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Abstract
Let X be any smooth prime Fano threefold of degree 2g−2 inPg+1, with g ∈ {3, . . . , 10, 12}.
We prove that for any integer d satisfying

⌊
g+3
2

⌋
� d � g+3 theHilbert scheme parametriz-

ing smooth irreducible elliptic curves of degree d in X is nonempty and has a component of
dimension d , which is furthermore reduced except for the case when (g, d) = (4, 3) and X is
contained in a singular quadric. Consequently, we deduce that the moduli space of rank–two
slope–stable AC M bundles Fd on X such that det(Fd) = OX (1), c2(Fd) · OX (1) = d and
h0(Fd(−1)) = 0 is nonempty and has a component of dimension 2d − g − 2, which is fur-
thermore reduced except for the case when (g, d) = (4, 3) and X is contained in a singular
quadric. This completes the classification of rank–two AC M bundles on prime Fano three-
folds. Secondly, we prove that for every h ∈ Z

+ the moduli space of stable Ulrich bundles
E of rank 2h and determinant OX (3h) on X is nonempty and has a reduced component of
dimension h2(g + 3) + 1; this result is optimal in the sense that there are no other Ulrich
bundles occurring on X . This in particular shows that any prime Fano threefold is Ulrich
wild.

1 Introduction

Let X ⊂ P
m be a smooth irreducible projective variety. A vector bundle E on X is said to

be arithmetically Cohen–Macaulay (AC M for short) if hi (E(t)) = 0 for all t ∈ Z and all
1 � i � dim(X)−1. A vector bundle E on X is said to be anUlrich bundle if hi (E(−p)) = 0
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for all i � 0 and all 1 � p � dim(X). An Ulrich bundle is always AC M (cf., e.g., [3, (3.1)]
and semistable (cf. [18, Thm. 2.9(a)]).

The problem of studying and classifying AC M or Ulrich bundles is in general a hard and
interesting one, and in the last years there has been a lot of activity in this direction (see, e.g.,
[3, 14, 17, 19] for surveys). There is however only a short list of varieties for which AC M
or Ulrich bundles are completely classified. For works regarding AC M and Ulrich bundles
on Fano threefolds, mostly of low ranks, we refer to [1, 3–16, 18, 22, 33–35].

In this paper we consider the case of smooth prime Fano threefolds of degree 2g − 2 in
P

g+1, for which one has g ∈ {3, . . . , 10, 12} (see [30]), and we study AC M bundles of rank
2 and Ulrich bundles of any possible rank on them.

Rank–two bundles on threefolds are connected to curves in the threefolds by the famous
Hartshorne–Serre correspondence (cf. Proposition 3.1). The bundles thatwewill be interested
in are related to elliptic curves. Our first main result is:

Theorem 1.1 Let X be a smooth prime Fano threefold of degree 2g − 2 in P
g+1. For any⌊

g+3
2

⌋
� d � g + 3, the Hilbert scheme parametrizing smooth elliptic curves of degree d in

X has an irreducible component of dimension d. There is a reduced such component except
precisely when (g, d) = (4, 3) and X is contained in a singular quadric, in which case the
Hilbert scheme is irreducible and nonreduced with 4–dimensional tangent space at every
point.

Furthermore, for d � g + 2 (resp. d = g + 3) the Hilbert scheme contains points
parametrizing elliptic normal curves (resp. non–degenerate elliptic curves).

Note that the Hilbert scheme in question is empty if d <
⌊

g+3
2

⌋
(cf. Corollary 3.9).

As a consequence, we prove the following:

Theorem 1.2 Let X be a smooth prime Fano threefold of degree 2g − 2 in P
g+1. For any⌊

g+3
2

⌋
� d � g + 3 there exists a slope–stable AC M bundle Fd on X such that

rk(Fd) = 2, det(Fd) = OX (1), c2(Fd) · OX (1) = d, h0(Fd(−1)) = 0. (1)

The moduli space of such bundles has an irreducible component of dimension 2d − g − 2,
which is reduced except precisely when (g, d) = (4, 3) and X is contained in a singular
quadric, in which case the moduli space consists of a single point with a one–dimensional
tangent space.

Note that the moduli spaces in the theorem are empty when d is outside the given range
(cf. Remark 3.4 and Corollary 3.9).

For d >
⌊

g+3
2

⌋
the latter result is an improvement of [7, Thm. 3.1], since our result

avoids the assumption that X is ordinary (that is, X contains a line � with normal bundle

N�/X � O� ⊕ O�(−1)). For d =
⌊

g+3
2

⌋
our statement is contained in [7, Thm. 3.1−3.2],

except that we avoid again the assumption that X is ordinary when (g, d) = (3, 3); also

note that the nonemptiness statement of the moduli spaces in question when d =
⌊

g+3
2

⌋
has

until now only been known by a case–by–case treatment in various papers (see [7, §3.1.1]
and references therein), and that our proof via the existence of elliptic curves as in Theorem
1.1 provides an alternative, unified and simpler proof of this fact scattered in literature. In
particular, our proof is independent of the one in [7].

Themainmotivation behindTheorem1.2 is that it completes the classification of rank–two
AC M bundles on smooth prime Fano threefolds. Indeed, since the property of being AC M is
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independent of twists, onemay restrict the study of such bundles to the oneswith determinants
OX (m) for m ∈ {0, 1}. Combining [7, Thm. p. 114] and Theorem 1.2 one obtains: A smooth
prime Fano threefold Xof degree 2g − 2in P

g+1carries a rank–two AC Mbundle Fsuch that
c1(F) = [OX (m)]with m ∈ {0, 1}if and only if d := c2(F) · OX (1)satisfies:

(i) m = 1, d = 1 or
⌊

g+3
2

⌋
� d � g + 3,

(ii) m = 0, d ∈ {2, 4}.

The new contribution is the abolition of the assumption that X be ordinary when d � g
2 + 2

in the “if” part.
The proof of Theorem 1.1 occupies §4. The idea of the proof is conceptually simple: We

exploit Mukai’s description of the K3 hyperplane sections of prime Fano threefolds and the
surjectivity of the periodmap of K3 surfaces to prove that there always exists a codimension–

one family of hyperplane sections containing a smooth elliptic curve of degree
⌊

g+3
2

⌋
. We

then construct the desired elliptic curves of higher degree by smoothing the union of an
elliptic curve and a line intersecting transversally in one point. Despite the simple idea of the
proof, there are several technical details to be fixed, and most of this work is carried out in
§3. The proof of Theorem 1.2 follows as a rather direct consequence of Theorem 1.1 and is
carried out in §5.

Our second main result concerns Ulrich bundles:

Theorem 1.3 Let X be a smooth prime Fano threefold of degree 2g − 2 in P
g+1. Then, for

every h ∈ Z
+, there exists a stable1 Ulrich bundle E of rank 2h and determinant OX (3h) on

X. The moduli space of such bundles has a reduced and irreducible component of dimension
h2(g + 3) + 1.

This result is optimal in the sense that a prime Fano threefold X does not carry any Ulrich
bundles of odd rank by [16, Cor. 3.7] and any Ulrich bundle of rank 2h on X is forced to
have determinant OX (3h) by [16, Thm. 3.5].

Theorem 1.3 in particular shows that any smooth prime Fano threefold of degree 2g − 2
in P

g+1 is Ulrich wild.2 Only very few cases of varieties carrying stable Ulrich bundles of
infinitely many ranks are hitherto known.

The idea of the proof of Theorem 1.3 is also conceptually quite simple. Rank–two Ulrich
bundles are obtained twisting by OX (1) the rank–two AC M bundles in Theorem 1.2 with
d = g + 3. Then Ulrich bundles of all even ranks r � 4 are obtained by induction as
deformations of extensions of rank r − 2 Ulrich bundles with rank 2 Ulrich bundles. The
proof is carried out in §6.

Finally, in §7, taking profit froma correspondencewe found in [16, Thm. 3.5] between rank
two Ulrich bundles and certain curves on prime Fano threefolds, we propose an application
to the moduli space of curves of genus 5g with theta–characteristics with g + 2 independent
global sections, for 3 � g � 5.

Throughout the paper we work over the field of complex numbers.

1 For Ulrich bundles the notions of stability and slope–stability coincide (cf. [18, Thm. 2.9(a)]).
2 In analogy with a definition in [20], a variety X is said to be Ulrich wild if it possesses families of dimension
n of pairwise non–isomorphic, indecomposable, Ulrich bundles for arbitrarily large n.
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2 Basics on prime Fano threefolds

A (smooth) prime Fano threefold (of index 1) of degree 2g − 2 in P
g+1 is a smooth,

irreducible, projective, non–degenerate threefold X ⊂ P
g+1 of degree 2g − 2 such that

ωX � OX (−1) and Pic(X) � Z[OX (1)]. These threefolds exist only for g ∈ {3, . . . , 10, 12}
(see [30]) and g is called the genus of the threefold. Any such X is projectively normal.
Moreover, its general curve section is a canonical curve of genus g and its general hyperplane
section is aK3 surface S of genus g, which satisfies Pic(S) � Z[OS(1)]byNoether–Lefschetz
(cf. [39, Thm. 3.33]).

Prime Fano threefolds of genus g = 3, 4, 5 are complete intersections: for g = 3 they are
quartic hypersurfaces in P4, for g = 4 they are complete intersections of type (2, 3) in P5 and
for g = 5 they are complete intersections of type (2, 2, 2) in P

6. For g � 6 the description
of prime Fano threefolds is more complicated (see [30]). If g = 4, we will say that X is in
case (�)4 if the unique quadric containing X is singular.

The Hilbert scheme L(X) of lines in a prime Fano threefold X is one–dimensional (cf.,
e.g., [29, Cor. 1]), and the lines in X sweep out a surface that we will denote by R1(X). The
normal bundle of any line � in X satisfies

N�/X � O� ⊕ O�(−1) or O�(1) ⊕ O�(−2)

(cf. [28, Lemma 3.2] and [29, Lemma 1]), so that in particular

χ(N�/X ) = 1 and h0(N�/X ) � 2. (2)

As recalled in the introduction, X is said to be ordinary3 if it contains a line � with normal
bundle N�/X � O� ⊕ O�(−1).

We will make use of the following result:

Proposition 2.1 Let X be a prime Fano threefold of degree 2g − 2 in P
g+1. One of the

following occurs:

(I) R1(X) has a component that is not a cone; or
(II) R1(X) consists of 40 irreducible components that are all cones, and general pairs of

lines in different components do not intersect.

The latter case4 occurs only for g = 3.

Proof This is proved for g � 4 in [28, Thm. 3.4(iii)]5, and for g = 3 in [27, p. 496]. ��
We also record here the following information that will be necessary for us.

Lemma 2.2 Let X be a prime Fano threefold of degree 2g − 2 in P
g+1. Then its dual variety

X∗ is a hypersurface. As a consequence we have:

(i) a general tangent hyperplane to X at a general point x ∈ X is simply tangent only at x;
(ii) the general member of any g–dimensional family of singular hyperplane sections of X

has a rational double point at a general point of X.

3 Only two instances of non–ordinary prime Fano threefolds are known: the Fermat quartic for g = 3 and an
example of Mukai–Umemura for g = 12 [37]. It is furthermore known that a general prime Fano threefold of
any genus is ordinary.
4 The Fermat quartic is an example, and it is not known whether there are others (see again [27]).
5 Note that the statement [28, Thm. 3.4(ii)] is incorrect; the correct statement is [29, Prop. 1].
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Proof If X∗ is not a hypersurface, then the general tangent hyperplane to X at a general point
x ∈ X is tangent along a linear subspace of positive dimension containing x (see [38, Thm.
1.5.10]), contradicting the fact that dim(L(X)) = 1. Assertion (i) follows again from [38,
Thm. 1.5.10] and assertion (ii) follows from (i). ��

3 Elliptic curves and rank–two bundles

Throughout this section X will denote an arbitrary prime Fano threefold of degree 2g − 2 in
P

g+1. We gather some useful results concerning rank–two vector bundles and elliptic curves
on X . The starting point is the following:

Proposition 3.1 (i) Any local complete intersection curve Ed ⊂ X of degree d with trivial
canonical bundle gives rise to an exact sequence

0 �� OX
sd �� Fd �� JEd/X (1) �� 0, (3)

for a unique vector bundle Fd on X satisfying

rk(Fd) = 2, det(Fd) = OX (1), c2(Fd) · OX (1) = d, h0(Fd(−1)) = 0. (4)

(ii) Conversely, if Fd is a vector bundle on X satisfying (4), then it is slope–stable and
any non–zero section sd ∈ H0(Fd) vanishes along a local complete intersection curve Ed

of degree d with trivial canonical bundle and there exists a sequence like (3). Moreover,
non–proportional non–zero sections vanish along distinct curves.

(iii) If, in (ii), we furthermore have h0(Fd) � 2, then we have a natural map

w : Grass(2, H0(Fd)) −→ |OX (1)|,
V 
→ Z(s1 ∧ s2), (5)

where 〈s1, s2〉 is any basis for V and Z(s1 ∧ s2) is the zero scheme of s1 ∧ s2. The surface
Z(s1 ∧ s2) contains the pencil P(V ) of curves that are zero schemes Z(us1 +vs2) of sections
of the form us1 + vs2 for all (u : v) ∈ P

1 and it is singular at least where s1 and s2 both
vanish.

Proof The correspondence in (i)–(ii) between the curve Ed and the vector bundle Fd with
section sd is well–known, by the Hartshorne–Serre correspondence (see, e.g., [2, 24, 25]).
Properties (4) can be deduced from (3); moreover, the facts that h0(Fd(−1)) = 0 and
Pic(X) � Z[OX (1)] imply that any section of Fd vanishes along a curve. Finally, slope–
stability of Fd is an immediate consequence of the facts that Pic(X) � Z[OX (1)], rk(Fd) =
2, det(Fd) � OX (1) and h0(Fd(−1)) = 0.

Assertion (iii) is standard. ��
Remark 3.2 Assume that in case (iii) of Proposition 3.1 the zero schemes Ei := Z(si ),
i = 1, 2, are smooth, irreducible, distinct, elliptic curves. Let Z be the intersection scheme
E1 ∩ E2. Then the surface S := Z(s1 ∧ s2) is singular along Z . More precisely, suppose that
E1 and E2 have a contact of order k at a point p, so that Z locally at p is a curvilinear scheme
of length k. We can introduce local coordinates (x, y, z) on X around p so that E1 and E2

have local equations x = y = 0 and x − y = y + zk = 0, respectively. Then S has equation
xzk + y2 = 0 around p, so that S has a double point at p and actually it has k double points
infinitely near to p along E1 or, equivalently, along E2, or, if we prefer, along Z . Therefore,
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on a desingularization S′ of S the strict transforms E ′
1 and E ′

2 of E1 and E2 are isomorphic

to E1 and E2 respectively, and belong to a base point free pencil, hence E ′2
1 = E ′2

2 = 0.

Denote by Hd(X) the Hilbert scheme parametrizing local complete intersection curves
in X of degree d with trivial canonical bundle and by Hd(X) the sublocus parametrizing
smooth irreducible (elliptic) curves. Recall that the tangent space of Hd(X) at a point [Ed ]
is H0(NEd/X ), by standard theory of Hilbert schemes.

Denote by Md(X) the moduli space of vector bundles on X satisfying (4), which are all
slope–stable by Proposition 3.1(ii). By the same proposition there is a morphism

p : Hd(X) −→ Md(X) (6)

mapping [Ed ] to [Fd ]. The image consists of the vector bundles having a section (by Propo-
sition 3.1(ii)), and the fiber over a point [Fd ] is P(H0(X ,Fd)).

The next three lemmas collect useful properties of the members of Hd(X) andMd(X):

Lemma 3.3 Let [Fd ] ∈ Md(X). Then

(i) χ(Fd) = g + 3 − d and h3(Fd) = 0;
(ii) χ(Fd ⊗ F∗

d ) = g − 2d + 3 and h0(Fd ⊗ F∗
d ) = 1.

Proof The computations of χ follow from Riemann–Roch on X . Since rk(Fd) = 2
and det(Fd) = OX (1), we have F∗

d � Fd(−1), whence h3(Fd) = h0(F∗
d (−1)) =

h0(Fd(−2)) = 0. Finally, h0(Fd ⊗ F∗
d ) = dim(End(Fd)) = 1 as Fd is slope–stable,

whence simple. ��
Remark 3.4 If a bundle Fd in Md(X) is AC M , then h0(Fd) = χ(Fd) = g + 3 − d by
Lemma 3.3(i). Consequently, the locus of AC M bundles in Md(X) is empty if d > g + 3.

Lemma 3.5 Let [Ed ] ∈ Hd(X) and [Fd ] = p([Ed ]) ∈ Md(X). Then:

(i) NEd/X � Fd |Ed and χ(NEd/X ) = d;
(ii) hi (JEd/X ) = 0 for i ∈ {0, 1, 3} and h2(JEd/X ) = 1;

(iii) χ(JEd/X (1)) = g + 2 − d and hi (JEd/X (1)) = 0 for i ∈ {2, 3};
(iv) hi (Fd(−1)) = 0 for i ∈ {0, 1, 2, 3};
(v) h0(Fd) = h0(JEd/X (1)) + 1, h1(Fd) = h1(JEd/X (1)) and h2(Fd) = 0;

(vi) h3(Fd ⊗ F∗
d ) = 0, and h2(Fd ⊗ F∗

d ) � h1(NEd/X ), with equality if h1(Fd) = 0.

Proof Property (i) is immediate from (3) and Riemann–Roch. From the sequence

0 �� JEd/X �� OX �� OEd
�� 0 (7)

we deduce (ii) and (iii). From (3) and (iii) we deduce (v), whereas from (3) and (ii) we
deduce that hi (Fd(−1)) = 0 for i ∈ {0, 1}. Since F∗

d � Fd(−1), Serre duality yields that
hi (Fd(−1)) = h3−i (F∗

d ) = h3−i (Fd(−1)) = 0 for i ∈ {2, 3} as well, proving (iv).
To prove (vi), tensor (3) by F∗

d � Fd(−1) to obtain

0 �� Fd(−1) �� Fd ⊗ F∗
d

�� Fd ⊗ JEd/X �� 0.

By (iv) we get hi (Fd ⊗F∗
d ) = hi (Fd ⊗JEd/X ) for all i . Now (vi) follows from (7) tensored

by Fd , properties (i) and (v) and Lemma 3.3(i). ��
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Remark 3.6 By (7) twisted by OX (1) and linear normality of X we see that Ed spans a

P
d−1−h1(JEd /X (1)) in its embedding in Pg+1. Hence, Ed is projectively normal if and only if

h1(JEd/X (1)) = 0 (which can only happen for d � g + 2) and nondegenerate if and only if
h1(JEd/X (1)) = d − g − 2 (which can only happen for d � g + 2).

Lemma 3.7 Let [Ed ] ∈ Hd(X). Then the following conditions are equivalent:

(i) h1(NEd/X ) > 0,
(ii) h1(NEd/X ) = 1,

(iii) h0(NEd/X ) > d,
(iv) NEd/X � OEd ⊕ OEd (1),
(v) there is a section of NEd/X vanishing along a scheme of length d.

Proof We have h0(NEd/X ) = χ(NEd/X ) + h1(NEd/X ) = d + h1(NEd/X ) by Lemma 3.5(i),
proving that (i) and (iii) are equivalent.Moreover, for any x ∈ Ed ,we have h0(NEd/X (−x)) �
d − 2 > 0, whence there is a nonzero section s : OEd → NEd/X vanishing at x . Letting Z
denote its scheme of zeros, and saturating, we obtain

0 �� OEd (Z) �� NEd/X �� OEd (1)(−Z) �� 0. (8)

If deg(Z) < d , we thus have h1(NEd/X ) = 0. This proves that (i) implies (v).
Assume (v) and let Z be the length d scheme along which a section s ofNEd/X vanishes.

Then Z ∈ |OEd (1)| and (8) becomes

0 �� OEd (1) �� NEd/X �� OEd
�� 0,

which must split, as dim(Ext1(OEd ,OEd (1))) = h1(OEd (1)) = 0. This proves that (v)
implies (iv). Clearly, (iv) implies (ii), and (ii) implies (i). ��

We denote by Sd(X) the locus of hyperplane sections of X of the form Z(s1 ∧ s2) for
(non–proportional) s1, s2 ∈ H0(Fd) for some [Fd ] ∈ Md(X). Note that each member of
Sd(X) contains a pencil of elements from Hd(X) by Proposition 3.1(iii). The following
result is crucial in the proof of Theorem 1.1.

Proposition 3.8 Assume that Hd(X) �= ∅. If d � g + 1, then

(i) the map p is surjective and Md(X), Hd(X) and Sd(X) are equidimensional of dimen-
sions

dim(Md(X)) = 2d − g − 2, dim(Hd(X)) = d and dim(Sd(X)) = g;
(ii) for general Ed in any component of Hd(X) and general Fd in any component of Md(X)

we have

h0(Fd) = g + 3 − d, h1(Fd) = 0 and

h0(JEd/X (1)) = g + 2 − d, h1(JEd/X (1)) = 0;
(iii) the general S in any component of Sd(X) has at worst a rational double point, which

is a general point of X, and contains a pencil of members of Hd(X), all zero loci of
non–zero sections of the same element of Md(X), having at most a single base point at
the rational double point of S;
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(iv) for any component Hd(X)′ of Hd(X), the locus

{x ∈ R1(X) | x ∈ Ed for some irreducibleEd in Hd(X)′ not contained in R1(X)}
is dense in every component of R1(X);

(v) the general Ed in any component of Hd(X) intersects R1(X) transversally, such that
through each intersection point there passes a unique line � contained in X (hence
this line intersects Ed transversally in one point), and with the property that there is a
hyperplane section of X containing Ed but not �;

(vi) the general Ed in any reduced component of Hd(X) intersects R1(X) (transversally) in
at least two points through which there pass two non-intersecting lines.

Proof (i)-(ii) For any [Fd ] ∈ im(p) we have h2(Fd) = 0 by Lemma 3.5(v), and this also
holds for a general [Fd ] ∈ Md(X) by semicontinuity. Using Lemma 3.3(i) we thus get

h0(Fd)=χ(Fd) + h1(Fd) − h2(Fd) + h3(Fd)=g + 3 − d + h1(Fd)�g + 3 − d � 2,

(9)

whence p is surjective by Proposition 3.1(ii). For any componentM′ ofMd(X), one has, by
standard deformation theory of vector bundles and Lemmas 3.3(ii) and 3.5(vi),

dim(M′) � h1(Fd ⊗ F∗
d ) − h2(Fd ⊗ F∗

d )

= −χ(Fd ⊗ F∗
d ) + h0(Fd ⊗ F∗

d ) − h3(Fd ⊗ F∗
d ) = 2d − g − 2. (10)

Let us pretend that Md(X) is a fine moduli space (if not one argues similarly at a local
level). Then we can consider the varietyG with a morphism π : G → Md(X), such that for
each [Fd ] ∈ Md(X), the fiber of π over [Fd ] is Grass(2, H0(Fd)), which has dimension at
least 2(g + 1 − d) by (9). Together with (10), this implies

dim(G′) � (2d − g − 2) + 2(g + 1 − d) = g, (11)

for any component G′ of G. We can define a universal version of the map w as in (5):

w : G −→ |OX (1)|,
([Fd ], [V = 〈s1, s2〉]) 
→ Z(s1 ∧ s2). (12)

By definition of Sd(X), the image of the map w is Sd(X). Note that every component of
Sd(X) has dimension at most g, as Pic(S) � Z[OS(1)] for the general S ∈ |OX (1)|.

We claim that

w is generically finite on any component ofG. (13)

To prove this, we argue by contradiction and assume that w is not generically finite. Let
[S] be general in the image of w. Then there is a positive–dimensional family of pairs
([Fd ], [V = 〈s1, s2〉]) ∈ G such that S = Z(s1 ∧ s2) and S has a positive–dimensional
family of pencils P(V ) as in Proposition 3.1(iii). Accordingly, S has a family E of dimension
at least 2 of curves, the general one E being a smooth irreducible elliptic curve moving in a
pencil. By Remark 3.2, the strict transform E ′ of E on the minimal desingularization of S
satisfies E ′2 = 0, which contradicts the fact that dim(E) � 2. We have thus proved (13).

From (13) it follows that dim(S′) = dim(G′) = g for any component S′ of Sd(X) and
G

′ ofG (by (11)), and as a consequence, also that for any componentM′ ofMd(X) one has
dim(M′) = 2d − g − 2 and h0(Fd) = g + 3 − d for general [Fd ] ∈ M′. Considering the
map p in (6), we see that it also follows that

dim(H′) = dim(M′) + dim(P(H0(Fd)) = (2d − g − 2) + (g + 2 − d) = d,
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for any component H′ of Hd(X), which finishes the proof of (i). At the same time, (9)
shows that h1(Fd) = 0, and Lemma 3.5(v) yields that h0(JEd/X (1)) = g + 2 − d and
h1(JEd/X (1)) = 0 for general [Ed ] ∈ H′, which finishes the proof of (ii).

(iii) If the general member S of any component of Sd(X) is singular, then by (i) and
Lemma 2.2(ii), it has a rational double point at a general point of X . Then (iii) follows from
Proposition 3.1(iii).

(iv) Let R be an irreducible component of R1(X) and S be a general member of a compo-
nentS′ ofSd(X). Note that, since the possible rational double point of S is a general point
of X , it does not lie on R.

We claim that C := S ∩ R is reduced. Suppose this is not the case; then the hyperplane
� containing S would be tangent to R and, since dim(S′) = g, it would be the general
hyperplane tangent to R so the dual variety R∗ of R would be a hypersurface. On the other
hand, since the curve cut out by � on R is non–reduced, this would imply that the general
tangent hyperplane to R is tangent along a curve, whence the dual variety R∗ of R would not
be a hypersurface, a contradiction.

Next we claim that the family of curves {S ∩ R | [S] ∈ S′, S �= R} covers R. Indeed,
if not, we would have S′ ⊆ |JC/X (1)|, so that both would be g–dimensional by (i). Since
Pic(X) � Z[OX (1)] we have R ∈ |OX (m)| for some m ∈ Z

+. Then

0 �� JS/X (1) � OX �� JC/X (1) �� JC/S(1) � OS(1 − m) �� 0

shows that dim |JC/X (1)| � 1, a contradiction.
Since Ed moves in a pencil on S and has no base point on C by (iii), we see that Ed passes

through the general point of R, proving (iv).
(v) Since through the general point of R there passes only one line, and S contains at most

finitely many lines (because its resolution of singularities is a K3 surface by (iii)), we can by
(iv) assume that the locus

C◦ = {x ∈ C | C is smooth at x and there passes a unique line � through x and � �⊂ S}
is the whole C but finitely many points. Since the possible base point of the pencil of curves
|Ed | on S lies outside R, whence off C , the general member Ed of the pencil intersects C
in points of C◦ and transversally. Thus the intersection Ed ∩ R is transverse, and through
each intersection point there passes a unique line � that is not contained in S. Since � · S =
� ·OX (1) = 1, we have that � ∩ Ed is transverse and consists of only one point. This proves
(v).

(vi) If we are in case (II) of Proposition 2.1, the result follows from (v) and the fact that
lines in different components of R1(X) do not intersect.

Assume therefore thatwe are in case (I) of Proposition 2.1, so thatwe can pick a component
R of R1(X) that is not a cone. By assumption there is a reduced component ofHd(X), which
we denote by H′, and we let [Ed ] ∈ H′ be general. Since Pic(X) � Z[OX (1)], we have
R ∈ |OX (m)| for some m � 1. By (v), the intersection Ed ∩ R is transversal for general
[Ed ] ∈ H′ and occurs at points throughwhich there passes a unique line in X , which intersects
Ed in only that point and transversally (in particular the lines are distinct). It follows that
Ed ∩ R consists of md � 3 points.

Denote by H◦ the dense open subset of H′ parametrizing curves not contained in R and
by Sym2(R)◦ the dense open subset of Sym2(R) consisting of all elements x + y such that
x �= y and there passes a unique line in R through both x and y and these lines are distinct.
Consider the incidence variety

Jd := {[(Ed , x + y)] ∈ H◦ × Sym2(R)◦ | x, y ∈ Ed ∩ R},
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with projections pd : Jd → H◦ and qd : Jd → Sym2(R)◦. By (v) we have Jd �= ∅ and

for general [Ed ] ∈ H◦ and allx, y ∈ Ed ∩ R we have x + y ∈ Sym2(R)◦. (14)

Since dim(H◦) = d by (i) and the fibers of pd are finite, we have dim(Jd) = d . Moreover,
Jd is reduced, as H◦ is.

Consider the locally closed subsetZd of elements x + y ∈ Sym2(R)◦ such that the unique
lines �x and �y through x and y, respectively (which are distinct by definition of Sym2(R)◦)
intersect. If through a point of R there passes a unique line, this intersects only finitely many
other lines on R (because R is not a cone). Hence either Zd is empty or dim(Zd) = 2. In
the former case we have finished. Thus assume that dim(Zd) = 2. We want to prove that the
image of qd does not lie inside Zd .

We remark that for x + y ∈ im(qd), the fiber q−1
d (x + y) is isomorphic to H◦(x, y),

the locus of curves in H◦ passing through x and y. The tangent space of the fiber at a point
[(Ed , x + y)] is H0(NEd/X (−x − y)). If im(qd) ⊂ Zd , we would therefore have:

h0(NEd/X (−x − y)) � dim(H◦(x, y)) � d − 2 > 0 for all [Ed ] ∈ H◦, x, y ∈ Ed ∩ R

(15)

(where we have used (14)).
Consider now the incidence variety

Id := {[(Ed , x)] ∈ H◦ × R | x ∈ Ed ∩ R},

with projections fd : Id → H◦ and gd : Id → R. Since the fibers of fd are finite, we
have, as above, dim(Id) = d and Id is reduced. By (iv), the map gd is dominant, whence for
general x ∈ R, the fiber g−1

d (x) is reduced and isomorphic to H◦(x), the locus of curves in
H◦ passing through x , and has dimension d − 2. The tangent space of the fiber at a general
point [(Ed , x)] is H0(NEd/X (−x)), whence, since the general fiber is reduced, we have

h0(NEd/X (−x)) = dim(H◦(x)) = d − 2 for general [Ed ] ∈ H◦, x ∈ Ed ∩ R. (16)

Comparing (15) and (16), we see that

H0(NEd/X (−x)) = H0(NEd/X (−x − y)) for general [Ed ] ∈ H◦, x, y ∈ Ed ∩ R,

whence, for general [Ed ] ∈ H◦, letting x1, . . . , xmd denote the intersection points Ed ∩ R,
we would have

h0(NEd/X (−xi )) = h0(NEd/X (−x1 − · · · − xmd) > 0, for any i ∈ {1, . . . , md}.

Therefore, NEd/X has a nonzero section vanishing at md points, whence Lemma 3.7 yields
h0(NEd/X ) > d = dim(H′), contradicting the hypothesis that H′ is reduced. ��

Corollary 3.9 The spaces Hd(X) and Md(X) are empty for d < � g+3
2 �.

Proof This follows as 2d − g − 2 � 0 by Proposition 3.8(i). ��

We finish the section with a result that we will use later:
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Lemma 3.10 Let d = g ∈ {3, 4} and [Ed ] be a general point in a component of Hd(X). Then
h1(NEd/X ) = 0.

Proof Let [Fd ] = p([Ed ]) (cf. (6)). Assumefirst that there is a non–zero section s′ ∈ H0(Fd)

whose zero scheme E ′ is such that the intersection E ′ ∩ Ed is non–empty, transversal and has
length< d . A local computation6 shows thatJE ′/X ⊗OX OEd has torsion along Z := E ′∩Ed .
Restricting

0 �� OX
s′

�� Fd �� JE ′/X (1) �� 0

to Ed and saturating (and recalling Lemma 3.5(i)) one obtains

0 �� OEd (Z) �� F |Ed � NEd/X �� OEd (Z ′) �� 0

with deg(Z ′) = d − deg(Z) > 0. Therefore, h1(NEd/X ) = 0 in this case.
Let sd ∈ H0(Fd) be a section vanishing on Ed . Consider now two general two–

dimensional subspaces V , V ′ ⊂ H0(Fd), such that V contains sd and V ′ does not. (Such
subspaces exist because h0(Fd) � χ(Fd) = 3 by Lemmas 3.3(i) and 3.5(v)). Then V and
V ′ define the elements [S] = w([V ]) and [S′] = w([V ′]) by (5), and S and S′ contain the
pencils P(V ) (containing Ed ) and P(V ′) whose general members are smooth elliptic curves
of degree d . By Proposition 3.8(iii), the pencils have at most one base point, and by the case
we treated above, we may assume that they are base point free.

Let C := S ∩ S′. We claim that C is reduced. If g = 3, we may specialise V ′ to a general
2–dimensional subspace containing sd ; in this case S ∩ S′ = E3 + �, with � a line, which
is reduced. If g = 4 and C is not reduced, then the intersection of the two hyperplanes
containing S and S′ would be a P3 in P5 that is tangent to X along a component of C , against
Zak’s theorem on tangencies (see [38, Thm. 3.2.3]).

Possibly replacing Ed by a general member of |Ed |, the intersection Z := Ed ∩ C is
transversal and consists of d distinct points, along the smooth locus of C . Pick any x ∈ Z
and pick the unique curve E ′ = Z(s′), for s′ ∈ H0(F), in the pencil P(V ′) passing through
x . Then Ed and E ′ can only intersect along C , and if the intersection consists of fewer than
d points, then the lemma is proved, by what we said above. Hence, we may assume that
E ∩ E ′ = Z . In particular, the surface S := Z(s ∧ s′) has d nodes at Z . Since C is smooth at
Z , it cannot lie on S, as it would be a Cartier divisor on it, because C ⊂ S ∩ S and equality
holds as both sides have degree 2g −2. But then 2 g −2 = C · S � 2d = 2 g, a contradiction,
as desired. ��

4 Proof of Theorem 1.1

We will use induction on d , starting with the case d = dg :=
⌊

g+3
2

⌋
, recalling that there are

no smooth elliptic curves of degree d in X if d < dg by Corollary 3.9.

6 Indeed, if A and B are curves in a smooth threefold X intersecting transversally in one point p, then one
locally has JA/X |B � OB ⊕Op . To prove this, introduce coordinates (x, y, z) around p, such that the ideal
of B is (x, y) and the ideal of A is (y, z). Then JA/X |B is locally isomorphic to

(y, z) ⊗ C[[x, y, z]]
(x, y)

� (y, z)

(x, y) · (y, z)
,

which we have to view as a C[[z]]–module. As such we see that y generates its torsion (because zy = 0), and
z generates its free part.
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4.1 The base case d = dg

The key result is the following:

Proposition 4.1 Let X ⊂ P
g+1 be a prime Fano threefold of degree 2g − 2. Then there is

a codimension–one family of hyperplane sections of X containing smooth elliptic curves of
degree dg, whereas a general hyperplane section does not contain such curves.

Proof Let g ∈ {3, . . . , 10, 12}. By [31, Lemma 3.7] there exists a smooth K3 surface S ⊂ P
g

containing a smooth elliptic curve E (whence E2 = 0) satisfying deg(E) = dg and such
that (S,OS(1)) is a so–called B N–general polarized K3 surface, as defined by Mukai in
[36, Def. 3.8]7. (This a consequence of the surjectivity of the period map for K3 surfaces.)
From [36, Thms. 4.4 and 5.5] it follows that S can be realized as a hyperplane section of
a prime Fano threefold X of degree 2g − 2 in P

g+1. The general hyperplane section of X
does however not contain any smooth elliptic curves, as its Picard group is generated by its
hyperplane section (cf. [39, Thm. 3.33]).

Consider now

• the Hilbert scheme Fg parametrizing (smooth) prime Fano threefolds of degree 2g − 2
in P

g+1,
• the closure Kg of the Hilbert scheme parametrizing smooth B N -general K3 surfaces of

degree 2g − 2 in P
g+1,

• the closure Eg of the Hilbert scheme parametrizing smooth elliptic curves of degree dg

in P
g+1,

• the subscheme K∗
g of Kg parametrizing [S] ∈ Kg such that S contains a member of Eg ,

• the incidence variety Ig parametrizing pairs (S, X) such that [S] ∈ Kg , [X ] ∈ Fg and
S ⊂ X ,

• the natural projections α : Ig → Kg and β : Ig → Fg .

It is well-known that both Kg and Fg are irreducible and that K∗
g is a divisor in Kg . Set

k := dim(Kg) and f := dim(Fg).
For any [X ] ∈ Fg the fiber β−1([X ]) is isomorphic to the complete linear system

|OX (1)| � P
g+1. Hence dim(Ig) = f + g + 1, whence the general fiber of p has dimen-

sion f + g + 1 − k. Thus, special fibers have dimension at least f + g + 1 − k, whence
dim(α−1(K∗

g)) � (k − 1) + ( f + g + 1 − k) = f + g.
By what we said above, α−1(K∗

g) is nonempty and all fibers of β|α−1(K∗
g) have dimension

at most g. It follows that

dim(β(α−1(K∗
g)) � dim(α−1(K∗

g)) − g � f + g − g = f .

Therefore,β|p−1(K∗
g) is surjective. It follows thatanyprimeFano threefold X ⊂ P

g+1 contains
a codimension one family of hyperplane sections containing a curve E that is a member of
Eg , whereas a general hyperplane section does not contain such a curve.

Let (E, S) be a general pair consisting of a hyperplane section S of X and a curve E in
Eg contained in S. We may write E = E ′ + R, with E ′ minimal with respect to the property

7 A polarized K3 surface (S, H) of genus g is by definition B N–general if h0(M)h0(N ) � g for all nontrivial
M, N ∈ Pic(S) such that H ∼ M + N . One may prove, using the famous result of Lazarsfeld [32], that for
g ∈ {3, . . . , 10, 12} this condition is equivalent to the fact that all smooth curves C ∈ |H | are Brill–Noether
general, that is, carry no line bundles A with ρ(A) < 0, where ρ is the Brill–Noether number. One may also
prove that the general smooth curve in |H | is Brill–Noether–Petri general, that is, it has injective Petri map
for all line bundles A on C . We will however not need this.
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that pa(E ′) = 1; thus R must consist of smooth rational curves and E ′ is of degree d ′ � dg .
By Lemma 2.2, the surface S has at worst a rational double point (at a general point of X ).
By considering the desingularization of S, one sees that E ′ is linearly equivalent to a smooth,
irreducible elliptic curve on S. By Corollary 3.9, we must have d ′ = dg , so that E = E ′.
This proves that S contains a smooth elliptic curve of degree dg . ��
Remark 4.2 A similar reasoning using [31, Lemma 3.7] proves that a general prime Fano
threefold X ⊂ P

g+1 contains smooth elliptic curves of any degree d � dg , but it fails to
guarantee that all such threefolds contain such curves.

Remark 4.3 Something can be said about the structure of the Hilbert schemes Hdg (X).

(i) Let X ⊂ P
4 be a smooth quartic threefold. There is a map H3(X) → L(X), sending a

cubic E to the unique line residual intersection of X with the plane spanned by E . The fibers
are isomorphic to P

2.
(ii) Let X ⊂ P

5 be a smooth prime Fano threefold of degree 6. Then X is contained in a
unique quadric Q X , which is either smooth or a cone with vertex a point, and is cut out by a
cubic there. We have dim(H3(X)) = 3 by Propositions 4.1 and 3.8. Any cubic E in H3(X)

spans a plane, which is contained in Q X , and distinct cubics clearly span distinct planes. If
Q X is smooth, it contains two families of planes both parametrised by a P3, whence H3(X)

has two irreducible components. If Q X is singular (that is, X is as in (�)4), it contains only
one family of planes, whence H3(X) is irreducible.

(iii) Let X ⊂ P
6 be a smooth prime Fano threefold of degree 8, which is the complete

intersection of three quadrics. Any smooth elliptic normal quartic E ⊂ X is a complete
intersection of two quadrics in its span 〈E〉 = P

3. Since X is intersection of three quadrics
in P6, then 〈E〉 is contained in one of the quadrics containing X , which is therefore singular.
Let H be the Hesse curve, namely the curve in the net of quadrics |IX/P6(2)| parametrizing
singular quadrics. Then any point h ∈ H corresponds to a quadric Qh having at most a
double line as singular locus, and it is easy to see that quadrics Qh having a double line are
isolated in H. Therefore, the maximal dimension for linear spaces contained in Qh , for any
h ∈ H, is 3. This gives a 2 : 1 cover f : H̃ −→ H defined as follows: for h ∈ H general,
f −1(h) consists of two points corresponding to the two distinct rulings of P3s contained in
Qh . Thus f ramifies exactly at points h ∈ H corresponding to quadrics Qh with a double
line. The map f induces a map g : P −→ H̃, where P is a P3–bundle over H̃ such that, for
any h′ ∈ H̃, the fiber g−1(h′) parametrizes the ruling of P3s corresponding to h′ and which is
contained in Q f (h′). Any elliptic normal quartic E ⊂ X determines a point in P; conversely,
any point in P gives rise to a P3 which cuts out on X a normal elliptic quartic curve E in X .
Thus H4(X) is isomorphic to P .

(iv) For g � 6 it is shown in [7, Thm. 3.2] thatMdg (X) is irreducible, whence alsoHdg (X)

is irreducible by Proposition 3.8(i). We will however not use this.

Lemma 4.4 Let X ⊂ P
g+1 be a prime Fano threefold of degree 2g − 2 not as in case (�)4.

Let [Edg ] ∈ Hdg (X) be general in any component of Hdg (X). Then h1(NEdg /X ) = 0.

Proof We first note that since d3 = 3, the lemma is proved for g = 3 by Lemma 3.10. We
may therefore assume that g � 4.

Let H′ be an irreducible component of Hdg (X) and let M′ := p(H′) (cf. (6) and recall
that p is surjective by Proposition 3.8(i)). Denote by S′ the locus in Sdg (X) of hyperplane
sections of X of the form Z(s1 ∧ s2) for (non–proportional) s1, s2 ∈ H0(Fdg ) for some
[Fdg ] ∈ M′. By Proposition 3.8(iii), the general member S of S′ has at most a rational
double point and contains a pencil of curves that are all zero loci of sections of a memberFdg
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of M′ (which we may take to be general), having at most a single base point at the rational
double point. We write the pencil as |Edg |, where we may take [Edg ] ∈ H′ to be general. We
henceforth write E = Edg and F = Fdg for simplicity.

Assume first that we are in the case where |E | has a base point. Let E ′ ∈ |E | be a smooth
curve different from E and let s′ ∈ H0(F) be such that E ′ := Z(s′). Then E and E ′ intersect
transversally in one point x . A local computation as in the footnote of page 10 shows that
JE ⊗OX OE ′ has torsion along x . Restricting

0 �� OX
s′

�� F �� JE ′/X (1) �� 0

to E and saturating (and recalling Lemma 3.5(i)) one therefore obtains

0 �� OE (x) �� F |E � NE/X �� OE (Z) �� 0,

with deg(Z) = dg − 1 > 0. Therefore, h1(NE/X ) = 0, as desired.
For the rest of the proof we may therefore assume that |E | is base point free on S, in

particular, we may assume that E does not pass through the possible rational double point
of S. In particular, the divisor � := OS(1)(−E) is Cartier on S. Since h0(JE/X (1)) �
g + 2 − dg � 3 by Lemma 3.5(iii), the short exact sequence

0 �� OX �� OX (1) ⊗ JE/X �� OS(�) �� 0

yields that h0(�) � 2, whence � can be represented by an effective nonzero divisor.

Claim 4.5 h1(NE/X ) �= 0 if and only if there is a section of F whose zero locus is �. This
can only occur for g = 4 or 5.

Proof of claim By Lemmas 3.5(v) and 3.8(ii) we have h1(F) = h2(F) = 0, whence

0 �� F ⊗ JE/X �� F �� F |E � NE/X �� 0

shows that h1(NE/X ) = h2(F ⊗ JE/X ). By Lemma 3.5(iv) and

0 �� F(−1) �� F ⊗ JE/X �� F |S(−E) �� 0,

together with Serre duality on S (recalling that S, having only rational singularities, is Cohen–
Macaulay), we see that

h2(F ⊗ JE/X ) = h2(F |S(−E)) = h0(F∗|S(E))

= h0(F |S(−1)(E)) = h0(F |S(−�)).

By Lemma 3.5(iv) once more and

0 �� F(−1) �� F ⊗ J�/X �� F |S(−�) �� 0

we get h0(F |S(−�)) = h0(F ⊗ J�/X ). To summarize, we have proved that h1(NE/X ) =
h0(F ⊗ J�/X ). These are nonzero if and only if there is a section of F whose zero locus
contains �. If this happens, we must have deg(�) = 2g − 2 − dg � deg(E) = dg , which
can only occur if g � 5, in which case deg(�) = deg(E) = dg , whence the zero locus of
the section equals �. ��
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Thus the lemma is proved except for the cases g = 4 and 5, which we now treat.
One computes �2 = 0, whence pa(�) = 1, and deg(�) = dg . As in the proof of

Proposition 4.1 we may write � = �′ + R with �′ minimal with respect to the property that
pa(�′) = 1, and one may again check that �′ can be represented by a smooth curve. Thus,
Corollary 3.9 yields that � = �′; in other words, we may assume that |�| is a pencil whose
general member is a smooth elliptic curve of degree dg .

We now treat the cases g = 4 and g = 5 separately.
First we examine the case g = 4, where dg = 3. We prove that if h1(NE/X ) �= 0,

then X ⊂ P
5 is contained in a quadric cone. We argue by contradiction and assume that X

is contained in a smooth quadric Q. Recalling the map (5), we may write [S] = w([V ]),
where V is a general member of Grass(2, H0(F)) = Grass(2, 4). Then the pencil |E |,
whose general member is a smooth plane cubic, equals P(V ). The surface S is contained in a
hyperplane πS of P5 and it is there a complete intersection of type (2, 3). The unique quadric
QS containing S is the intersection QS = Q ∩πS . Since S contains a pencil of plane cubics,
the quadric QS contains a pencil of planes, thus it is singular. Since Q is smooth, QS must
be of rank 4, hence it is a cone with vertex a point, and therefore it contains a unique other
pencil of planes that cut out on S the pencil |�|, with |E | and |�| distinct. By the claim,
there is another V ′ in Grass(2, H0(F)) such that w([V ′]) = S and P(V ′) = |�|, and then
w−1([S]) = {[V ], [V ′]}. Let us now interpret the map w in (5) as a generically 2 : 1 map

w : Grass(2, H0(F)) −→ (P5)∗

We have that w(Grass(2, H0(F))) = Q∗. The above argument shows that w cannot have
any ramification point, since it would correspond to a hyperplane section of Q of rank 3.
This is absurd since Q∗, which is itself a smooth quadric in P

5, is simply connected. This
gives a contradiction that proves that Q must be a quadric cone.

Next we consider the case g = 5, where dg = 4. We assume that h1(NE/X ) �= 0 and
want to reach a contradiction. As we saw above, the surface S is endowed with two distinct
pencils |E | and |�| of elliptic quartic curves. Then E · � = 4 and, by the claim, E and
� are both zero schemes of two sections s and s′ of F . We can consider W = 〈s, s′〉 and
[S′] = w([W ]); then S′ is a surface with 4 singular points at the intersection of E and �,
which we can assume to be general in |E | and |�|. The four singular points in question,
forming a scheme Z , lie in a plane α, because on both E and� they are a hyperplane section.
Let us consider the projection π of S′ from α to a plane β. The surface S′ has a pencil P(W )

of elliptic quartic curves that contains both E and �. The curves of this pencil, all containing
the scheme Z , are contracted to points by the projectionπ and therefore the image of S′ under
this projection is a curve. A general hyperplane section of S′ containing E consists of E plus
another elliptic quartic curve E ′ that, as E , passes through Z . Hence E ′ is also contracted
by π , thus E ′ belongs to P(W ) as well as E . This implies that OS′(1) ∼ 2E ∼ 2E ′, whence
π(S′) is a conic. This proves that S′ sits on a quadric Q′ that is a cone with vertex the plane
α. The quadric Q′ is the hyperplane section of a quadric Q in P6 containing X , and Q must
be singular with vertex a line.

As in the proof of Proposition 3.88 let us consider the universal grassmannian bundle
G → M4(X), whose points correspond to pairs ([F], [V ]) with [F] ∈ M4(X) and [V ] ∈
Grass(2, H0(F)), and the map w : G → |OX (1)| as in (12). In the proof of Proposition 3.8
we proved that dim(G) = g = 5 and that w is generically finite.

As in the case g = 4, we have an involution ι : G ��� G, such that for a general
([F], [V ]) ∈ G, one has ι([F], [V ]) = ([F], [V ′]) and w([F], [V ]) = w([F], [V ′]), with
8 Again we pretend that M4(X) is a fine moduli space; if not we argue similarly at a local level.

123



C. Ciliberto et al.

P(V ) andP(V ′) two pencils of elliptic quartic curves on the surface defined byw([F], [V ]) =
w([F], [V ′]). The fixed points of the involution ι form a non–zero divisor D inG. The image
via the mapw of a generic point ([F], [V ]) in a suitable component of D is a surface S with
four singular points on a plane, with the unique pencil P(V ) of elliptic quartic curves passing
through the four singular points. Such surfaces therefore lie, as we saw, on a quadric cone
with vertex a plane. Accordingly, we have a family of quadrics containing X that are cones
with vertex a line. This family must have at least dimension 1, because a unique quadric
in P

6 with vertex a line gives rise only to a 3–dimensional family of hyperplane sections
with vertex a plane. In conclusion, in the net N of quadrics that cut out X , there is at least a
one–dimensional subfamily V of quadrics with vertex a line. Let [Q] ∈ V be a general point.
Then N is spanned by the tangent line L to V at Q and by another general quadric Q′. Now
the quadrics in the pencil L all contain the singular line � of Q, so they cut out a complete
intersection singular along �. By intersecting with Q′ we see that X must be singular at the
intersection points of Q′ with �, a contradiction. ��
Lemma 4.6 Let X ⊂ P

5 be a smooth prime Fano threefold of degree 6 as in case (�)4. Then
H3(X) is nonreduced with 4–dimensional tangent space at every point.

Proof By Lemma 3.7 and Remark 4.3(ii) it suffices to prove that h1(NE/X ) > 0 for general
[E] ∈ H3(X). By definition, X is contained in a singular quadric Q X with vertex one point.
From the exact sequence

0 �� NE/X �� NE/Q X
�� NX/Q X |E � OE (3) �� 0

we see that it suffices to prove that h1(NE/Q X ) > 0.
Consider the incidence variety

I = {(Q, C) : Q ∈ |O
P5(2)|, C ⊂ Q, C plane cubic}

with the projection f : I → |O
P5(2)|. If Q ∈ |O

P5(2)| is smooth, the fiber f −1(Q) consists
of two irreducible components of dimension 12, and both are P9–bundles over P3. Indeed,
a plane cubic C sits in Q if and only if the plane its spans lies in Q, and Q contains two
families of planes both parametrised by a P3. If Q is singular with vertex one point, then the
fiber f −1(Q) consists of only one irreducible component of dimension 12, which is again a
P
9–bundle over P3, since Q contains only one family of planes. Therefore f −1(Q X ) is non–

reduced. Since it is isomorphic to the component of the Hilbert scheme of Q X parametrising
plane cubics, we see that this component is non–reduced. Hence h1(NE/Q X ) > 0, as wanted.

��
Proposition 4.1 guarantees that Hdg (X) �= ∅ on any prime Fano threefold X ⊂ P

g+1, and
Proposition 3.8(i) yields that each component has dimension dg . By Lemma 4.4 and standard
theory of Hilbert schemes, Hdg (X) is smooth at a general point of each component, whence
reduced, except in case (�)4, where H3(X) is irreducible of dimension 3 by Remark 4.3(ii),
with 4–dimensional tangent space everywhere by Lemma 4.6.

Finally, for general [Edg ] ∈ Hdg (X) one has h1(JEdg (X)/X (1)) = 0 by Proposition 3.8(ii),
whence Edg (X) is an elliptic normal curve (cf. Remark 3.6).

This concludes the proof of Theorem 1.1 in the case d = dg .

4.2 The inductive step

Assume that dg � d � g + 2 and that Theorem 1.1 has been proved for the integer d . We
will prove that it also holds for d + 1, that is, that Hd+1(X) has a reduced component of

123



Elliptic curves, ACM bundles...

dimension d containing points representing elliptic normal curves if d + 1 � g + 2 and
nondegenerate curves if d + 1 = g + 3. To do so, it will be sufficient, by standard theory of
Hilbert schemes and Remark 3.6, to prove the existence of a smooth elliptic curve Ed+1 of
degree d + 1 in X such that h1(NEd+1/X ) = 0 and

h1(JEd+1/X (1)) =
{
0, if d + 1 � g + 2,

1, if d + 1 = g + 3.

Denote by Hd(X)′ a component of Hd(X) satisfying the conditions of Theorem 1.1. This
means that dim(Hd(X)′) = d and, except for the case (�)4 with d = 3, the schemeHd(X)′ is
reduced, whence h0(NEd/X ) = d for general [Ed ] ∈ Hd(X)′, equivalently h1(NEd/X ) = 0
by Lemma 3.7. Furthermore, h1(JEd/X (1)) = 0 (cf. Remark 3.6).

•The case d � g + 1. By Proposition 3.8(v), the general curve Ed in Hd(X)′ intersects
R1(X) transversally in distinct points, and through each point there passes a (unique) line
intersecting Ed transversally in one point. Pick any of these lines � and call the intersection
point P . Set E ′ = Ed ∪ �. Recall that the first cotangent sheaf T 1

E ′ of E ′ is isomorphic to
OP , since E ′ has the node at P as its only singularity. By local computations (see, e.g., the
proof of [26, Thm. 4.1]), we have the exact sequences

0 �� NE ′/X
�� NE ′/X |Ed ⊕ NE ′/X |� �� NE ′/X |P � OP ⊕ OP �� 0,

(17)

0 �� N�/X �� NE ′/X |� �� OP �� 0, (18)

0 �� NEd/X �� NE ′/X |Ed
�� OP �� 0. (19)

Thus, from (17)–(19), and recalling (2) and Lemma 3.5(i), we find

χ(NE ′/X ) = χ(NE ′/X |Ed ) + χ(NE ′/X |�) − 2

= (
χ(NEd/X ) + 1

) + (
χ(N�/X ) + 1

) − 2

= χ(NEd/X ) + χ(N�/X ) = d + 1.

Hence, by standard deformation theory, the Hilbert scheme of X has dimension at least d +1
in a neighborhood U of [E ′]. Since the sublocus of reducible curves of the form Ed ∪ � has
dimension equal to dim(Hd) = d (by Proposition 3.8(i)), the general member of Umust be a
smooth elliptic curve. Thus, we have proved thatHd+1(X) is nonempty and has a component
Hd+1(X)′ containing elements of the form Ed ∪� in its closure, with [Ed ] ∈ Hd(X)′ general
and � a line intersecting Ed transversally in one point.

We now prove that Hd+1(X)′ contains elements Ed+1 such that h1(NEd+1/X ) = 0. This
is automatically satisfied if d + 1 = g = 4 by Lemma 3.10. Therefore, we may assume that
h0(NEd/X ) = d and h1(NEd/X ) = 0 for general [Ed ] ∈ H′

d .
As we just saw, we may specialize a general Ed+1 in Hd+1(X)′ in a flat family to a

curve E ′ := Ed ∪ �, with Ed a general member of Hd(X)′ and � a line intersecting Ed

transversally in one point P . Arguing by contradiction, using Lemma 3.7, we will assume
thatNEd+1/X � OEd+1 ⊕OEd+1(1). In particular, h0(NEd+1/X ) = d +2, whence H0(NE ′/X )

contains a (d + 2)–dimensional space V of limit sections. Consider V� (respectively VEd )
the subspace of H0(NE ′/X ) of sections identically zero on � (resp. Ed ). Then, by (17) and
(19), we find

dim(V�) � h0(NE ′/X |Ed ) � h0(NEd/X ) + h0(OP ) = d + 1.
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Similarly, from (17) and (18), together with (2), we find

dim(VEd ) � h0(NE ′/X |�) � h0(N�/X ) + h0(OP ) � 2 + 1 = 3 < d + 1.

Thus, both V� and VEd are properly contained in V . This means that the limit of a general
section s : OEd+1 → NEd+1/X is a section s′ : OE ′ → NE ′/X not vanishing along any
component of E ′, that is, being still injective. Since s is split, the same is true for s′, that is,
NE ′/X � OE ′ ⊕coker(s′). SinceNE ′/X is locally free, as E ′ is nodal, whence a local complete
intersection, coker(s′) must be locally free, hence isomorphic to OE ′(1), as det(NE ′/X ) �
OE ′(1). We have therefore proved that NE ′/X � OE ′ ⊕ OE ′(1). Restricting to � we obtain
NE ′/X |� � O� ⊕O�(1). Hence (18) yields χ(N�/X ) = 2, in contradiction with (2). We have
therefore proved that the general member Ed+1 in Hd+1(X)′ satisfies h1(NEd+1/X ) = 0.

We have left to prove that h1(JEd+1/X (1)) = 0. This is satisfied if d � g by Proposition
3.8(ii). If d = g + 1 we may as above specialize Eg+2 in a flat family to E ′ := Eg+1 ∪ �. By
what we just proved, h1(JEg+1/X (1)) = 0, whence h0(JEg+1/X (1)) = 1 by Lemma 3.5(iii).
Since, by Proposition 3.8(v), there is a hyperplane section of X containing Eg+1 but not �,
we have h0(JEg+1∪�/X (1)) = 0. Hence, by semicontinuity, h0(JEg+2/X (1)) = 0 as well, so
that h1(JEg+2/X (1)) = 0 by Lemma 3.5(iii) again, as desired.

This concludes the proof of Theorem 1.1 in the case d � g + 1.
•The case d = g + 2. By Proposition 3.8(v)–(vi), the general curve Eg+1 in Hg+1(X)′

intersects R1(X) in at least two points x and y through which there pass unique lines �x and
�y and such that �x ∩ �y = ∅ and each intersects Eg+1 transversally at one point. By the first
part of the proof, Eg+1 ∪ �x deforms to a smooth elliptic curve Eg+2 in Hg+2(X) having
the property that h1(NEg+2/X ) = 0. Thus, we find a component Hg+2(X)′ of Hg+2(X) of
dimension dim(Hg+2(X)′) = g +2 with general member Eg+2 satisfying h1(NEg+2/X ) = 0
and containing Eg+1 ∪ �x in its closure. The latter curve has the property that the line �y

intersects it transversally in one point. Since this is an open property among members of
the closure of Hg+2(X)′, and the general member intersects finitely many lines, it also holds
for the general one. This means that for the general [Eg+2] ∈ Hg+2(X)′, there is a line �

intersecting Eg+2 transversally in one point. The first part of the proof applied once more
yields that Eg+2∪� deforms to a smooth elliptic curve Eg+3 inHg+3(X) having the property
that h1(NEg+3/X ) = 0.

Since h0(JEg+2/X (1)) = h1(JEg+2/X (1)) = 0 by the induction hypothesis and Lemma
3.5(iii),we also have h0(JEg+2∪�/X (1)) = 0,whence h0(JEg+3/X (1)) = 0 by semicontinuity.
By Lemma 3.5(iii) again, we find h1(JEg+3/X (1)) = 1.

This concludes the proof of Theorem 1.1.

5 Proof of Theorem 1.2

LetHd(X)′ be a component ofHd(X) satisfying the conditions of Theorem 1.1. LetMd(X)′
be a component of Md(X) containing p(Hd(X)′), cf. (6). We will prove Md(X)′ and its
general member satisfy the conditions of Theorem 1.2.

Let [Ed ] ∈ Hd(X)′ be general and [Fd ] = p([Ed ]) (cf. (6)). Then Fd satisfies (1) by (4)
and is slope–stable.

In the case where d = 3 and X is as in (�)4, we have that H3(X) is irreducible by Remark
4.3(ii), whenceM3(X) = p(H3(X)) is also irreducible, and of dimension 0, by Proposition
3.8(i). Moreover, by Lemmas 3.7 and 4.4, we have h1(NE3/X ) = 1 in this case; therefore, as
h1(F3) = 0 by Proposition 3.8(ii), we have h2(F3 ⊗ F∗

3 ) = 1 by Lemma 3.5(vi). Using the
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remaining identities in Lemmas 3.3(ii) and 3.5(vi) and standard theory on moduli spaces of
vector bundles, we find that the tangent space at the general point ofM3(X)′ has dimension

h1(F3 ⊗ F∗
3 ) = −χ(F3 ⊗ F∗

3 ) + h0(F3 ⊗ F∗
3 ) + h2(F3 ⊗ F∗

3 ) − h3(F3 ⊗ F∗
3 ) = 1.

In the remaining cases, Hd(X)′ is reduced of dimension d , whence h0(NEd/X ) = d and
h1(NEd/X ) = 0 for general [Ed ] ∈ Hd(X)′ (cf. Lemma 3.7). Hence h2(Fd ⊗F∗

d ) = h3(Fd ⊗
F∗

d ) = 0 by Lemma 3.5(vi), in addition to h0(Fd ⊗F∗
d ) = 1 and χ(Fd ⊗F∗

d ) = g − 2d + 3
by Lemma 3.3(ii). By standard theory of moduli spaces of vector bundles (see, e.g., [14,
Prop. 2.10]),Md(X)′ is smooth at [Fd ] of dimension

h1(Fd ⊗ F∗
d ) = −χ(Fd ⊗ F∗

d ) + h0(Fd ⊗ F∗
d ) = 2d − g − 2.

We have left to prove that the general memberF ′
d inMd(X)′ is AC M . Since h2(F ′

d(n)) =
h1(F ′∗

d(−n − 1)) = h1(F ′
d(−n)) for all n ∈ Z, we see that it suffices to prove that

h1(F ′
d(n)) = 0 for all n ∈ Z.

From (3) and (7) we see that

h1(Fd(n)) = h1(JEd/X (n + 1)) = cork
{

H0(OX (n + 1) → H0(OEd (n + 1)
}

for all n ∈ Z. Thus, as X is projectively normal, Fd is AC M if and only if Ed is projectively
normal, which happens precisely when Ed is an elliptic normal curve. We are therefore done
by Theorem 1.1 in the case d � g + 2.

In the case d = g + 3 we have h1(JEg+3/X (1)) = 1 by Theorem 1.1 and Remark 3.6.
Consequently, h0(Fg+3) = h1(Fg+3) = 1 and h2(Fg+3) = h3(Fg+3) = 0 by Lemmas
3.3(i) and 3.5(v), so that Fg+3 is not AC M . On the other hand we have:

Lemma 5.1 For general [F ′
g+3] ∈ Mg+3(X)′ we have hi (F ′

g+3) = 0 for all i . In particular,
F ′

g+3(1) is Ulrich and F ′
g+3 is AC M.

Proof We have dim(Hg+3(X)′) = g + 3 by Theorem 1.1, and dim(Mg+3(X)′) = 2(g +
3) − g − 2 = g + 4 by what we just proved. Thus p|Hg+3(X)′ : Hg+3(X)′ → Mg+3(X)′ is
not surjective, whence h0(F ′

g+3) = 0 for general [F ′
g+3] ∈ Mg+3(X)′. By semicontinuity,

h2(F ′
g+3) = h3(F ′

g+3) = 0. Lemma 3.3(i) then yields h1(F ′
g+3) = 0. This proves the first

assertion.
By Serre duality and the fact that F ′

g+3
∗ � F ′

g+3(−1), we also have

hi (F ′
g+3(−2)) = h3−i (F ′

g+3
∗
(1)) = h3−i (F ′

g+3) = 0 for all i .

By Lemma 3.5(iv) and semicontinuity we have hi (F ′
g+3(−1)) = 0 for all i . Therefore,

F ′
g+3(1) is Ulrich, whence in particular all its twists are AC M (see, e.g, [3, (3.1)]). ��
This concludes the proof of Theorem 1.2.
Note that we have also proved the following

Corollary 5.2 Let X ⊂ P
g−1 be a prime Fano threefold of degree 2g − 2. There exists a

slope–stable rank–two Ulrich bundle with determinant OX (3) on X. The moduli space of
such bundles has a reduced component of dimension g+4 and its general member E satisfies

h0(E ⊗ E∗) = 1, h1(E ⊗ E∗) = g + 4, h2(E ⊗ E∗) = h3(E ⊗ E∗) = 0. (20)

Proof This follows from the case d = g + 3 of Theorem 1.2 and Lemma 5.1, letting E :=
Fg+3(1). Recall that we have proved that h2(Fg+3 ⊗ F∗

g+3) = 0; the rest of (20) follows
from Lemmas 3.3(ii) and 3.5(vii) and semicontinuity. ��
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6 Ulrich bundles of higher ranks on prime Fano threefolds

In this section we will inductively define families of vector bundles of all even ranks on any
prime Fano threefold, whose general members will be slope–stable Ulrich bundles, and thus
prove Theorem 1.3.

We start by defining the schemeUX (1) to be any irreducible component of themoduli space
of vector bundles on X containing rank–two slope–stable Ulrich bundles E with det(E) =
OX (3) and satisfying (20), which is nonempty by Corollary 5.2.

Having defined UX (h) for some h � 1, we define UX (h + 1) to be the (a priori possibly
empty) component of the moduli space of Ulrich bundles on X containing bundlesFh+1 that
are non–split extensions of the form

0 �� E ′
1

�� Fh+1 �� Eh �� 0, (21)

with [E ′
1] ∈ UX (1) and [Eh] ∈ UX (h), and such that E ′

1 �� Eh when h = 1.We letUX (h+1)ext

denote the locus in UX (h + 1) of bundles that are non–split extensions of the form (21).
In the next lemma and its proof we will use the following notation: E ′

1 will be a general
member of UX (1) and Eh will be a general member of UX (h), with Eh �� E ′

1 if h = 1. We
will denote by Fh a general member of UX (h)ext. In bounding cohomologies, we will use
the fact that Eh specializes to Fh in a flat family.

Lemma 6.1 Let h ∈ Z
+ and assume UX (k) �= ∅ for all 1 � k � h. Then

(i) h j (Eh ⊗ E ′
1
∗
) = h j (E ′

1 ⊗ E∗
h ) = 0 for j = 2, 3,

(ii) χ(Eh ⊗ E ′
1
∗
) = χ(E ′

1 ⊗ E∗
h ) = −h(g + 3),

(iii) h j (Eh ⊗ E∗
h ) = 0 for j = 2, 3,

(iv) χ(Eh ⊗ E∗
h ) = −h2(g + 3),

Proof For h = 1, (iii) and (iv) follow from (20) and semicontinuity. As for (i), the vanishings
hold when E ′

1 = E1 by (20), and thus, by semicontinuity, they also hold for a general pair
([E ′

1], [E1]) ∈ UX (1)×UX (1). Similarly, (ii) follows from (20), since the given χ is constant
as E1 and E ′

1 vary in UX (1).
We now prove the statements for any integer h � 2 by induction. Assume therefore that

they are satisfied for all integers less than h.
(i) Let j ∈ {2, 3}. By specialization and (21) we have

h j (Eh ⊗ E ′
1
∗
) � h j (Fh ⊗ E ′

1
∗
) � h j (E ′

1 ⊗ E ′
1
∗
) + h j (Eh−1 ⊗ E ′

1
∗
),

and this is 0 by induction. Similarly, by specialization and the dual of (21) we have

h j (E ′
1 ⊗ Eh

∗) � h j (E ′
1 ⊗ Fh

∗) � h j (E ′
1 ⊗ E ′

1
∗
) + h j (E ′

1 ⊗ Eh−1
∗),

which is again 0 by induction.
(ii) By specialization, (21) and induction we have

χ(Eh ⊗ E ′
1
∗
) = χ(Fh ⊗ E ′

1
∗
) = χ(E ′

1 ⊗ E ′
1
∗
) + χ(Eh−1 ⊗ E ′

1
∗
)

= −(g + 3) − (h − 1)(g + 3) = −h(g + 3).

Likewise, by specialization, the dual of (21) and induction we have

χ(E ′
1 ⊗ Eh

∗) = χ(E ′
1 ⊗ Fh

∗) = χ(E ′
1 ⊗ E ′

1
∗
) + χ(E ′

1 ⊗ Eh−1
∗)

= −(g + 3) − (h − 1)(g + 3) = −h(g + 3).
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(iii) Let j ∈ {2, 3}. By specialization, (21) and its dual we have

h j (Eh ⊗ E∗
h ) � h j (Fh ⊗ F∗

h ) � h j (E ′
1 ⊗ F∗

h ) + h j (Eh−1 ⊗ F∗
h )

� h j (E ′
1 ⊗ E ′

1
∗
) + h j (E ′

1 ⊗ E∗
h−1) + h j (Eh−1 ⊗ E ′

1
∗
) + h j (Eh−1 ⊗ E∗

h−1),

which is 0 by induction.
(iv) By specialization, (21) and its dual we have

χ(Eh ⊗ E∗
h ) = χ(Fh ⊗ F∗

h ) = χ(E ′
1 ⊗ F∗

h ) + χ(Eh−1 ⊗ F∗
h )

= χ(E ′
1 ⊗ E ′

1
∗
) + χ(E ′

1 ⊗ E∗
h−1) + χ(Eh−1 ⊗ E ′

1
∗
) + χ(Eh−1 ⊗ E∗

h−1).

By induction, this equals

−(g + 3) − (h − 1)(g + 3) − (h − 1)(g + 3) − (h − 1)2(g + 3) = −h2(g + 3).

��

Proposition 6.2 For all h ∈ Z
+ the scheme UX (h) is nonempty and its general member E is

Ulrich and satisfies rk(E) = 2h, det(E) = OX (3 h) and h j (E ⊗ E∗) = 0 for j = 2, 3.

Proof We prove this by induction on h, the case h = 1 being satisfied by the choice ofUX (1).
By Lemma 6.1(i)–(ii) we have, for general [Eh] ∈ UX (h) and [E ′

1] ∈ UX (1), that

dim(Ext1(Eh, E ′
1)) = h1(E ′

1 ⊗ E∗
h ) = −χ(E ′

1 ⊗ E∗
h ) + h0(E ′

1 ⊗ E∗
h ) � h(g + 3) > 0.

(22)

Hence, by definition, UX (h + 1) �= ∅. Its members have ranks 2(h + 1) and determinant
OX (3(h + 1)). It is immediate that extensions of Ulrich bundles are still Ulrich bundles, so
the general member Eh+1 of UX (h + 1) is an Ulrich bundle. It satisfies h j (Eh+1 ⊗E∗

h+1) = 0
for j = 2, 3 by Lemma 6.1(iii). ��

To finish the proof of Theorem 1.3 we have left to prove that the general member ofUX (h)

is slope–stable and that UX (h) is smooth of dimension h2(g + 3)+ 1 at its general point. We
will again prove this by induction on h. First we need an auxiliary result.

Lemma 6.3 Let Fh+1 be a general member of UX (h + 1)ext, sitting in an extension like (21).
Assume furthermore that E ′

1 and Eh are slope–stable.
Let G be a destabilizing subsheaf of Fh+1. Then G∗ � E ′

1
∗ and (Fh+1/G)∗ � E∗

h−1.

Proof We note that (21) yields

μ(Fh+1) = μ(E ′
1) = μ(Eh) = 3(g − 1),

where μ as usual denotes the slope of a sheaf with respect to OX (1). Assume that G is a
destabilizing subsheaf of Fh+1, that is 0 < rk(G) < rk(Fh+1) = 2(h + 1) and μ(G) �
3(g − 1). Define

Q := im{G ⊂ Fh+1 → Eh} and K := ker{G → Q}.
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Then we may put (21) into a commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 �� K

��

�� G ��

��

Q ��

��

0

0 �� E ′
1

��

��

Fh+1 ��

��

Eh

��

�� 0

0 �� K′ ��

��

Fh+1/G ��

��

Q′ ��

��

0

0 0 0

(23)

defining K′ and Q′.
Assume that rk(Q) = 0. Since Eh is torsion-free, we must have Q = 0, whence K � G.

Since μ(K) = μ(G) � 3(g − 1) = μ(E ′
1) and E ′

1 is slope–stable by assumption, we must
have rk(K) = rk(E ′

1) = 2. It follows that rk(K′) = 0. Since

c1(K) = c1(E ′
1) − c1(K′) = [OX (3)] − D′,

where D′ is an effective divisor supported on the codimension–one locus of the support of
K′, we have

3(g − 1) � μ(K) =
(OX (3) − D′) · OX (1)2

2
= 3(g − 1) − D′ · OX (1)2

2
.

Hence D′ = 0, which means that K′ is supported in codimension at least two. Thus,
exti(K′,OX) = 0 for i � 1, and it follows that G∗ � K∗ � E ′

1
∗, as well as (Fh+1/G)∗ �

Q′∗ � E∗
h , as desired.

Assume that rk(K) = 0. Since E ′
1 is locally free, we must have K = 0, whence Q � G.

Since μ(Q) = μ(G) � 3(g − 1) = μ(Eh) and Eh is slope–stable by assumption, we must
have rk(Q) = rk(Eh) = 2h. It follows that rk(Q′) = 0. Since

c1(Q) = c1(Eh) − c1(Q′) = [OX (3h)] − D′′,

where D′′ is an effective divisor supported on the codimension–one locus of the support of
Q′, we have

3(g − 1) � μ(Q) =
(OX (3h) − D′′) · OX (1)2

2h
= 3(g − 1) − D′′ · OX (1)2

2
.

Hence D′′ = 0, which means that Q′ is supported in codimension at least two. Thus,
exti(Q′,OX) = 0 for i � 1, and it follows that G∗ � Q∗ � Eh

∗. Hence, G∗∗ � Eh ,
and (23) induces

G∗∗

0 E ′
1 Fh+1 Eh 0,

�

which gives a splitting of (21), a contradiction.
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We are therefore left with the case where rk(Q) > 0 and rk(K) > 0. Since E ′
1 and Eh are

stable of slope 3(g − 1) by hypothesis, we have

μ(K) � 3(g − 1), with equality only if rk(K) = rk(E ′
1), (24)

μ(Q) � 3(g − 1), with equality only if rk(Q) = rk(Eh). (25)

If equality holds in both (24)-(25), we would have

rk(G) = rk(K) + rk(Q) = rk(E ′
1) + rk(Eh) = rk(Fh+1),

a contradiction toG ⊂ Fh+1 being a destabilizing sheaf. Hence, at least one of the inequalities
in (24)-(25) must be strict, yielding

3(g − 1) � μ(G) = c1(G) · OX (1)2

rk(G)
= (c1(K) + c1(Q)) · OX (1)2

rk(K) + rk(Q)

= μ(K) rk(K) + μ(Q) rk(Q)

rk(K) + rk(Q)
<

3(g − 1) (rk(K) + rk(Q))

rk(K) + rk(Q)
= 3(g − 1),

a contradiction. ��
Proposition 6.4 For all h ∈ Z

+ the scheme U(h) is reduced of dimension h2(g + 3) + 1 and
its general member is slope–stable.

Proof We prove this by induction on h, the case h = 1 again being satisfied by the choice
of UX (1). Assuming that we have proved the lemma for all integers i � h, we prove it for
h + 1.

The slope of the members of UX (1) and UX (h) are both equal to 3(g −1). It follows from
a standard computation, see, e.g., [14, Lemma 4.2], that the general member UX (h + 1)ext

is simple. Hence also the general member Eh+1 of UX (h + 1) is simple, and it also satisfies
h j (Eh+1 ⊗ E∗

h+1) = 0 for j = 2, 3 by Lemma 6.1(iii). Therefore UX (h + 1) is smooth at
[Eh+1] (see, e.g., [14, Prop. 2.10]) with

dim(UX (h + 1)) = h1(Eh+1 ⊗ E∗
h+1) = −χ(Eh+1 ⊗ E∗

h+1) + h0(Eh+1 ⊗ E∗
h+1)

= (h + 1)2(g + 3) + 1, (26)

using the facts that h0(Eh+1 ⊗ E∗
h+1) = 1 as Eh+1 is simple, and that χ(Eh+1 ⊗ E∗

h+1) =
−(h + 1)2(g + 3) by Lemma 6.1(iv). This proves that UX (h + 1) is reduced of the claimed
dimension.

Finally, we prove that Eh+1 is slope–stable. Assume, to get a contradiction, that it is not.
Then we may find a one-parameter family of bundles {E(t)} over the disc D such that E(t) is
a general member of UX (h + 1) for t �= 0 and E(0) lies in UX (h + 1)ext, and such that we
have a destabilizing sequence

0 �� G(t) �� E(t) �� F (t) �� 0 (27)

for t �= 0, which we can take to be saturated, that is, such that F (t) is torsion free, whence so
that F (t) and G(t) are (Ulrich) vector bundles (see [14, Thm. 2.9] or [3, (3.2)]). The limit of
P(F (t)) ⊂ P(E(t)) defines a subvariety of P(E(0)) of the same dimension as P(F (t)), whence
a coherent sheaf F (0) of rank rk(F (t)) with a surjection E(0) → F (0). Denoting by G(0) its
kernel, we have rk(G(0)) = rk(G(t)) and c1(G(0)) = c1(G(t)). Hence, (27) specializes to a
destabilizing sequence for t = 0. Lemma 6.3 yields that G(0)∗ (resp., F (0)∗) is the dual of a
member of UX (1) (resp., of UX (h)) It follows that G(t)∗ (resp., F (0)∗) is a deformation of the
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dual of a member of UX (1) (resp., UX (h)), whence that G(t) (resp., F (t)) is a deformation
of a member of UX (1) (resp., UX (h)), as both are locally free. It follows that [Eh+1] ∈
UX (h + 1)ext. Thus,

UX (h + 1)ext = UX (h + 1). (28)

On the other hand we have

dim(UX (h + 1)ext) � dim(P(Ext1(Eh, E ′
1))) + dim(UX (h)) + dim(UX (1)), (29)

for general [Eh] ∈ UX (h) and [E ′
1] ∈ UX (1). As Eh and E ′

1 are slope–stable by induction, and
of the same slope, we have h0(E ′

1 ⊗ E∗
h ) = 0. Lemma 6.1(i)–(ii) thus yields

h1(E ′
1 ⊗ E∗

h ) = −χ(E ′
1 ⊗ E∗

h ) + h0(E ′
1 ⊗ E∗

h ) + h2(E ′
1 ⊗ E∗

h ) − h3(E ′
1 ⊗ E∗

h ) = h(g + 3).

Hence, by (29) and (26) we have

dim(UX (h + 1)ext) � h(g + 3) − 1 + [
h2(g + 3) + 1

] + [g + 4]

= (h2 + h + 1)(g + 3) + 1 < (h + 1)2(g + 3) + 1 = dim UX (h + 1),

a contradiction to (28). ��
This concludes the proof of Theorem 1.3.

7 An application to curves with certain theta–characteristics

In this section we make some remarks about rank 2 Ulrich bundles on prime Fano threefolds
X of genus g and degree 2g − 2 in Pg+1. By [16, Ex. 3.8] any such X carries a rank 2 Ulrich
bundle E if and only if det(E) = OX (3) and there is a smooth, irreducible, non–degenerate,
linearly and quadratically normal curve C in X such that

deg(C) = 5g − 1, g(C) = 5g, ωC = OC (2),

whence OC (1) is a theta–characteristic on C with h0(OC (1)) = g + 2. It is easy to check
that such curves are automatically projectively Cohen–Macaulay.

More precisely, given a rank 2 Ulrich bundle E on X and a general section s ∈ H0(E), the
curve C is the zero locus of s, and conversely, if there is such a curve C ⊂ X , there is a rank
2 Ulrich bundle E on X and a non–zero section s ∈ H0(E), such that C is the zero locus of s.

Let Fg be the Hilbert scheme parametrizing (smooth) prime Fano threefolds X of degree
2g − 2 in P

g+1, and Cg be the union of the components of the Hilbert scheme containing
points parametrizing curves C in P

g+1 as above. Consider the incidence correspondence

Ig = {(X , C) ∈ Fg × Cg : C ⊂ X}.
Let

φg : Ig −→ Cg

be the projection to the second factor and consider the moduli map

μg : im(φg) −→ M5g

where, as usual, Mp denotes the moduli space of smooth curves of genus p. The image

of μg is contained in the locus Mg+1
5g of curves C having a theta–characteristic θ with
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dim(|θ |) = g + 1. According to a result by J. Harris (see [23, Cor.1.11]), any irreducible
component of Mg+1

5g in M5 g has expected codimension

(g + 2)(g + 1)

2
(30)

and the actual codimension is at most this.
We want to discuss in this section the following question: is μg dominant onto an irre-

ducible component of Mg+1
5 g ?

First we prove the following:

Proposition 7.1 For g � 6 the image of μg has codimension larger than (30) and therefore

μg is not dominant onto any irreducible component of Mg+1
5g , or equivalently, the general

curve in any component of Mg+1
5g does not sit on a prime Fano threefold X of degree 2g − 2

in P
g+1 as a projectively Cohen–Macaulay semicanonical curve.

Proof Let us compute the dimension of Ig . We claim that the general fiber of the first pro-
jection ψg : Ig → Fg has dimension 5g − 1. Indeed, given X in Fg , to give C ⊂ X is
equivalent to giving a bundle E in UX (1), as in §6, and a non–zero section s ∈ H0(E) up to
a constant, i.e., an element in P(H0(E)). One has dim(UX (1)) = g + 4 by Theorem 1.3, and
h0(E) = 4(g − 1) by [3, (3.1)]. Hence the dimension of the fibers of ψg is

g + 4 + 4(g − 1) − 1 = 5g − 1

as wanted. Hence

dim(Ig) = dim(Fg) + 5g − 1 (31)

and

dim(im(φg)) � dim(Ig) = dim(Fg) + 5g − 1

so that

dim(im(μg)) � dim(im(φg)) − dim(PGL(g + 2,C)) � dim(Fg) + 5g − 1

− dim(PGL(g + 2,C)).

Now dim(Fg) − dim(PGL(g + 2,C)) is the number of moduli of the prime Fano threefolds
of degree 2g − 2 in Pg+1, it is a well–known number (see [21]) and it is an easy computation
to check that for g � 6 one has

dim(Fg) + 5g − 1 − dim(PGL(g + 2,C)) < dim(M5g) − (g + 2)(g + 1)

2

hence

dim(im(μg)) < dim(M5g) − (g + 2)(g + 1)

2

which proves the assertion by Harris’ theorem mentioned above. ��
Next we complete the picture by proving that:

Proposition 7.2 For 3 � g � 5 the map μg is dominant onto a union of irreducible compo-

nents of Mg+1
5g , each of which is uniruled and of the expected codimension (30).
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Proof We prove the proposition only in case g = 5. The cases 3 � g � 4, being similar, can
be left to the reader.

One has dim(F5) = 75 hence by (31) we have dim(I5) = 99. Next we claim that:

(a) φ5 is birational onto its image;
(b) any component of the image of φ5 is a component of the sublocus of C5 parametrizing

curves whose hyperplane section is a theta–characteristic;
(c) the fibers of the map μ5 are finite, modulo the action of PGL(7,C).

To prove (a), note that, given C , the quadrics of P6 cut out on it the complete canon-
ical series, which has dimension g(C) − 1 = 24. Since dim(|OP6(2)|) = 27, one has
dim(|IC/P6(2)|) = 2, hence C sits on a unique prime Fano threefold X of degree 8 in P

6.
Toprove (b), denote byK any component of the sublocus ofH5 parametrizing curveswhose

hyperplane section is a theta–characteristic and which contains a component of im(φ5). If C
is a general element of K, by semi–continuity C is still projectively Cohen–Macaulay, hence
one sees, as above, that dim(|IC/P6(2)|) = 2, soC sits on a prime Fano threefold X of degree
8 in P

6, thus C in im(φ5) as wanted.
Finally, to prove (c), suppose that a fiber of μ5 has a positive dimensional component

C. Every element C in C is endowed with its hyperplane section bundle OC (1), which is a
theta–characteristic θ with h0(θ) = g + 2. Fix C and take a general element C ′ in C. Since
C and C ′ are in the same fiber of μ5, they are isomorphic. The isomorphism that maps C ′
to C has to map the theta–characteristic OC ′(1) to a very ample theta–characteristic θ of C
with h0(θ) = g + 2. Since C does not have a continuous family of theta–characteristics, the
theta–characteristic θ has to be independent of C ′ in the fiber C which shows that all curves
in C are projectively equivalent.

By (a) above we have dim(im(φ5)) = 99. By (c) one has

dim(im(μ5)) = 99 − dim(PGL(7,C)) = 51.

By (b), any component of im(μ5) is an irreducible component of M6
25 of codimension

dim(M25) − dim(im(μ5)) = 72 − 51 = 21,

which is the expected codimension (30) for g = 5, as wanted.
Finally, each component of im(μ5) is uniruled because so is I5. ��
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