi

Cδg exp
(

−SE/ℏ +
∫ τf

τi

dτ

∫
d3xJ ijgij

)
. (4.41)

Here the boundary conditions can be more explicitly written as

q(τi) = qi : glm(τi) = g
(i)
lm, g

′
lm(τi) = −2K(i)

lm, (4.42)

q(τf ) = qf : glm(τf ) = g
(f)
lm , g′

lm(τf ) = −2K(f)
lm , (4.43)

where g(i,f)
lm andK(i,f)

lm provides initial and final conditions for the metric and its time derivative;
they are functions of the three-dimensional spatial coordinates. By multiplying the result for
C ′ in (B.11) by the factor ∏x′

E
∆τ−6 previously produced by the integration over πij , one finds

C =
∏
x′

E

[(∆V3
√
g

πℏ∆τ3

)3 2
√

3βα5

g2

]
. (4.44)

Like for the scalar field, we think this factor as part of a full integration measure,

Cδg = C
∏
xE

∏
i≥j

dgij(xE). (4.45)
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Eqs. (4.38), (4.41), (4.44) and (4.45) provide us with the basic formula for the Euclidean
path integral in quadratic gravity.

The integration measure in (4.45) is invariant under three-dimensional general coordinate
transformations. Let us see why. Under such transformations g′

ij(x′) = J k
iJ l

jgkl(x), where
J k

i ≡ ∂xk

∂x′i , therefore, at each spacetime point

∂g′
ij(x′)

∂gkl(x) = 1
2(J k

iJ l
j + J l

iJ k
j). (4.46)

By using the methods of appendix B (see the discussion around eqs. (B.7), (B.8) and (B.9)),
one finds that this Jacobian “matrix” produces in the path integral a Jacobian determinant
(det J )4, where J is the matrix with elements J k

i. On the other hand, g2 in the denominator
of (4.44) produces the same factor under the same transformations, so the full measure is
invariant.7 The presence of an invariant final measure over metrics is a consequence of the
fact that we started from the product of the measures associated with canonical coordinates
and conjugate momenta, which is invariant. Clearly, the Euclidean action in (4.38) is also
invariant. On the other hand, The invariance of the probabilities dqfρ(qf ), with ρ(qf ) given
in (4.10), tells how the states should transform.

The convergence of the Euclidean path integral in (4.41) requires the following conditions
in quadratic gravity

α > 0, β > 0, λ >
γ2

4β , (4.47)

which can be derived as follows. First, consider metrics with vanishing R. These metrics can
have a non-vanishing W 2. The integration domain of the path integral include metric values
for which √

gW 2 can be made arbitrarily large keeping R = 0, so this implies α > 0. Next,
consider conformally-flat metrics for which W 2 = 0. In this case R, together with g, can be
made arbitrarily large for some field configurations in the domain of path integration so β > 0.
Finally, the last condition in (4.47) can be obtained by minimizing the Euclidean Lagrangian
with respect to R and requiring SE to be always positive. Indeed, if such minimum were
negative it would be possible to find field configurations with arbitrarily negative SE . The
conditions in (4.47) are also sufficient conditions for the convergence of the path integration
if, of course, a spacetime discretization is performed. This is opposed to the case of Einstein
gravity, where there are no values of the parameters for which the Euclidean path integral
could converge as the Euclidean action is always unbounded from below (the conformal-factor
problem). When the continuum limit is taken by removing the cutoff, α, β, γ and λ generically
diverge as a function of the cutoff to ensure the convergence of the physical quantities. In
this sense they are bare rather than renormalized quantities, just like c4 in the scalar-field
example. For this reason it is not possible to infer only from (4.47) the same conditions for
the renormalized quantities. For example, one could not claim only from (4.47) that the
theory predicts a positive cosmological constant.

Note that the discussion on the Hermiticity of H that we made for the scalar-field theory
(around eq. (4.33)) can be made here as well, with the same conclusion, H† = H.

7The factor ∆V3
√
g appearing in (4.44) is an invariant volume element.
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4.2 Transition to generic coordinate systems

So far we have discussed quantum quadratic gravity and constructed the corresponding path
integral in the Gauss coordinate system, where the time components of the metric are set to
g00 = −1 and g0i = 0. Correspondingly, in Euclidean signature, gi4 = 0 and g44 = 1, where
we label with 4 the imaginary time. Let us now show how to describe quantum quadratic
gravity in a generic coordinate system.

This can be done with the help of the Euclidean path integral. To this purpose let us insert

1 =
∫
δf δ(f) (4.48)

with

fi ≡ gi4, f4 ≡ g44 − 1, (4.49)

δf ≡
∏
xE

∏
µ

dfµ(xE), δ(f) ≡
∏
xE

∏
µ

δ(fµ(xE)) (4.50)

as an extra factor in the integrand of (4.41), to obtain

⟨qfη, τf |qi, τi⟩J =
∫ q(τf )=qf

q(τi)=qi

Cδg δf δ(f) exp
(

−SE/ℏ +
∫ τf

τi

dτ

∫
d3xJµνgµν

)
, (4.51)

where now SE is computed in the full four-dimensional Euclidean metric. Also, we have taken
advantage of the presence of δ(f) to substitute J ijgij with Jµνgµν where Jµν is an arbitrary
external “current”. Note that, as specified before, the product over the imaginary time inside
the product over xE ranges over τ ∈ (τi, τf ). Therefore, the boundary values of fµ at τi and
τf are arbitrary. As a result, the boundary conditions in (4.43) can be arbitrarily extended
by adding any boundary conditions for fµ, namely for gi4 and g44. This reflects the freedom
of choosing an arbitrary coordinate system (a gauge freedom).

We can express (4.51) in a more familiar form by considering the change of coordinates,
ξµ ≡ x′µ − xµ, that connects the Gauss coordinate system to another coordinate system with
non-vanishing values of fµ. These fs are functionals of the ξs so we can write

⟨qfη, τf |qi, τi⟩J =
∫ q(τf )=qf

q(τi)=qi

Dg
∣∣∣∣det ∂f

∂ξ

∣∣∣∣ δ(f) exp
(

−SE/ℏ +
∫ τf

τi

dτ

∫
d3xJµνgµν

)
, (4.52)

where
Dg ≡ Cδgδξ, δξ ≡

∏
xE

∏
µ

dξµ(xE), (4.53)

and we had to insert the Jacobian
∣∣∣det ∂f

∂ξ

∣∣∣ for the change of integration variables from the fs
to the ξs. This precisely reproduces the Faddeev-Popov (FP) determinant, as we will discuss
in section 4.3 in dealing with the path integral for Green’s functions.

As we have seen around eq. (4.46), Cδg is invariant under three-dimensional general
coordinate transformations. The extra factor δξ inside Dg is invariant under generic change
of coordinates that vary the values of gi4 and g44: this is because one can go to a further
coordinate system by shifting ξµ → ξµ + ξ′µ, where ξ′µ are other spacetime functions, and
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shifts have unit Jacobians. Therefore, the measure Dg is invariant under four-dimensional
general coordinate transformations.

As well-known (see e.g. Textbook [57]), matrix elements of the form∫ q(τf )=qf

q(τi)=qi

Dg
∣∣∣∣det ∂f

∂ξ

∣∣∣∣ δ(f)O(x1)O(x2) . . . exp (−SE/ℏ) , (4.54)

where O(x1),O(x2), . . . represent gauge invariant operators, are independent of the fs. Then,
these fs clearly play the role of a gauge-fixing function and their choice corresponds to the
choice of the coordinate system.

4.3 Euclidean path integral for Green’s functions

In ordinary theories, the path integral for the matrix elements in (4.13) can be used, among
other things, to construct the path integral for Green’s functions. This is also true in the
presence of DP variables, at least when an ordinary two-derivative theory is recovered in
the large-distance limit. The purpose of this section is to show the latter statement. Before
discussing quadratic gravity it is convenient to consider a more general framework as was
done at the beginning of section 4.1.

A generic Green’s function reads

⟨0|Tq̂i1(τ1)q̂i2(τ2) . . . |0⟩ (4.55)

where |0⟩ is the eigenstate of H with the minimal real eigenvalue E0, thus H|0⟩ = E0|0⟩
(the vacuum). One can express a Green’s function in terms of the matrix elements in (4.13)
by inserting the completeness relations∫

dqi|qi, τi⟩⟨qiη, τi| = 1,
∫
dqf |qf , τf ⟩⟨qfη, τf | = 1 (4.56)

as follows:

⟨0|Tq̂i1(τ1)q̂i2(τ2) . . . |0⟩ =
∫
dqidqf Φ∗

0(qf ,−τf ) ⟨qfη, τf |Tq̂i1(τ1)q̂i2(τ2) . . . |qi, τi⟩ Φ0(qiη, τi),
(4.57)

where, for generic q and τ , we have defined

Φ0(q, τ) ≡ ⟨q, τ |0⟩ = exp(−τE0/ℏ)⟨q|0⟩ ≡ exp(−τE0/ℏ)ψ0(q) (4.58)

and we have used H = H†, which we have shown in section 4.1. The quantity ψ0(qη) defined
above is the ground-state wave function. By applying eq. (4.2) with A = q and |ψ⟩ = |0⟩,
one finds that ψ0 allows us to compute the probability density ρ0(q) of the configuration
with canonical coordinates q (in the ground state):

ρ0(q) = |ψ0(qη)|2∫
dq′ |ψ0(q′

η)|2 . (4.59)

Again we can easily check that the unitarity conditions, ρ0(q) ≥ 0,
∫
dq ρ0(q) = 1, hold.

As we have seen, the matrix elements of the T-product in the integrand in (4.57) can be
obtained through functional derivatives with respect to J of the generating functional in (4.17).
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We then first focus on that functional. Let us choose the current J to be vanishing for τ
outside the interval [τi, τf ]. Taking two imaginary times τ1 and τ2 such that τ1 < τi < τf < τ2,
therefore, leads to

⟨q2η, τ2|q1, τ1⟩J =
∫
dqidqf ⟨q2η, τ2|qf , τf ⟩ ⟨qfη, τf |qi, τi⟩J ⟨qiη, τi|q1, τ1⟩. (4.60)

To evaluate ⟨qiη, τi|q1, τ1⟩ and ⟨q2η, τ2|qf , τf ⟩ in the expression above we first discretize
the canonical coordinates, q, in a way that their range of variability becomes finite. At this
point one would like to compute the matrix F (M) with elements

(F (M))qf ,qi
≡ ⟨qfη|e−τH/ℏ|qi⟩ (4.61)

for any qi, qf and τ , where M is the matrix with elements

Mqf ,qi ≡ ⟨qfη|H|qi⟩, (4.62)

such that F (M) = exp(−τM/ℏ). We are unable to show with present techniques (see [29, 59])
that M (and thus H) is diagonalizable so we make use of a general decomposition, known
sometimes as the Riesz-Dunford formula:

F (M) =
∑

n

(
e−τλn/ℏE(0)

n +
rn−1∑
l=1

F (l)(λn)
l! E(l)

n

)
, (4.63)

where the λn are the eigenvalues of M , the rn are their algebraic multiplicities, in our case
F (l)(λn) = (−τ/ℏ)l exp(−τλn/ℏ) and

E(l)
n ≡ 1

2πi

∮
Γn

dz (z −M)−1(z − λn)l, (4.64)

with Γn being a closed curve in the complex plane containing only the eigenvalue λn. Note that,
knowing F (M), for example through path-integral methods, we can extract the eigenvalue
λ0 with the smallest real part as follows:

λ0 = −ℏ lim
τ→∞

1
τ

log (F (M))qf ,qi
(4.65)

for arbitrary values of qf and qi. When the above-mentioned discretization of the qs is
removed the lowest eigenvalue λ0 tends to E0. Note that E0 is real whenever ⟨qfη|e−τH/ℏ|qi⟩
is real and positive, which is the case both in the scalar-field example with Lagrangian (4.20)
and in quadratic gravity, as we have seen in section 4.1. Moreover, in quadratic gravity
it is possible to have E0 non negative by choosing the bare cosmological constant λ large
enough, compatibly with the convergence conditions in (4.47). We will choose λ in this way
in section 7 to ensure that the vacuum energy is positive in agreement with observations.
Analogously, in the scalar-field example with Lagrangian in (4.20), it is possible to have E0
non negative by choosing V (0) large enough.

In both quadratic gravity and the scalar-field example the low-energy (large-distance)
limit is an ordinary two-derivative theory. This can be understood by noting that the
eigenvalues of M with the smaller real part are those for which the effect of the W 2 term
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(or the higher derivative term proportional to c4 in the scalar-field case) is minimized: this
occurs when the corresponding state is mostly a combination of nearly four-dimensional
homogeneous eigenstates of the canonical coordinates.8 In the case of quadratic gravity this
ordinary theory is GR plus the scalaron field (the effective scalar associated with the R2

term). Therefore, in the large-distance limit the spectrum of M is an ordinary one.
As a result, r0 = 1 and in the τ1 → −∞ and τ2 → +∞ limits, respectively,

⟨qiη, τi|q1, τ1⟩ = e−E0(τi−τ1)/ℏψ0(qiη)ψ∗
0(q1), ⟨q2η, τ2|qf , τf ⟩ = e−E0(τ2−τf )/ℏψ0(q2η)ψ∗

0(qf ).
(4.66)

By inserting these results in (4.60) one obtains in the τ1 → −∞ and τ2 → +∞ limits

eE0(τ2−τ1)/ℏ

ψ∗
0(q1)ψ0(q2η)⟨q2η, τ2|q1, τ1⟩J =

∫
dqidqf Φ∗

0(qf ,−τf ) ⟨qfη, τf |qi, τi⟩J Φ0(qiη, τi). (4.67)

On the other hand, for J = 0, but in the same limit

⟨q2η, τ2|q1, τ1⟩ = e−E0(τ2−τ1)/ℏψ0(q2η)ψ∗
0(q1). (4.68)

Therefore, by comparing with (4.57) one obtains that the generating functional of Green’s
functions, Z(J) can be expressed as

Z(J) = lim
τ1,2→∓∞

⟨q2η, τ2|q1, τ1⟩J

⟨q2η, τ2|q1, τ1⟩
, (4.69)

for arbitrary values of the boundary conditions q1 and q2.
In the case of quadratic gravity, using (4.52),

Z(J) = 1
“J → 0”

∫
Dg

(
det δf

δξ

)
δ(f) exp

(
−SE/ℏ +

∫
d4xE J

µνgµν

)
, (4.70)

where the prefactor indicates that one has to divide by the same quantity with Jµν = 0
and we have understood the boundary conditions in the infinite past and future as they are
arbitrary. Moreover, we have removed the absolute value around det ∂f

∂ξ . Indeed,
∣∣∣det ∂f

∂ξ

∣∣∣ is a
Jacobian for a change of coordinate and consistency implies det ∂f

∂ξ ̸= 0. So the continuity of
det ∂f

∂ξ requires that its sign remains constant over the full integration domain. The overall
sign can be dropped in (4.70) because it cancels with the denominator, “J → 0”. Similarly,
we have replaced ∂f

∂ξ with δf
δξ because standard and functional derivatives differ by a factor of

the four-dimensional volume element, which again cancels with the denominator, “J → 0”.
We recognise det δf

δξ as the FP determinant in the generating functional of Green’s functions.
Note that there appear to be no obstacle in going from (4.70) to the generating functional

of the Lorentzian Green’s functions. One should replace the Euclidean “current” Jµν(τ) with
a Lorentzian current with the substitutions Jkl(τ) → Jkl(it)/ℏ, Jk4(τ) → iJk0(it)/ℏ and
J44(τ) → −J00(it)/ℏ, where we have understood the dependence on the spatial coordinates.
At the same time we should perform a change of variables in path integral of the form

8In section 7 we will provide a more general discussion on the link between the size of an eigenvalue of
the Hamiltonian and the configurations that minimize the action and maximize the (absolute value) of the
corresponding wave function.
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gkl(τ) → gkl(it), gk4(τ) → −igk0(it) and g44(τ) → −g00(it). As already noted, the boundary
conditions in (4.70) are arbitrary so one can choose some that are compatible with a real
Lorentzian metric with the chosen signature: e.g. g′

ij = 0, gi4 = 0, g44 = 1 both at initial
and final times. So these substitutions lead to

Z(J) = 1
“J → 0”

∫
Dg

(
det δf

δξ

)
δ(f) exp

(
iS/ℏ + i

∫
d4xJµνgµν/ℏ

)
, (4.71)

where Z(J) is the generating functional of the Lorentzian Green’s functions. It should,
however, be kept in mind that, as always, the Lorentzian path integral is a formal object,
precisely defined only as an analytic continuation of the Euclidean one.

At this point one would be interested in showing that previous perturbative calculations
performed expanding around the Minkowski metric ηµν are recovered when applicable. Since
the FP determinant multiplies δ(f), one only needs to compute it for vanishing ξµ. So its ξ
dependence can be dropped inside the integral in (4.71). Moreover, S is also ξ-independent
as invariant under general coordinate transformations. So, when one considers the path
integral for the vacuum expectation value (VEV) of T-products of gauge invariant operators,
the only integrand factor that depends on ξµ is δ(f). For the simple f chosen in [13] (and
other quantum calculations around the Minkowski background, e.g. [39]) the only role of
this δ function is to eliminate the zero modes of the differential operator appearing in the
linearized equations for hµν ≡ gµν − ηµν . Furthermore, note that the local factors of g in the
integration measure (see (4.44)) can be dropped in doing perturbative calculations around the
Minkowski background based on dimensional regularization, as explained in [13]. So, modulo
gauge artefacts that do not affect physics, the path integral used in previous perturbative
calculations around ηµν is reproduced.

5 The quadratic gravity effective action

The “current” Jµν in (4.71) can also be interpreted as an external physical source for the
system, corresponding to a sort of energy-momentum tensor. Such a tensor can be produced
by a set of matter fields coupled to quadratic gravity. Indeed, in this physical situation one
should add to the starting action of quadratic gravity in (2.1) a matter term. Repeating the
same steps that we have performed in the absence of matter fields one obtains a generating
functional of the form (4.71), where, however, the Green’s functions are to be obtained by
performing functional derivatives with respect to Jµν and then setting Jµν to the physical
energy-momentum tensor in question.

In this section we extend the concept of (quantum) effective action, which is typically
derived for scalar fields in textbooks, to the case of the non-perturbative and background-
independent formulation of quadratic gravity we have given.9

With the described physical situation in mind

⟨gµν⟩J ≡ 1
“J → 0”

∫
Dg

(
det δf

δξ

)
δ(f) gµν exp

(
iS/ℏ + i

∫
d4xJµνgµν/ℏ

)
∫

Dg
(
det δf

δξ

)
δ(f) exp (iS/ℏ + i

∫
d4xJµνgµν/ℏ)

(5.1)

9For a description of the effective action in previous approaches to quantum gravity see [23].
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can be interpreted as the expectation value of gµν in the presence of the physical energy-
momentum tensor, which we still call Jµν here for simplicity. Note that ⟨gµν⟩J is real because
it is the expectation value of a canonical variable [26]. Defining the new functional W (J)
through Z(J) ≡ exp(iW (J)/ℏ) one easily finds

δW

δJµν
= ⟨gµν⟩J . (5.2)

The quadratic gravity effective action Γ can then be defined as a funcional of ⟨gµν⟩J by

Γ(⟨gµν⟩J) ≡ W (J) −
∫
d4xJµν⟨gµν⟩J , (5.3)

where J has to be thought of as a functional of ⟨gµν⟩J . From this definition it follows
that Γ satisfies

δΓ
δ⟨gµν⟩J

+ Jµν = 0. (5.4)

In words, Γ is an action functional of ⟨gµν⟩J , whose field equations allow to determine ⟨gµν⟩J .
This is the reason why Γ is called the quadratic gravity effective action.

Therefore, this effective action, used at tree level, captures the full quantum effects. In
section 6 a semi-classical expansion of Γ will be performed.

6 The classical limit

One of the advantages of the path integral formula is the fact that it allows us to take the
classical limit, ℏ → 0, easily. Taking this limit in (4.27) or (4.51) (for the four-derivative
scalar-field theory and quadratic gravity, respectively) and setting the external currents
to zero one obtains

⟨qfη, τf |qi, τi⟩ = exp(−Sren
E /ℏ) (6.1)

where Sren
E is the classical Euclidean action with renormalized coefficients and computed in the

solution of the imaginary-time classical equations of motion satisfying the boundary conditions
q(τi) = qi and q(τf ) = qf . These are generic initial and final conditions for gij and g′

ij (or
φ and φ′ in the scalar-field example). In other words all possible imaginary-time classical
motions (for arbitrary boundary conditions) are described by the imaginary-time classical
theory associated with Sren

E . This action can be used to compute instantons, see e.g. [60].
Now, focusing on quadratic gravity and going back to real time one obtains that the classical
theory is described by our starting action in (2.1), but with renormalized coefficients10 αr,
βr, γr and λr, instead of the bare ones, α, β, γ and λ, respectively (we call this action Sren).
Then we see that, although the extra canonical coordinates (Kij = −ġij/2, or φ2 = φ̇) have
a purely imaginary spectrum the corresponding classical observable quantities remain real.

10In the notation used in refs. [25, 39, 61, 62] by the same author, we have αr = 1/f2
2 , βr = −1/(6f2

0 ),
γr = −M̄2

P /2 and λr = Λ, where M̄P is the reduced Planck scale and Λ is the cosmological constant. One-loop
renormalization group equations (RGEs) have been obtained in the modified minimal subtraction scheme in
ref. [63] and later extended to a generic renormalizable matter sector in [61, 62]. The RGEs generally depend
on the renormalization scheme even at one-loop level [64].
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This result can also be independently obtained by performing a semi-classical expansion
of the (quantum) effective action. Since this expansion is well known for scalar fields we
directly focus on quadratic gravity and make use of the effective action defined in section 5.

In the classical limit, ℏ → 0, the path integral in (4.71) is dominated by a metric satisfying

δS

δgµν
+ Jµν = 0. (6.2)

Let us call such a metric gJ
µν to highlight its dependence on Jµν . It then makes sense to

perform a change of variables gµν = gJ
µν + hµν in (4.71) and expand the integrand in powers

of the fluctuation field hµν . This semi-classical perturbative approach allows us, among other
things, to reconstruct previous perturbative quantizations of quadratic gravity performed
starting from a given classical background, see e.g. [30, 65, 66]. Doing so one obtains

Z(J) = 1
“J → 0”

∫
DJh

(
det δf

δξ

)
δ(f)

× exp

 i

ℏ
S|gJ + i

ℏ

∫
d4xJµνgJ

µν + i

2ℏ
δ2S

δgµνδgρσ

∣∣∣∣∣
gJ

hµνhρσ + . . .

 , (6.3)

where the symbol . . . |gJ means that we are evaluating the corresponding quantity . . . at
gµν = gJ

µν and DJh is the measure Dg expressed in terms of hµν . The only property of
this measure that we will use is its independence11 of ℏ. The first term in this expansion
for ℏ small gives

Z(J) = exp
(
i

ℏ
S|ren

gJ − i

ℏ
S|ren

g0 + i

ℏ

∫
d4xJµνgJ

µν

)
, (ℏ → 0) (6.4)

where S|ren
gJ is the starting action (2.1) with renormalized coefficients and computed in the

corresponding gJ
µν , namely the solution of

δSren

δgµν
+ Jµν = 0. (6.5)

The equation above can be equivalently written as

W (J) = Sren|gJ − Sren|g0 +
∫
d4xJµνgJ

µν , (ℏ → 0). (6.6)

So, in the classical limit one obtains gJ
µν = ⟨gµν⟩J and, using (5.3),

Γ(⟨gµν⟩J) = S|ren
gJ − S|ren

g0 , (ℏ → 0) (6.7)

and thus

0 = δΓ
δ⟨gµν⟩J

+ Jµν =
δS|ren

gJ

δgJ
µν

+ Jµν . (6.8)

Again one finds that the classical limit is described by the classical action in (2.1) with
renormalized coefficients. This action has been used to find several classical solutions,

11The ℏ in (4.44) cancels with the denominator, “J → 0”.

– 23 –



J
C
A
P
0
7
(
2
0
2
4
)
0
9
2

e.g. describing astrophysical objects of interest such as black holes [67–70] or horizonless
ultracompact objects12 [73–76]. The result obtained in this section supports these findings.

One might wonder how a quantum theory with a bounded spectrum of the Hamiltonian
operator could lead in the classical limit to a theory which, as we have seen, has a classical
Hamiltonian that is unbounded from below (although in the case of classical quadratic gravity
the runaway rates can be slow enough to ensure compatibility with observations).

Note that in ordinary theories the non-negativity of the spectrum of the Hamiltonian
operator implies that the classical Hamiltonian Hc is also non negative. This can be seen
from the imaginary-time Hamiltonian path integral for zero external current

⟨qf , τf |qi, τi⟩ ≡
∫ q(τf )=qf

q(τi)=qi

δqδp exp
(1
ℏ

∫ τf

τi

dτ(ipq′ − H̄(q, p))
)

(6.9)

and its real-time counterpart

⟨qf , tf |qi, ti⟩ ≡
∫ q(tf )=qf

q(ti)=qi

δqδp exp
(
i

ℏ

∫ tf

ti

dt(pq̇ − H̄(q, p))
)

(6.10)

having defined |q, t⟩ ≡ exp(iHt/ℏ)|q⟩ and ⟨q, t| ≡ ⟨q| exp(−iHt/ℏ) for real time t. In ordinary
theories H̄ is real in the classical limit because it is a real function of ordinary canonical
variables with a real spectrum. Using in (6.10) the stationary phase approximation, which
becomes exact in the ℏ → 0 limit, then allows us to conclude that H̄ coincides with Hc.
Let us now go to the imaginary-time path integral in (6.9) and suppose that H̄(q, p) were
negative for some q and p, say q0 and p0. Choosing qi = q0 and sending τf → +∞ and
τi → −∞ one would obtain a divergent integral over dp(τi) because the path integral would
feature an exponent with a positive real part of the form

∫+∞
−∞ dτ(−H̄(q0, p0)) in some finite

integration domain of dp(τi). This cannot happen if the spectrum of the Hamiltonian operator
is non negative because in this case, inserting a complete set, |n⟩, of eigenstates of H with
eigenvalues En one finds

⟨qf , τf |qi, τi⟩ =
∑

n

e−En(τf −τi)/ℏ⟨qf |n⟩⟨n|qi⟩, (6.11)

which converges as τf → +∞ and τi → +∞ if En ≥ 0.
In theories with DP variables this conclusions cannot be reached when H̄ is not real, like

in quadratic gravity or the scalar-field example we have discussed (see e.g. eq. (4.24)). The
reason is that in that case the real-time Hamiltonian path integral would no longer imply
that H̄ is Hc because the path integrand would feature an exponent with both an imaginary
and a real part and the stationary phase approximation cannot be used to conclude H̄ = Hc.
However, when the ground state energy E0 is not negative one can still say that the real part
of H̄ is never negative, which is the real universal implication of a non-negative spectrum of H.

In theories with DP variables with a consistent Euclidean path integral, featuring a
positive Euclidean action SE , the classical Hamiltonian Hc should be determined by taking
the classical limit to find (6.1) and then analytically continue to real time.

12Since in quadratic gravity the strength of gravity, unlike in Einstein’s GR, decreases below a critical
(microscopic) length scale [26, 71, 72], the gravitational collapse stops once the matter distribution is compressed
below that scale. So solutions with extended matter distributions, such as those in [70, 73–76], appears to be
particularly relevant.
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Let us conclude this section by noting that in a given physical situation one has to
check whether the observed value of ℏ is small enough for the classical limit to be a good
approximation. It is indeed possible that quantum physics overcomes classical physics in
some situations of interest [77].

7 Quantum cosmology

In this section we apply the theory we have previously constructed to quantum aspects
in cosmology.

First, let us observe that the perturbative tree-level calculations performed in quadratic
gravity expanding around cosmological FLRW metrics [30, 65, 66] are reproduced by our
non-perturbative construction. This is because in those calculations it was only assumed
that canonical commutators hold and that the spectrum of the Hamiltonian is bounded
from below (both these conditions are satisfied here). It is also interesting to note that
the fakeon prescription [42, 78], which eliminates the states with negative norm (with
respect to the indefinite inner product), has led so far to the same observable predictions
when applicable [79, 80]. Moreover, note that we can apply the Green’s functions we
have constructed to study non-time-ordered VEV of cosmological perturbations (which
are relevant to obtain power spectra): one can consider the time-ordered product of two
cosmological perturbations computed at times t + ϵ and t and then let ϵ → 0+ (and then
generalize this technique to the time-ordered product of more cosmological perturbations
in a straightforward way).

In quantum cosmology, as pointed out by Hartle and Hawking [43], one describes the
universe through a quantum-mechanical wave function (actually a wave functional). The
Hartle-Hawking construction was, however, based on Einstein’s gravity, whose Euclidean
path integral suffers from the conformal-factor problem. As observed in section 4.1, the
Euclidean path integral in the quantization of quadratic gravity we have specified does not
suffer from this problem. Here we can, therefore, implement the Hartle-Hawking idea in
a more rigorous way.

For example, the ground-state wave functional ψ0(qη), which we have previously intro-
duced in section 4.3, is given here by

N0ψ0(qfη) = lim
τ→+∞

eE0τ/ℏ⟨qfη|e−τH/ℏ|qi⟩, (7.1)

where

⟨qfη|e−τH/ℏ|qi⟩ =
∫ q(τ)=qf

q(0)=qi

Dg
∣∣∣∣det ∂f

∂ξ

∣∣∣∣ δ(f) exp (−SE/ℏ) , (7.2)

modulo a qf -independent proportionality factor, N0 = ψ∗
0(qi), that does not affect physics.

This means that the ground-state wave function of the universe can be computed regardless
of the past boundary condition. The result obtained here is reminiscent of the no-boundary
wave function of the universe [43, 81] (see also [82, 83] for recent reviews), which, however,
was proposed within Einstein gravity that is affected by the conformal-factor problem, unlike
quadratic gravity. The smallest eigenvalue E0 corresponding to ψ0, namely the vacuum
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energy, that appears in (7.1) can be computed using

E0 = −ℏ lim
τ→∞

1
τ

log⟨qfη|e−τH/ℏ|qi⟩. (7.3)

This limit is generically divergent and one should rather consider the vacuum energy density
ρV , that is E0 divided by the three-dimensional volume element. It is easy to check, at least
in the classical limit when (6.1) holds, that ρV vanishes when λr = 0, as expected. One
can reiterate this procedure to reconstruct all the large-distance spectrum. For example,
a first excited state has eigenvalue

E1 = −ℏ lim
τ→∞

1
τ

log
(
⟨qfη|e−τH/ℏ|qi⟩ − ψ0(qfη)ψ∗

0(qi)e−E0τ/ℏ
)
. (7.4)

The wave functionals satisfy a sort of Wheeler-DeWitt equation [44, 45]. For example,
for the ground state this equation in our notation simply reads

⟨qη|H|ψ0⟩ = E0⟨qη|ψ0⟩. (7.5)

Indeed, derivatives appear on the right-hand-side when we note that if {q, p} is an ordinary
pair of canonical variables ⟨q|p̂ = −i d

dq ⟨q|, while if {q, p} is a DP pair of canonical variables
⟨q|p̂ = d

dq ⟨q|, as explained in [9, 17]. Since we are dealing with a field theory here (namely
quadratic gravity), these derivatives are actually functional derivatives.

As discussed in section 4.3, in the large-distance limit, the smaller eigenvalues of H
are those for which the effect of the W 2 term is minimized. The W 2 term vanishes for
conformally-flat metrics. This means that such eigenvalues are those whose corresponding
wave functionals ⟨qη|ψ⟩ are peaked around values of the canonical coordinates, q, of the form

gij(x⃗) = Ω2(x⃗)δij , Kij(x⃗) = κ(x⃗)δĳ. (7.6)

(later in this section we will provide a more general explicit discussion about this correspon-
dence). Note that a wave functional ⟨qη|ψ⟩ that is peaked around some metric configurations
also corresponds to a probability density ρ(q) that is peaked around the same configurations:
using eq. (4.2) with A = q

ρ(q) = |⟨qη|ψ⟩|2

⟨ψ|η|ψ⟩
= |⟨qη|ψ⟩|2∫

dqη|⟨qη|ψ⟩|2
, (7.7)

which, as always, satisfies the unitarity conditions in (4.11). In the case of quadratic gravity
a wave function ⟨qη|ψ⟩ is a functional of the metric (and its time derivative) at a given time.
Therefore, the field configurations in (7.6) depend only on the three-dimensional spatial
coordinate x⃗. Identifying Kij with −ġij/2 in (7.6) gives a Lorentzian conformally-flat metric,
which is what we want to make contact with real-time cosmology. In cosmology conformal
flatness con only be broken by inhomogeneities and anisotropies as the FLRW metric is
conformally flat. However, we can construct specific conformally-flat metrics that are not
homogeneous and isotropic. Regarding the latter point, note that, in the large-distance limit,
the smallest eigenvalues of H also corresponds to nearly constant values of the Ricci scalar R:
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indeed, the Euclidean action in (4.38) acquires its minimum for metrics that are conformally
flat and have a spacetime-independent Ricci scalar given by

R̄ = − γ

2β . (7.8)

Large inhomogeneities and anisotropies in cosmology necessarily corresponds to large values
of (the real part of) the eigenvalues of H.

These results are related to those of refs. [84, 85], where the finite-action principle was
proposed to explain homogeneity and isotropy of the universe within quadratic gravity in
the classical limit: in our fully quantum construction the configuration that leads to the
smallest action corresponds to peaks in the wave functional of the ground state and are
homogeneous and isotropic, while inhomogeneities and anisotropies lead to a larger action
and are associated with excited states.

The link between the size of an eigenvalue E of H and the configurations that minimize
the action and maximize the (absolute value) of the corresponding wave functional ⟨qη|ψ⟩
can more generally seen as follows. Note∫

dqi⟨qfη, τf |qi, τi⟩⟨qiη|ψ⟩ = e−(τf −τi)E/ℏ⟨qfη|ψ⟩. (7.9)

Multiplying by ⟨ψ|qfη⟩ and integrating over qf on both sides leads to∫
dqfdqi⟨ψ|qfη⟩⟨qfη, τf |qi, τi⟩⟨qiη|ψ⟩ = e−(τf −τi)E/ℏ

∫
dqf |⟨qfη|ψ⟩|2 (7.10)

The integral
∫
dqf |⟨qfη|ψ⟩|2 can be set to 1 with a conventional13 choice of the normalization

of |ψ⟩, which leads to∫
dqfdqi⟨ψ|qfη⟩⟨qfη, τf |qi, τi⟩⟨qiη|ψ⟩ = e−(τf −τi)E/ℏ. (7.11)

Therefore, recalling that in quadratic gravity ⟨qfη, τf |qi, τi⟩ is given by (4.41) (or for a generic
gauge by (4.52)) with Jµν = 0, the wave functionals with the smaller (real part of) E are
those somewhat peaked around configurations for which the Euclidean action is small.

It is interesting to note that in the small α limit14 the theory reduces to Starobinsky’s
model of inflation. Therefore, our construction can also be applied to study non-perturbative
aspects of this successful inflationary model. However, note that in that limit the W 2 term
becomes inactive and, therefore, the smallest eigenvalues of H no longer necessarily correspond
to wave functionals peaked around conformally-flat metrics.

One important implication of the formulation of quadratic gravity presented here is the
fact that the homogeneity and isotropy of the initial conditions for inflation are explained

13Indeed, as usual, a change of normalization of |ψ⟩ leaves the probability density in (7.7) invariant.
14One might be worried by the fact that in this limit the path-integration measure in (4.41) is singular

because C in (4.44) contains some power of α. However, note that α disappears from the measure when
one considers the probability densities because it cancels with an equal factor coming from the denominator
in (4.10). Similarly, any field-independent factor in (4.44) does not contribute to the probability densities.
The small α limit has been taken together with the small γ and λ limit in refs. [86, 87]. For a discussion of
the large α limit see [30, 88–91].
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rather than postulated. Let us divide the space at initial time ti in causally disconnected
patches. The state vector at time ti of such a system can be described by a direct product
of the form

|ψ(ti)⟩ = |ψI⟩|ψII⟩ . . . |ψK⟩ . . . (7.12)

where the factor |ψK⟩ describes the Kth patch. Let us focus on a given patch at a time as
its time evolution |ψK(ti)⟩ → |ψK(t)⟩ is independent of the others, at least for small enough
t− ti. Suppose to start from a highly inhomogeneous and/or anisotropic patch at time ti.
This corresponds to the short-distance limit as we have seen. Then we can be in two distinct
situations. Either (i) there is a dynamical mechanism that makes the field configuration
homogeneous and isotropic at large time or (ii) such a mechanism is not present. In Case (i)
the homogeneity and isotropy of the initial condition for inflation are clearly explained. In
Case (ii) we can either be in a situation (iia) where the initial state becomes nearly classical as
time passes or in a complementary situation (iib) where the initial state remains quantum. In
Situation (iia) the homogeneity and isotropy of the initial condition for inflation is explained
by the classical mechanism described in ref. [32], based on anthropic selection, which has
been reviewed in the introduction. In Situation (iib) life remains impossible because classical
entities, such as liquid water, are essential for life as we know it; therefore, a similar anthropic
exclusion of the considered patch takes place.

It is only in the nearly homogeneous and isotropic patches that inflation can occur and
observations can eventually be made. If such a patch has undergone exponential expansion
an internal point (far from its border) remains causally disconnected from the other patches
even at large t − ti. This mechanism is an explicit quantum realization of Linde’s chaotic
inflation [92]. The situation is illustrated in figure 1: the nearly homogeneous and isotropic
patches are compatible with life and can inflate.

It is important to note that even if there were non standard features of the spectrum of
H (i.e. H not diagonalizable with only real eigenvalues) there would be no way to observe
such features. Indeed, suppose we were in such a situation and let us start from a highly
inhomogeneous and anisotropic initial patch, such that the corresponding state |ψK⟩ could have
a non-negligible overlap with an eigenstate |ψc⟩ of H with a complex eigenvalue Ec = ER+iEI ,
where ER and EI are real numbers (with EI being non negligible), and/or |ψK⟩ cannot be
written as a linear combination of eigenstates of H. Since the time evolution is given by the
operator exp(−i(tf − ti)H/ℏ), a state with EI < 0 would decay with time. However, if there
were a complex eigenvalue the spectrum would also include its complex conjugate because H
is time-reversal invariant,15 THT−1 = H . This means that EI > 0 would also be realized
and we must take this possibility into account. However, in a situation where |ψK⟩ had a
non-negligible overlap with an eigenstate |ψc⟩ with EI > 0, eq. (4.10) would tell us that, as
tf − ti becomes large, the density probability of patch K exponentially converges to

ρK(qf ) = |⟨qfη| exp(−i(tf − ti)ER/ℏ + (tf − ti)EI/ℏ)|ψc⟩|2∫
dqη|⟨qη| exp(−i(tf − ti)ER/ℏ + (tf − ti)EI/ℏ)|ψc⟩|2

= |⟨qfη|ψc⟩|2∫
dqη|⟨qη|ψc⟩|2

, (7.13)

15So, HT |ψc⟩ = TH|ψc⟩ = E∗
cT |ψc⟩ given the antilinearity of T and, thus, an eigenstate of H with eigenvalue

E∗
c is T |ψc⟩.
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Figure 1. Cartoon for the primordial universe. The density of wiggle represents the amount of
inhomogeneity and anisotropy.

where |ψc⟩ is the eigenstate with a non negligible overlap with |ψK⟩ and with the largest
value of EI . In words, the probability density of such a patch would converge to that
associated with a state |ψc⟩ and stay there forever. As we have seen, such a state must be
highly inhomogeneous and/or anisotropic and, thus, cannot be compatible with observers.
If |ψK⟩ could not be written as a linear combination of eigenstates of H we would obtain
a similar result, except that, if there are no complex eigenvalues, the probability density
would converge linearly rather than exponentially to

ρK(qf ) = |⟨qfη|ψm⟩|2∫
dqη|⟨qη|ψm⟩|2

, (7.14)

where |ψm⟩ is now the eigenstate of H with the largest algebraic multiplicity, in the discrete
approximation of eq. (4.63). Again, observations in such a patch cannot be made. Furthermore,
such a patch does not inflate because, as we have seen, the inhomogeneities are not diluted
as time passes.

8 Conclusions

Here is a detailed summary of the results obtained together with conclusions.

• In the first section (after the introduction) the 3 + 1 formalism was introduced for
quadratic gravity featuring both the R2 and W 2 terms in addition to the standard
Einstein-Hilbert and cosmological constant terms. The simple Gauss coordinate system
was chosen postponing the restoration of general covariance to a subsequent section,
section 4.2. All basic tensors were provided in the 3 + 1 formalism in terms of the
metric, gij , Kij ≡ −ġij/2 and K̇ij in section 2 and appendix A.

• In section 3 Ostrogradsky’s canonical method was non-perturbatively applied to
quadratic gravity to obtain the canonical coordinates, gij and Kij , and the corre-
sponding conjugate momenta, πij and P ij . When both the R2 and W 2 terms are
present, K̇ij can be expressed in terms of gij , Kij and P ij . Then, the classical Hamilto-
nian Hc can be expressed in terms of the canonical and Hc depends on πij only through
the term in (3.8). As a result, Hc is unbounded from below (and above). In previous
works [32, 33], however, it was shown that the runaway rates in classical quadratic
gravity can be slow enough to ensure agreement with observations (in this sense one
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has metastability). This occurs when the typical length scales L of inhomogeneities
and anisotropies are much above a threshold that is low enough to describe the whole
cosmology [32]. This threshold is L ≫ L2 ≡

√
2/f2M̄2

P and L ≫ Lm ≡ 1/ 4√f2M̄P ,
which regard the boundary conditions for the spin-2 and matter sectors, respectively [32].
The possible instability occurring when such condition is violated not only is compatible
with cosmology, but would also explain why we live in a nearly homogeneous and
isotropic universe [32]: the instability can take place only in sufficiently inhomogeneous
and anisotropic patches of the universe.

• Section 4 was devoted to the application of the DP quantization and consequent norm
operators to quadratic gravity to obtain a unitary theory (all probabilities are non
negative and they sum up to one at any time, eqs. (4.2) and (4.3)).

The Euclidean path integral for transition amplitudes and T-product matrix elements
was constructed for a generic theory containing DP canonical variables in section 4.1. It
was observed that the consistency of the Euclidean path integral puts strong constraints
on the possible quantizations and we found one that works for quadratic gravity. As a
byproduct, we also quantized in a similar manner a scalar-field four-derivative interacting
model, whose Lagrangian is defined in (4.20). The quantization is summarized in table 1
with all canonical coordinates on the right of the corresponding momenta in the quantum
Hamiltonian H. The canonical coordinates that are invariant under time-reversal T
are quantized in the ordinary way, while those that are T -odd are quantized à la DP
as proposed in [17]. The probability density for the canonical coordinates is positive
everywhere and its integral equals 1 at any time as required by unitarity, see (4.11).
An explicit expression for the measure, as well as the integrand, of the path integral
was obtained in section 4.1 and appendix B. Like in ordinary quantum field theories,
bare parameters are restricted by the convergence of the Euclidean path integral, but
there remains a large region of available parameter space, contrary to GR (without the
quadratic in curvature terms).

As already mentioned, the description of the system in a generic coordinate system was
provided in section 4.2. This is achieved in terms of a generic gauge-fixing function f

like in the FP approach to quantize ordinary gauge theories.

In section 4.3 the Euclidean path integral for Green’s functions is obtained. Whenever
an ordinary two-derivative theory is recovered in the large-distance limit (which is the
case both in quadratic gravity and in the discussed scalar-field model), this can be done
by using the path integral for the matrix elements in (4.13). It was found that the
large-distance spectrum of H is real and bounded from below; also, the corresponding
smallest eigenvalue E0 is non negative if the bare cosmological constant λ (in the case
of quadratic gravity) or V (0) (in the scalar-field model) is large enough. In the same
section also the Lorentzian path integral for Green’s functions was obtained, which
justifies previous expressions used in perturbative calculations around the flat spacetime.

• The (quantum) effective action Γ for quadratic gravity in the specified quantization is
defined in section 5. When used at tree level Γ captures the full quantum effects and
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its field equations allow us to determine the VEV of the metric in the presence of a
generic (possibly vanishing) physical energy-momentum tensor.

• In the classical limit, ℏ → 0, the field equations generated by the (quantum) effective
action reduce to those of the classical action of quadratic gravity, as shown in section 6.
In the same section it was also explained how this theory, which features a large-distance
spectrum of H bounded from below, can have a classical Hamiltonian Hc that is instead
unbounded from below.

• Finally, in section 7 the constructed non-perturbative and background-independent
quantum quadratic gravity was applied to cosmology.

First, it was noted that the theory reduces (and thus justifies) previous tree-level
calculations performed expanding around cosmological FLRW backgrounds.

Next, the consistent Euclidean path integral of quadratic gravity was applied to quantum
cosmology. Such path integral, indeed, allows us to find an expression for the ground-
state wave function of the universe and for all the large-distance spectrum. The wave
functions (which are actually functionals of the metric and its time derivative) satisfy a
sort of Wheeler-DeWitt equation. In our fully quantum construction the configuration
that leads to the smallest action corresponds to peaks in the ground-state wave functional
that are homogeneous and isotropic, while inhomogeneities and anisotropies lead to
larger actions and are associated with excited states. These results support those of
refs. [84, 85], where the finite-action principle was proposed to explain homogeneity and
isotropy of the universe within quadratic gravity in the classical limit. Furthermore,
it was found that large inhomogeneities and anisotropies necessarily correspond to
large values of (the real part of) the eigenvalues of H. When the coefficient of the W 2

vanishes one recovers Starobinsky’s model of inflation, which can, therefore, be studied
non-perturbatively with our construction. In the presence of the W 2 we are unable to
show whether H is diagonalizable with only real eigenvalues or not. However, in this
final section we found that if that were not the case there would be no way to observe
such unusual features: patches where their effects are sizable are not compatible with
observers. It is only in the nearly homogeneous and isotropic patches that inflation
can occur and observations can eventually be made. This mechanism is an explicit
quantum realization of Linde’s chaotic inflation [92] and upgrades to the full quantum
level the classical results of ref. [32], which explain the near homogeneity and isotropy
of our universe.
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A Curvature tensors in the 3 + 1 formalism

Here we give the non-vanishing independent components of the curvature tensors (the Riemann
and the Ricci tensors) in the 3 + 1 formalism and using the Gauss coordinates in (2.4):

R 0
i0 j = K̇ij +KilK

l
j , R j

0i l = DjKil −DlK
j
i, (A.1)

R m
li j = R3 m

li j +K m
l Kij −K m

i Klj , (A.2)
R00 = gij(K̇ij +KilK

l
j), R0i = DiK −DjKji, (A.3)

Rij = R3 ij − K̇ij +KKij − 2KilK
l
j , (A.4)

where a zero denotes the time component. All the other components of the curvature tensors
can be obtained by using the well-known properties under exchanges of their indices. These
formulæ allow us to calculate the invariants in eqs. (2.7), (2.8), (2.9).

B Integral over gravitational momenta

In this appendix the Gaussian integral (4.39) is computed. First, note that the “matrix”
appearing there can be rewritten as

Γpqij = gpmgqn Γmn
ij (B.1)

where
Γmn

ij = 1
α

δm
i δ

n
j + δm

j δ
n
i

2 − 4β − α/3
12βα gmngij . (B.2)

Now, let us compute the determinant of this “matrix”, which allows us to calculate, as
well known, the corresponding Gaussian integral. We will first compute the determinant
det{Γmn

ij} of the “matrix” with elements Γmn
ij and then that of gpmgqn, which will be

denoted det{gpmgqn}; finally, we will make the product of the two.
Note that, at each spacetime point, Γmn

ij can be viewed as an operator from the (six-
dimensional) vector space of symmetric 3×3 matrices, Sij , in itself. We can always decompose

Sij = Sij
t + 1

3Sg
ij , (B.3)

where S ≡ gijS
ij is the trace and Sij

t ≡ Sij − 1
3Sg

ij is the traceless part. The eigenvalue
equation for the “matrix” Γmn

ij

Γmn
ijS

ij = λSmn (B.4)

then reads
Smn

t

α
+ Sgmn

36β = λ

(
Smn

t + 1
3Sg

mn
)
. (B.5)

The space of traceless symmetric tensors Sij
t is five dimensional, while that of the trace S is

one dimensional so the determinant of the “matrix” with elements Γmn
ij is

det{Γmn
ij} = 1

12βα5 , (B.6)

which is spacetime independent.
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The determinant of the other matrix factor, gpmgqn, can be computed by considering, at
each spacetime point, a complete set of three eigenvectors Vk, with corresponding eigenvalues
λk, of the metric: ∑

m

gimV
m

k = λkV
i

k , (B.7)

where in the right-hand side there is no sum over k. Indeed, (V m
k V n

l + V m
l V n

k )/2 forms
a set of six linearly-independent symmetric 3 × 3 matrices, which are eigenvectors of the
“matrix” in question:

∑
mn

gpmgqn
V m

k V n
l + V m

l V n
k

2 = λkλl
V p

k V
q

l + V p
l V

q
k

2 . (B.8)

So,
det {gpmgqn} =

∏
k≥l

λkλl = g4. (B.9)

Combining this result with (B.6) leads to

det {Γpqij} = g4

12βα5 . (B.10)

By applying the Gaussian integration formula we then find

C ′ =
∏
x′

E

[(∆V3
√
g

πℏ∆τ

)3 2
√

3βα5

g2

]
. (B.11)
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