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Preface 

The analysis of categorical data has led to the development of a whole new set of 
methods, tools, and theory. The methodological developments have been followed 
by commercial and open source software, which has facilitated the spread and use 
of the methods in many substantive areas of application. The book aims to bring 
together and provide a comprehensive review of a selected list of topics connected 
to recent advances in statistical modelling and interpretation of categorical data. The 
focus is on cross-sectional as well as time-dependent data. 

We consider research questions of both symmetrical and regression-type nature, 
such as studying and modelling the association of a number of categorical variables, 
as well as regression-type analysis of a categorical response variable explained by a 
number of observed covariates. 

Categorical data predominate in social surveys and their analysis, from descrip-
tive and exploratory to statistical modelling, require special treatments that take into 
account the nature and information included in these data. Traditionally, categorical 
data analysis (CDA) methodology has focused on two- and three-way contingency 
tables, while for higher dimensional tables, it is usually commented that they are 
analysed analogously. Many of today’s real applications involve high-dimensional 
and complex data with many more than three variables. Categorical data methods 
have been extended to handle multivariate data of higher dimensions, addressing 
issues of sparseness, model estimation, fit, and model selection. More specifically, 
binary and ordinal response models have become the focus of attention in areas of 
supervised machine learning. Graphical models and networks involving categorical 
data have applications, in social sciences, biology, and natural language processing, 
among others. Developments and problems in data science necessitate special 
treatment for different types of categorical data and impose new challenges on CDA. 

To tackle problems in contemporary applications of categorical data, a thoughtful 
revisiting of traditional methods of CDA is required. 

Serving this goal, the current volume covers nine distinct topics, underlining, 
when necessary, their inter-relationships and helping the reader to place methods 
and tools for categorical data into a general framework. It reviews association 
models for multi-way contingency tables and their connection to item response 
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theory models and graphical models, marginal models, regression type models with 
categorical responses, and/or categorical covariates including simple measures of 
interpretation, time series models for count and binary data, models for binary panel 
data, as well as methodology for bias correction and Bayesian inference. 

The volume is intended for statisticians, data scientists, graduate students of 
statistics, but also computer scientists or researchers with a strong interest in 
methods and tools used for the analysis of categorical data. The chapters include 
applications from economics, education, psychiatry, medicine, and finance, but the 
applicability of the methods discussed go beyond those areas. 

The volume is organised into three parts. Part I (Chaps. 1–4) focuses on 
modelling multivariate (multiple response variables) categorical data through their 
joint and marginal distributions. Chapter 1 reviews classical association models and 
establishes the connection with item response theory models and graphical models 
that provide multiple insights into the data problem. A computationally feasible 
composite likelihood estimation method and testing framework are proposed. 
Real data examples from massively open online courses (MOOC) and from the 
Depression, Anxiety and Stress Scale (DASS) are included, as well as information 
on the R packages logmulti and pleLMA. Graphical models are discussed in 
more detail in Chap. 2, which covers undirected graphical log-linear models, 
directed graphical models, and graphical chain models for modelling complex 
multivariate associations. The infant survival data, presented in other seminal books 
on categorical data, are used to illustrate the various graphical models. Graphical 
models already covered in Chaps. 1 and 2 are shown to be connected to the class 
of marginal models presented in Chap. 3. In this chapter, a thorough overview of 
marginal models is provided. Marginal models are helpful for testing hypotheses 
about relations among correlated categorical marginal distributions. The content 
of this chapter is motivated with examples from repeated measurements/panel 
data, missing data, and graphical data in which marginal distributions of higher-
dimensional joint distributions play an important role. Potential estimation methods 
are thoroughly discussed. Information on three available R packages (cmm, mph.fit, 
and hmmm) for marginal modelling is provided. The chapter concludes with a list 
of further theoretical and methodological developments in the area of marginal 
modelling and extensions for the future. Chapter 4 offers a Bayesian treatment of 
multivariate categorical data with emphasis on estimation, choices of priors, and 
model selection. The explored tools are applied to two-way contingency tables from 
three medical areas of research, namely risk for coronary heart disease, lymphoma 
and chemotherapy, and toxaemia in pregnancy. 

Part II (Chaps. 5–7) focuses on regression type models for binary and ordinal 
responses. Chapter 5 proposes probability-based effect measures that provide a 
simpler interpretation of regression coefficients of logistic and probit models with 
linear and non-linear predictors, which are missing from the traditional literature 
on binary and ordinal regression. The proposed measures are used to compute 
effective measures for a class of generalised linear models with logit, log, and 
identity link functions, fitted to data from an Italian survey on employment status 
and a generalised additive model fitted to the horseshoe crab data. R code is provided 
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for replicating the analysis. Chapter 6 proposes mean and median bias reduction in 
adjacent-categories logit models with proportional odds and mean bias reduction 
in models with non-proportional odds. The methodology is illustrated using real 
examples, and the R code is provided to replicate all the numerical and graphical 
results. Chapter 7 gives an overview of regularised estimation methods for gener-
alised additive models with ordinal covariates, considering predictor selection and 
merging of predictor categories with the effect of reducing the number of parameters 
and easing interpretability. The proposed method is compared to existing classical 
methods and is applied to a real data set from the International Classification of 
Functioning, Disability and Health study on chronic widespread pain. Information 
on R packages that perform the different types of analysis discussed in the chapter 
is provided. 

Part III (Chaps. 8 and 9) discusses models for discrete time-dependent data. 
Chapter 8 presents an overview of a unified framework of ARMA-type models 
widely used for continuous time series for binary and count data, with emphasis on 
associated stochastic properties and likelihood-based inferential tools. The method-
ology is applied to two real data sets: the daily number of deaths from COVID-19 
in Italy, for which a Poisson and a negative binomial distribution is assumed for the 
data; and a binary series of log-returns for the weekly closing prices of Johnson & 
Johnson. The code for replicating the analysis in the chapter is provided. Finally, 
Chap. 9 reviews the formulation and estimation of fixed-effects type models for 
binary panel data. In particular, the chapter reviews and illustrates, through an 
extensive simulation study, estimation methods for dealing with the inconsistency 
of the maximum likelihood estimator due to incidental parameters, embedding 
in a unified framework the target-corrected and conditional maximum likelihood 
estimators, including a pseudo conditional maximum likelihood estimator. The 
methodology is applied to data on female labour force participation from the US 
Panel Study of Income Dynamics. The chapter also includes a review of packages 
available to estimate the models discussed. 

Each chapter makes its own methodological and distinct contribution to the 
modelling of categorical data and can be read independently. In some cases, 
connections are made among the topics covered in the edited volume, but these 
connections or overlaps do not imply that the reader needs to read the chapters in 
any particular order. The division of the book in three parts is also indicative and 
does not provide a strict separation of the contributions. 

The seed for this volume was sown during the workshop “Challenges for 
Categorical Data Analysis” (CCDA2018) held in Aachen in 2018. We would like 
to thank all the participants of this workshop for the inspiring discussions and 
for motivating our book project. We specially thank Eva Hiripi, Senior Editor at 
Springer, for her continuous support and guidance in the process of preparing the 
volume. 
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Finally, we are grateful to the friends and colleagues who contributed chapters to 
this volume. Without their engagement and impressive work, this project would not 
have been possible. 

Aachen, Germany Maria Kateri 
London, UK Irini Moustaki 
February, 2023 
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Chapter 1 
Log-Linear and Log-Multiplicative 
Association Models for Categorical Data 

Carolyn J. Anderson, Maria Kateri, and Irini Moustaki 

1.1 Introduction 

Log-linear models are useful for determining whether dependencies exist between 
categorical variables; however, when there are interactions, the nature of the 
association needs to be described. Unfortunately, the descriptions can be challenging 
especially when the categorical variables have a large number of categories and/or 
the table is high-dimensional. To fully capture the dependency structure would 
require computing all possible conditional odds ratios (ORs), which in the case of 
large tables is often not very enlightening. Association models (AMs) provide a 
solution to this problem by imposing special structures on the interactions between 
categorical variables thus leading to more parsimonious models that facilitate 
insightful interpretation of interactions. A central characteristic of all AMs is that 
interactions are represented by multiplicative terms. 

Basically, AMs have a special multiplicative structure imposed on some or all 
interaction terms of a standard log-linear model. The parameters of the multiplica-
tive terms have high interpretative value and reduce the number of parameters 
needed to describe the nature and strength of interactions. In some AMs, the 
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model remains log-linear, while others are log-multiplicative, i.e. non-linear in their 
parameters. ORs, which play a predominant role in log-linear model (and AMs) 
analysis and interpretation, are functions of the parameters introduced in an AM, 
and plots of these parameters give pictures of the features and structure of the 
associations. 

In addition to providing visual plots representing associations between variables, 
the models themselves have graphical representations. The graphics greatly aid 
in communication because they represent scientific content and in some cases 
underlying processes. To differentiate between models and for clarity, we advocate 
that models should be presented both graphically and algebraically. Many of the 
AMs that we discuss have the same basic graphical representation. The algebraic 
representations, when used without their graphical representations, tend to cloud 
the relationships between models, but the algebraic form provides details that may 
be lacking in the graphical representation. 

AMs for the analysis of categorical variables have been derived from numerous 
frameworks. They provide useful structural representations of interactions among 
variables allowing a special treatment for ordinal variables. AMs have been devel-
oped either directly for specific modeling purposes (e.g. contingency table analysis) 
or have been arisen through a theorized underlying process (e.g. item response 
theory (IRT)). They have been proposed over different fields and sub-fields, often 
independently, which has led to a fractured literature on the subject. It is evident that 
AMs offer a powerful and flexible platform for diverse areas of applications. The 
class of models that we generically refer to as AMs consists of many models with 
different names but of the same general form. These include, among others, linear 
by linear models (LL), row models (R), column models (C), uniform models (U ), 
and M-dimensional row-column AMs (.RC(M)) [30, 32, 33], generalized additive 
effects and multiplicative interaction models used to study plant genetics [23], 
graphical latent variable models for categorical data [4], IRT models [5, 6, 38, 52], 
Ising model [47], generalized Newton’s law of gravity [18], network psychometrics 
[52], fused graphical models [16], formative response models, distance-based 
models [18–20, 61], conditional multinomial models [3, 5, 37], and discretized 
multivariate normal distributions [9, 31, 60, 67, 68]. It is worth mentioning that there 
are efforts to build bridges between different fields and further explore their utility, 
such as connecting IRT to log-linear models [44, 45], and to log-multiplicative 
interactions [5, 6, 52], and others. 

AMs are closely linked to log-linear models. For this reason, we start Sect. 1.2 
with a brief presentation of log-linear models upon which we build the family 
of AMs for two-way tables (i.e., LL, R, C, and .RC(M) models). Many of 
the basic features of these AMs for two-way tables carry over to models for 
more variables and more complex situations. We subsequently review statistical 
graphical representations of log-linear and AMs and use this as a step toward 
high-dimensional generalizations of the .RC(M) model. Subsequently, we present 
high-dimensional models in detail, including estimation and the equivalence with 
IRT models. Some discussion on testing and model selection under the pseudo-
likelihood framework is given. To illustrate the use and benefits afforded by AMs,
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two examples are given: (i) the analysis of a .(16 × 6) table by models for two-way 
tables, and (ii) responses to 42 four category items from three correlated scales by 
models for high-dimensional tables. Lastly, we follow with a discussion that reflects 
on the material presented in the chapter and provides future research directions. 

1.2 Preliminaries 

Throughout this chapter, we assume that we have I items (or variables), . Y =
(Y1, . . . , YI )

′, measured on n subjects. Let .Y = (Y1, . . . , YI )
′ be a random 

response vector where .Yi ∈ Ci = {1, . . . , Ji}, and let . ys = {y1s , . . . , yIs}
be observed responses for subject .s ∈ {1, . . . , n}, i.e. .yis = ji ∈ Ci , for  
.i = 1, . . . , I . Furthermore, assume that there exists a set of M latent variables, 
.Θ = {Θ1, . . . , ΘM } and .θ = (θ1, . . . , θM)′ is a realization of them. We restrict to 
models with .M ≤ I while more complex models with .M > I are possible. 

In a contingency table representation, data form an I -dimensional table, pro-
duced by cross-classifying the subjects’ responses on all items, having cell entries 
.nj1,...,jI

, the frequencies of subjects with responses .y = (j1, . . . , jI )
′, where 

.ji ∈ Ci , .i = 1, . . . , I . In this setup, the subject index s is suppressed, but will 
be needed later in the chapter. Obviously, .

∑
j1,...,jI

nj1,...,jI
= n and the underlying 

distribution, depending on the study design, can be a multinomial .M(n,π) with 
probability table .π = {πy} = {πj1,...,jI

}, or independent Poisson distributions 
.P(my) in every cell, where . my is the predicted or expected cell frequency. Given 
the sample size n, the expected cell frequencies equal .my = mj1,...,jI

= nπj1,...,jI
. 

1.2.1 Hierarchical Log-linear Models 

Contingency tables are traditionally analyzed by hierarchical log-linear models, 
expressed in terms of cell probabilities or expected cell frequencies.1 Here we 
shall model the cell probabilities. In the case of many items, the corresponding 
contingency table is high-dimensional and is often extremely sparse, which causes 
inferential and estimation problems. Usually lower order interactions (even only 
two factor interactions) are sufficient to model the response patterns and the corre-
sponding marginal tables are not sparse. The two-way marginal tables are sufficient 
statistics for estimating two-factor interactions. Thus, the response probabilities

1 Note that “hiearchical” refers to different models (e.g., linear regression, multi-level models, log-
linear models) In this chapter “hierarchical” refers to models where all lower order terms that 
comprise an interaction are included in the model. 
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.P(y) can be modeled, for example, by a log-linear model with all two-factor 
interactions, 

. logP(y) = log(πy) = λ +
I∑

i=1

λ
[i]
ji

+
I∑

i,k
i<k

λ
[ik]
jijk

, ji ∈ Ci , jk ∈ Ck , (1.1) 

where . λ ensures that probabilities sum to 1, . λ[i]
ji

is the marginal (main) effect term 

for the category . ji of the i-th item, and .λ[ik]
jijk

is the interaction term between the 
levels . ji and . jk of the i-th and k-th items, respectively. 

Identification constraints are required on parameters in (1.1) to obtain parameter 
estimates. Common constraints are setting the first category to zero, i.e., 

.λ
[i]
1 = λ

[ik]
11 = λ

[ik]
1jk

= λ
[ik]
ji1

= 0, for all possible values of i, k, ji, jk. (1.2) 

Alternative constraints set the last category to zero or set the sum over categories 
equal to zero. 

In some applications, we are only interested in the relationship between variables; 
however, in other modeling applications, we make a distinction between response 
and explanatory variables. Regardless of the situation, the model for tables is the 
same. For example, when modeling response behavior, explanatory variables, such 
as demographic ones, may be present that may be categorical or on an interval scale. 
In such cases, log-linear models of type (1.1) can be employed that incorporate 
the main effects for the explanatory variables and interactions between explanatory 
variables and that response variable. 

The simplest case of having just two items reduces (1.1) to  

. logP(y) = log(πy) = λ + λ
[1]
j1

+ λ
[2]
j2

+ λ
[12]
j1j2

, j1 ∈ C1, j2 ∈ C2 . (1.3) 

In the log-linear modeling framework, log-linear models with interactions 
may have difficulty dealing with sparse tables that include zero cell frequencies. 
Using (1.1) as an example, if a cell .(ji, jk) of the .[ik] marginal table has a zero 
frequency, the corresponding parameter .λ[ik]

jijk
for that cell cannot be estimated, since 

this zero marginal cell corresponds to its sufficient statistic. Necessary and sufficient 
conditions for the existence of the maximum likelihood estimates (MLE) of the log-
linear model parameters, with a focus on the role of sampling zeros in the observed 
table, are provided by Fienberg and Rinaldo [26]. Fitted values (MLE) for (1.1) 
can be obtained using iterative proportional fitting, but we cannot fully describe the 
interaction because some local odds ratios are not estimable. This is not the case 
for unsaturated AMs. For example, the .RC(M) model described in the next section 
encounters no problems if there are sampling zeros in a (marginal) table. Only the 
univariate marginals need to be non-zero. The ability of AMs to deal with sparse 
tables becomes especially important when we have high-dimensional tables.
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1.3 Association Models for Two-Way Tables 

Model (1.3) is saturated (i.e. has 0 degrees of freedom). For a .J1 × J2 table, in 
the classical log-linear modeling framework, there are no models in between the 
saturated model and that of independence, which has .(J1 − 1)(J2 − 1) degrees 
of freedom. A class of non-saturated models is derived by imposing a structure or 
restrictions on the interaction parameters of a log-linear model which requires fewer 
parameters. Fewer parameters leads to more parsimonious models that fill the gap 
between the two extreme models (independence and saturated) and at the same time, 
offer sound interpretation. These models are known as dependency models or AMs 
(often called Goodman’s AMs) and are based on the concept of assigning scores or 
estimating scale values for the categories of the classification variables (items). 

For a two-dimensional table, association models are of the form 

. logP(y) = log(πy) = λ + λ
[1]
j1

+ λ
[2]
j2

+ σ 2ν1j1ν2j2 , (1.4) 

for .j1 ∈ C1, .j2 ∈ C2, where .ν1 = (ν11, . . . , ν1J1)
′ and .ν2 = (ν21, . . . , ν2J2)

′ are 
scores corresponding to the rows and columns of the contingency table, respectively, 
and . σ 2 is an intrinsic association parameter. Notice that in the literature on 
association models, the association parameter is usually denoted by . φ and, for row 
and column scores that are monotone in the same direction, the sign of . φ indicates 
the direction of the underlying association. The model is invariant under linear 
transformation of the row and column scores and the direction of the scores are 
generally set such that . σ 2 is positive. An important point is that . σ 2 reflects the 
strength of the association and the row and column scores reflect the structure. 

The row and columns scores, . ν1 and . ν2, respectively, can be fixed (known) 
or parameters to be estimated. Typically, the scores of a nominal variable are 
parameters while those of an ordinal can be fixed or parameters, depending on 
whether the distances between successive categories are known or not. The simplest 
association model that considers both of them fixed, has just one parameter more 
than the independence model and is known as the linear by linear (LL) model. If 
additionally the scores are equidistant for successive row and column categories, 
then under this specific LL model all local odds ratios, which are odds ratios 
between adjacent rows and columns, are equal. This is called as the uniform (U ) 
association model. When the row scores are fixed and column scores are estimated, 
the model is called the column effect (C) model. The row effect (R) model is defined 
analogously. Models LL, U , C and R are all log-linear. When both row and column 
scores are parameters to be estimated, Model (1.4) becomes the multiplicative row-
column effect (RC) model and no longer has a log-linear structure. 

The main effects parameters of Model (1.4) satisfy the corresponding identifia-
bility constraints in (1.2) while the scores, whenever they are parameters, satisfy 

.

J1∑

j1=1

ν1j1 =
J2∑

j2=1

ν2j2 = 0 and
J1∑

j1=1

ν21j1 =
J2∑

j2=1

ν22j2 = 1 . (1.5)
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Since Model (1.4) is invariant under linear transformations of the scores, for 
comparability, and also in the case of fixed or known scores, scores are transformed 
to fulfill (1.5). The intrinsic association parameter in (1.4) is redundant and can be 
set .σ 2 = 1, abandoning the second set of constraints in (1.5), as given by Goodman 
[30]. 

An extension of the RC model is the multidimensional row-column or . RC(M)

association model, which includes multiple sets of scores for each item. It is defined 
as 

. logP(y) = log(πy) = λ + λ
[1]
j1

+ λ
[2]
j2

+
M∑

m=1

σ 2
mν1j1mν2j2m , (1.6) 

for .M ∈ {1, . . . ,M∗}, .M∗ = min(J1, J2) − 1, where scores and association 
parameters are assigned to each dimension m, with .σ 2

1 ≥ . . . ≥ σ 2
M ≥ 0, reflecting 

that the strength of association accounted for each dimension m is decreasing in m. 
Constraints (1.5) hold for the scores on every dimension, and additionally, scores on 
different dimensions are orthogonal to each other, i.e., 

.

J1∑

j1=1

ν1j1mν1j1m′ =
J2∑

j2=1

ν2j2mν2j2m′ = 0, for all m �= m′. (1.7) 

Constraints (1.5) and (1.7) are the most commonly used ones, but are not the only 
possible ones. When scores are treated as parameters, Model (1.6) has . (J1 − M −
1)(J2 − M − 1) degrees of freedom (df ). Note that .RC(1) = RC and .RC(M∗) is 
an equivalent expression of the saturated log-linear model given in (1.3). 

The AMs for two-way tables presented in this section can be extended in a 
straightforward manner to tables of higher dimensions and we will point out how 
the models for high-dimensional tables are the same and different from the . RC(M)

association models. Before considering the high dimensional case, we discuss 
estimation and present an example for a 2-way table. 

1.3.1 Estimation and Goodness-of-Fit of AMs 

Maximum likelihood estimation of AMs is the most commonly used method to 
fit the models to data and we focus our attention on ways to do this in R [62]. 
Models that are log-linear can be fitted through packages for generalized linear 
models (GLM), in particular the glm function. Models that are non-linear in their 
parameters, like the .RC(M) model introduced above, require special packages for 
their implementation, such as the gnm package of Turner and Firth [63] or the  
VGAM of Yee [69]. The implementation of association models via gnm is extensively 
illustrated in Section 6.6 of Kateri [42], while functions for fitting specific AMs are
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provided in the web appendix of [42]. Here, we fit AMs using maximum likelihood 
estimation as implemented in the R ([62], version 4.0.0) package logmulti [13], 
which is a wrapper for the more general gnm package. 

Goodness-of-fit (GoF) of AMs can be tested by the standard GoF tests for 
contingency table models, i.e., the likelihood ratio statistic (. G2) or the Pearson’s . X2. 
Since the values of the . G2 and . X2 statistics are strongly influenced by the sample 
size, we consider two additional statistics that give the practical significance and a 
more intuitive sense of GoF. The value of . G2 from independence can be thought of 
as a measure of the amount of dependency in the data. The percent of association 
accounted for by a model equals 

. 
(G2

ind − G2
model)

G2
ind

× 100,

where .G2
ind and .G2

model are the likelihood ratio test statistics for the model of 
independence and the model of interest. A second index, the dissimilarity index 
(D), equals the proportion of the data that would have to be moved from one cell to 
another for the model to fit perfectly. The dissimilarity index can be computed using 
frequencies or proportions; namely, 

. D =
∑

i |ni − m̂i |
2n

=
∑

i |pi − p̂i |
2

,

where the sum is over all cells, . ni is observed frequency, . m̂i is the estimated 
expected frequency, . pi is the proportion of data in cell i, and . p̂i is the estimated 
probability of being in cell i. The rule of thumb is that a .D≤0.03 is a good fitting 
model. We should note that D does not perform well for large tables, because, to 
achieve perfect fit, observations that would need to move to an adjacent cell have 
the same weight as those that would need to be moved many cells away. 

1.3.2 Example: Who Takes Which MOOCs 

The data in Table 1.1 come from a study examining engagement in massively 
open online courses (MOOCs) with the goal of determining who is being served 
by taking which course [12]. The data come from MOOCs covering six different 
disciplines where all MOOCs except one were offered multiple times. In total, there 
are 16 course offerings. The topics of the MOOCs were computer science (CS1, 
CS2), education (Educ1, Educ2), organic chemistry (Chem1, Chem2), business 
administration on subsistence (Bus1, Bus2, Bus3), environmental science (Env1– 
Env6), and animal and veterinary science (Animal). The students’ ages were 
collected on a category scale of six age groups.
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Table 1.1 Who takes which 
MOOC: a cross-classification 
of MOOC courses by age 
groups of students who take 
the courses 

Age groups 

Course 18–24 25–29 30–39 40–49 50–59 . ≥60 

Animal 33 43 64 30 30 17 

Bus1 59 101 100 68 49 28 

Bus2 45 57 68 38 21 31 

Bus3 20 47 62 32 28 35 

Chem1 164 149 174 86 69 48 

Chem2 71 52 54 27 18 13 

CS1 1472 1472 2068 1110 580 254 

CS2 198 199 342 199 124 46 

Educ1 13 34 114 117 91 46 

Educ2 10 20 77 81 65 37 

Env1 92 216 313 154 139 117 

Env2 126 265 342 197 176 147 

Env3 89 155 217 143 149 114 

Env4 90 163 216 99 77 63 

Env5 111 175 206 134 109 111 

Env6 42 78 119 60 62 72 

Table 1.2 Goodness-of-fit statistics for models fitted to the MOOC data in Table 1.1 

Percent of Dissimilarity 

Model df .G2 p association index 

Independence 74 1098.3 .<0.01 . 0.00% 0.09
(Poisson) 

Independence 74 101.46 .0.02 . 90.76% 0.10
(Negative binomial) 

R (equidistant scores) 60 291.73 .<0.01 73.44% .16 

R (midpoint scores) 60 313.13 .<0.01 71.49% .16 

.RC(1) 56 249.40 .<0.01 .77.29% 0.04 

.RC(2) 39 52.17 .0.08 .95.26% 0.02 

The models that are relevant to this data set are (1.4) and (1.6) with . J1 = 16
and .J2 = 6. The  .RC(M) models were fitted to the data using maximum likelihood 
estimation as implemented in the R package logmulti.2 Goodness-of-fit statistics 
for six models fitted to the data are reported in Table 1.2. For each model, we report 
df , . G2, p-value, and the two additional statistics discussed in Sect. 1.3.1. 

The MOOCs and age groups show a significant relationship (.G2
ind = 1098.3, 

.df = 75, .p ≤ 0.01). Since . G2 may be significant due to large frequencies or 
extra heterogeneity between students within each of the combinations of MOOCs 
by age group, we also fitted a model of independence using the Negative Binomial

2 The independence model and the R association models were fitted using glm and the indepen-
dence model with a Negative binomial distribution was fitted using glm.nb in the MASS package. 
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Fig. 1.1 QQplot of standardized residuals from models fitted to the MOOC data 

distribution. This independence model also showed significant dependency (. G2
ind =

101.46, .df = 75, .p = 0.02). Furthermore, D is relatively large for both of these 
two models. The top two plots in Fig. 1.1 are the qqplot’s of standardized residuals 
from the two independence models, and they show considerable departure from 
normality for smaller and larger frequencies, which gives us further evidence against 
independence. Examining a table of .(16×6 =) 96 residuals does not lead to insight 
into the relationship between age and MOOCs. 

The simplest association model that can be fitted to data is the R model, where 
we can reasonably assign scores only to the column variable (i.e., age). The row 
variable is nominal and the associated scores have to be parameters. The two natural 
options for known scores would be either equidistant for successive categories or the 
midpoints of the corresponding age intervals. Neither of these two models provide 
satisfactory representations of the association in the data. The .RC(2) association 
model fits better than any of the simpler models (.G2 = 52.17, .df = 39, .p = 0.08, 
the percent association . = .95%, .D = 0.02). Furthermore, the bottom right qq-plot in
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Fig. 1.1 shows that the standardized residuals from the .RC(2) model are very close 
to normal with the exemption of an outlying case. The parameter estimates from 
the .RC(1) and .RC(2) association models are plotted in Fig. 1.2 where the category 
scale values for the MOOCs and age groups are weighted by the square root of the 

association parameter (i.e., .ν̂iji1

√
σ̂ 2
1 and .ν̂kjk2

√
σ̂ 2
2 ). 

Even though the .RC(2) model is our best model, for the purpose of illustration, 
the scale value plots for both the .RC(1) and .RC(2) models are given in Fig. 1.2. For  
both models, the scale values for the courses contrast STEM (Science, Technology, 
Engineering and Mathematics) and non-STEM courses; that is, at one extreme are 
the chemistry and computer science courses and at the other extreme the education 
courses. On the first dimension of both models, the scale values for student age 
groups are monotonically ordered with respect to age; however, they are not equally 
spaced. The age groups 25–29, 30–39 and 40–49 are relatively close in value in the 
.RC(1) model but less so in the .RC(2) model. From the .RC(2) graph we can say 
that students aged 18–24 have higher odds of taking STEM courses than the odds 
for any of the other age groups. Conversely, the students aged 50–59 have higher 
odds of taking the education courses than any of the students in other age groups. 
Different offerings of the same course tend to have similar scale values, especially 
Educ1 & Educ2. The odds of taking one or the other of these courses (regardless of 
age groups) is close to 1. 

As illustrated in this example, the scale values from the .RC(1) and . RC(2)
association models need not be the same. Also, for a given model, the scale values 
may be reflected (i.e., multiplied by . −1) and this is illustrated in the scale values 
plots. For the .RC(1) model on dimension one, the ages go from low to high, but 
for the .RC(2) model go from high to low. The scale values for courses are also 
reflected in the .RC(2) model compared to the .RC(1) model, which leads to the 
same interpretations for the models. 

1.4 Graphical Models 

Log-linear models for categorical data have graphical representations that are visual 
representations of theory or scientific information, and they can be used to determine 
whether tables can be collapsed over items without impacting associations [22, 48]. 
Graphs also aid us in generalizing the .RC(M) association models to higher 
dimensions. Graphical models for log-linear models are introduced in this section, 
followed by graphs for .RC(M) association models. Lastly, we add more variables 
to the graphs to represent situations where we have moderate- to very high-
dimensional tables (i.e., large numbers of items).
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Fig. 1.2 Plot of estimated scale values from .RC(1) association model (top) and .RC(2) association 
model (bottom) fitted to MOOC data
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1.4.1 Graphs for Log-linear Models 

A graph consists of nodes, which for us are variables or items, and edges or 
lines connecting nodes indicating possible (non-directional) dependency between 
variables. For example, consider a three-dimensional .J1 × J2 × J3 contingency 
table, cross-classifying the categorical variables .Y1, Y2, Y3. 

Figure 1.3 contains four simple graphs showing the relationship between . Y1, . Y2
and . Y3. In this chapter, discrete variables are represented by boxes. The absence 
of a line connecting two variables indicates that the two variables are independent 
conditional on the rest of the graph. The graph in Fig. 1.3a does not contain any 
edges and this graph represents complete independence. The presence of a line 
between two variables only indicates that they may be dependent conditional on the 
rest of the graph. Figure 1.3b represents a log-linear model of joint independence 
between . Y2 and . Y1 & . Y3, and Fig. 1.3c represents a log-linear model of conditional 
independence between . Y1 and . Y2 given . Y3. 

Graphical models (a), (b) and (c) are collapsible over variables. For example, 
in (b), we can collapse the data over . Y2 and this does not change the dependency 
between . Y1 and . Y3; that is, we can simply analyze the marginal relationship between 
. Y1 and . Y3. For model (c), conditional independence of . Y1 and . Y2 given . Y3, we can 
collapse over . Y2 to study the relationship between . Y1 and . Y3, and collapse over . Y1
to study the relationship between . Y2 and . Y3. Any model for categorical variables 
that has some form of (conditional) independence can be collapsed over some set of 
variables (items); however, this is not the case for graph (d). 

Figure 1.3d is a model of conditional dependence; that is, none of the variables 
are independent conditional on the rest of the graph. This graph is both a representa-
tion of a log-linear model with all 2-way interactions between pairs of variables and 

(a) 

Y1 Y2 

Y3 

(b) 

Y1 Y2 

Y3 

(c) 

Y1 Y2 

Y3 

(d) 

Y1 Y2 

Y3 

Fig. 1.3 Graphical models corresponding to log-linear models of (a) complete independence, (b) 
joint independence, (c) conditional independence, and (d) 3-way interaction
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Fig. 1.4 Graphs for log-linear models for 2-way tables where (a) is a log-linear model of 
independence, (b) is the RC(1) association model, (c) is the RC(M) association model, and (d) 
is a saturated log-linear model 

a model with all 2-way interactions and a 3-way interaction (i.e., a saturated model). 
For every model there is a unique graph, but every graph with edges (dependencies) 
can represent multiple models. This yields an ambiguity regarding the complexity 
of the interaction structure. In this chapter, we use graphs to represent theory and 
take the most complex model implied by a graph. For example, Fig. 1.3d, which is 
a complete graph,3 represents the log-linear model with all 2-way interactions and 
a 3-way interaction. 

We can obtain graphical representations for our models such that there is more 
of a one-to-one correspondence between graphs and models. Consider the simpler 
case of 2 categorical variables. In Fig. 1.4, the graphs (a) and (d) represent log-linear 
models of complete independence and dependence, the latter being a saturated log-
linear model. As commented on in Sect. 1.3, in this case we have . (J1 − 1)(J2 − 1)
degrees of freedom with which to represent the dependency; however, we may not 
need all of these degrees of freedom. There are models in between independence 
and dependence, which we discussed in Sect. 1.3. We introduce an unobserved 
continuous variable to our graphs, which are represented by the circles in the graphs 
in Fig. 1.4b and c. The categorical variables are now conditionally independent given 
the latent continuous variable(s). Consider Graph (b) in Fig. 1.4. If we collapse over 
the continuous variable, we will produce an association between the categorical 
variables [48]. The model for observed data is one of dependence. Graph (b) is a 
representation of the LL, U , R, C, and .RC(1) models. The differences depend on 
whether the scale values are set equal to specific values or are estimated. For the 
LL model, both .ν1j11 and .ν2j21 are set equal to specific values, for the U models 
both .ν1j11 and .ν2j21 are set to equally spaced scores, for the R (or C) model one 
set of scores (e.g., .νiji1) is set to specific values and the other set (e.g, .ν2j21) is  
estimated, and for the .RC(1) model, both .ν1j11 and .ν2j21 are estimated. Graph (c) is 
a representation of the .RC(M) association model previously introduced in Sect. 1.3 
and such graphs are discussed in more detail below.

3 A complete (sub)graph is one where all variables are directly related to each other. 
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1.4.2 Graphs of the RC(M) Association Model 

Figure 1.4b is a graphical representation of models for two variables corresponding 
to the U , LL, R, C and .RC(1) association models, and Fig. 1.4c is the represen-
tation of the .RC(M) model. To represent the AMs, we have added a continuous 
variable that is unobserved or latent. These continuous variables are represented by 
the circles. Goodman [30] first mentioned that a latent variable may underlie data 
fitted by an .RC(1) model, but he never expanded on this. We provide explicit details 
about a possible underlying or latent variable model and use this to generalize the 
.RC(M) model to high-dimensional tables. 

Models can be “read” from the graphs. As an example, consider the . RC(1)
association models represented by graph (b) in Fig. 1.4. All models for data include 
a parameter to ensure probabilities sum to 1 (i.e., . λ), and include marginal effect 
terms for each categorical variable (i.e., .λ[i]

ji
and . λ[k]

jk
). For the interaction, the 

lines connecting unobserved continuous and observed discrete variables are labeled 
with the category scale values, and the latent variable . Θ1 is labeled with . σ 2

1 . The  
observed interaction between . Y1 and . Y2 equals the product of parameters on the path 
between . Y1 and . Y2; that is, .ν1j11σ

2
1 ν2j21. Likewise, the interaction between . Y1 and 

. Y2 represented by Fig. 1.4c is .
∑

m σ 2
mν1j1mν2j2m. 

The AMs in Fig. 1.4b and c are models of conditional independence: the 
(observed) categorical variables are independent given values on the unobserved 
continuous variables. The number of . Θms corresponds to the dimensionality of 
the .RC(M) model, which should not be confused with the dimension of a cross-
classification (i.e., the number of variables). Since the . Θms are continuous, if we 
collapse over the . Θms, we may observe a dependency between the categorical 
variables. On the contrary, we cannot collapse over one categorical variable to study 
the relationship between the other categorical variable and the continuous variable. 
According to theory on graphical models, the graphs for the .RC(M) models are not 
collapsible [22, 48]; however, this is a property that does not hold in a strong sense, 
as will be shown in Sect. 1.5 in the context of higher-dimensional models. 

To derive the algebraic model from the graph, we need two assumptions in 
addition to conditional independence. First, the observed data . y come from a 
multinomial distribution, which as mentioned above is a common assumption for 
tables of frequencies. This assumption is not restrictive, because for inferential 
purposes, the three standard sampling schemes for contingency tables (multinomial, 
product multinomial (i.e. independent multinomials in each row or column), and 
independent Poisson in each cell) are equivalent. We must also assume that the latent 
variables follow a (multivariate) normal distribution where the mean and variance 
are conditional on the response patterns (i.e., cells of the table); that is, 

. θ | y ∼ MV N(μy,Σy).

Justification for the assumption of a conditional Gaussian distribution for . θ can 
be found in Chang [14, 15] and [46]. The association parameters of the . RC(M)

model are the elements of . Σy . Typically, we assume a homogeneous conditional
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covariance matrix, i.e., .Σy = Σ . Previously, we discussed the orthogonality 
identification constraint on the . νims for .M > 1, which requires that . Σ is a diagonal 
matrix, .Σ = diag(σ 2

1 , . . . , σ 2
M). The conditional mean of . θm is the sum of the 

category scale values that are directly related to . θm weighted by . σ 2
m; that is, 

.μy =
(

σ 2
1

∑

i

νiji1, σ 2
2

∑

i

νiji2 , . . . , σ 2
M

∑

i

νijiM

)′
(1.8) 

The .RC(M) association models do not include values of the . θms; however, the 
models do include parameters that give us the distributional parameters of . θ |y. 

1.5 High-Dimensional Tables 

High-dimensional tables are common, especially when considering questions on 
surveys, items on psychological scales, or items on educational tests. Two problems 
faced with analyzing high dimensional tables are the large numbers of (i) 2-way 
interactions, and (ii) cells. For example, with 20 five category items, there are 
.20(19)/2 = 190 different 2-way interactions and .520 = 9.536743e + 13 cells in 
the cross-classification of the items. To deal with the problem of large numbers of 
interactions, we generalize the AMs to large numbers of variables. For the second 
problem where the table is large and data are sparse, we use pseudo-likelihood 
estimation. In this section, we tackle both problems and discuss the connection 
between AMs and IRT models. 

To generalize the association models to high-dimensional cross-classifications, 
we start with graphs and subsequently discuss the algebraic model. We continue 
to only consider two-way interactions, because item response models using the 
standard assumption that .f (θ) is multivariate normal imply only two-way inter-
actions between items. We will discuss the similarities and differences with respect 
to the .RC(M) association model, as well as explicitly show the correspondence of 
association model parameters and common IRT models. 

1.5.1 Graphs for High-Dimensional Association Models 

For high-dimensional tables, we simply add variables to the graphs, as in Fig. 1.5. 
Figure 1.5 has three examples of possible graphs for 6 items. Graph 1.5a is similar 
to an .RC(1) model, except instead of 2 categorical variables we have 6. In all 
graphs in Fig. 1.5, the categorical variables are conditionally independent given the 
unobserved continuous variable(s); however, the latent variables can be dependent. 
The covariance between latent variables . θm and . θm′ conditional on the observed
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Fig. 1.5 Graphs for log-multiplicative association models for 1, 2, and 3 continuous latent 
variables (circles) and six observed categorical variables (squares) 

variables is equal to .σmm′ . We have changed our notation slightly and are using . σmm

rather than . σ 2
m for variances (i.e., association parameters). 

If categorical variables are discrete measures of underlying continuous variables, 
then it would stand to reason that the scale values for the variables are the same over 
the interactions; that is, the scale values would be homogeneous. For example, in 
Graph 1.5a the interaction between, say variables . Yi and . Yk , would be represented 
by .σ11νiji1νkjk1 and the interaction between . Yi and . Y	 would be .σ11νiji1ν	j	1, both 
of which involve .νiji1 and . σ11. 

Just as we replaced two-way interaction parameters in a log-linear model for 
2 items by products of association parameters and scale values to get an . RC(M)

model, we do the same for association models for high-dimensional tables. The 
interactions between the categorical variables are the products of labels of the paths 
between them. For example, the interactions between variables . Y1 and . Y6 for the 
graphs in Fig. 1.5 are 

. σ11ν1j11ν6j61 for Graph (a)

σ12ν1j11ν6j62 for Graph (b)

σ13ν1j11ν6j63 for Graph (c).

The latter two involve (conditional) covariances between the latent variables.
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1.5.2 Algebraic Details and Properties 

The most general case, where each item is directly related to each of the latent 
variables and all latent variables are related to each other, leads to the following 
complex association model: 

.P(y) = exp

⎡

⎣λ +
∑

i

λ
[i]
ji

+
∑

i

∑

k>i

∑

m

∑

m′≥m

σmm′νijimνkjkm
′

⎤

⎦ . (1.9) 

This model has an intercept, all main effects, and all possible two-factor interactions, 
where the interactions have a multiplicative structure. For the models to be 
equivalent to a hierarchical log-linear model of all two-factor interactions would 
require the number of terms (dimension) for the .RC(Mik) interaction term of every 
pair of items . Yi and . Yk , for .i, k = 1, . . . , I , to equal .Mik = min(Ji, Jk) − 1. 

A variety of more parsimonious models with a special structure for the associ-
ations among the variables of sound interpretation can be obtained by considering 
smaller values for the rank of the interaction terms or/and homogeneity of scores 
across interaction terms. Furthermore, higher-order interactions having multiplica-
tive terms among scores for more than two variables are possible. For the case of 
three-factor interactions and related references we refer to [42, Sections 6.7, 6.8.1]. 

These complex models require a considerable number of identification con-
straints; therefore, for the sake of discussion, we restrict our attention to models 
where each item is related to only one latent variable, which means that all 
interaction terms are of RC(1) type. The simple structures shown in Fig. 1.5 imply 
that each item has only one set of .νijims that are not all equal to zero. If . Yi is 
not related to a . Θm, then .νim = 0. For example, in Fig. 1.5b and c, there is no 
edge between . Y1 and . Θ2 so .ν1j12 = 0, .j1 = 1, . . . , J1. In AM models, we can 
have additional edges between, say, . Y1 and other . Θs; however, the simple structures 
discussed here prove to be sufficient for many applications. 

Association Model (1.9) can be derived from the same assumptions as the 
.RC(M) models: . y is multinomial, . θ is conditional Gaussian,4 and conditional 
independence of items given . θ . One difference is that the conditional covariance 
matrix does not have to be diagonal [4]. As a result, the means within response 
patterns also include responses to other variables; namely, 

.E(θm|y) = σmm

(
∑

i

νijim

)

+
∑

m′ �=m

σmm′

(
∑

k

νkjkm
′

)

. (1.10) 

For simple structures, items . Yi load on latent variable . θm and . Yk load on . θm′ . 
Estimates of . θm are based not only on the items directly related to . θm, as in (1.8),

4 The marginal distribution of . Θ is a mixture of Gaussian distributions. 
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but also those that are indirectly related through . θm′ . When .σmm′ �= 0, measurement 
can be improved and become more precise by including multiple correlated latent 
variables [21, 66]. In addition to the derivation based on statistical graphical models, 
Model (1.9) can be derived from an IRT perspective ([3, 5, 16, 37, 38], conditional 
specification of models [3, 5]), a theory of ferrimagnetism [47, 52], distance-based 
models [18–20], and others. 

To facilitate the discussion of the models, we use the following two-dimensional 
model for 4 categorical variables where variables . Y1 and . Y2 are directly related to 
. θ1 and variables . Y3 and . Y4 are directly related to . θ2: 

. P(y) = exp[λ +
4∑

i=1

λ
[i]
ji

+ σ11(ν1j11ν2j21) + σ22(ν3j32ν4j42) (1.11)

+σ12(ν1j11ν3j32 + ν1j11ν4j42 + ν2j21ν3j32 + ν2j21ν4j42)].

A log-linear model with all 2-way interactions for 4 five-category variables requires 
.(6 × 4 × 4) = 96 unique parameters to represent the interactions; whereas, the 
association model with homogeneous scale values across interactions (e.g., (1.11)) 
requires at most .(4 × 4) + 1 = 17 unique parameters.5 The difference between the 
number of parameters of log-linear and AMs increases exponentially for more items 
and categories per item. 

Unlike AMs for two-way tables that require more than two categories per 
variable, this is not the case for the higher-dimensional models. For example, 
Model (1.11) and models that correspond to the graphs in Fig. 1.5a, b and c can 
be fitted to binary variables [4, 5]. 

The identification constraints on the location of marginal effect terms and the 
scale values are analogous to the .RC(1) model (e.g., .

∑
ji

λ
[i]
ji

= 0 and . 
∑

ji
νijim =

0) and just one scaling constraint is required for each latent variable. For example, 
in (1.11), possible scaling constraints can be either 

. σmm = 1 for all m,

or 

. 
∑

ji

(νijim)2 = 1 for one i per θm for all m ,

but not both, analogous to the .RC(1) model. In example (1.11), if .σ11 = σ22 = 1, 
then we cannot linearly transform the .νijims without changing the values of the 
interaction terms. If we fix the variances and rescale .ν1j11 such that . 

∑
ji

ν2ijim
=

1, the interaction between variables does not necessarily remain the same. Placing

5 The association model may have even fewer unique parameters depending on whether restrictions 
are placed on the scale values. 
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scaling constraints on both of the .σmm and .νijim is a restriction that impacts the 
goodness-of-fit of the model. For example, if we set variance to .σ11 = 1 and re-
scale the .ν1j11, then the interaction between . Y1 and . Y2 changes, 

. σ11ν1j11ν2j21 �= 1(ν1j11/c)ν2j21 = (1/c)ν1j11ν2j21,

where .c =
√∑

j1
(ν1j11)

2. To achieve equality, either .
∑

j1
ν21j1m

�= 1 or .σ11 = 1/c. 

Whether the scaling constraint is put on .σmm or the scale values is more a matter 
of convenience. For example, for estimation of models for our example, we found 
it more convenient to set .σmm = 1; however, after the model has been fitted, we 
can switch to .

∑
ji

ν2ijim
= 1 and adjust .σmm (and the .σmm′ ) and other scale values. 

We did the latter in a simulation study reported below on the collapsibility over 
items where we needed to separate the effects of the strength and structure of the 
association. 

In the standard AMs framework, (1.11) is an AM having RC(1)-type two-factor 
interactions and every variable has homogeneous scores (i.e., the same scores across 
all interaction terms involved) 

. P(y) = exp[λ +
4∑

i=1

λ
[i]
ji

+ φ12ν1j11ν2j21 + φ34ν3j32ν4j42 (1.12)

+φ13ν1j11ν3j32 + φ14ν1j11ν4j42 + φ23ν2j21ν3j32 + φ24ν2j21ν4j42],

with the additional constraint on certain intrinsic association parameters . φ13 =
φ14 = φ23 = φ24 = σ12 (notice that .φ12 = σ11 and .φ34 = σ22). Such constraints 
are unusual for standard AMs, but are found in square tables applications (rows and 
columns are the same categories) and are linked to latent variables models (e.g., 
IRT models) later in Sect. 1.5.4. In applications with all variables (items) being 
measured on the same scale, we find homogeneity constraints on the scores for each 
variable and dimension (i.e., .νijim = νkjkm where .ji = jk) that result in symmetric 
interaction terms. 

To understand the physical interpretation of this constraint, consider (1.12) under 
the additional assumption that the scores of all variables are known, equidistant for 
successive categories (i.e. .νi(ji+1)m − νijim = ci , for all .ji = 1, . . . , Ji − 1, with 
.m = 1 for .i = 1, 2 and .m = 2 for .i = 3, 4), which means that we assume U -
type structures for all interactions. In particular for the .(Y1, Y2) partial table when 
.Y3 = j3 and .Y4 = j4, the OR equals 

.θ
[12]
j1j2|j3,j4 = exp

(
πj1,j2,j3,j4πj1+1,j2+1,j3,j4

πj1,j2+1,j3,j4πj1+1,j2,j3,j4

)

(1.13)

= exp
(
φ12(ν1(j1+1)1 − ν1j11)(ν2(j2+1)1 − ν2j21)

)

= exp (φ12c1c2)= θ [12],
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while for the other partial tables, the .θ [ik]’s, .i, k = 1, . . . , 4 with .i �= k, are defined 
analogously. Consequently, the conditional local ORs in every partial table . (Yi, Yk)

are all equal to .θ [ik], for all values of . ji and . jk (uniform) but also across all levels of 
the other items (homogeneous). Thus the underlying model is the homogeneous U 
model (see [42, Section 6.7]). Notice that due to the sum-to-zero constraints satisfied 
by the scores, .ci �= ck if .Ji �= Jk . For the special case of .Ji = J , .i = 1, . . . , 4, it  
holds .ci = c and the additional equality constraint among the . φ parameters above 
leads to .θ [13] = θ [14] = θ [23] = θ [24], hence to equality of the corresponding 
conditional local ORs. 

A difference in terms of identification constraints with respect to AMs for two-
way tables with M latent variables (i.e. .RC(M) models), is that in models of 
type (1.11) with more than two variables, each variable is directly related to only 
one of the M latent variables; whereas, under .RC(M) each variable is related to all 
M of them. The orthogonality constraints that are required for the .RC(M) are not 
required for (1.11) and . Σ can have non-zero off-diagonals. This is not true for all 
versions of (1.9); in particular, if every variable is directly related to each and every 
. ΘM , then an orthogonality constraint is required as well as for underlying bi-factor 
structures. 

An alternative version of (1.9) that has the same identification constraints 
as (1.11) may have all variables directly related to each of the M latent variables, 
except one per latent variable. The variables that are related to just one M “anchor" 
the rotation. Similarly, in a factor analysis/IRT model framework, parameter 
constraints are imposed to uniquely identify the model parameters. In a factor model 
with M latent variables, . M2 constraints are required to obtain a unique solution and 
avoid the rotational indeterminancy issue. Among the constraints are those that set 
the scale of the latent variable. Similarly to what it has been said above for . RC(M)

models, the scale of a latent variable is set either by standardizing the latent variable 
assuming that is has zero mean and unit variance in the population or by forcing its 
scale to be the same as one of the observed variables. Usually, the variable that best 
represents the latent variable has its factor loading set equal to one. The selected 
variable is known as a “reference” variable. Setting the scale of the latent variables 
to one takes care of M of the required restrictions. The additional ones are imposed 
on the loading and factor covariance matrices (e.g. in a diagonal factor covariance 
matrix, certain loadings are set to zero). In exploratory factor analysis, the required 
restrictions can be imposed on any of the parameters. Those restrictions will produce 
an arbitrary set of factors which can be then rotated to another set of factors 
that have better interpretability. In confirmatory factor analysis, the constraints are 
driven by the investigator’s research hypothesis. A useful constraint that eases the 
interpretation of the factors is to consider that each latent variable has at least one 
item that loads solely on that factor (i.e. setting specific elements of the loading 
matrix to zero) [40, 41]. Returning to the AMs framework, anchoring one item (e.g., 
.
∑

j ν2ijm = 1 and .νijm′ = 0 for .m′ �= m) that best represents the latent variable is a 
key to fitting non-simple structure models.
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With the .RC(M) association model, we cannot collapse over an item and study 
the relationship between the other item and a latent variable, because then we would 
have only one observed variable. This is not true in a strong sense for more than 2 
items. As mentioned previously, .νijim represents the structure and .σmm represents 
the strength of the relationship between variables. This leads to a semi-collapsible 
situation. This is illustrated for the unidimensional model, such as Fig. 1.5a. If we 
have 50 items but drop or collapse over one of them, the structure of the relationship 
between an item and the latent variables should not change but the strength of 
associations increases [6]. To illustrate this property, 100 data sets were simulated 
for 50 four-category items. A nominal IRT model was used to simulate the data 
where the slopes (scale values) were drawn from an .N(0, 1.5), and the location 
(marginal effects) were drawn from an .N(0, 2). Values of . θ for each of . n = 1000
observations for each of the 100 replications were drawn from an .N(0, 1). For cases 
where a simulated item did not have observations in all categories, a new data set 
was randomly created. The model was fit to data sets with 50 down to 15 items 
dropping 5 items at a time, and 15 down to 4 items dropping one item at a time. The 
scaling identification constraint was placed on the first item (i.e., .

∑
j=1(ν1j1)

2 = 1) 
and . σ11 was estimated. 

In Fig. 1.6, the means over replications of association parameters and scale values 
are plotted by the number of items in the data set. The estimated . σ11s are larger 
for small numbers of items and asymptotes down to 0 for large numbers of items. 
Recall that .σ11 is the conditional variance of . θ1 within a response pattern . y (i.e., 
a cell in a cross-classification of items). When the number of possible patterns is 
very large (infinity), only one person can fall into a cell of the table, so the variance 
necessarily equals 0. Also in Fig. 1.6 are the means of the estimated scale values 
where each line in the figures corresponds to a different item. The scale values plots 
are only given for three of the four categories because .νi4i1 = −∑3

ji=1 νiji1. The  
lines are essentially flat. In other words, we can collapse over categorical variables 
and the structure between variables remains the same. The only thing that changes 
is the strength of the relationship between observed variables (items), and between 
items and latent variables. This also holds for multidimensional models [6]. The 
association between two observed variables, say . Y1 and . Y2, is represented in the AM 
by .σmm′ν1j1mν2j2m′ (for .m = m and .m �= m′). As variables are dropped .σmm and 
.σmm′ both get larger, but the .νijim

′ stay essentially the same. Therefore, associations 
are larger for fewer items but the structure remains the same. 

1.5.3 Pseudo-likelihood Estimation 

Large numbers of variables result in large, sparse cross-classifications, in which case 
maximum likelihood estimation becomes computationally infeasible. An alternative 
is pseudo-likelihood estimation (PLE), which takes a large complex problem and 
reduces it to a number of simpler and smaller problems [8, 10, 11, 29]. A joint 
distribution can be specified by a set of conditional distributions [28] where the
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Fig. 1.6 Mean estimated . σ11 and .νiji1 parameters from fitting a unidimensional nominal model to 
data simulated from a nominal item response model for .n = 500 and four category items, with the 
number of items varying up to 50 

conditional distributions are compatible and consistent with the joint distribution 
and imply a unique model for the joint distribution. Rather than maximize the 
likelihood of the joint distribution, PLE for AMs maximizes the product of the (log) 
likelihoods of one variable conditional on the rest. Pseudo-likelihood estimators 
are asymptotically consistent and normal [8, 29, 51]. The conditional distributions 
of (1.9) for one item given responses to all other items is a discrete choice model or 
conditional multinomial logistic regression model. The conditional distribution for 
item i for individual s is 

.P(Yis = j |y−i,s) = exp[λ[i]
ji

+ νijm

∑
k �=i

∑
m′ σmm′νkjkm

′ ]
∑J

j=1 exp[λ[i]
ji

+ νijim

∑
k �=i

∑
m′ σmm′νkjkm

′ ] . (1.14) 

= 
exp[λ[i] 

ji 
+ νijmθ̃−i,ms)]

∑J 
j=1 exp[λ[i] 

ji 
+ νijimθ̃−i,ms]

. (1.15) 

= 
exp[λ[i] 

ji 
+ ∑

m′ σmm′ θ̆im′s]
∑J 

j=1 exp[λ[i] 
ji 

+ ∑
m′ σmm′ θ̆im′s′ ] (1.16)
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where .y−i,s are the responses by person s to all items except item i, and . jk are the 
categories chosen by individual s. The predictor variable in (1.15), .θ̃−i,ms , is the  
weighted sum of person s’s scores on all items except item i; that is, 

. θ̃−i,ms =
∑

k �=i

∑

m′
σmm′νkjkm

′ .

Note that .θ̃−i,ms depends on individual s. Using this value for .θ̃−i,ms , we can get 
estimates of . λiji

and .νijim by fitting (1.15) to the data for item i. 
There are multiple .σmm′s that need to be estimated, one .θ̆im′s for each .σmm′ . 

The .θ̆im′s equal a different weighted sum of persons s’s scale values for .k �= i, 
specifically, 

. θ̆im′s = νijm

∑

k �=i

νkjkm
′ ,

where the sub-script . jk indicates the categories chosen by s on item k. The  . θ̆im′s
differ over individuals, items, and categories. The slopes in (1.16) are the same over  
individuals and items. If we had estimates of .θ̆im′s , estimates of . λ[i]

ji
and .σmm′ can be 

obtained by fitting (1.16) to the data for just item i; however, the .σmm′ must be the 
same over items. We need to also estimate all possible .σmm′s. Fitting only (1.16) to  
one item’s data does not yield all possible .σmm′s. For example if .m = 1, then only 
.σ1m′s would be estimated but not, say, . σ23. To impose the restriction on .σmm′s over 
items and estimate all of them, we vertically concatenate or “stack” the data and fit 
a single discrete choice model to the stacked data. In the stacked data set, there are 
blocks of . Ji lines for each item and each individual. 

Of importance is the recognition that if we have the conditionals in (1.14) for  
every item, the set of models are compatible and consistent with a joint distribution 
for all the items. The set actually overdetermines the joint distribution and thus 
requires restrictions on the parameters. The restrictions are that the terms that 
represent the interaction of i and k are the same whether i is modeled as a function of 
k or k as a function of i. These terms equal .νijimσmm′νkjkm

′ , and since .σmm′ = σm′m, 
the restriction is met. The set of fully conditional distributions given by (1.14) 
uniquely imply the AM in (1.9) for the joint distribution of . Y ([1, 3, 5] and references 
therein). Since the discrete choice models [39] can be considered as a generalization 
of the stereotype model of Anderson [7], this link of discrete choice models to AM 
is a natural extension of the connection between the stereotype model and AM with 
.M = 1 (s. Section 8.4.4 in [42]). 

For unidimensional models, .νijim and . λ
[i]
ji

are estimated by fitting Model (1.15) to  
the data for item i using the current estimates of the scale values for all .k �= i and the 
.σmm′ parameters to compute the predictor variable .θ̃−i,ms . This is done successively 
for each item and fitting of the model to item data is iterated until convergence 
is achieved. For multidimensional models, estimates of .σmm′s are obtained by 
fitting (1.16) to the stacked data set using current estimates of scale values to
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compute the .θ̆im′s values. For unidimensional models, only item parameters are 
estimated; whereas, for multi-dimensional models, the algorithm iterates between 
updating .νijim parameters and .σmm′ parameters. If fixed scores are input (e.g., 
.νijim = 0, 1, . . . , (Ji − 1)), then model (1.16) is only fitted once. 

We maximize the pseudo-likelihood function by fitting discrete choice models to 
data using MLE. In R, discrete choice models can be fitted using mlogit ([17], 
mnlogit [36], mclogit [24]), and others. Due to the data manipulation required 
and iterative nature of the PLE algorithm, PLE for log-multiplicative association 
models has been implemented in the R package pleLMA (Anderson, 2021). The 
package mlogit is used in pleLMA, because it is efficient and can handle large 
data sets. Alternative packages, IssingSampling [25] and plRasch [2], both 
implement pseudo-likelihood estimation but they are more limited especially in 
terms of models for multicategory data and the estimation of category scale values. 
The pleLMA package can be found on CRAN and includes a detailed vignette on 
the usage of the package. 

PLE for estimation of AMs has been extensively studied for small problems and 
yields estimates for both .νijm and . λij that are nearly identical to MLE values. Paek 
[57, 58] simulated data from (M)IRT models for different numbers of categories 
(3, 4, 5), different numbers of items (4, 6, 20, 50), 1- to 4-dimensional models, 
and different sample sizes (200, 500, 1000). For small numbers of items and uni-
dimensional models, she found correlations between parameter estimates from MLE 
and PLE equal to ..999 to .1.000, and for multi-dimensional models most correlations 
were greater than ..980. For larger problems where MLE was not possible, data 
were simulated from an (M)IRT model and results were compared. Paek [57, 58] 
found that PLE estimates recovered the parameters used to simulate the data, were 
unbiased, and had small root mean squared errors. This was true for different 
numbers of categories, different numbers of items, 1- to 4-dimensional models, and 
different sample sizes. 

Alternative tools for model assessment are required, because the data for high-
dimensional tables is sparse. Additionally, we do not obtain fitted values for 
response patterns (i.e., cells in the table), because estimating the .λ-parameters 
is computationally and numerically challenging even given estimates of all other 
parameters. Some alternative methods are described Sect. 1.6 and others are illus-
trated in the context of our example; however, we conclude this section by briefly 
describing the connections between the AMs and (M)IRT models. 

1.5.4 Connection to IRT Models 

The conditional model in (1.15) has the same form as the nominal response model, 
including all of its special cases (e.g., models in the Rasch family, the two-parameter 
logistic model, the generalized partial credit model (GPCM)). The mathematical 
equivalence between AMs and (M)IRT models can be proven formally [1, 6, 47, 52]. 
From (1.15), the .θ̃−i,ms is person s’s value on the latent variable based on all
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items except i; however, after fitting a model we would use (1.10) to estimate 
the mean given a response pattern. The marginal effect parameters are sometimes 
referred to as “difficulty” or location parameters, and rather than denoted by . λ[i]

ji
, 

they are usually represented by . bij . The scale values .νijm are slopes on the latent 
variables and are “discrimination” parameters, often denoted as . aim. The following 
restrictions on the category scale values lead to common IRT models: 

.

Nominal: νijm = aijm no restrictions
GPCM: νijm = aimxj where xj = fixed scores
Rasch: νijm = xj where xj = fixed scores.

(1.17) 

The fixed scores, . xj , are typically set to equally spaced values or consecutive inte-
gers. Note that the conditional (partial) odds ratios are functions of the association 
parameters and category scale values. The conditional odds ratio for items i and k 
for the nominal model equals 

. exp[σmm′(νijm − νij ′m)(νk	m′ − νkj	′m′)] .

When the . xj s equal consecutive integers, as is typical for GPCM and Rasch models, 
the local partial OR (1.13) for models in the Rasch family reduce to .exp(σmm′), 
since .ci = 1. Instead of just one value for local ORs in the 2-way table case, there 
is one for each latent variable and one for each pair of latent variables for a total of 
.M(M − 1)/2 + M local conditional ORs. Regardless of the number of variables, 
the number of these ORs depends on the number of latent variables. For the GPCM 
with consecutive integers, the local conditional ORs equal .exp(σmm′aimakm′); that 
is, (1.13) for items i and k with .ci = aim and .ck = akm′ . 

In the AM framework, there is flexibility in setting the . xj s, which can be set to 
non-equally spaced values and different values over items. These possibilities yield 
item response models that deviate from the traditional Rasch and GPCM models. 
If the ordering of the response options is not clear, the category scale values from 
the nominal model can reveal the proper ordering and whether the spacing between 
category scale values is approximately equal. The scale values from nominal models 
can show whether a GPCM is plausible. Alternatively, models can be constructed 
where some items follow a GPCM and others a nominal model. There is great 
flexibility in crafting a model for data. 

1.6 Sampling Properties 

Let us denote with . ω the parameter vector corresponding to the fitted model. For 
example, for Model (1.11), 

.ω′ = (λ,λ[1],λ[2]λ[3],λ[4], ν11, ν21, ν32, ν42, σ11, σ22, σ12) ,
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where .λ[i] is a vector with elements . λ[i]
ji
, and .νim is a vector with elements .νijim. 

From the theory of composite likelihood estimators (pseudo-likelihood), it holds 

that .
√

N
(
ω̂PL − ω

) d→ N
(
0,G−1(ω)

)
, where .G(ω) is the Godambe information 

matrix [50, 64], (also known as the sandwich information matrix) given by 

. G(ω) = H(ω)J−1(ω)H(ω),

where 

. H(ω) = E

{

− ∂2

∂ω′∂ω
pl(ω); y)

}

,

. J (ω) = V ar

{
∂

∂ω′ pl(ω; y)

}

,

and .pl(ω; y) is the log pseudo-likelihood function. .H(ω) and .J (ω) can be estimated 
by: 

.Ĥ (ω̂PL) = − 1

N

∂2

∂ω′∂ω
pl

(
ω; (

y1, . . . , yN

))
∣
∣
∣
∣
ω

= ω̂PL (1.18) 

and 

. Ĵ (ω̂PL) = 1

N

N∑

n=1

(
∂

∂ω′ pl
(
ω; yn

)
∣
∣
∣
∣
ω=ω̂PL

) (
∂

∂ω′ pl
(
ω; yn

)
∣
∣
∣
∣
ω=ω̂PL

)′
,

(1.19) 

respectively. 

1.7 Evaluation and Testing 

The pseudo-likelihood estimation framework used here falls within the composite 
likelihood (CL) framework which is used for approximating complex full likeli-
hoods. The inference part under CL requires certain modifications and corrections 
similar to the ones needed for misspecified models [56]. Overall goodness-of-fit test 
statistics (e.g. likelihood ratio, Wald, and score test) and model selections criteria 
(e.g. Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC)) can be derived under the CL estimation framework. Adjusted Wald, score, 
and the likelihood ratio test statistic for overall fit and nested models under the CL 
framework have been developed for models for multivariate clustered data, time 
series data, and structural equation models [29, 43, 49, 56, 64]. Moreover, the model 
selection criteria AIC and the BIC are appropriately adjusted to hold under CL.
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1.7.1 Composite Likelihood Ratio Test for Overall Fit 

The fit of the model can be assessed by constructing a likelihood ratio test for testing 
.H0 : πr = πr(ω) against .H1 : πr subject to .

∑
πr = 1, where . ω is a vector 

of all independent parameters, r runs over all possible response patterns (cells of 
the contingency table), and . πr is the probability of response pattern r . In particular, 
.πr(ω) is defined by a model such as (1.6) or (1.11). The maximum of log-likelihood 
(. lnL) under . H0 and multinomial sampling is 

. lnL0 =
∑

r

nr ln π̂r = N
∑

r

pr ln π̂r , π̂r = πr(ω̂)

and the maximum of .lnPL under . H1 (saturated model) is 

. lnL1 =
∑

r

nr lnpr = N
∑

r

pr lnpr ,

where . nr is the number of times response pattern r occurs in the sample, . pr = nr/N

and N is the sample size. The likelihood ratio (LR) test statistic is 

.χ2
LR = 2

∑

r

nr (lnpr − ln π̂r ) = 2N
∑

r

pr(lnpr − ln π̂r ) . (1.20) 

Alternatively, one can use the goodness-of-fit test statistic 

.χ2
GF =

∑

r

[(nr − Nπ̂r)
2/(Nπ̂r)] = N

∑

r

(pr − π̂r )
2/π̂r . (1.21) 

Both statistics (1.20) and (1.21) have the same asymptotic distribution under . H0. 
In principle, these tests are possible to use with full information maximum 

likelihood (FIML). They cannot be used with the pseudo-likelihood approach 
because this does not maximize an overall likelihood function, so the . π̂r are not 
directly computed. In practice, however, these tests do not work well because in 
real data there are often many zero and small frequencies . nr which will distort the 
approximation to the chi-square distribution [59]. 

Nevertheless, under the pseudo-likelihood estimation framework the pseudo-
likelihood ratio test (PLRT) is written as 

.χ2
PLLT = 2 × (pl(ω̂; y) − pl(ω̃; y)), (1.22) 

where .pl(ω̂; y) and .pl(ω̃; y) are the log pseudo-likelihood values under the 
alternative and null hypothesis respectively. 

It has been shown that the asymptotic distribution of the composite likelihood 
(pseudo-likelihood) ratio statistic is a weighted sum of . χ2

1 distribution [29, 43, 49,
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56, 64]. We leave the development and studying of the performance of PLRT for 
testing overall fit and nested association models for future research. 

1.7.2 Composite Likelihood Model Selection Criteria 

Based on the results of [65], the Akaike pseudo-likelihood (PL) information 
criterion, .AICPL for the CL framework is defined as: 

.AICPL = −pl
(
ω̂PL; y) + tr(Ĵ (ω̂PL)Ĥ−1(ω̂PL)), (1.23) 

and, based on the results found in [27], the PL Bayesian information criterion, 
.BICPL, is defined as: 

.BICPL = −2pl
(
ω̂PL; y) + tr(Ĵ (ω̂PL)Ĥ−1(ω̂PL)) × logN , (1.24) 

where .ω̂PL is the pseudo-likelihood estimate under the hypothesized model, and 
.tr(Ĵ (ω̂PL)Ĥ−1(ω̂PL)) defines the number of effective parameters. The model with 
the smallest .AICPL or .BICPL is selected. 

1.8 Example 

The data used here, the DASS data (retrieved July, 2020 from OpenPsychomet-
rics.org), consist of responses collected during the period of 2017–2019 to 42 items, 
and of the 38,776 respondents, only a random sample of 1000 were used in this 
example. The items were presented online to respondents in a random order. The 
items included in the DASS data are from scales designed to measure depression 
(d1–d14), anxiety (a1–a13), and stress (s1–s15). For each item, respondents were 
asked to consider the last week when making their responses using the following 
categories: 

1. Did not apply to me at all 
2. Applied to me to some degree, or some of the time 
3. Applied to me to a considerable degree, or a good part of the time 
4. Applied to me very much, or most of the time 

The items are given in the appendix and in the online supplemental material, along 
with the data and R code used to fit the models to the data. 

We used pseudo-likelihood estimation in this example with a relatively strong 
convergence criterion. We deem that a model has converged if the item with the 
largest change in the maximum likelihood between iterations is less than .1e − 6, 
which also yields changes in many parameters on the order of .1e − 10. The  
convergence information is given in Table 1.3, along with the number of iterations
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Table 1.3 Global summary statistics and convergence information for models fit to the DASS data 

. # of Fit statistics Convergence 

Model M params MLPL .AICPL .BICPL Criterion . #iter 

Independence 1 126 .−56,146 56,272 113,162 0 5 

Rasch 1 127 .−44,609 44,736 90,095 0 6 

GPCM 1 168 .−44,240 44,408 89,641 2.5e-07 14 

Nominal 1 252 .−44,069 44,321 89,879 1.6e-07 14 

Rasch 3 132 .−42,529 42,661 85,969 4.4e-07 6 

GPCM 3 171 .−42,258 42,429 85,698 3.6e-07 14 

Nominal 3 255 .−42,030 42,285 85,822 2.5e-07 15 

(“. #iter”), and the value of the convergence criterion. The Rasch and independence 
models were only fitted once; therefore, we report the convergence information from 
the mlogit output from the stacked regression. Parameters’ estimates were close 
to the final estimations in approximately 5 iterations and the algorithm achieves 
convergence in less than or equal to 15 iterations. The . xj values for each item for 
the Rasch and GPCM models and the starting values for the .νijm parameters for the 
nominal model were .−0.1035098, .−0.03450328, .0.03450328, and .0.1035098; that 
is, they sum to zero and are equally spaced. 

An independence log-linear model was fitted to the data as a baseline model. 
One- and three-dimensional models corresponding to Rasch, GPCM, and nominal 
models were fitted to the data. The ordinal nature of the response scale is explicitly 
incorporated in the Rasch and GPCM models by fixing the category scores to 
have the same order as the response scale and be equally spaced for successive 
categories. Category scale values in the nominal model are estimated and their 
order and spacing is not restricted. Table 1.3 contains basic summary statistics for 
each model, including the number of unique parameters estimated (. ′# of params), 
the maximum of the log of the pseudo-likelihood (MLPL) function, and pseudo-
likelihood information criteria, .AICpl and .BICpl (smaller is better). As expected, 
the unidimensional models fit considerably worse than the three-dimensional 
models and will not be considered further. Among the three-dimensional models, 
the Rasch model is not selected whether using the AIC (which tends to select more 
complex models) or the BIC (which tends to select simpler models). The . M = 3
nominal model has the smallest .AICpl and the GPCM has the smallest .BICpl . We  
will further study the results of the three-dimensional nominal and GPCM models. 

1.8.1 Measures of Item Fit for the DASS Data 

With high-dimensional tables, measures of fit such as D and the percent of 
association are not useful. The dissimilarity index requires computing fitted values 
for each possible response pattern (cell of a table). As we see from Fig. 1.6, as
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the number of items increases, the strength of associations decreases, which makes 
using the percent of association accounted for by a model problematic. As a result, 
in the case of a large number of variables, alternative methods for evaluating the fit 
need to be employed. 

The analyses in this section are a combination of statistics and graphics at the 
item level. Table 1.4 presents the maximum of the likelihoods for each item from 
fitting models to each item in the PLE algorithm. These are given for the nominal 
model and GPCM along with the differences between the models’ values. These 
differences (i.e., . Δ or .−2Δ) do not meet the regularity conditions for these to be 
chi-square distributed because the values of the predictor variables are different 
for the GPCM and nominal models (i.e., different data). However, . Δ still provides 
information regarding which models are better fitting particular items. The sum over 
items of the maximum likelihoods in Table 1.4 equals a model’s MLPL. Table 1.5 
further summarizes the item fit statistic and contains the proportion of items within 
a scale that fall within ranges of the maximum likelihood values. From Tables 1.3 
and 1.5, in general the items from the nominal model have larger values than items 
fit by the GPCM (larger is better). Furthermore, the depression items tend to be fitted 
better than the items from the anxiety scale, and the items from the stress scale are 
the worst fit. Based on the difference in Table 1.4, some items appear to be fitted 
equally well by the GPCM and nominal model. In particular, the . Δs for d14, a4, 
and a9 equal .1.85, .1.37, and .1.77, respectively; however, items d6, d7, and a10 all 
have the largest . Δ values, which suggests that the nominal model should be used (at 
least for these items). 

The difference between the GPCM and nominal models is that the former has 
linear restrictions on the scale values. To determine whether this restriction is 
reasonable, we first examine statistics and then graphics. For the nominal model, 
a measure of how strongly an item is related to the latent variable that it is directly 
related to is . ηi [4] 

. ηim =
√∑

ji

ν2ijim
.

When the location identification constraint is .
∑

j νijm = 0, .ηim is proportional 
to the standard deviation of .νijms. Alternatively, we can fit the GPCM model to 
the data and examine the .âim parameters, which, when .νijm are equally spaced, 
will be highly correlated with . ηims. In our example, .r(ηim, âim) = 0.996, which 
suggests that the .νijm may be equally spaced and the . xj s used to fit the  GPCM  
model are reasonable for the data. Computing .ηim or .aim only requires fitting one 
model. The . ηims and . ̂aims are given in Table 1.6. Whether using .ηim or . ̂aim, the  
items that are most strongly related to their respective latent traits are d4, d7, and 
a10, which indicate that both models are identifying the same items and are highly 
related to the latent variable and therefore to each other. These statistics indicate 
the magnitude of association between items within a scale. For example, among the 
depression items, the relationship between d4 (“I felt sad and depressed”) and d7 (“I
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Table 1.5 Summary of proportion of items fitted in terms of ranges of the values of the items’ 
maximum of the log-likelihoods 

Range of log-likelihoods 

Model Scale .>−799 .−800 to .−899 .−900 to .−999 . <−1000

Nominal Depression .0.07 .0.29 .0.36 . 0.29

Anxiety .0.00 .0.08 .0.38 . 0.54

Stress .0.00 .0.00 .0.13 . 0.87

GPCM Depression .0.00 .0.36 .0.36 . 0.29

Anxiety .0.00 .0.08 .0.38 . 0.54

Stress .0.00 .0.00 .0.07 . 0.93

Table 1.6 Item statistics: 
The slopes .âim from the 
GPCM and the .ηim statistics 
from the nominal models, 
which reflect the strength of 
the relationship between the 
items and the latent variables, 
as well as between items 
themselves 

Item .ai1 .ηi1 Item .ai2 .ηi2 Item .ai3 . ηi3

d1 4.77 0.77 a1 2.14 0.34 s1 5.03 0.83 

d2 3.59 0.57 a2 4.21 0.68 s2 4.20 0.66 

d3 5.71 0.89 a3 4.17 0.64 s3 4.21 0.66 

d4 6.60 1.05 a4 5.67 0.88 s4 4.70 0.74 

d5 4.63 0.74 a5 3.65 0.61 s5 4.46 0.73 

d6 5.62 0.91 a6 2.41 0.37 s6 2.62 0.41 

d7 7.45 1.19 a7 5.24 0.81 s7 2.96 0.47 

d8 4.29 0.69 a8 3.67 0.63 s8 4.58 0.72 

d9 4.73 0.74 a9 3.28 0.51 s9 4.21 0.68 

d10 4.00 0.63 a10 6.00 0.94 s10 4.24 0.68 

d11 5.80 0.89 a11 5.48 0.85 s11 3.66 0.57 

d12 5.03 0.78 a12 4.10 0.64 s12 3.37 0.52 

d13 5.56 0.86 a13 3.79 0.58 s13 4.88 0.76 

d14 3.32 0.54 s14 3.72 0.59 

s15 4.35 0.67 

felt that life wasn’t worthwhile”) is larger than that from any other two items, and 
the smallest is between a1 (“I was aware of dryness of my mouth”) and a6 (“I felt 
scared without any good reason”). Comparing across scales, it appears that the items 
on the depression scale are more highly related to the depression trait and between 
each other (mean .âi = 5.08), followed by anxiety items related to the anxiety trait 
(mean .â = 4.14). The least strongly related to the latent trait and among each other 
are the stress items (mean .â = 4.08). 

To further investigate whether the GPCM or nominal models are better for 
particular items, we examine the scale value estimates from the nominal model to 
see if they are indeed linear with respect to equally spaced numbers. Estimated 
scale values from the nominal model (solid circles and lines) can be plotted against 
integers with linear regression drawn (dashed lines) in the same plot. Examples for 
four items are given in Fig. 1.7. The categories for all items are clearly ordinal and 
increase with values of the integers. The values for aggression item a9 (upper left) 
are coincident with the regression line, which from Table 1.4 has .Δ = 1.77. The
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Fig. 1.7 Estimated scale values .νijm (solid points and black lines) from the nominal response 
model for two aggression items (top) and two depression items (bottom) plotted against integers 
with linear regression lines (dashed lines)
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scale values for the other items a10, d7, and d8, deviate from their regression lines 
and had . Δ values of .12.37, .10.93, and .7.99, respectively. Scale values for item a9 
and possibly item d8 might be satisfactorily modeled using equally spaced category 
scores as in the GPCM. Another aspect to consider is slope of the lines, which would 
correspond to .aim in a GPCM model. Among these four items, a9 (smallest slope) 
appears to be more weakly related to its the latent variable; whereas, item d7 (the 
steepest slope) is the most strongly related to its latent variable. These results further 
confirm our conclusions based on statistics in Table 1.6. 

The last analyses look at the correspondence between data and fitted values 
(probabilities). In logistic regression with continuous predictors and in IRT, the 
continuous values can be collapsed into groups or bins. Estimates of . θm were com-
puted using (1.10) and then grouped into 10 categories. The observed proportions 
who select a category within a group and the fitted probabilities for the group were 
plotted against the mean of the continuous . θ̂m for the groups. Two examples of such 
plots are given in Fig. 1.8 where the data are points and lines are fitted values from 
the nominal model (one line per category). Item d7 has the largest log-likelihood 
value in Table 1.4 and the largest .ηim and .âim in Table 1.6. This appears to be 
the item fitted best according to our statistics and there is a close correspondence 
between the fitted probabilities (lines) and the observed proportions (points). Item 
s6 has the smallest log-likelihood and one of the smallest . ηi and . ̂ai , which indicate 
that this item has the worst fit under the model. The model for item s6 underpredicts 
the first (squares) category and last (diamonds) category, which further confirms that 
this item is not fitted well by the nominal model. Item s6 is not fitted well by the 
nominal model and will not fare any better under a GPCM. 

Computing . θ̂m using (1.10) makes use of responses to all items where items 
were weighted by the conditional covariances. Since we set .σmm = 1 for 
identification, we actually estimated conditional correlation matrices between traits 
within response patterns. These estimated conditional correlation matrices from the 
nominal and GPCM models are very similar, 

. Σ̂nom =
⎛

⎝
1.000 0.038 0.094
0.038 1.000 0.290
0.094 0.290 1.000

⎞

⎠ and Σ̂gpc =
⎛

⎝
1.000 0.047 0.099
0.047 1.000 0.299
0.099 0.299 1.000

⎞

⎠ ,

where the subscript nom is for the nominal model and gpc is for the GPCM. The 
conditional correlations between depression and anxiety and between depression 
and stress appear relatively small. 

Small conditional correlations do not imply that the marginal correlations are 
small. The marginal correlation matrices between . θ̂m from the nominal and GPCM 
model are 

.R̂nom =
⎛

⎝
1.000 0.774 0.827
0.774 1.000 0.954
0.827 0.954 1.000

⎞

⎠ and R̂gpc =
⎛

⎝
1.000 0.781 0.830
0.781 1.000 0.957
0.830 0.957 1.000

⎞

⎠ .
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Fig. 1.8 For depression item d7 (top) and stress item s6 (bottom), observed proportions (points) 
and fitted probabilities (lines) are plotted against the mean of . θm where estimate of . ̂θm has been 
collapsed in to groups. Symbols for categories are 1 . = squares, 2 . = dots, 3 . = triangles, and 4 . =
diamonds
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Table 1.7 Alternative models for DASS data with .M = 2 where stress and anxiety are one 
scale, and .M = 3 where . σ12 = 0

Fit statistics Convergence 

Model M . #param MLPL .AICPL .BICPL criteria . #iter 

Rasch 2 129 .−42,840 42,969 86,571 4.4e-07 6 

GPCM 2 169 .−42,490 42,659 86,147 3.2e-07 13 

Nominal 2 253 .−42,265 42,518 86,278 5.1e-07 13 

Rasch 3 131 .−42,536 42,667 85,983 4.2e-07 6 

GPCM 3 170 .−42,268 42,438 85,711 3.2e-07 14 

Nominal 3 254 .−42,036 42,290 85,827 6.7e-07 15 

The order in terms of magnitude of the marginal and conditional correlations have 
the same pattern (i.e., largest is for anxiety and stress, and the smallest is for 
depression and anxiety), but are considerably larger than the conditional values. 

The large marginal correlations between anxiety and stress suggest that perhaps 
these are not distinct constructs and a two dimensional model maybe sufficient. 
The data were reanalyzed using a two-dimensional Rasch, GPCM, and nominal 
model, which each has 2 fewer parameters. The statistics for these models are 
reported in Table 1.7, but the new models fitted the data worse than our original 
three-dimensional models (i.e., original models have smaller .AICPL and .BICPL). 
These results occurred because the conditional correlations (i.e., ..290 and ..299) 
are relatively small. It is important to point out that we do not set the marginal 
correlations, but rather the conditional correlations (or covariances). If a conditional 
correlation is close to 1, then a two-dimensional model might be better than a three-
dimensional one. 

In conclusion, our analysis confirmed our conjecture that the items represent 
three correlated constructs, as well as the excepted ordering of the category scores. 
For some items, the relative spacing between items is roughly equal but not for all, 
which suggests that the nominal model is the best model. We also detected some 
items that did not fit the data very well (e.g., s6). The items on the depression 
scale are more closely related to the latent variable of depression, and thus they 
are also more closely related to each other. The stress items have weaker association 
with the stress latent variable and also have weaker associations between the stress 
items themselves. Due to small values of .σ̂mm′ for depression and anxiety and for 
depression and stress, the estimated value of depression depends mostly on the 
responses to the depression items. On the other hand, the larger value of .σ̂mm′ for 
stress and anxiety indicate that each provide more information in the estimating of 
values on the stress and anxiety constructs.
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1.9 Conclusion/Discussion 

When there are interactions between categorical variables, the AMs presented in this 
chapter are just one way to describe the nature and strength of associations. Other 
possibilities not covered in this chapter, and often missing in the literature on AMs, 
include (multiple) correspondence analysis [34, 35], optimal scaling [53], and dual 
scaling [54, 55], which are all scaling methods that in the case of 2-way tables are 
all essentially the same and yield very similar results. For a history of these methods 
see [53]. These scaling methods are data analytic techniques without distributional 
assumptions and statistical tests of model goodness-of-fit to the data. Other related 
methods that are statistical models are canonical correlation models [32] and latent 
class models. For 2-way tables, latent class models with 2 latent classes and the 
correlation models yield similar results. 

The AMs discussed here provide useful representations of interactions between 
categorical variables; however, they have also been derived from an underlying the-
oretical model (e.g., IRT). Although we focus on models with an underlying simple 
structure, the log-multiplicative AMs afford more complex structures, including 
models where items load on multiple latent variables in a more exploratory analysis 
and bi-factor structures. We can also add covariates to the AMs. Pseudo-likelihood 
estimation can be used for these more complex structures. 

The data analysis examples illustrate how measures of fit, such as item log-
likelihood differences, transformed scores, and fitted proportions, can be used to 
check item misfit and the strength of an item in measuring a latent variable. 
Furthermore, AMs provide information about the arbitrary selected scores when 
choosing the response categories of an item. This is also what IRT modeling tries to 
achieve by estimating discrimination coefficients for each item or each score in the 
nominal case. Goodness-of-fit tests and model selection criteria can be developed 
under the pseudo-likelihood estimation framework presented here to test overall fit 
and select among nested and non-nested models. 

The connection between IRT and association models provides multiple insights 
on the same data analysis problem, i.e. on how to model and interpret associations 
depending on the aim of our analysis. The availability of statistical software and the 
extension to high-dimensional tables for multi-category variables is a very useful 
tool for data analysts who want to have the flexibility of choosing and estimating a 
suitable model for high-dimensional data. 

Appendix: DASS Data 

For each item, respondents were asked to consider the last week and use the rating 
scale: 

1. Did not apply to me at all. 
2. Applied to me to some degree, or some of the time.
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3. Applied to me to a considerable degree, or a good part of the time. 
4. Applied to me very much, or most of the time. 

Depression Scale 

d1. I couldn’t seem to experience any positive feeling at all. 
d2. I just couldn’t seem to get going. 
d3. I felt that I had nothing to look forward to. 
d4. I felt sad and depressed. 
d5. I felt that I had lost interest in just about everything. 
d6. I felt I wasn’t worth much as a person. 
d7. I felt that life wasn’t worthwhile. 
d8. I couldn’t seem to get any enjoyment out of the things I did. 
d9. I felt down-hearted and blue. 

d10. I was unable to become enthusiastic about anything. 
d11. I felt I was pretty worthless. 
d12. I could see nothing in the future to be hopeful about. 
d13. I felt that life was meaningless. 
d14. I found it difficult to work up the initiative to do things. 

Anxiety Scale 

a1. I was aware of dryness of my mouth. 
a2. I experienced breathing difficulty (eg, excessively rapid breathing, breathless-

ness in the absence of physical exertion). 
a3. I had a feeling of shakiness (eg, legs going to give way). 
a4. I felt that I was using a lot of nervous energy. 
a5. I had a feeling of faintness. 
a6. I perspired noticeably (eg, hands sweaty) in the absence of high temperatures 

or physical exertion. 
a7. I felt scared without any good reason. 
a8. I had difficulty in swallowing. 
a9. I was aware of the action of my heart in the absence of physical exertion (eg, 

sense of heart rate increase, heart missing a beat). 
a10. I felt I was close to panic. 
a11. I felt terrified. 
a12. I was worried about situations in which I might panic and make a fool of 

myself. 
a13. I experienced trembling (eg, in the hands). 

Stress Scale 

s1. I found myself getting upset by quite trivial things. 
s2. I tended to overreact to situations. 
s3. I found it difficult to relax. 
s4. I found myself in situations that made me so anxious I was most relieved when 

they ended. 
s5. I found myself getting upset rather easily.
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s6. I found myself getting impatient when I was delayed in any way (eg, elevators, 
traffic lights, being kept waiting). 

s7. I felt that I was rather touchy. 
s8. I found it hard to wind down. 
s9. I found that I was very irritable. 

s10. I found it hard to calm down after something upset me. 
s11. I feared that I would be thrown off by some trivial but unfamiliar task. 
s12. I found it difficult to tolerate interruptions to what I was doing. 
s13. I was in a state of nervous tension. 
s14. I was intolerant of anything that kept me from getting on with what I was 

doing. 
s15. I found myself getting agitated. 
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Chapter 2 
Graphical Models for Categorical Data 

Peter W. F. Smith  

2.1 Introduction 

Graphical models are parametric statistical models for multivariate random vari-
ables. In these models, the relationships between the variables are displayed using 
a mathematical graph. The use of mathematical graphs in statistics dates back to 
the path diagrams of Wright [20, 21], but it was not until the seminal paper of 
Darroch et al. [10] that a way of constructing a graph which has a well-defined 
probabilistic interpretation was proposed. This graph has since been called the 
conditional independence graph or independence graph, for short. 

The (conditional) independence structure of a p-dimensional random vector . �X, 
whose density is positive for all points in the sample space, can be displayed using 
a graph .G = (V ,E), where the set of vertices, .V = {1, . . . , p}, contains one vertex 
for each of the p components of the random vector and an edge .(i, j) is not in 
the edge set E if, and only if, the corresponding elements of . �X, . Xi and . Xj are 
conditional independent of the remaining .p−2 components. More succinctly, using 
the notation of Dawid [11], 

. (i, j) /∈ E ⇐⇒ Xi ⊥⊥ Xj | �XR,
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Fig. 2.1 Example of an 
independence graph X1 

X2 

X3 

X4 

where in general . �XA = {Xk : k ∈ A} and here .R = V \ (i, j). For example, if a 
4-dimensional random vector . �X satisfies the following conditional independencies: 

. X1 ⊥⊥ X2|{X3, X4}, X1 ⊥⊥ X3|{X2, X4} and X2 ⊥⊥ X3|{X1, X4},
then . �X has the independence graph presented in Fig. 2.1. 

The definition of the independence graph can be extended to included variables 
with structural zeros, that is variables whose density is zero at some points in the 
sample space (see [19], page 34). However, this requires some work and in this 
chapter we will assume that the variables considered satisfy the positivity constraint. 

Although any set of jointly distributed random variables has an independence 
graph, the analyst requires, in order to estimate the graph from some given 
data assumed to be realisations from . �X, a set of models in which conditional 
independence can easily be parameterised. For discrete variables considered in this 
chapter, cross-classifying a contingency table, the log-linear model is used. (See 
Chap. 1 for further details about log-linear models.) However, there are graphical 
Gaussian models for when all the elements of . �X are continuous random variables 
and mixed interaction models for when . �X contains both continuous and discrete 
random variables. 

The core ingredients of graphical modelling are conditional independence and 
graphs, and these are reviewed in the next two sections. The notation used reflects 
that this chapter concerns graphical models for discrete random variables. However, 
the ideas are relevant for graphical Gaussian and mixed interaction models. The 
Markov properties, which facilitate the interpretation of the association structure 
displayed in the independence graph, are presented in Sect. 2.4. Section 2.5 
discusses graphical log-linear models where all the variables are treated on an 
equal footing, whereas Sects. 2.6 and 2.7 discuss directed graphical models and 
graphical chain models, respectively, where directed relations between the variables 
are considered. The chapter concludes with some suggestions for further reading. 

2.2 Independence and Conditional Independence 

Two discrete random vectors . �XA and . �XB , with sample spaces .XA and . XB , 
respectively, are independent if 

.P( �XA = �xA, �XB = �xB) = P( �XA = �xA)P ( �XB = �xB),
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for all .�xA ∈ XA and .�xB ∈ XB . This is denoted by . �XA ⊥⊥ �XB and is equivalent to 

. P( �XA = �xA| �XB = �xB) = P( �XA = �xA)

or 

. P( �XB = �xB | �XA = �xA) = P( �XB = �xB),

for all .�xA ∈ XA and .�xB ∈ XB . A useful result when trying to determine if two 
random vectors are independent is the factorisation criteria for independence [19, 
Proposition 2.2.1]: 

. �XA ⊥⊥ �XB ⇐⇒ P( �XA = �xA, �XB = �xB) = g(�xA)h(�xB), for all �xA and �xB.

(2.1) 

Two discrete random variables . �XB and . �XC with sample spaces .XB and . XC , 
respectively, are conditionally independent given the random vector . �XA with sample 
space . XA if 

. P( �XB = �xB, �XC = �xC | �XA = �xA) = P( �XB = �xB | �XA = �xA)P ( �XC = �xC | �XA = �xA),

for all .�xB ∈ XB , .�xC ∈ XC and .�xA ∈ XA. This is denoted by . �XB ⊥⊥ �XC | �XA and is 
equivalent to 

. P( �XB = �xB | �XC = �xC, �XA = �xA) = P( �XB = �xB | �XA = �xA),

. P( �XC = �xC | �XB = �xB, �XA = �xA) = P( �XC = �xC | �XA = �xA)

or 

. P( �XA = �xA, �XB = �xB, �XC = �xC)

= P( �XA = �xA, �XB = �xB)P ( �XA = �xA, �XC = �xC)

P ( �XA = �xA)
.

A useful result when trying to determine if two random vectors are conditionally 
independent is the factorisation criteria for conditional independence [19, Proposi-
tion 2.2.3]: 

. �XB ⊥⊥ �XC | �XA ⇐⇒ P( �XA = �xA, �XB = �xB, �XC = �xC) = g(�xB, �xA)h(�xC, �xA),

(2.2) 

for all . �xB and . �xC , and all . �xA with .P( �XA = �xA) > 0.
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2.3 Relevant Graph Theory 

Most of the small amount of graph theory required for this chapter is presented 
in this section and the ideas illustrated using the graphs presented in Fig. 2.2. See 
[19, Section 3.1] or [15, Chapter 2] for further details concerning the graph theory 
relevant to graphical modelling. 

A graph is denoted by .G = (V ,E), where V is the set of vertices and E is 
the edges set of the graph. Initially, only undirected graphs are considered, that 
is .(i, j) ∈ E ⇐⇒ (j, i) ∈ E. However, directed graphs will be introduced in 
Sects. 2.6 and 2.7 when directed graphical models and graphical chain models, 
respectively, are considered. 

Vertices i and j are neighbours/adjacent in . G if .(i, j) ∈ E. For example, in 
Fig. 2.2a vertices 1 and 2 are neighbours, but vertices 1 and 4 are not. 

A path is a sequence of distinct vertices .i1, i2, . . . , im for which the edges 
.(il, il+1), .l = 1, . . . , m − 1 are in E. For example, in Fig. 2.2a vertices 1, 2, 4, 
3 form a path. 

A cycle is path where .i1 = im. For example, in Fig. 2.2a vertices 1, 2, 4, 3, 1 form 
a cycle. 

A cycle is chordless if only successive vertices are neighbours. For example, in 
Fig. 2.2a vertices 1, 2, 3, 1 form a chordless cycle, but vertices 1, 2, 4, 3, 1 do not, 
since 2 and 3 are neighbours. 

A subset of vertices A separates vertices .i /∈ A and .j /∈ A if every path joining 
i and j contains at least one vertex in A. For example, in Fig. 2.2a the subset . A =
{2, 3} separates vertices 1 and 5. 

(b)(a) 
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(d)(c) 
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Fig. 2.2 Examples of (a) a graph, (b) a subgraph, (c) the cliques of the graph and (d) an irreducible 
graph



2 Graphical Models for Categorical Data 47

A subset of vertices A separates subsets of vertices B and C (A, B and C 
disjoint) if for every pair of vertices .i ∈ B, .j ∈ C it separates i and j . For example, 
in Fig. 2.2a the subset .A = {2, 3} separates subsets .B = {1} and .C = {4, 5}. 

The boundary of a vertex i, .bd(i), is the set of all neighbours of i. For example, 
in Fig. 2.2a .bd(3) = {1, 2, 4}. 

The subgraph of .G = (V ,E) induced by a subset of vertices .W ⊆ V is the graph 
.GW = (W,F ), where .(i, j) ∈ F if .i, j ∈ W and .(i, j) ∈ E. For example, the 
subgraph of the graph in Fig. 2.2a induced by .W = {1, 2, 4} is given in Fig. 2.2b. 

A subset of vertices .W ⊆ V induces a complete subgraph of .G = (V ,E) if 
.(i, j) ∈ E for all . i, j ∈ W.

The cliques of a graph .G = (V ,E) are its maximally complete subgraphs, 
maximal with respect to inclusion of another vertex from V . A clique can be 
identified from its vertex set alone since, by definition, it is complete. For example, 
the subgraph of the graph in Fig. 2.2a induced by .W = {1, 2} is compete, but not 
maximally complete, since the subgraph induced by .W ′ = W ∪{3} is also complete. 
The latter subgraph is a clique, since the subgraphs induced by .W ′∪{4} and . W ′∪{5}
are not complete. 

If A, B and C are disjoint subsets of V such that B and C are non-empty, . A∪B∪
C = V , A separates B from C in .G = (V ,E) and A is complete, then the subgraphs 
induced by .A ∪ B and .A ∪ C form a reduction of . G, and . G is said to have been 
reduced. A graph or subgraph that cannot be reduced is called irreducible. Hence, 
the cliques of a graph are irreducible. For example, since for the graph in Fig. 2.2a, 
.A = {2, 3} induces a complete subgraph, the subgraphs induced by . A∪B = {1, 2, 3}
and .A ∪ C = {2, 3, 4, 5} form a reduction. 

A graph is decomposable if it is complete or if there exists a reduction of 
. G into decomposable subgraphs. Equivalently, a graph is decomposable if it can 
be recursively reduced to its cliques. For example, the graph in Fig. 2.2a is  
decomposable, since it can be recursively reduced to its cliques, which are given 
in Fig. 2.2c. The graph in Fig. 2.2d cannot be reduced and therefore is irreducible. It 
is not decomposable, since it is not a single clique. 

A graph is triangulated if it contains no chordless cycles and a graph is 
decomposable if, and only if, it is triangulated. For example, the graph in Fig. 2.2a 
is triangulated, but the graph in Fig. 2.2d is not, since it is a chordless four cycle. 

2.4 Markov Properties 

A random vector . �X with sample space . X exhibits, relative to the graph . G =
(V ,E): 

• the pairwise Markov property if .(i, j) /∈ E ⇐⇒ Xi ⊥⊥ Xj | �XR; 
• the global Markov property if A, B and C are disjoint subsets of V , and A 

separates B and C implies . �XB ⊥⊥ �XC | �XA; 
• the local Markov property if, for any .i ∈ V , .Xi ⊥⊥ �XV \{i,bd(i)}| �Xbd(i).
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Now . �X exhibiting the global Markov property relative to . G implies . �X exhibits the 
local Markov property relative to . G, and . �X exhibiting the local Markov property 
relative to . G implies . �X exhibits the pairwise Markov property relative to . G. 
Furthermore, if .P( �X = �x) > 0 for all .�x ∈ X = X1 × X2 × · · · × Xp, where . Xi

is the sample space of . Xi , then . �X exhibiting the pairwise Markov property relative 
to . G implies . �X exhibits the global Markov property relative to . G. The proof of the 
equivalence of the three Markov properties under this positive constraint can be 
found in [19, Theorem 3.4.1] and [15, Section 3.2.1]. 

Assuming the variables satisfy the positivity constraint, then since, by definition, 
. �X exhibits the pairwise Markov property relative to its independence graph, it also 
exhibits the global and local Markov properties relative to its independence graph. 
Hence, the graph can be used to ascertain other conditional independence statements 
about . �X. For example, if the graph in Fig. 2.2a is the independence graph for . �X =
(X1, . . . , X5)

T , then by definition 

. X1 ⊥⊥ X4|{X2, X3, X5}, X1 ⊥⊥ X5|{X2, X3, X4}, X2 ⊥⊥ X5|{X1, X3, X4}

and 

. X3 ⊥⊥ X5|{X1, X2, X4}.

By the global Markov property it follows that, for example, 

. X1 ⊥⊥ {X4, X5}|{X2, X3}

and by the local Markov property it follows that, for example, 

. X5 ⊥⊥ {X1, X2, X3}|X4.

2.5 Graphical Log-linear Models 

The first log-linear model was developed by Birch in the 1960s. (For further details, 
see [3–5] and the books by Bishop et al. [7, 8] and Agresti [1]). Wermuth [18] gave  
analogies between log-linear models that exhibit conditional independence and the 
covariance selection models for continuous random variables of Dempster [12]. The 
work of Darroch et al. [10] then gave a way of displaying the independence structure 
of certain log-linear models using independence graphs.
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2.5.1 Notation 

Consider a p-dimensional contingency table cross-classifying the p random vari-
ables . �XV = �X = (X1, . . . , Xp)T , where .V = {1, . . . , p} and . Xi has . ri categories 
labelled .1, . . . , ri . Hence, the sample space for . Xi is .Xi = {1, . . . , ri} and the 
number of cells in the table is .r = ∏p

i=1 ri . 
Let .nV (�xV ) = n(�x) be the observed cell counts and . P( �XV = �xV ) = πV (�xV ) =

π(�x) be the underlying cell probabilities. For example, if .p = 2, .r1 = 2 and 
.r2 = 3, then the possible . �x are .(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3) and the 
observed cell counts and underlying probabilities are displayed in Table 2.1a and 
b, respectively. 

Let .nA(�xA) be the observed marginal cell count corresponding to a subset of the 
variables .A ⊂ V and let 

. πA(�xA) =
∑

�xB

πV (�xA, �xB)

be the marginal cell probabilities; see Table 2.1a and b, respectively, for examples. 
Note that . n∅ is the sample size, and denote the p-dimensional table of cell counts 
by .�n = {nV (�x), �x ∈ X }. 

2.5.2 Log-linear Models 

A saturated log-linear model for . �XV is 

. logπV (�xV ) =
∑

D⊆V

λD(�xD),

where the sum is over all possible subsets of V including the empty set . ∅. For  
example, the saturated log-linear model for . �X12 = �X{1,2} is 

. logπ12(�x12) = λ∅ + λ1(x1) + λ2(x2) + λ12(x1, x2). (2.3) 

For identifiability, set .λD(�xD) = 0 if any component of . �xA is one, for all .D ⊆ V . 
These are called the corner-point constraints and are, for example, if .p = 2, . r1 = 2

Table 2.1 (a) Observed cell counts and (b) underlying probabilities for a .2×3 contingency table 

(a)

.n(1, 1) .n(1, 2) .n(1, 3) .n1(1)

.n(2, 1) .n(2, 2) .n(2, 3) .n2(2)

.n2(1) .n2(1, 2) .n(1, 3) .n∅

(b) 

.π(1, 1) .π(1, 2) .π(1, 3) . π1(1)

.π(2, 1) .π(2, 2) .π(2, 3) . π2(2)

.π2(1) .π2(1, 2) .π(1, 3) 1
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and .r2 = 3, 

. λ1(1) = λ2(1) = λ12(1, 1) = λ12(1, 2) = λ12(1, 3) = λ12(2, 1) = 0.

Simpler models for . �XV can be specified by setting one or more of the .λD(�xD) to 
zero for all . �xD , and the subsets of V for which .λD(�xD) �= 0 for some . �xD define the 
model: 

. logπV (�xV ) =
∑

D∈D
λD(�xD),

where .D = {D : λD(�xD) �= 0 for some �xD}. For example, if .λD(�x12) = 0 for all 
. �x12 in model (2.3), then the simpler model is defined by the subsets . {1} and . {2}. 
Furthermore, in the simpler model .X1 ⊥⊥ X2, which follows from the factorisation 
criteria for independence, see expression (2.1), since . π12(�x12) = λ∅λ1(x1)λ2(x2) =
g(x1)h(x2), say.  

2.5.3 Hierarchical Log-linear Models 

A log-linear model is called hierarchical if .λC(�xC) = 0 for all .�xC . ⇒ λD(�xD) = 0
for all .C ⊆ D and . �xD . For example, if .λ2(x2) = 0 for all . x2 in (2.3), then the 
model is hierarchical only if .λ12(x1, x2) = 0 for all . x1 and . x2; otherwise it is non-
hierarchical. Therefore, rather than specifying . D, all the subsets of V for which 
.λD(�xD) �= 0 for some . �xD , to define a hierarchical log-linear model, only the max-
imal subsets, maximal with respective to inclusion, are needed. These subsets are 
called the generators of the hierarchical log-linear model and the set of generators 
is called the generating class: .C = {C ∈ D : C is not a strict subset of any D ∈ D}. 

Independence is not easily modelled using log-linear models for . �XV , .p > 2, 
since it is a property of marginal distributions. However, conditional independence 
is easily modelled. For example, if .p = 3, then 

. X1 ⊥⊥ X2|X3 ⇐⇒ λ123(x1, x2, x3) = λ12(x1, x2) = 0

and 

. X1 ⊥⊥ X3|X2 ⇐⇒ λ123(x1, x2, x3) = λ13(x1, x3) = 0.

In general, if . �XV = { �XA, �XB, �XC}, then 

. �XB ⊥⊥ �XC | �XA ⇐⇒ λD(�xD) = 0

for all D with one or more elements from B and one or more elements from 
C. This follows from the factorisation criteria for conditional independence, see
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expression (2.2), since 

. �XB ⊥⊥ �XC | �XA ⇐⇒ logπV (�xV ) =
∑

D⊆P

λD(�xD) = g(�xA, �xB) + h(�xA, �xC)

⇐⇒ λD(�xD) = 0

if D has one or more elements from B and one or more elements from C. Note that 

. Xi ⊥⊥ Xj | �XR ⇐⇒ λijA(�xijA) = 0, for all A ⊆ R.

Hence, a conditional independence graph can be drawn for any log-linear model: 

. (i, j) /∈ E ⇐⇒ λijA(�xijA) = 0, for all A ⊆ R.

Table 2.2 presents examples of possible graphs for a 3-dimensional contingency 
table along with the conditional independencies and log-linear parameters con-
strained to be zero in the log-linear model 

. logπ123(�x123) = λ∅ + λ1(x1) + λ2(x2) + λ3(x3) + λ12(x1, x2) + λ13(x1, x3)

+ λ23(x2, x3) + λ123(x1, x2, x3). (2.4) 

Also given in Table 2.2 are the generators of the models. 
If .λ123(x1, x2, x3) = 0, for all . x1, . x2 and . x3, but each of the two-way .λ-

parameters are non-zero for some values of . x1, . x2 and . x3, then there are no 
conditional independencies and hence the model with no three-way interaction has 
the same independence graph as model (a) in Table 2.2. Therefore, every graph does 
not correspond to a unique hierarchical log-linear model. The following hierarchical 
log-linear models all have the graph in Fig. 2.2a: 

(i) .{1, 2, 3}, {2, 3, 4}, {4, 5}; 
(ii) .{1, 2}, {1, 3}, {2, 3, 4}, {4, 5}; 
(iii) .{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}; 
(iv) .{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}. 

While the pairwise conditional independencies that define model (c) are listed 
in Table 2.2, note that it follows from the equivalence of Markov properties that 
.X1 ⊥⊥ {X2, X3}, since the empty set separates .{X1} and .{X2, X3} (Global Markov 
Property) or, equivalently, since . X1 has no neighbours (Local Markov property). 
Similarly, under model (d) if follows that .X1 ⊥⊥ X2, .X1 ⊥⊥ X3 and .X2 ⊥⊥ X3. 
This demonstrates the importance of the equivalence of Markov properties result if 
graphs are to be used to display the association structure of a random vector, since it 
would be odd not to be able to conclude from models (c) or (d) that .X1 ⊥⊥ X2, etc.
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Table 2.2 Examples of graphs, with corresponding conditional independencies, constrained log-
linear parameters and generators for . p = 3

2.5.4 Graphical Log-linear Models 

A log-linear model is called graphical if, and only if, its generators correspond to the 
cliques of the graph. Hence, the models defined in Table 2.2 are graphical, but the 
model with only .λ123(x1, x2, x3) = 0, for all . x1, . x2 and . x3, is not. It follows from the 
definition, that every graph has a unique graphical log-linear model. For example, 
model (i) above is the graphical model corresponding to the graph in Fig. 2.2a. Note 
that graphical log-linear models are a subset of hierarchical models.
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2.5.5 Fitting Log-linear Models 

Log-linear models can be fitted by maximising the log-likelihood: 

. l(�λ, �n) = log
∏

�x
π(�x)n(�x)

=
∑

�x
n(�x) logπ(�x)

=
∑

�x
n(�x)

∑

D∈D
λD(�xD),

subject to .
∑

�x π(�x) = 1; see, for example, [1, Sections 9.6.1 to 9.6.5]. 
An interesting point here is that the parameters of a log-linear model have 

direct estimates if, and only if, the model is a graphical log-linear model and the 
corresponding independence graph is decomposable or, equivalently, triangulated 
[10]. Such models are called decomposable models. For example, the parameters of 
the models defined in Table 2.2 all have direct estimates, but those for the model with 
only .λ123(x1, x2, x3) = 0 for all . x1, . x2 and . x3 do not, nor do those for the graphical 
log-linear model corresponding to the graph in Fig. 2.2d. Furthermore, only model 
(i) of the models with the graph in Fig. 2.2a listed above has direct estimates. 

To summarise, the types of log-linear model introduced above can be ordered as: 

. decomposable ⊂ graphical ⊂ hierarchical ⊂ log-linear.

Overall goodness of fit of a model can be assessed by using the deviance: 

. dev(M) = 2n∅
∑

�x
n(�x) log

n(�x)

n∅π̂(�x)
,

where .̂π(�x) is the maximum likelihood estimate under model M; see, for example, 
[1, Section 9.6.6]. Under the null hypothesis that model M generated the data, 
.dev(M) has, asymptotically as .n∅ → ∞, a chi-squared distribution with degrees 
of freedom equal to .r − q, where q is the number of unconstrained .λ-parameters in 
M . 

Two nested models .M0 ⊂ M1 can be compared using the differences in 
deviances: 

. dev(M0|M1) = dev(M0) − dev(M1);

see, for example, [1, Section 4.5.4]. Under the null hypothesis that model . M0
generated the data, .dev(M0|M1) has, asymptotically as .n∅ → ∞, a chi-squared 
distribution with degrees of freedom equal to .q1 − q0, where . qm is the number of 
unconstrained .λ-parameters in model . Mm.
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The edge exclusion deviances are often useful when selecting a graphical model 
that best represents the conditional independence structure of a random vector. 
These are the deviances between two models whose graphs differ by one edge: 

. edev(i, j |M1) = dev(M0|M1),

where . M0 is the model with edge .(i, j) removed from . M1. For example, the edge 
exclusion deviances for comparing the models (a) and (b), and (c) and (d) in 
Table 2.2 are .edev(2, 3|{1, 2, 3}) and .edev(2, 3|{1}, {2, 3}), respectively. Note that, 
if . M1 is the saturated model, .MS say, and model . M0 is the model with only edge 
.(i, j) missing, model .M\(i,j) say, then 

. edev(i, j |MS) = dev(M\(i,j)).

While there are packages specially developed to fit graphical models, including 
some for R (for more details see [14]), any package which can fit log-linear models 
can be used to fit graphical log-linear models. 

2.5.6 Example: Infant Survival Data 

The infant survival data set presented in Bishop [6] and Bishop et al. [7, 8] has 
been used by Whittaker [19] and Roverato [17] to illustrate the use of graphical 
log-linear models and will be used here. Table 2.3 presents a three-way contingency 
table cross-classifying infants by the clinic they attended (1 or 2), the amount of 
care they received (less or more) and their survival status (yes or no). 

Table 2.4a presents the edge exclusion deviances from the saturated model, 
.edev(i, j |MS), for the infant survival data. There is strong evidence of a conditional 
independence between care and survival given clinic when these deviances are 
compared to a . χ2

2 distribution, but no evidence of either of the other two conditional 
independencies. In general, one approach to model selection would be now to 
remove the non-significant edge and test if further edges could be removed. For 
example, Table 2.4b presents these edge exclusion deviances, .edev(i, j |M\(2,3)), 

Table 2.3 Infant survival 
data 

Survival (. X3) 

Clinic (.X1) Care (. X2) No Yes 

1 Less 3 176 

More 4 293 

2 Less 17 197 

More 2 23 

Reproduced with permission from part of
Table 2 of [
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Table 2.4 Edge exclusion deviances for the infant survival data 

(a) .edev(i, j |MS )

Clinic (. X1)

Care (. X2) 188.1

Survival (. X3) 12.22 0.082

.X1 .X2 .X3

(b) .edev(i, j |M\(2,3)) 
Clinic (. X1) 

Care (. X2) 193.7 

Survival (. X3) 17.75 – 

.X1 .X2 . X3

which should be compared with a . χ2
1 distribution. As expected from the edge 

exclusion deviances in Table 2.4a, the edges between care and clinic, and survival 
and clinic remain significant. Hence, model (b) in Table 2.2 best represents 
the conditional independence structure for these data and the conclusion is that 
after controlling for clinic, care is independent of survival. However, clinics have 
significantly different survival rates and significantly different care profiles. 

For further examples of analyses using graphical log-linear models, see [19, 
Sections 7.5 to 7.7 and 8.5], [13, Chapter 2] and [14, Chapter 2]. 

2.6 Directed Graphical Models 

The graphical models discussed in Sect. 2.5 treat all the variables on an equal 
footing, whereas often the variables can or should be partially or fully ordered 
such that some variables are considered as purely explanatory variables, others 
as intermediate variables and some as response variables. When the variables can 
be completely ordered then direct graphical models, the subject of this section, 
are appropriate, whereas when they can only be partially ordered graphical chain 
models, the subject of Sect. 2.7, may be used. 

2.6.1 Directed Acyclic Graphs 

If the vertices can be completely ordered and only edges from .i < j are permitted, 
then the resulting graph will be a directed acyclic graph (DAG): directed since 
only directed edges are permitted, often drawn as arrows, and acyclic since it is 
impossible for a directed path .i1, i2, . . . , im, where .il < il+1, to be a cycle. An 
example of a DAG is given in Fig. 2.3a, whereas the graph in Fig. 2.3b, while 
directed, is not acyclic. Two vertices .i < j are adjacent in a DAG if .(i, j) ∈ E. 
Note that a directed path in a DAG follows the direction of the arrows, whereas an 
undirected path is a sequence of adjacent vertices. For example, in Fig. 2.3a vertices 
.1, 3, 4 form a directed path and vertices .1, 3, 2 form an undirected path. While [15] 
reserves path for a directed path and uses chain to refer to an undirected path, below 
path refers to an undirected path as it does in [13] and [17].
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Fig. 2.3 Examples of (a) a  
DAG and (b) a cyclic graph 

(b)(a) 

1 

2 

3 

4 5 1 

2 

3 

The set of parents of vertex i is denoted by .pa(i) and the set of children of vertex 
i by .ch(i), where .j < i is a parent of i if .(j, i) ∈ E and .j > i is a child of i if 
.(i, j) ∈ E. For example, in Fig. 2.3a .pa(4) = {2, 3} and .ch(4) = {5}. 

The ancestors of a vertex i, .an(i), is the set of vertices that have a directed 
path to i and the descendants of i, .de(i), is the set vertices that have a directed 
path from i. For example, in Fig. 2.3a, .an(4) = {1, 2, 3} and .de(3) = {4, 5}. The  
ancestors of a set A, .an(A), are all the ancestors of .i ∈ A that are not in A, that 
is, .an(A) = {∪i∈Aan(i)} \ A. Finally, following [13], .an+(A) = A ∪ an(A). For  
example, Fig. 2.3a, .an({3, 4}) = {1, 2} and .an+({3, 4}) = {1, 2, 3, 4}. 

The directed global Markov property given in Sect. 2.6.2 uses d-separation. 
To define d-separation we need to distinguish between collider and non-collider 
vertices in a path. A vertex j is called a collider in a path if edges .(i, j) and . (j, k)

are in the path. It is call a non-collider if it is neither of the terminal vertices nor a 
collider in the path. For example, vertex 4 is a collider and vertex 3 is a non-collider 
in the path .1, 3, 4, 2 in Fig. 2.3a. A subset of vertices A blocks a path between . i /∈ A

and .j /∈ A if the path has either (i) a non-collider in A or (ii) the path has a collider 
k, say, such that k nor its descendants are in A, that is, .{k, de(k)} ∩ A = ∅. For  
example, in Fig. 2.3a .A = {3} does not block the path 1, 3, 2, since 3 is a collider in 
this path, whereas .A = {3} blocks the path 1, 3, 4, since 3 is a non-collider in this 
path. Similarly, .A = {2} blocks the path 3, 2, 4. Note that .A = ∅ blocks the path 
1, 3, 2, since 3 is a collider and, by definition, neither it nor its descendant are in . ∅. 
However, .A = {4, 5} does not block the path 1, 3, 2, since 4 and 5 are descendants 
of the collider 3 in the path. 

A subset of vertices A d-separates subsets of vertices B and C (A, B and C 
disjoint) if for every pair of vertices .i ∈ B and .j ∈ C it blocks all paths between i 
and j . For example, in Fig. 2.3a .A = {4} d-separates .B = {2, 3} from .C = {5}, but  
.A = {3} does not d-separate .B = {1} from .C = {5}, since while it blocks the path 
1, 3, 4, 5, it does not block the path 1, 3, 2, 4, 5. See [17, pages 113 and 114] for 
further examples. 

Rather than checking if all paths are blocked, another method to check for 
d-separation uses the moral graph of an ancestral subgraph. The moral graph 
.Gm = (V ,Em) corresponding to the DAG .G = (V ,E) has undirected edges added 
between the parents of each of the vertices and all the other directed edges replaced 
by undirected edges, that is,
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. Em = {(i, j) : (i, j) ∈ pa(k), k ∈ V } ∪ {(i, j) : (i, j) or (j, i) ∈ E}.

For example, the moral graph of the DAG in Fig. 2.3a is the graph in Fig. 2.2a. An 
undirected edge has been added between vertices 1 and 2, the parents of vertex 3, 
and between vertices 2 and 3, the parents of vertex 4, and all the other directed edges 
replaced by undirected edges. Note that the moral graph is an undirected graph. 

The ancestral subgraph of a set of vertices A is the subgraph .Gan+(A). For  
example, the ancestral subgraph of .{3, 4} is the DAG in Fig. 2.3a without vertex 
5 and the arrow to it. 

Lauritzen [15, Proposition 3.25] states that a subset of vertices A d-separates 
subsets of vertices B and C (A, B and C disjoint) in the DAG .G = (V ,E) if, and 
only if, A separates subsets of vertices B and C in the moral graph of the ancestral 
graph of .A ∪ B ∪ C, that is, .(Gan+(A∪B∪C))

m. 

2.6.2 Directed Markov Properties 

The Markov properties can be modified for DAGs. Denote by . pr(i) = {j : j < i ∈
V } the vertices prior to i. Then a random vector . �X with sample space . X exhibits, 
relative to the DAG .G = (V ,E): 

• the direct pairwise Markov property if, for vertices .i < j , 

. (i, j) /∈ E ⇐⇒ Xi ⊥⊥ Xj | �Xpr(j)\{i};

• the directed global Markov property if .A,B and C are disjoint subsets of V and 
A d-separates B and C implies . �XB ⊥⊥ �XC | �XA; 

• the directed local Markov property if, for any .i ∈ V , .Xi ⊥⊥ �Xpr(i)\pa(i)| �Xpa(i). 

For example, if . �X exhibits the directed pairwise Markov property relative to the 
DAG in Fig. 2.3a, then 

. X1 ⊥⊥ X2, X1 ⊥⊥ X4|{X2, X3}, X1 ⊥⊥ X5|{X2, X3, X4},
X2 ⊥⊥ X5|{X1, X3, X4}

and 

. X3 ⊥⊥ X5|{X1, X2, X4}.

If it exhibits the directed global Markov property, then, for example, 

1. .X1 ⊥⊥ X2, since, as noted above, .A= ∅ d-separates vertices 1 and 2. Alternatively, 
this follows since there is no edge in (the moral graph of) the ancestral graph of
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.{1, 2}. However, we cannot conclude that .X1 ⊥⊥ X2|X3, since the moral graph of 
the ancestral graph of .{1, 2, 3} has no edges missing. 

2. .X1 ⊥⊥ X5|{X2, X3} and .X1 ⊥⊥ X5|X4, since both .{2, 3} and . {4} separate vertices 
1 and 5 in the moral graph of Fig. 2.3a, that is the graph in Fig. 2.2a. However, 
we cannot conclude that .X1 ⊥⊥ X5|X3, since 3 is a collider in the path 1, 3, 2, 4, 
5. 

If . �X exhibits the directed local Markov property, then 

. X4 ⊥⊥ X1|{X2, X3} and X5 ⊥⊥ {X1, X2, X3}|X4.

Under the same conditions as for the undirected case, the directed pairwise, local 
and global Markov properties are equivalent. For further details, see [15, Section 
3.2.2]. 

2.6.3 Models 

In general, given an ordering of the p random variables, the joint probability mass 
function (p.m.f.) of . �XV , .P( �XV = �xV ), can be factorised into the product of a 
univariate marginal p.m.f. and .p − 1 univariate conditional p.m.f.s: 

.P( �XV = �xV ) = P(X1 = x1)

p∏

i=2

P
(
Xi = xi | �Xpr(i) = �xpr(i)

)
. (2.5) 

Now if . �XV exhibits the directed local Markov property relative to a DAG, 
then the conditioning sets in Eq. (2.5) can be replaced by .pa(i), since . Xi ⊥⊥
. �Xpr(i)\pa(i)| �Xpa(i) implies 

. P
(
Xi = xi | �Xpr(i) = �xpr(i)

)
= P

(
Xi = xi | �Xpa(i) = �xpa(i)

)

and hence 

.P( �XV = �xV ) = P(X1 = x1)

p∏

i=2

P
(
Xi = xi | �Xpa(i) = �xpa(i)

)
. (2.6) 

While there are packages available to fit directed graphical models to categorical 
data, by taking advantage of factorisation (2.5), a directed graphical model can be 

selected by considering a series of .p − 1 models for .P
(
Xi = xi | �Xpr(i) = �xpr(i)

)
, 

.i = 2, . . . , p. If  .ri = 2, then a binary logistic regression model can be considered, 
whereas if .ri > 2 either a multinomial or possibly an ordinal logistic regression 
model is appropriate. The explanatory variables considered in the model are . �Xpr(i)
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and those that are significant form . �Xpa(i). For further details regarding logistic 
regression models, see [1, Chapters 5 and 8]. Alternatively, for unordered variables, 
as described in [2], a hierarchical log-linear model can be fitted to .{Xi, �Xpr(i)}, 
where the highest order interaction between the explanatory variables, . �Xpr(i), is  
included in the model. The subset of variables in . �Xpr(i) that have significant 
interaction with . Xi forms . �Xpa(i). 

2.6.4 Example: Infant Survival Data (Continued) 

Rather than treat all the variables on a equal footing, as in Sect. 2.5.6, it might be 
more appropriate to order variables in the infant survival example as clinic (. X1), 
care (. X2) and survival (. X3), where clinic is a potential cause of the type of care 
and it, along with care, is a potential cause of survival. While this is not a complex 
example, it does permit comparison with the analysis in Sect. 2.5.6 where the three 
variables were treated on an equal footing. 

The test for an edge (arrow) between . X1 and . X2 in the DAG corresponds to the 
test of .X1 ⊥⊥ X2 or, equivalently, the test of .λ12(2, 2) = 0 in log-linear model (2.3). 
In this case the edge exclusion deviance is .edev(1, 2|{1, 2}) = 193.7, which, when 
compared to a . χ2

1 distribution, is highly significant. The tests for edges between 
. X1 and . X3, and between . X2 and . X3 in the DAG correspond, respectively, to the 
tests of .X1 ⊥⊥ X3|X2 and .X2 ⊥⊥ X3|X1 or, equivalently, the tests of . λ13(2, 2) =
λ123(2, 2, 2) = 0 and .λ23(2, 2) = λ123(2, 2, 2) = 0 in log-linear model (2.4). In 
this case the edge exclusion deviances are given in the last row of Table 2.4a and the 
conclusion is that there should be an edge between . X1 and . X3, but not between . X2
and . X3. The selected DAG is presented in Fig. 2.4b. 

While the conclusions are the same as for the analysis using undirected graphs, 
note that the presence of an edge between . X1 and . X2 in the DAG, presented in 
Fig. 2.4b, corresponds to the lack of independence between these two variables, 
whereas the presence of the corresponding edge in the undirected graph, presented 
in Fig. 2.4a, corresponds to lack of conditional independence. 

(c)(b)(a) 

X3 

X1 

X2 

X3 

X1 

X2 

X12 

X11 

X21 

Fig. 2.4 The selected (a) undirected graph, (b) DAG and (c) chain graph for the infant survival 
data
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2.7 Graphical Chain Models 

If the variable can be partitioned into B ordered blocks, where the variables in a 
block are to be treated on an equal footing and the variables in succeeding blocks 
can be considered as responses to the variables in the preceding blocks, then a 
graphical chain model might be appropriate and the association structure between 
the variables can be presented in a chain graph. 

2.7.1 Chain Graphs 

Let .ib ∈ V , .i = 1, . . . , pb and .b = 1, . . . , B denote the ith vertex in the bth block. 
If only undirected edges are permitted between vertices within a block, . (ib, jb) ∈
E ⇐⇒ (jb, ib) ∈ E, and only directed edges are permitted from vertices in block b 
to vertices block .c > b, then the resulting graph will be a chain graph. An example 
of a chain graph with three blocks, with three vertices in block 1, two in block 2 and 
one in block 3, is given in Fig. 2.5a. 

In a chain graph a vertex can have neighbours, parents and children which are 
the adjacent vertices in the same, preceding and succeeding blocks, respectively. 
The sets of neighbours, parents and children of vertices ib are denoted, respectively, 
by .ne(ib) = {jb : (ib, jb) ∈ E}, .pa(ib) = {jc : (jc, ib) ∈ E, b > c} and 
.ch(ib) = {jc : (ib, jc) ∈ E, b < c}. The  boundary of vertex ib is the set of 
its neighbours and parents: .bd(ib) = ne(ib) ∪ pa(ib). For example, in Fig. 2.5a 
.ne(22) = {12}, .pa(22) = {21}, .ch(22) = {13} and hence .bd(22) = {21, 12}, and 
.ne(21) = {11, 31}, .pa(22) = ∅, .ch(21) = {12, 22} and hence .bd(21) = ne(21). 

The neighbours, parents, children and boundary of a subset of vertices . A ⊂ V

is the union of those of the vertices in A minus the vertices in A. For example, 
.bd(A) = ∪ib∈Abd(ib) \ A and in Fig. 2.5a, if .A = {21, 12}, .bd(A) = {11, 31, 22}. 

The concept of a moral graph . Gm extends to chain graphs, but now, as well as 
adding edges between parents, edges are added between parents whose children are 
in the same block and are connected by a path entirely in that block. For example, the 
moral graph of the chain graph in Fig. 2.5b is given in Fig. 2.5c. Here . ch(11) = {12}

(c)(b)(a) 

11 

21 

31 

12 

22 

13 22 

1211 

3221 

22 

1211 

3221 

Fig. 2.5 Examples of (a) and (b) chain graphs and (c) the moral graph of (b)
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and .ch(21) = {32} are connected by the path 12, 22, 32 entirely in block 2, and 
therefore an edge is added between 11 and 21 in the moral graph. Note that the 
moral graph of the chain graph in Fig. 2.5a has no edges added, just the directed 
edges replaced by undirected edges. 

The definition of the ancestral set .an+(A) extends to chain graphs and is also 
called the anterior set of A. As well as including all the vertices in A and the 
ancestors of all the vertices in A, the  anterior set of A, again here denoted by 
.an+(A), also includes any vertex that is in the same block as a vertex in A and 
connected to it by a path entirely in that block, and their ancestors. For example, 
in Fig. 2.5b, .an+({12, 22}) = {11, 21, 12, 22, 32}, since vertex 32 is connected to 
vertex 22 by a path entirely in block 2, and vertex 21 is an ancestor of vertex 32. 
Note that this is also the anterior set of any non-empty subset of the vertices in block 
2. 

The concept of d-separation can be extended to chain graphs and has been called 
c-separation. A subset of vertices A c-separates subsets of vertices B and C (A, B 
and C disjoint) in the chain graph .G = (V ,E) if, and only if, A separates subsets 
of vertices B and C in the moral graph of the anterior graph of .A ∪ B ∪ C, that is, 
.(Gan+(A∪B∪C))

m (see, for example, [14], pages 13 and 14). For example, in Fig. 2.5b 
.A = ∅ c-separates vertices 11 and 21, since .an+({11, 21}) = {11, 21} and there is 
no edge added in .(G{11,21})m. However, vertex 22 does not c-separate vertices 11 and 
21, since there is an edge between these vertices in the moral graph of the anterior 
graph of .{11, 21, 22}, Fig. 2.5c. 

2.7.2 Chain Graph Markov Properties 

Again the Markov properties can be modified for chain graphs. Denote now by 
.pr(ib) = {jc ∈ V : c < b} ∪ {jb ∈ V : j �= i} the vertices in blocks preceding 
block b and the vertices other than i in block b. Then a random vector . �X with sample 
space . X exhibits, relative to the chain graph .G = (V ,E): 

• the pairwise chain Markov property if, for .b ≤ c, 

. (ib, jc) /∈ E ⇐⇒ Xib ⊥⊥ Xjc| �Xpr(jc)\{ib};

• the global chain Markov property if .A,B and C are disjoint subsets of V and A 
c-separates B and C implies . �XB ⊥⊥ �XC | �XA; 

• the local chain Markov property if, for any .ib ∈ V , .Xib ⊥⊥ �Xpr(ib)\bd(ib)| �Xbd(ib). 

For example, if . �X exhibits the pairwise chain Markov property relative to the chain 
graph in Fig. 2.5a, then 

.X11 ⊥⊥ X12|{X21, X31, X22}, X11 ⊥⊥ X22|{X21, X31, X12},
X11 ⊥⊥ X13|{X21, X31, X12, X22},
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. X21 ⊥⊥ X13|{X11, X31, X12, X22}, X31 ⊥⊥ X12|{X11, X21, X22},
X31 ⊥⊥ X22|{X11, X21, X12}

. X31 ⊥⊥ X13|{X11, X21, X12, X22} and X12 ⊥⊥ X13|{X11, X21, X31, X22}.

If it exhibits the local chain Markov property, then 

. X12 ⊥⊥ {X11, X31}|{X21, X22}, X22 ⊥⊥ {X11, X31}|{X21, X12}

and 

. X13 ⊥⊥ {X11, X21, X31, X12}|X22.

If . �X exhibits the global chain Markov property relative to the chain graph in 
Fig. 2.5b, then, for example, 

1. .X11 ⊥⊥ X21, since as noted above, .A= ∅ c-separates vertices 11 and 21. However, 
we cannot conclude that .X11 ⊥⊥ X21|X22, since as also noted above, vertex 22 
does not separate vertices 12 and 22 in the moral graph of Fig. 2.5b, that is the 
graph in Fig. 2.5c. 

2. .X11 ⊥⊥ X32|{X21,X12} and .X11 ⊥⊥ X32|{X21,X22}, since both .{21, 12} and . {21, 22}
separate vertices 11 and 32 in the moral graph of Fig. 2.5b. 

Under the same conditions as for the undirected case, the pairwise and local and 
global chain Markov properties are equivalent. For further details, see [15, Section 
3.2.3]. 

2.7.3 Models 

In general, if the variables are partitioned into B blocks, then the joint p.m.f. of . �XV , 
.P( �XV = �xV ), can be factorised into the product of a marginal p.m.f. and . B − 1
conditional p.m.f.s: 

. P( �XV = �xV ) = P( �X1 = �x1)
B∏

b=2

P
( �Xb = �xb| �X1 = �x1, . . . , �Xb−1 = �xb−1

)
,

(2.7) 
where . �Xb = {X1b, . . . Xpb

} is the set of variables in block b. Note here that the 
marginal and conditional densities are in general multi-dimensions with dimensions 
. p1 and . pb, .b = 2, . . . , B, respectively.
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Let .Ab = {ib, i = 1, . . . , pb} be the set of vertices in block b. Now if  . �XV

exhibits the Markov properties relative to a chain graph, then the conditioning sets 
in Eq. (2.5) can be replaced by .bd(Ab) and hence 

.P( �XV = �xV ) = P( �X1 = �x1)
B∏

b=2

P
( �Xb = �xb| �Xbd(Ab) = �xbd(Ab)

)
. (2.8) 

Similar to a DAG, a chain graph can be selected by fitting a series of models 
corresponding to the factorisation (2.7). For the first block, an undirected log-linear 
model is selected for . �X1. For blocks that contain only one variable (.pb = 1), 
the same approach as for a DAG can be used and binary, ordinal or multinomial 
logistic regression models or log-linear models can be selected. For blocks with 
more than one variable (.pb > 1), then, as described in Asmussen and Edwards 
[2], a hierarchical log-linear model can be fitted to .{ �X1, . . . , �Xb}, where the highest 
order interaction between the explanatory variables, .{ �X1, . . . , �Xb−1}, is included 
in the model. An undirected edge .(ib, jb) within block b is required if there is a 
significant interaction between .Xib and . Xjb, and a directed edge .(ib, jc), .b < c, 
between vertex i in block b and vertex j in block c is required if there is a significant 
interaction between .Xib and . Xjc. 

Mohamed et al. [16] used this general approach based on the factorisation (2.7) 
to select graphical chain models to identify the determinants of neonatal and post-
neonatal mortality in Malaysia, although they were not always able to include all of 
the interaction between the explanatory variables because of the sparseness of the 
data. 

2.7.4 Example: Infant Survival Data (Continued) 

For the infant survival data, rather than treat all the variables on an equal footing, 
as in Sect. 2.5.6, or to completely order them, as in Sect. 2.6.4, another option is 
to treat clinic (.X11 = X1) and care (.X21 = X2) on an equal footing and survival 
(.X21 = X3) as a response variable. For this very simple example, the test for an 
undirected edge between .X11 and .X21 in the chain graph is the same as the test for a 
directed edge between . X1 and . X2 in the DAG. Similarly, the tests for directed edges 
(arrows) between .X11 and . X12, and between .X21 and .X12 in the chain graph are 
the same as for the DAG. Hence, the selected chain graph, presented in Fig. 2.4c, 
has edges between the same variables as the selected DAG, presented in Fig. 2.4b. 
However, note the difference in the type of edge between clinic and care.
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2.8 Further Reading 

This chapter has focussed on graphical models for categorical variables. However, 
as mentioned in the Introduction, there are graphical Gaussian models for when all 
the random variables are continuous and mixed interaction models for when there 
is a mixture of continuous and discrete random variables. The three comprehensive 
texts on graphical models [13, 15, 19] all contain chapters on graphical Gaussian 
and mixed interaction models, as well as on graphical log-linear models. For further 
details on graphical models for categorical data, see also Roverato [17]. All these 
texts discuss undirected, directed and chain graphical models. Another book, which 
places greater emphasis on directed and chain graph models, is Cox and Wermuth 
[9]. 
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Chapter 3 
Marginal Models: An Overview 

Tamás Rudas and Wicher Bergsma 

3.1 Introduction 

We start with motivating examples in Sect. 3.2, including repeated measurements, 
missing data, and graphical models. All these involve the application of models 
which apply restrictions only on subsets of the variables, that is, on marginals of the 
contingency table containing their joint distribution. 

The restrictions imposed by marginal models apply to the association structures 
within subsets of variables. The association is captured by log-linear parameters 
calculated in marginals of the table and Sect. 3.3 deals with general aspects of 
parameters and parameterizations, including variation independence. 

Marginal log-linear parameterizations are developed in Sect. 3.4 and some of 
their fundamental properties, like variation independence, smoothness, and col-
lapsibility are also discussed. Depending on the choice of the marginals in which 
the log-linear parameters are determined, marginal log-linear parameterizations 
are appropriate to capture several characteristics of the marginal and conditional 
association structure. 

Marginal log-linear models are defined by restricting some marginal log-linear 
parameters to zero, as described in Sect. 3.5. 

Marginal log-linear parameters are the standard log-linear parameters calculated 
from marginal distributions and measure the strength of conditional and/or marginal 
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association. Marginal log-linear parameters are based on ordinary odds and odds 
ratios and their higher-dimensional generalizations. But, as described in Sect. 3.6, 
other types of odds ratios, which are particularly useful for ordinal data, may also 
be used to define marginal log-linear models. 

Section 3.7 contains results concerning the general type of conditional indepen-
dence models, including the case when some conditional independences apply to 
subsets of the variables, which may be formulated as marginal log-linear models. 

Section 3.8 deals with estimation and testing. Lagrangian and Fisher scoring 
methods for maximum likelihood estimation are described and compared. The 
generalized estimating equations (GEE) approach for estimating marginal models 
is described as well. 

Section 3.9 discusses areas of applications where marginal log-linear models 
either provide a general way of implementing the standard analysis or a new 
approach to answer the research question. These include directed graphical models, 
path models, and latent variable models, but many other applications are mentioned, 
too. 

Very few proofs are included, as most of the results are quoted from research 
publications. 

3.2 Motivation 

There are several types of statistical problems where marginal distributions of higher 
dimensional joint distributions play a central role. In this section, we discuss three 
such broad types of problems. 

3.2.1 Repeated Measurements and Panel Studies 

In many experimental and observational settings, subjects are measured or observed 
repeatedly. The reasons for measuring repeatedly include to study the within-subject 
variability of the measurements, or to reduce measurement error by taking the 
average measurement value. In such cases, the measurements are made close to each 
other in time. Another reason for repeated measurements is to investigate the effect 
of a treatment applied to the subjects between the measurements, in which case one 
measurement is taken before, and another one after, the treatment. Sometimes the 
variability or stability of the measurement results over time is of interest, without 
any treatment being applied. 

For example, variables .A1 and . B1 are observed in a first measurement, a 
treatment is applied, and then the same variables are measured again, denoted as 
. A2 and . B2. There are a number of relevant hypotheses to test. The first one, say 
. H1, is that A and B are independent both before and after treatment. One may 
argue that . H1 is true if and only if both .H11 : “. A1 is independent of . B1” and
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.H12 : “. A2 is independent of . B2” are true. This is correct, but a test of . H1 with a 
given level cannot be constructed, in general, from separate tests of the hypotheses 
.H11 and . H12. This would be possible if the samples for the pairs of variables 
.A1, B1 and .A2, B2 were independent, which is not the case in the current repeated 
measurements setup. Instead, one has observations for each unit in the sample for 
the variables .A1, B1, A2, B2, and . H1 states that in this 4-dimensional distribution 
there are two marginal independences, one for . A1 and . B1, and one for . A2 and . B2. 
This is a marginal model. 

Another relevant model, say . H2, in this setup is that the distributions of the 
two measurements of A are identical, that is, the treatment does not change 
the distribution on the population level, and similarly for B, but the results of 
the second measurements are independent. Thus . H2 contains restrictions on the 
.A1 × A2 (marginal homogeneity), .B1 × B2 (marginal homogeneity), and . A2 × B2
(independence) marginals. 

The hypotheses . H1 and . H2 assume marginal models about the joint distribution. 
A closely related longitudinal design is called a panel study, see, e.g., Frees and 

Kim [36], where the individuals in a sample are interviewed repeatedly at regular 
intervals. The advantage1 of such a design is that changes in opinions, preferences, 
or attitudes may be studied in a more valid way than by simultaneously asking about 
current and also previous positions in a cross-sectional study. The main limitation 
of such an approach is that earlier opinions or attitudes are often not remembered 
and sometimes are not reported truthfully. 

In the analysis of panel data, the transition probabilities from one position into 
another one are of central interest. In particular, the dependence of the transition 
probabilities on earlier positions is an important question because this determines 
the fragmentation of the data. More precisely, if the panel has, say, 5 waves and 
.A1, A2, A3, A4, A5 denotes the positions of a respondent regarding a particular 
question during the waves, then one is interested in deciding whether, for instance, 

. P(A5|A4, A3) = P(A5|A4)

holds. If it does, then the position at wave 5 cannot be better predicted if, in addition 
to the position at wave 4, the position at wave 3 is also taken into account. For 
example, in this case the chance of supporting a particular political party at the 
time of wave 5 may depend on the preferred party at the time of wave 4, but if the 
latter is known, the party preference at the time of wave 3 provides no additional 
information. 

Slightly more generally, if 

.P(At |At−1, At−2, . . . , A1) = P(At |At−1)

1 The design also has disadvantages, of course. These include panel attrition and the fact that, 
even if originally selected appropriately, with passing time the sample will become different in 
composition from the current population. 
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holds for all waves (time points) t , then the joint distribution is called a one-step 
Markov chain. It is easy to see that this property is equivalent to the following 
conditional independence 

. At ⊥⊥ At−2, . . . , A1|At−1.

In detail, for the 5 waves this means that 

. A3 ⊥⊥ A1|A2,

. A4 ⊥⊥ A2, A1|A3,

. A5 ⊥⊥ A3, A2, A1|A4.

For the joint distribution of the variables .A1, A2, A3, A4, A5 the model prescribes 
conditional independences on the .A1 ×A2, .A1 ×A2 ×A3, .A1 ×A2 ×A3 ×A4 and 
.A1 × A2,×A3 × A4 × A5 marginals. 

3.2.2 Missing Data and Data Fusion 

The statistical problems discussed next lead to the task of generating a joint 
distribution with given marginal distributions. Thus, the restrictions implied by 
design or the type of data collected in these cases fully determine some marginal 
distributions (or make it possible to estimate them) and do not only specify a model 
for them as in the previous examples. 

One group of such problems is related to incomplete observations or missing 
data, see Little and Rubin [55]. When the data are collected through a survey of a 
human population, usually not all individuals selected by the sampling procedure 
answer the questions. Some are not found, some are found but are not willing to 
participate in the survey, and some do participate but choose not to answer some 
questions. While dealing with those who do not provide any information is a serious 
issue, the best utilization of the often only partial answers collected is an important 
statistical problem [see Little and Rubin 55]. A similar situation occurs when data 
are collected in an experimental setting, because of the dropout of the participants. 
One approach is to consider the responses collected for a particular subset of the 
questions and use them to estimate the joint distribution of the answers. These are 
estimates of some marginal distributions of the joint distribution of all answers. 
This procedure is justified, because the smaller a subset of questions is, the more 
individuals gave responses to all of them, and their joint distribution may be better 
estimated than the joint distribution of all variables. 

For example, let the questionnaire contain 4 yes-no questions and let the variables 
.A1, A2, A3, A4 contain the answers. Then, the distribution of . A1 may be estimated 
based on all the answers provided to the first question, and similarly for all other 
variables. Thus, the one-way marginal distributions are estimated based on different
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subsets of the sample. Next, the .A1 × A2 marginal distribution is estimated based 
on the one-way marginal estimates already obtained and on the observations which 
contained responses to both . A1 and . A2. From the latter, one may estimate the odds 
ratio [see, e.g., Rudas 75] between . A1 and . A2 and combine this with the one-way 
marginals to estimate the .A1 × A2 distribution. In theory, the procedure can be 
continued until the .A1 × A2 × A3 × A4 distribution is estimated, although it raises 
many compatibility and optimality issues, and as will be seen later, the feasibility of 
such a procedure depends heavily on the patterns of missing data. 

Sometimes, the missing data pattern is not observed but is implied by design. 
When the questionnaire is too long, or answering all questions could be seen as 
a breach of the respondents’ privacy, some of them may be asked .A1, A2, A3, 
others .A1, A4, A5, where now these may not be individual questions rather blocks 
of questions, and, of course, other patterns are also possible. The .A1 ×A2 ×A3 and 
the .A1 × A4 ×A5 marginal distributions may be estimated, and from these the joint 
distribution. The design is called a split questionnaire as described in Rhemtulla and 
Little [68] but similar problems arise in so-called register-based censuses, see, e.g., 
Eppmann et al. [28]. 

In a register-based census, now applied by several countries, instead of collecting 
information from all inhabitants of the country, data from existing registers (driving 
licences, health care access, etc.) are combined to find out the relevant information. 
The individual registers provide certain conditional and/or marginal distributions, 
and the task is to estimate the joint distributions. This problem is called data fusion, 
see, e.g., D’Orazio et al. [26], and it also occurs in other areas, see e.g., Cocchi [17]. 

3.2.3 Graphical Modelling 

Graphical Markov models associated with directed acyclic graphs (also called 
Bayesian nets) are widely used in expert systems, artificial intelligence, and also 
in some approaches to modelling causal effects. 

A simple example of a directed acyclic graph (DAG) is shown in Fig. 3.1. It  
has four nodes, .A,B,C,D, which are identified with variables and the intuitive 
interpretation of the arrows is that they represent direct effects. The graph is acyclic, 
because there is no sequence of nodes in the order of arrows with the same starting 
and ending node. 

Fig. 3.1 A directed acyclic 
graph A

B

C  

D
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A precise interpretation of the Markov model associated with a DAG is that 
it assumes (conditional) independences among the variables. It is the missing 
arrows which imply the conditional independences defined by the directed Markov 
property, see, e.g., Lauritzen [50].2 

Graphical Markov models associated with DAGs generalize the conditional 
independence property of Markov chains. In a Markov chain, the conditional 
independence is implied by the lack of temporal adjacency, and in the more general 
structures considered here, the temporal adjacency is replaced by the adjacency 
read off from a graph. When this graph is undirected, one Markov property, called 
the local Markov property, says that a variable is conditionally independent of its 
non-neighbours, given its neighbours.3 Notice that such a conditional independence 
involves all variables. 

The assumption that the joint distribution of the variables obeys the conditional 
independences implied by the local Markov property applied to a particular graph 
is a graphical log-linear model, see Lauritzen [50]. 

To define the Markov property associated with a DAG, call those nodes from 
which an arrow goes to A the parents of node A and denote them as .pa(A). Further, 
call those nodes into which no directed path leads which starts in A the non-
descendants of A and denote these nodes as .nd(A). Note that .pa(A) ⊆ nd(A), 
because otherwise the graph would contain a directed cycle. Then the local Markov 
property is that 

. A ⊥⊥ nd(A) \ pa(A)|pa(A).

In the case of the DAG in Fig. 3.1, the directed Markov property implies that 

.A ⊥⊥ B (3.1) 

.C ⊥⊥ D | A,B. (3.2) 

Out of the two (conditional) independences, one is on the .A × B marginal, and 
the other one is on the full table. 

In general, the conditional independences defining a Markov model associated 
with a DAG are on marginals containing a variable and its non-descendants. 
Therefore, these models are marginal models. 

An important property of the distributions which are Markov according to a 
DAG is that they factorize into the product of conditional distributions of the 
variables given their parents, see, e.g., Lauritzen [50]. For the DAG in Fig. 3.1, the  
factorization is 

.P(ABCD) = P(A)P (B)P (C|A,B)P (D|A,B).

2 See Bergsma et al. [12], Chapter 5, for applications in causal analysis and the relationship with 
structural equation models. 
3 The neighbours of a node A are those nodes with which A is connected by an edge. 
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3.3 Parameterizations of Discrete Probability Distributions 

A marginal model is defined most conveniently using a particular parameterization 
of the joint distribution of the variables of interest, the so-called marginal log-
linear parameterization, to be discussed in Sect. 3.4. This section deals with various 
general characteristics of parameters and parameterizations. 

3.3.1 Parameters and Parameterizations 

A parameter is an arbitrary function of the distribution, and is often multidi-
mensional, i.e., vector-valued. For example, in the case of a .2 × 2 distribution, 
with the usual notation, .(p11, p12) is a parameter, so is .(p11, p12, p21, p22) or 
.(p11, p1+, p+1). The parameters which are of interest in statistical analysis usually 
express some relevant property of the distribution. For example, a widely used 
measure of association between the two variables forming the table, see e.g., Rudas 
[75], is the odds ratio 

. 
p11p22

p12p21
,

which is also a parameter of the distribution. It measures a characteristic (strength 
and direction of association) which is not directly seen from the probabilities. 

Therefore, a parameter represents information from the distribution. In many 
cases, one is interested in looking at parameters that carry all information in the 
distribution. A more formal way of imposing this is to consider, instead of the value 
of a certain parameter, the function which yields that parameter and to require that 
this function is invertible. If this holds, the parameter is called a parameterization. 

In the case of a .2 × 2 distribution, the .(p11, p12) parameter is not a parame-
terization, because if its value is known, the distribution cannot be reconstructed. 
But the .(p11, p12, p21, p22) and .(p11, p1+, p+1) parameters are parameterizations. 
The cell probabilities are given in the first case, and are easily determined in the 
second. Also, the odds ratio and the marginal probabilities .p1+ and .p+1 form a 
parameterization, see Rudas [75]. In this case, inverting the parameterization, i.e. 
calculating the cell probabilities, needs to be done using numerical algorithms such 
as the Iterative Proportional Fitting or Scaling algorithm, see, e.g., Rudas [75]. 

While a parameter vector may have arbitrary dimension, a parameterization has 
a minimal dimension, which is the dimension of the distribution. In the case of 
a .2 × 2 distribution, although one has 4 probabilities, in the 4-dimensional space 
the distributions are in a 3-dimensional subspace, as their sum is 1. The same fact 
may also be formulated by saying that out of the 4 probabilities, only 3 are linearly 
independent. Therefore, the minimal dimension of a parameterization is 3.
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3.3.2 Variation Independence 

One of the most desirable properties of parameters and parameterizations is the 
variation independence of their components. Before giving a general definition, a 
simple example adopted from Rudas and Bergsma [76] is given to illustrate the 
concept. 

Suppose in an experiment a .2 × 2 treatment by outcome table was observed, 
and as a measure of effect of the treatment, the difference in proportion of positive 
outcomes among those treated and among the control is used. Assume the data given 
in Tables 3.1 and 3.2 were observed for male and female participants, respectively. 

The selected measure of the size of the effect takes on the value of 

. 
20

100
− 10

100
= 0.1

for men and is 

. 
60

100
− 40

100
= 0.2

for women. Is, then, the treatment twice as effective for women than for men? 
The answer to this question is not clear. While the difference in the probabilities 

of positive outcomes under treatment and control seems like a meaningful measure 
of effect and its value is twice as big for women as for men, the following argument 
is also possible: for both men and women, 100 individuals received the treatment 
and 100 the control, but for men, there were 30 and for women 100 positive 
outcomes. Given this, the maximum possible value of the measure of effect is 

. 
30

100
− 0

100
= 0.3

for men and is 

. 
100

100
− 0

100
= 1

Table 3.1 Hypothetical 
experimental results for men 

Outcome Positive Negative Total 

Treatment 20 80 100 

Control 10 90 100 

Table 3.2 Hypothetical 
experimental results for 
women 

Outcome Positive Negative Total 

Treatment 60 40 100 

Control 40 60 100



3 Marginal Models: An Overview 75

for women. Thus, the actual value of the measure of treatment efficacy is .1/3 of its 
maximum possible value for men, while for women the actual value is only .1/5 of 
its theoretical maximum. 

This example illustrates that the possible range of the measure is affected by 
the values of the other parameters and, in such a case, the assessment of the actual 
value may be very different when the other parameters are or are not taken into 
account. Put differently, a parameter which is not variation independent of the other 
parameters lacks calibration. 

Variation independence means that the above dependence does not occur. Two 
parameters are variation independent if their joint range is the Cartesian product of 
their individual ranges, i.e., any otherwise possible value of one can be combined 
with any otherwise possible value of the other. 

In the case of the example discussed above, the measure of treatment efficacy 
was 

.
p11

p+1
− p12

p+2
(3.3) 

and this was not variation independent of the other parameters .p1+ and . p+1. Indeed, 
its minimum value is zero and its maximum value is 

. min

(
1,

p1+
p+1

)
,

so its range is .[0,min(1, p1+/p+1)]. To put it differently, the range of the measure 
(3.3) depends on the marginal distributions, and it is often not clear whether the 
inference should or should not condition on the marginals. 

The odds ratio is variation independent of .(p1+, p+1) and is, therefore, a 
parameter of the association with a calibration which does not depend on the 
marginals. Consequently, its values may be compared, even if calculated for tables 
with different marginal distributions. The value of the odds ratio is . 1800/800 =
2.25 for men and .3600/1600 = 2.25 for women, suggesting that the strength of 
association between treatment and positive outcome is the same for men as for 
women, in contrast with the naive comparison of the measures calculated originally. 
This is, however, not to say that the odds ratio would be without problematic 
characteristics when used as a measure of treatment efficacy, see Rudas [73]. 

For higher dimensional tables, there are parameterizations which rely on the 
odds ratio and its generalizations with variation independence properties, leading 
to a natural definition of log-linear models, see Rudas [75], but for the definition 
of marginal models another type of parameterization, based on marginal and 
conditional distributions, is of more immediate use.
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In the case of a .2 × 2 distribution, a parameterization with the .p+1 marginal 
probability and the .p1|1 and .p1|2 conditional probabilities is also possible. Indeed, 

. p11 = p1|1p+1

. p21 = (1 − p1|1)p+1

. p12 = p1|2(1 − p+1)

. p21 = (1 − p1|1)(1 − p+1).

An important feature of this parameterization is that all three parameters in it are 
variation independent. 

A similar parameterization of a distribution on a 4-way .A × B × C × D table 
may parameterize the distribution on the .A × B marginal, and then parameterize 
the conditional distribution on .C × D, given the marginal distribution on .A × B. 
Here, the two groups of parameters are variation independent. Further, within this 
parameterization, one may impose the marginal independence of A and B, and then 
the conditional independence of C and D, given  A and B. Note that this is exactly 
the marginal model defined in (3.1) and (3.2), as implied by the Markov property 
applied to the graph in Fig. 3.1. 

Alternatively, the following parameters constitute a parameterization of the 4-
way table in the binary case, with OR denoting the odds ratio and COR the 
conditional odds ratio: 

. θ1 = (P (A = 1), P (B = 1))

. θ2 = OR(A,B)

. θ3 = (P (C = 1|A = 1, B = 1), P (C = 1|A = 1, B = 2),

. P(C = 1|A = 2, B = 1), P (C = 1|A = 2, B = 2), P (D = 1|A = 1, B = 1),

. P(D = 1|A = 1, B = 2), P (D = 1|A = 2, B = 1), P (D = 1|A = 2, B = 2))

. θ4 = (COR(C,D|A = 1, B = 1),COR(C,D|A = 1, B = 2),

. COR(C,D|A = 2, B = 1),COR(C,D|A = 2, B = 2)).

In this example, . θ1 is equivalent to the marginal distributions of variables A and 
of B and . θ3 gives the conditional distributions of C and of D, given any possible 
category combinations of A and B. The parameter . θ2 is the odds ratio in the marginal 
distribution .A × B, and . θ4 is the collection of the conditional odds ratios of C and 
D, given all possible category combinations of A and B. Thus, . θ1 and . θ2 determine
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the .A × B marginal distribution, and . θ3 and . θ4 determine the .C × D conditional 
distribution, given .A × B. 

Here, . θ1 and . θ2 are variation independent. Further, . θ3 is variation independent of 
. θ1 and . θ2, and . θ4 is variation independent of all the other three parameters. But also, 
. θ2 and . θ4 are variation independent of . θ1 and . θ3. 

A statistical model may be obtained by fixing the values of some parameters 
of a parameterization. If variation independence between the fixed and the other 
parameters holds, this has no implication for the possible values of the other param-
eters, that is, there will be exactly one distribution in the model for every possible 
value of the other parameters. In other words, the unrestricted (components of the) 
parameter parameterize the model obtained by restricting the other (components of 
the) parameter. 

This is illustrated most easily with the parameterization of a .2 × 2, .A × B table 
with .η1 = (p1+, p+1) and . η2 the odds ratio .OR(A,B). As  . η1 and . η2 are variation 
independent, if one defines a model by imposing .η2 = 1, i.e., the independence of 
A and B, then there is exactly one independent distribution for every choice of the 
marginal probabilities in . η2. Related models are obtained by fixing the odds ratio at 
a different value, see Rudas [71] and Rudas and Leimer [79]. 

In the case of the .2 × 2 example above, when . η2 is fixed at 1 and one obtains 
the model of independence for the .2 × 2 table, the number of degrees of freedom 
is 1. It may sound counter-intuitive that when more parameters are fixed by the 
model, then the number of degrees of freedom is higher. To accept this, one has 
to remember that the number of degrees of freedom is related to the amount of 
deviation between observed and expected frequencies tolerated before one would 
decide the data provide evidence against the model. The more restrictive is the 
model, the larger is the deviation between observed and expected frequencies that 
one is ready to tolerate without rejecting the model. Thus, to have a testing procedure 
with fixed type I error probability, one wishes to use critical values which increase 
monotonically with the number of parameters fixed by the model, and chi-squared 
distributions with larger degrees of freedom have larger critical values. Therefore, 
the number of degrees of freedom associated with a model is not related to the 
parameters left free, rather it is related to (more precisely, is equal to) the number of 
parameters fixed by the model. 

In the case of the 4-dimensional example, setting .θ2 = 1 implies (3.1) and 
setting .θ4 = (1, 1, 1, 1) implies (3.2), yielding the graphical model associated with 
the graph in Fig. 3.1. These two parameters are variation independent of the other 
two parameters, thus, . θ1 and . θ3 parameterize all distributions which are Markov 
according to the graph in Fig. 3.1. Further, as there are 5 parameter values fixed by 
the model (. θ2 and . θ4), the standard Pearson and likelihood ratio statistics have an 
asymptotic chi-squared distribution on 5 degrees of freedom, when the model holds 
true, and data and maximum likelihood estimates are compared to test model fit. 

Following Bergsma and Rudas [9], marginal models will be defined in this 
chapter as a generalization of the procedure above.
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3.4 Marginal Log-linear Parameterizations 

Marginal log-linear parameters and parameterizations generalize the example dis-
cussed for the 4-way table in the last section. Marginal models will be defined by 
setting some marginal log-linear parameters to zero. The definition of marginal log-
linear parameters, and of marginal log-linear models, provides flexible applications 
which can capture various useful properties of the joint distribution of several 
categorical variables. 

3.4.1 Definition 

Let . V be a set of categorical variables, and let .M ⊆ V denote a marginal. In the 
sequel, the word marginal will be used, depending on the context, as a subset of 
the variables, a marginal table of the associated contingency table, or the marginal 
distribution derived from a joint distribution. 

Following Bergsma and Rudas [9], marginal log-linear parameters are defined 
as log-linear parameters (see e.g., Agresti [1], Bishop et al. [15], and Rudas [75]), 
calculated in marginals of the table. For simplicity, only distributions with positive 
cell probabilities are considered in this chapter. 

Every subset .E ⊆ V of the variables may have an effect associated with them, 
which affects the joint distribution. To emphasize this, subsets of the variables will 
also be referred to as effects. The strength of the effect (associated with a subset 
of variables) may be quantified in different ways. A particular quantification is, of 
course, a parameter. In this section a specific choice of the parameters is used, and 
alternatives will be discussed later. Many of the properties of the models do not 
depend on the particular choice of the parameters; however, this becomes relevant 
when estimated parameter values are used to describe distributions in the model. 

A classical log-linear parameter (see e.g., Agresti [1], Bishop et al. [15], and 
Rudas [75]) for an effect, . E associates a value with every category combination e 
of the variables . E , denoted as . λEe . These parameters are defined via the following 
recursion: 

. λ∅ = 1

cV

∑
v

logP(v),

.λEe = 1

cV\E

∑
v:(v)E=e

logP(v) −
∑
F�E

λF(e)F (3.4) 

where e is a joint category of the variables . E , .cV\E denotes the number of joint 
categories of the variables in .V \ E , and .(v)E denotes the categories out of v which 
belong to the variables in . E . 

When all the variables are binary, the log-linear parameters can be shown to be 
equal to various averages of the logarithms of the roots of .(l−1)th order conditional
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odds ratios of the l variables in . E , given all possible category combinations of the 
variables .V \ E , (see, e.g., Rudas [75] and Section 6 of this chapter). For example, 
in a binary .A × B × C table 

. λAB
21 = 1

2
(logP(2, 1, 1) + logP(2, 1, 2))

. − 1

4
(logP(2, 1, 1) + logP(2, 1, 2) + logP(2, 2, 1) + logP(2, 2, 2))

. − 1

4
(logP(1, 1, 1) + logP(1, 1, 2) + logP(2, 1, 1) + logP(2, 1, 2))

. + 1

8
(logP(1, 1, 1) + logP(1, 1, 2) + logP(1, 2, 1) + logP(1, 2, 2))

. + log (P (2, 1, 1) + logP(2, 1, 2) + logP(2, 2, 1) + logP(2, 2, 2))

. = log 8

√
P(1, 2, 1)P (1, 2, 2)P (2, 1, 1)P (2, 1, 2)

P (1, 1, 1)P (1, 1, 2)P (2, 2, 1)P (2, 2, 2)

. = 1

2

(
log 4

√
P(1, 2, 1)P (2, 1, 1)

P (1, 1, 1)P (2, 2, 1)
+ log 4

√
P(1, 2, 2)P (2, 1, 2)

P (1, 1, 2)P (2, 2, 2)

)

. = 1

2

(
log −4

√
COR(A,B|C = 1) + −4

√
COR(A,B|C = 2)

)
. (3.5) 

In general, the log-linear parameter for every effect will be considered as vector-
valued, with one component for every category combination of the variables in . E , 
except for the combinations where any of the variables is in, say, its first category, 
in order to avoid linear dependence of the components of the parameter. So if . E =
{V1, V2, . . . , Vl}, and these variables have .c1, c2, . . . , cl categories, then the log-
linear parameter has 

.(c1 − 1)(c2 − 1)· · · (cl − 1) (3.6) 

components and these components are, in general, linearly independent. 
The .(l−1)th order conditional odds ratio of the variables in . E (when conditioned 

on any category combination of the variables .V \ E) is variation independent of 
the marginal distributions of the variables in any proper subset of . E , see, e.g., 
Rudas [75]. This was illustrated above for the simple cases of 2- and 4-way tables. 
Therefore, the log-linear parameters, which are functions of the conditional odds 
ratios, are widely used as measures of the amount of association within an effect, 
that cannot be attributed to a proper subset of the variables in the effect.



80 T. Rudas and W. Bergsma

Calculating the log-linear parameter for . E in a marginal . M, with .E ⊆ M, means 
that the marginal probabilities of . M are used, instead of the joint probabilities of . V . 
For example, in a 4-way binary .A × B × C × D table, in the .A × B × C marginal, 
the value of the marginal log-linear parameter for the AB effect is 

.
1

2

2∑
k=1

log

(
P(1, 1, k,+)P (2, 2, k,+)

P (1, 2, k,+)P (2, 1, k,+)

)1/4

. (3.7) 

The value in (3.7) is denoted as .λABC
AB and in general as . λME . The parameter . λABC

AB

is a measure of average (over the categories of C) conditional association between 
variables A and B, calculated in the .A×B×C marginal of the four-way distribution. 

The parameter .λABC
AB has a single value, as both A and B are binary. If, for 

instance, B has three categories, so the table is of the size .2× 3× 2× 2, then . λABC
AB

has 2 components, one for the .(2, 2) and one for the .(2, 3) indices of A and B. Out  
of these, the one associated with .(2, 2) is as given in (3.7), and the one associated 
with .(2, 3) depends on the type of odds ratio selected, see Sect. 3.6. Such choices 
are governed by the characteristics of the research question. 

Let 

. M1,M2, . . . ,Mk

be a sequence of marginals, such that 

. Mj � Mi , if i < j

and 

. Mk = V .

Such a sequence will be called non-decreasing. Marginal log-linear parameters 
calculated in such sequences of marginals play a central role in this chapter. 

To define the marginal log-linear parameters, for every effect . E , let .M(E) be the 
first marginal in the non-decreasing order, that contains it: 

.M(E) = Mi if E ⊆ Mi and E � Mj if j < i. (3.8) 

Let now .λ
M(E)

E denote the log-linear parameter of the effect . E calculated within 
the .M(E) marginal. This is a log-linear parameter calculated not in the joint 
distribution of all variables, but rather in a marginal distribution. As illustrated 
above, the parameter is usually vector-valued, but this fact will be suppressed in 
the sequel. Marginal log-linear parameters measure the strength of marginal and 
conditional associations at the same time. By the choice of the marginal, in which 
the parameter for an effect is defined, some variables are disregarded, and then one 
conditions upon the variables which are in the marginal but do not belong to the
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effect. For further discussion of conditional and marginal association, see Bergsma 
and Rudas [11]. The marginal log-linear parameters .{λM(E)

E , E ⊆ V} are called 
hierarchical and complete. 

The marginal log-linear parameters, as defined here, obviously contain as 
special cases the ordinary log-linear parameters, but also the multivariate logistic 
parameters introduced by Glonek and McCullagh [59] and McCullagh and Nelder 
[40] as well as the mixed parameters considered in Glonek [39]. 

Note that the parameters defined at the end of the previous section are one-to-one 
functions of marginal log-linear parameters. In this example, .V = {A,B,C,D}, 
.M1 = {A,B}, and .M2 = {A,B,C,D}. Thus . M(∅) = M(A) = M(B) =
M(A,B) = M1 and . M(C) = M(A,C) = M(B,C) = M(A,B,C) =
M(D) = M(A,D) = M(B,D) = M(A,B,D) = M(C,D) = M(A,C,D) =
M(B,C,D) = M(A,B,C,D) = M2. The parameters specified are one-to-one 
functions of the marginal log-linear parameters of the effects. In particular, setting 
. θ2 and . θ4 equal to 1 is the same as setting 

. λAB
AB = 0 and λABCD

CD = 0.

In order to obtain analytical properties of marginal log-linear parameters, it is 
important to remove from among them those which are redundant in the sense that 
they can be calculated from the others; this is assumed to be the case throughout 
the whole chapter. The formula in (3.6) only took the non-redundant values of the 
parameter into account. 

3.4.2 Basic Properties 

Marginal log-linear parameters have a number of desirable properties. With . M(E)

defined by (3.8): 

Theorem 3.1 The parameters .{λM(E)

E : E ⊆ V} constitute a parameterization of 
the joint distribution of the variables . V . 
Proof This is part of Theorem 2 in Bergsma and Rudas [9]. Technically, the proof 
is based on repeated applications of the Iterative Proportional Scaling procedure to 
determine joint distributions based on mixed parameterizations of exponential fam-
ilies, see, e.g., Rudas [75]. The general relevant result on mixed parameterizations 
is given by Barndorff-Nielsen [4]. 

The argument in the proof above also implies that for any .1 ≤ i ≤ k, the marginal 
log-linear parameters calculated in .M1, . . .Mi can be used to determine the joint 
distribution of the variables in . Mi . This implies the following result.
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Theorem 3.2 If .Mi \ ∪j<iMj �= ∅, then the marginal log-linear parameters 
.{λM(E)

E : M(E) = Mi} determine the conditional joint distribution of the variables 
in .Mi \ ∪j<iMj , given the joint distributions of variables in .Mi ∩ (∪j<iMj ). 

To illustrate Theorem 3.2, for the variables A, B, C let .M1 = {AB} and 
.M2 = {ABC}. Then .M2 \ M1 = {C}, and the effects which have their 
marginal log-linear parameters calculated in .M2 are C, AC, BC, ABC and they 
parameterize the conditional distribution of C, given the joint distribution AB. As  
the joint distribution of AB is parameterized in the marginal . M1, the marginal log-
linear parameters in the two marginals parameterize the ABC joint distribution. 
The marginal log-linear parameters determined in the two marginals are variation 
independent. 

For a less straightforward example, let .M1 = {A}, .M2 = {B}, and . M3 =
{ABC}. In this case, the theorem is about the conditional distribution of C, 
given AB, but now the marginal log-linear parameters determined in . M1 = {A}
and .M2 = {B} do not determine the AB joint distribution, only its 1-way 
marginal distributions. In this case, out of the marginal log-linear parameters 
determined in . M3, those belonging to the effects C, AC, BC, ABC determine 
the conditional distribution. This is most easily seen by including the AB marginal 
as the third one, which would not change these parameters but would make the setup 
essentially the same as in the previous example, because in this case the AB joint 
distribution would be parameterized before the parameters in the .{ABC} marginal 
are calculated. 

If, however, .M1 = {AB}, .M2 = {AC}, and .M3 = {ABC}, then . M3 \ (
M1 ∪

M2
) = ∅, and Theorem 3.2 does not apply. Indeed, if conditioned on .AB ∪ AC, 

no conditional distribution remains. What do the marginal log-linear parameters 
given in . M3, which are for the effects BC and ABC, determine? In this case, they 
determine the parameters which are needed in addition to the AB and AC marginal 
distributions to parameterize the ABC distribution: the second-order odds ratio of 
ABC and the conditional odds ratio of B and C, given  A, see, e.g., Rudas [75]. 

It is not true, in general, that all components of a marginal log-linear parame-
terization would be variation independent. The following result gives a necessary 
and sufficient condition for the components of a hierarchical and complete marginal 
log-linear parameterization to be variation independent. 

Theorem 3.3 The components of a hierarchical and complete marginal log-linear 
parameterization based on a non-decreasing sequence of marginals 

. M1,M2, . . . ,Mk = V

are variation independent, if and only if the following condition holds. Either . k = 2
or for every .j = 3, . . . , k, the maximal elements out of 

.M1,M2, . . . ,Mj ,
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say 

. H1,H2, . . . ,Hl

are such that either .l = 2 or for every .3 ≤ h ≤ l, there is .1 ≤ g = g(h) ≤ h − 1, 
such that 

. (H1 ∪ . . . ∪ Hh−1) ∩ Hh = Hg ∩ Hh.

Proof This is Theorem 4 in Bergsma and Rudas [9]. 

The property formulated in the previous theorem is called ordered decompos-
ability. If the marginals .M1,M2, . . . ,Mk are all incomparable with respect to 
inclusion, thus all are maximal, then ordered decomposability means the standard 
decomposability concept, see, e.g., Rudas [75]. 

For example, in the case discussed last, with .M1 = {AB}, .M2 = {AC}, and 
.M3 = {ABC}, ordered decomposability holds. But if .M1 = {AB}, .M2 = {AC}, 
.M3 = {BC}, and .M4 = {ABC}, ordered decomposability does not hold, and 
it is easy to find values of the marginal log-linear parameters defined in .M1 and 
. M2, which restrict the range of the parameters in . M3; see Bergsma and Rudas 
[9]. The three 2-way marginal (frequency) distributions presented in Table 3.3 are 
weakly compatible but not strongly compatible, that is, although the generated 1-
way marginals are all uniform, there is no 3-way distribution with these marginals. 

Indeed, if one had such a distribution, one would have for the frequencies that 
.f (1, 1, 2) ≤ 1 (from the BC marginal) and .f (1, 2, 2) ≤ 1 (from the AB marginal), 
but the sum of these two frequencies would have to be 3 (from the AC marginal). 
This means that the three 2-way marginals, and consequently the corresponding 
marginal log-linear parameters, are not variation independent. 

This is an important difference between the standard and the marginal log-linear 
parameters. If the log-linear parameterization is calculated in the .{ABC} table, that 
is one has standard log-linear parameters, the parameter belonging to the BC effect 
is essentially the conditional odds ratio .COR(B,C|A = a) and this is variation 
independent of the AB and AC marginal distributions. But if a marginal log-linear 
parameterization is considered based on the marginals .{AB}, .{AC}, and .{BC}, then 
the parameter belonging to the BC effect is the marginal odds ratio .OR(B,C) and 
this is not variation independent of the AB and AC marginal distributions. 

Table 3.3 Marginal distributions which are weakly compatible but not strongly compatible 

B . = 1 B . = 2 

A . = 1 3 1 

A . = 2 1 3 

C . = 1 C . = 2 

A . = 1 1 3 

A . = 2 3 1 

C . = 1 C . = 2 
B . = 1 3 1 

B . = 2 1 3 
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Table 3.4 Structure of a 
distribution with AB and AC 
marginals as given in Table 
3.3 

A . = 1 C . = 1 C . = 2 
B . = 1 t 3 . − t 
B . = 2 1 . − t t 

A . = 2 C . = 1 C . = 2 
B . = 1 u 1 . − u 

B . = 2 3 . − u u 

To have the AB and AC marginal distributions as prescribed in Table 3.3, the  
3-way table has to have the structure shown in Table 3.4, implying that .t ≤ 1 and 
.u ≤ 1. The conditional odds ratios are 

. COR(B, C|A = 1) = t2 

(1 − t)(3 − t)  

and 

. COR(B, C|A = 2) = u2 

(1 − u)(3 − u) 

and their values are not restricted, i.e., depending on t and u, may be anywhere on 
the interval .(0, ∞). But the marginal odds ratio is 

. OR(B, C) = 
(t + u)2 

(4 − t − u)2 

and this is restricted to be not more than 1. 
However, even in this case, the marginal log-linear parameters calculated in the 

marginals .{AB}, .{AC}, and .{BC} on the one hand, and the parameters calculated in 
.{ABC}, on the other hand, are variation independent. 

3.4.3 Smoothness of Marginal Log-linear Parameters 

Marginal log-linear models will be defined by assuming that some marginal log-
linear parameters are zero. Many of the statistical properties of these models, 
including the behaviour of maximum likelihood estimates and asymptotic distri-
butions of test statistics depend on analytical properties of the parameterizations 
used. 

A parameter is called smooth if, as a function of the (probability or frequency) 
distribution, it is continuous, invertible, twice continuously differentiable, and its 
Jacobian has full rank everywhere. 

Theorem 3.4 The hierarchical and complete marginal log-linear parameters are a 
smooth parameterization of the frequency distribution. 

Proof This is Theorem 2 in Bergsma and Rudas [9]. Note that smoothness holds 
only if the redundant parameter values are omitted. 
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To obtain a smooth parameterization of the probability distribution, the parameter 
referring to the empty set, .λM(∅) 

∅ , must be omitted because its value is determined 
by the other parameters through the requirement that the probabilities must sum to 
1. 

Bergsma and Rudas [9] showed (their Theorem 3) that for two marginals . M and 
. N and effect .E ⊆ M ∩ N , the partial derivatives of the parameters .λN 

E and . λM 
E 

according to the components of the probability distribution, evaluated at the uniform 
distribution, are equal and therefore these parameters cannot be parts of a smooth 
parameterization of all distributions, because the partial derivative matrix would not 
always be of full rank. A more detailed analysis of this issue is given by Colombi 
and Forcina [22], using a different marginal log-linear parameterization which does 
not involve averaging over the categories of the conditioning variables as in (3.7).4 

One has the following result connecting marginal log-linear parameters of the 
same effect calculated in different marginals. 

Theorem 3.5 Let all the variables be binary, and then each marginal log-linear 
parameter has one non-redundant value. Let further .E ⊆ M ⊂ N . Then 

. λN 
E = λM 

E + f (ΛN |M), 

for some smooth function f , with 

. ΛN |M = {λN 
F : F ⊆ N ,F � M}. 

Further, 

.f (ΛN |M) = 0 if
(
N \ M) ⊥⊥ A | (M \ A

)
(3.9) 

for some .A ∈ E . 
Proof This is part of Theorem 3.1 in Evans [29]. 

For example, the second claim of the theorem implies that if .A ⊥⊥ B|C, then 
.λABC 

B = λBC 
B . This is directly seen by noting that these log-linear parameters are 

simple functions of the conditional odds of the categories of B. For the first one, 
conditioning is on A and C and for the second one conditioning is on C only. But if 
the conditional independence in (3.9) holds, the conditioning on A does not provide 
further information after conditioning on C in the sense that 

. P(B  = j |C = k) = P(B  = j |A = i, C = k), 

so the conditional probabilities entering the formulas for the log-linear parameters 
are the same. In general, this implies that if condition (3.9) holds for a distribution, 

4 For alternative parameterizations see Sect. 3.5. 
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then .λM 
E and .λN 

E cannot be both contained in a smooth parameterization, because 
then the Jacobian could not be of full rank. 

3.4.4 Collapsibility 

The final property of marginal log-linear parameterizations that we consider before 
giving the general definition of marginal log-linear models, is collapsibility. 

Collapsibility of a parameter is a desirable property but it cannot always be 
achieved. The concept of collapsibility has many variants, and it refers to the 
property that some aspect of the inference from a full table is identical to the 
corresponding inference based on a marginal table. For example, in a 3-way binary 
table, .λABC 

AB = 0 does not generally imply that .λAB 
AB = 0, so the inference with 

respect to the strength of association between variables A and B is not the same, 
whether it is considered in the full table or in the AB marginal. 

In general, a marginal log-linear parameter .λN 
E would be called collapsible, see 

e.g., Ghosh and Vellaisamy [38] if,  for  .M ⊆ N , .λN 
E = λM 

E held. Of course, this 
cannot be true in general, as in this case marginal log-linear parameters would not 
be different from the standard log-linear ones. Even for a much weaker requirement, 
called directional collapsibility, where only the direction of the association is 
retained, Rudas [74] showed that there is essentially only one parameterization 
of multivariate binary distributions which is directionally collapsible for every 
distribution, and it is not a log-linear, but rather a linear function of the cell 
probabilities. 

Thus, collapsibility is often interpreted as a property not associated with a 
parameter, but rather with a parameter and a particular distribution. For example, 
Ghosh and Vellaisamy [38] gave the following result. 

Theorem 3.6 Let .∅ �= E ⊆ M � N ⊆ V be fixed. Then, in the binary case, 
collapsibility in the sense that 

. λM 
F − λN 

F = 0, for all F ⊆ E 

holds if and only if for the distribution P , 

. 
∑
F⊆E 

(−1)|E\F | 

2|M\F |
∑

m:(m)F=(m∗)F 

d(M,m)  = 0 

for all category combinations . m∗ of the variables in . M, where 

.d(M,m)  = logPM(m) − 
1 

2|N \M|
∑

n:(n)M=m 
log PN (n). 



3 Marginal Models: An Overview 87 

Proof This is part of Theorem 3.1 in Ghosh and Vellaisamy [38].5 

3.5 Marginal Log-linear Models 

Marginal log-linear models are obtained from marginal log-linear parameterizations 
by applying a linear restriction to the components. If in the example of Sect. 3.2.1, 
one wishes to assume that the strength of association between the first and second 
measurements are the same, that is, treatment does not affect association, then this 
model may be formulated by requiring that 

. λ A1B1 
A1B1 

= λ A2B2 
A2B2 

. 

For example, the graphical model associated with Fig. 3.1, which has been 
discussed repeatedly, is equivalent to the restrictions in (3.1) and (3.2) in Sect. 3.2.3. 
Then, in Sect. 3.3.2, a parameterization of the joint distribution of the variables 
based on the marginals 

. {AB}, {ABC}, {ABD}, {ABCD} 

was considered and it was shown that the restrictions defining the model may be 
imposed by restricting some resulting parameters. In Sect. 3.4.1 it was mentioned 
that the restrictions are the same as 

.λAB 
AB = 0 and λABCD 

CD = 0. (3.10) 

This is the marginal log-linear definition of the graphical model associated with 
the DAG in Fig. 3.1. Sect. 3.9.1 will discuss the marginal log-linear approach to 
graphical modelling in general. 

To define a marginal log-linear model, a non-decreasing sequence of marginals 
is selected and the implied marginal log-linear parameterization is considered. 
Remember that only non-redundant parameters are included in the parameterization, 
which is thus smooth, see Theorem 3.4. In the generality considered in Bergsma 
and Rudas [9], a marginal log-linear model is obtained by assuming that the 
parameters belong to a linear subspace of the parameter space and marginal 
log-linear models are the special case when the subspace is defined by the equality-
to-zero assumptions. 

These models provide a rich family of generalizations of the log-linear model. 
The actual meaning of the model depends on the marginals selected and on the 
restrictions applied. Several examples will be discussed later on in the chapter. 

In this section, we concentrate on the general properties of marginal log-linear 
models. The first property is that these models always exist. 

5 Note that formula (iii) in Theorem 3.1 in Ghosh and Vellaisamy [38] appears to have a typo. 
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Theorem 3.7 A marginal log-linear model based on a non-decreasing ordering of 
the marginals is never empty. 

Proof This is implied directly by Theorem 7 of Bergsma and Rudas [9]. 

An example is the uniform distribution over a contingency table, which satisfies 
any marginal log-linear model referred to in the theorem. Note that variation 
independence is not required here. 

The smoothness of the parameterization (see Theorem 3.4) from which marginal 
log-linear models are derived implies that the usual desirable asymptotic behaviour 
holds under multinomial (see, e.g., Rudas [75]) sampling. 

Theorem 3.8 Assume a marginal log-linear model based on a non-decreasing 
sequence of marginals contains the true distribution. Then, under multinomial 
sampling, the probability that a unique maximum likelihood estimate of the true 
distribution (or of its parameters) exists tends to 1 as the sample size goes to infinity. 
Further, the asymptotic distribution of the maximum likelihood estimator is normal, 
with expected value equal to the true distribution. 

Proof This follows from Theorem 8 in Bergsma and Rudas [9]. 

This result also implies the standard asymptotic behaviour of goodness-of-fit 
statistics. 

3.6 Alternative Parameterizations of Marginal Log-linear 
Models 

There are several ways in which odds ratios may be defined and used to parameterize 
distributions. These lead to alternative definitions of marginal log-linear parame-
terizations and models, adding further flexibility of interpretation to the approach 
described in this chapter. 

It was illustrated in Sect. 3.4.1 that marginal log-linear parameters are closely 
related to local odds ratios and their higher dimensional generalizations (see, e.g., 
Rudas [72, 75]). In fact, the marginal log-linear parameters may be derived from 
the local .(l − 1)th order odds ratios in the marginal tables, where l is the number 
of variables in the marginal. To define these in marginal tables, let the marginal 
probabilities in the marginal . M be denoted as .PM and let variable . Vj have indices 
.1, . . . , cj . Then, the local odds ratio of order .l − 1 in the marginal table for every 
.(i1, . . . , il) : ij ≥ 2, j  = 1, . . . , l, has the form 

.

∏
mj ∈{0,1}, j=1,...,l 

P (−1)m1+···+ml 
M (i1 − m1, . . . il − ml). (3.11) 

The expression in (3.11) is a product of probabilities or their reciprocals. The 
probabilities involved are in the marginal table . M and are associated with adjacent 
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cells which are obtained by reducing some indices in .(i1, . . . , il) by 1. Whether 
or not (3.11) contains a probability or its reciprocal depends on the parity of the 
number of indices which were reduced. 

Instead of local odds ratios (of any order), spanning cell odds ratios could also be 
used to define marginal log-linear parameters. For a marginal table . M, the spanning 
cell odds ratios are the odds ratios in the . 2l subtables spanned by the reference cell 
with all indices equal to 1 and a cell .(i1, . . . , il , with all indices greater than 1. The 
spanning cell odds ratios of order .l − 1 are of the form 

.

∏
mj ∈{0,ij −1}, j=1,...,l 

P (−1)m 

M (i1 − m1, . . . il − ml), (3.12) 

where m is the number of indices j where .mj �= 0. In this case, the relevant cells 
are obtained by replacing some indices by 1. 

The intuitive meaning of the higher order odds ratios – whether local or 
spanning cell – is best understood through a recursive definition involving ratios of 
lower order conditional odds ratios. While local odds ratios measure the strength 
of association in adjacent cells, and are also relevant when the categories of 
the variables have orderings, spanning cell odds ratios measure the strength of 
association when categories are compared to the reference category coded as 1. 

Bartolucci et al. [6] considered various marginal interaction parameters which, if 
calculated in a non-decreasing set of marginals, may also be used to define marginal 
models. These generalized marginal interactions are contrasts of logarithms of sums 
of (marginal) probabilities. Note that the marginal log-linear parameters considered 
so far in this chapter are also contrasts of logarithms of (marginal) probabilities. 

The central concept in the definition of the interaction parameters by Bartolucci 
et al. [6] is the lumped table. While local and spanning cell odds ratios derive 
binary sub-tables from a marginal table by selecting various subsets of the cells, 
and then calculate the odds ratios for these subsets, the approach of Bartolucci et 
al. [6] derives binary sub-tables by collapsing categories of variables. The global 
and continuation odds ratios resulting from collapsing categories are particularly 
useful when the variables are ordinal. A table formed by the variables with collapsed 
categories is called a lumped table. 

For example, if one considers a bivariate marginal . M with .I ×J categories of the 
variables, and probabilities .PM(i, j), then for each .i∗ = 2, . . . I  and .j∗ = 2, . . . J , 
one may consider the following quantities: 

. QM,i∗,j∗(l, l) =
∑

i=1,...,i∗−1, j=1,...,j∗−1 

PM(i, j) 

.QM,i∗,j∗(l, nl) =
∑

i=1,...,i∗−1, j=j∗,...,J 
PM(i, j) 
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. QM,i∗,j∗(nl, l) =
∑

i=i∗,...,I, j=1,...,j∗−1 

PM(i, j) 

. QM,i∗,j∗(nl, nl) =
∑

i=i∗,...,I, j=j∗,...,J 
PM(i, j). 

Here, the summation of the marginal cell probabilities goes for the indices less (l) 
or not less (nl) than the specified . i∗ and . j∗. 

Then, the lumped table is of the size .2 × 2, and the lumped distribution is 
.QM,i∗,j∗ . This kind of lumping divides the cells of the marginal table into 4 
rectangles and combines the probabilities within each. The odds ratio of the lumped 
distribution is 

. 
QM,i∗,j∗(l, l)QM,i∗,j∗(nl, nl) 
QM,i∗,j∗(l, nl)QM,i∗,j∗(nl, l) 

, 

which is called the global odds ratio belonging to cell .(i∗, j∗). Similar lumping 
is also possible for l-dimensional tables, and the .(l − 1)th order odds ratio in the 
resulting . 2l table is also called a global odds ratio. There are . (c1−1)(c2−1) · · ·  (cl− 
1) global odds ratios for an effect . E . 

Another type of odds ratio is obtained by the following partial lumping for 2-way 
.I × J tables, for each .i∗ = 1, . . . I  − 1, and .j∗ = 1, . . . J  − 1: 

. RM,i∗,j∗(e, e) = PM,i∗,j∗(i∗, j∗) 

. RM,i∗,j∗(n, e) = PM(i∗ + 1, j∗) 

. RM,i∗,j∗(e, m) =
∑

j=j∗+1,...,J 
PM(i∗, j)  

. RM,i∗,j∗(n, m) =
∑

j=j∗+1,...,J 
PM(i∗ + 1, j),  

where e stands for equal, n stands for next, and m stands for more than. 
The odds ratio obtained for the lumped .2 × 2 distribution, 

. 
RM,i∗,j∗(e, e)RM,i∗,j∗(n, m) 
RM,i∗,j∗(e, m)RM,i∗,j∗(n, e) 

, 

is called the continuation odds ratio. Its meaning is best seen by writing it as 

. 
RM,i∗,j∗(n, m)/RM,i∗,j∗(n, e) 
RM,i∗,j∗(e, m)/RM,i∗,j∗(e, e) 

, 
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which is the ratio of the conditional odds of the ‘continuation’ of the second variable, 
as opposed to not changing it, when conditioned on the next or on the current 
category of the first variable. 

In multivariate generalizations of the continuation odds ratios, lumping does 
occur for the response variables but not for the explanatory variables, if such a 
distinction among the variables exists. 

Bartolucci et al. [6] define extended interaction parameters as contrasts of 
logarithms of generalized odds ratios including global and continuation odds ratios 
(and also local and spanning cell odds ratios) and show that for the models obtained 
by linear restrictions on these, many of the results presented so far in this chapter 
apply, too. They called this more general model class hierarchical marginal models. 

3.7 Marginal Log-linear Parameterization of Conditional 
Independence Models 

Many of the relevant marginal models assume conditional independences in various 
marginals of the table. The most important group of such models are graphical 
models, of which models associated with DAGs have already been considered. A 
more detailed account will be given later in this chapter. In this section, we present 
general results about formulating conditional independence models as marginal 
models, that is, by restricting some parameters in a hierarchical and complete 
marginal log-linear parameterization. 

For .i = 1, . . . , h, let  .Ai �= ∅, .Bi �= ∅, and . Ci be pairwise disjoint sets of 
variables. The goal is to formulate the following conditional independences jointly, 
as a marginal log-linear model: 

.Ai ⊥⊥ Bi | Ci , for all i = 1, . . . , h. (3.13) 

For example, the graphical model associated with the DAG in Fig. 3.1 is equivalent 
to imposing the conditional independences (3.1) and (3.2). In this case, .h = 2, 
.A1 = {A}, .B1 = {B}, .C1 = ∅  and .A2 = {C}, .B2 = {D}, .C2 = {A, B}. 

To explore when (3.13) may be formulated as a marginal log-linear model, define 

. Di = P(Ai ∪ Bi ∪ Ci ) \ [P(Ai ∪ Ci ) ∪ P(Bi ∪ Ci )], 

where .P(.) denotes the power set. That is, for every i, . Di is the collection of those 
subsets of .Ai ∪Bi ∪Ci that contain variables from both . Ai and . Bi . In the case of the 
DAG example, .D2 = {CD, ACD, BCD, ABCD}. A sufficient condition is given 
by the following result. 

Theorem 3.9 Let 

.M1, . . . ,Mk = V 
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be a non-decreasing sequence of marginals with the following property: 

.Ci ⊆ M(E) ⊆ Ai ∪ Bi ∪ Ci , for all E ∈ ∪h 
i=1Di . (3.14) 

Then, the conditional independences in (3.13) define a marginal log-linear model 
based on these marginals. More specifically, (3.13) holds for a distribution P if and 
only if 

. λ
M(E) 
E = 0 for all E ∈ ∪h 

i=1Di 

for this distribution. Further, the distributions in the model are smoothly parameter-
ized by the remaining marginal log-linear parameters: 

. {λM(E) 
E : E /∈ ∪l 

i=1Di}. 

Proof This is part of Theorem 1 in Rudas et al. [78]. 

Condition (3.14) means that for any effect . E which contains variables from 
any two subsets . Ai and . Bi of variables which are assumed to be conditionally 
independent, the first marginal in the sequence which contains . E has to be big 
enough to contain the conditioning set . Ci , but has to be small enough to be contained 
in .Ai ∪ Bi ∪ Ci . The condition requires the sequence of marginals to be sufficiently 
rich. 

For example, in the case of the model defined by the DAG in Fig. 3.1, there 
are various choices of the sequence of marginals with property (3.14). Clearly, the 
AB, ABCD sequence is one such choice. But A, AB ABCD or A, B, AB, ABC, 
ABD, and ABCD are also appropriate sequences of marginals in order to be able to 
define the model by setting some marginal log-linear parameters to zero. However, 
Theorem 3.9 does not imply that the DAG model would be a marginal log-linear 
model based on the sequence of marginals A, ACD, ABC, ABCD, because the 
variables C and D, which have to be conditionally independent, are present together, 
without their conditioning set AB. In the case of the sequence of marginals A, AB, 
and ABCD, the effects which are to be set to zero to specify the DAG model are 

. AB, CD, ACD, BCD, ABCD; 

the first one in the AB marginal, and the others in the ABCD marginal. Note that 
this is the same specification as the one given in (3.10), taking into account that the 
marginal log-linear parameters are log-linear parameters calculated in a marginal, 
thus the second equality in (3.10) implies that  

. λABCD 
ACD = λABCD 

BCD = λABCD 
ABCD = 0; 

see Rudas [75]. 
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The marginal log-linear parameters which parameterize the distributions in the 
DAG model belong to the following effects: 

. ∅, A, B,  C, D, AC,  BC,  ABC, AD,  BD, ABD.  

Out of these, the first two are calculated in the first marginal, the third one in the 
second marginal, and the rest in the last marginal. 

Further applications of Theorem 3.9 will be given in Sect. 3.9.1. 
The result in Theorem 3.9 raises the question of how to determine, for a given list 

of conditional independences, whether a smooth marginal log-linear definition and 
parameterization of the model is possible. This would require considering the non-
decreasing sequences of marginals in which the required conditional independences 
in (3.13) may be formulated, and to see whether (3.14) holds for any such sequence. 
An apparent difficulty is that a particular effect . E may be a subset of . Di for more 
than one i and, thus, (3.14) may impose several restrictions on .M(E). An obvious 
necessary condition for the existence of a smooth marginal log-linear definition is 
the following. If for a subset of the variables . E , . IE denotes the indices from among 
.1, . . . , h, for  which .E ⊆ Di , then .M(E) should be such that 

. ∪i∈IE Ci ⊆ M(E) ⊆ ∩i∈IEAi ∪ Bi ∪ Ci 

and if 

. ∪i∈IE Ci � ∩i∈IEAi ∪ Bi ∪ Ci , 

then, an appropriate sequence of marginals does not exist and the sufficient 
condition of Theorem 3.9 does not hold. 

Forcina et al. [35] arrived at similar results using a different approach. They 
proposed an algorithm to decide whether a model defined by a given set of 
conditional independences admits a marginal log-linear definition in the sense 
discussed here, and is, thus, smooth.6 

Forcina [33] discussed further questions related to the smoothness of models 
defined by various, more general, collections of conditional independence state-
ments, when, for any ordering of the relevant marginals, the marginal log-linear 
parameters which have to be set to zero in order to obtain the prescribed conditional 
independences, cannot be specified in the first marginal where the effect occurs. An 
example discussed in Forcina [33] is for four binary variables and requires that 

. X1 ⊥⊥ X2 | X3, 

. X2 ⊥⊥ X3 | X4, 

.X2 ⊥⊥ X4 | X1. 

6 A model is called smooth if it admits a smooth parameterization. 
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He showed the model is smooth, even though condition (3.14) does not hold, and 
Theorem 3.9 does not apply. Indeed, if, for example, the three marginals appeared 
in the following order, 

. X1X2X3, X2X3X4, X1X2X4, 

then .X4 � M(X2X3) = {X1X2X3}. Similarly, all other orderings of the marginals 
would lead to a violation of (3.14). 

Forcina [33] offered an iterative algorithm to construct the distributions in the 
model based on the mixed parameterization of exponential families, see, e.g. Rudas 
[75], and proved that the convergence of the algorithm implies smoothness of the 
model. 

3.8 Estimation and Testing 

In this section, we describe the maximum likelihood (ML) and the GEE approaches 
to estimating marginal log-linear models. Both estimation methods provide asymp-
totically unbiased estimators, but ML estimators have the advantage over GEE ones 
of being asymptotically efficient. On the other hand, the GEE approach has the 
advantage of being computationally more efficient, which is important because 
of the large possible sizes of contingency tables. For example, 8 variables with 
5 categories gives a contingency table of size .58 = 390,625. The ML method 
requires all expected cell frequencies to be estimated, whereas the GEE method only 
estimates first and second moments of observed marginal frequencies. Nevertheless, 
the ML method can handle large tables; for example, we found that tables with one 
million cells can be estimated without too much difficulty. 

ML estimators of marginal log-linear models are, in general, not available in 
closed form and iterative methods need to be used. There are two main approaches. 
Firstly, there are algorithms based on the approach developed by Aitchison and 
Silvey [3], who used the Lagrange multiplier technique. Lang and Agresti [49] 
first used this method for marginal models, and a modification, which seems to 
have improved practical performance, was given by Bergsma [8]. A difficulty with 
these methods is that a search is done for a saddle point, hence convergence 
may be difficult to monitor. Bergsma and Rapcsak [14] resolved this problem 
by developing an alternative Lagrangian method, which turns the constrained 
maximization problem into an unconstrained one. 

A second approach to ML estimation is to maximize the likelihood parameterized 
in terms of a hierarchical and complete marginal log-linear parameter vector, for 
example, using a Fisher scoring algorithm. The drawback of this approach is that 
it involves ‘iteration within iteration’, that is, at each Fisher scoring step, the 
cell probabilities need to be computed from the current estimated marginal log-
linear parameter (this can be done with the iterative proportional fitting algorithm, 
which has guaranteed convergence). Therefore, this approach is computationally 
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burdensome and Lagrange multiplier methods are more attractive. We describe the 
approach for completeness. 

As far as we are aware, the GEE method has not been described in the literature 
for general marginal models. Section 3.8.5 gives an outline, including a suitable 
choice of the working covariance matrix. 

3.8.1 Matrix Formulation of Marginal Models 

Let . m be a vector containing the expected cell frequencies in a contingency table. A 
marginal log-linear parameter . λ can be represented as 

.λ = B′ logM′m (3.15) 

where . B and . M are appropriately defined matrices and a prime represents the 
transpose. This formulation includes the marginal log-linear parameterizations of 
Bergsma and Rudas [9, 10], see Sect. 3.4. 

A marginal log-linear model is then defined by 

.λ = Xβ (3.16) 

for a matrix . X and parameter vector . β of smaller length than . λ. Equivalently, a 
marginal log-linear model can be specified as 

.C′λ = 0 (3.17) 

for an appropriate matrix . C. Taking . C to be the orthogonal complement of . X, in  
the sense that .C′X = 0 and .(X,C) is an invertible matrix, the two formulations are 
seen to be equivalent. These formulations have been called freedom and constraint 
specifications, see Lang [46]. 

For example, consider a .2 × 2 table with expected cell frequencies 
.(m11,m12,m21,m22). The marginal homogeneity model in the constraint 
specification is .log(mi+) − log(m+i ) = 0 (.i = 1, 2), where a plus in the subscript 
denotes summation over that subscript. In matrix notation, this is 

.

(
1 0  −1 0  
0 1  0  −1

)
log 

⎡ 

⎢⎢⎣ 

⎛ 

⎜⎜⎝ 

1 1 0 0  
0 0 1 1  
1 0 1 0  
0 1 0 1  

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

m11 

m12 

m21 

m22 

⎞ 

⎟⎟⎠ 

⎤ 

⎥⎥⎦ = 0. (3.18) 
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In the freedom specification, the model is .(mi+,m+i ) = (βi, βi) (.i = 1, 2), which 
in matrix notation is 

. log 

⎡ 

⎢⎢⎣ 

⎛ 

⎜⎜⎝ 

1 1 0 0  
0 0 1 1  
1 0 1 0  
0 1 0 1  

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

m11 

m12 

m21 

m22 

⎞ 

⎟⎟⎠ 

⎤ 

⎥⎥⎦ = 

⎛ 

⎜⎜⎝ 

1 0  
0 1  
1 0  
0 1  

⎞ 

⎟⎟⎠
(

β1 

β2

)
. 

3.8.2 Characterization of ML Estimators 

In this section we give a score equation, and a Lagrangian score equation, whose 
solutions, under some conditions, are the ML estimators of a marginal model. 
Algorithms for solving these equations are postponed to Sect. 3.8.4. 

Let . n be a vector of observed cell counts of a contingency table. We assume . n has 
a multinomial or independent Poisson distribution with expected frequency vector 
.m = E(n). The log-likelihood for . m then is 

.L(m|n) = n′ log(m) − 1′m + c (3.19) 

where . 1 is a vector of ones of appropriate length and c is a constant. In the 
multinomial case, the constraint .1′m = 1′n holds, but this does not affect 
maximum likelihood estimation or inference in the present case, see Lang [47]. 
Hence, for notational simplicity, we will ignore the multinomial constraint below. 
The maximum likelihood estimator . m̂ of . m under a marginal log-linear model 
maximizes the log-likelihood .L(m|n) subject to a constraint of the form (3.16) 
or (3.17). The maximum likelihood estimator . m̂ of . m has been characterized in 
two equivalent ways, namely as the solution to (i) equations involving Lagrange 
multipliers, or (ii) the score equation for . β. The former is due to Aitchison and 
Silvey [3] and Lang [46] and the latter was considered by Glonek and McCullagh 
[40] and Colombi and Forcina [18]. 

The Lagrange multiplier method seeks a stationary point of the Lagrangian log-
likelihood 

. L(m, τ |n) = n′ log(m) − 1′m − τ ′C′λ 

where . τ is a vector of Lagrange multipliers and . λ is a marginal log-linear parameter 
of the form (3.15). Denote the Jacobian of . λ as . Λ, given by 

.Λ = 
dλ′

dm 
= MD−1 

M′mB (3.20) 
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where . D is the diagonal matrix with its subscript on the main diagonal. Differenti-
ating the log-likelihood L with respect to . m and equating to zero gives 

. 
n 
m 

− 1 + ΛCτ = 0 (3.21) 

where the division in .n/m is element-wise. 
Under some conditions, the ML estimator . m̂ is a solution to the simultaneous 

equations (3.21) and (3.17). Sufficient conditions include (i) all observed frequen-
cies are strictly positive, and (ii) the Jacobian .ΛC has full column rank. For most, if 
not all, marginal models of practical interest, the second condition is satisfied; see 
Sect. 3.4.3. However, the positivity of all observed frequencies is often not satisfied 
in practice; for example, for many real-world problems the number of cells in the 
table is larger than the sample size, implying there must be some cells with zero 
observations. A heuristic solution to this problem is to replace all zero observed 
frequencies by a small constant, so that the total contribution to the likelihood will 
be negligible, as is described in Bergsma et al. [12]. 

To illustrate the problem with zero observed cells, note that for the marginal 
homogeneity model defined by (3.18), (3.21) becomes 

. 
nij 
mij 

− 1 − 
λi 

mi+ 
+ 

λj 
m+j 

= 0 i, j = 1, 2. 

Consider now the equation for .(i, j) = (1, 1). Since .m1+ = m+1, we obtain 

. 
n11 

m11 
− 1 = 0. 

The solution is  .m̂11 = n11 except if .n11 = 0, in which case there is no solution. 
The true ML estimator in this case is .m̂11 = 0, and replacing . n11 by a small number 
makes negligible difference for inferential purposes. 

An alternative to the Lagrange multiplier method for characterizing the ML 
estimator is by means of the score equation for . β in (3.16). The likelihood is 
parameterized in terms of . β and the ML estimator is obtained by computing the 
score equation and solving for . β. This approach is facilitated if . λ is a marginal log-
linear parameterization, in which case its Jacobian . Λ is invertible. Differentiating 
the log-likelihood then gives the score vector 

.s(β) = 
dL 
dβ 

= 
dλ′

dβ 
dm 
dλ′

dL 
dm 

= 
dλ′

dβ

(dλ′

dm

)−1 dL 
dm 

= X′Λ−1
( n 
m 

− 1
)
. (3.22) 

Provided all observed cell frequencies are positive, the ML estimator . β̂ satisfies 
.s(β̂) = 0. As in the Lagrange multiplier case, we suggest replacing zero observed 
cell frequencies by a small constant. If . λ is a smooth parameterization, then . Λ is 
invertible, and .s(β) = 0 is equivalent to the Lagrangian equation (3.21), since 
.C′X = 0 and .(X,C) is an invertible matrix. The score function is potentially 
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computationally expensive to evaluate, because the matrix . Λ needs to be computed 
and inverted. 

3.8.3 Likelihood Ratio Tests and Asymptotic Distribution of 
ML Estimators 

Suppose model (3.16) holds. The setup of Aitchison and Silvey [3] and Lang [46] 
applies, implying that the maximum likelihood estimator . m̂ under this model has 
an approximate large sample multivariate normal distribution, with mean . m and 
covariance matrix 

. cov( m̂) ≈ Dm − Λ(Λ′DmΛ)−1Λ. 

The estimated parameter vector .β̂ = (X′X)−1X′ log m̂ also has a large sample 
multivariate normal distribution, with mean . β and covariance matrix 

. cov(β̂) = (X′X)−1X′D−1 
m cov( m̂ − m)D−1 

m X(X′X)−1. 

The usual likelihood ratio test can be used for selecting nested models. Let . H0 
and . H1 be nested models, i.e., if . H0 is true then . H1 is true, and let . m̂k be the ML 
estimate of . m under . Hk (.k = 0, 1). The log likelihood ratio test statistic is 

. G2 = 2n′ log m̂0 

m̂1 

Under some regularity conditions, if . H0 is true then . G2 has an asymptotic chi-square 
distribution with degrees of freedom (df) equal to the dimension of . H1 minus the 
dimension of . H0. 

Non-nested models can be compared using various information criteria, such as 
the Bayesion information criterion (BIC), 

. BIC = G2 + 2 df  log(N) 

where N is the sample size. 

3.8.4 Algorithms for Finding ML Estimators 

3.8.4.1 Lagrangian Methods 

Several Lagrangian algorithms have been proposed to find the ML estimators 
of a marginal model. In their seminal paper, Aitchison and Silvey [3] described 
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Lagrangian methods for constrained maximum likelihood in some generality. Lang 
and Agresti [49] and Lang [46] introduced Langrangian methods for categorical 
marginal models. The algorithm we describe here is a slightly modified algorithm 
developed by Bergsma [8], which practical experience indicated has improved 
convergence properties compared to the original Aitchison and Silvey algorithm. 

The first step of the algorithm is to choose an appropriate starting point .m(0), 
after which subsequent estimates .m(k+1) (.k = 0, 1, 2, . . .) are calculated iteratively 
using the formula 

. logm(k+1) = logm(k) + step(k)u
(
m(k)

)
(3.23) 

where .step(k) is an appropriately chosen step size and 

. u(m) = 
n 
m 

− 1 − ΛC
(
C′Λ′DmΛC

)−1[C′Λ′M′(n − m) + C′λ
]
. 

Here, . Λ is defined by (3.20) and depends on . m. A suggested starting point is . m(0) = 
n+ε, where . ε is some small constant, such as .10−6. For further details, see Bergsma 
et al. [12, Section 2.3.5]. 

A closely related algorithm was given by Colombi and Forcina [18], which, 
being based on updating . β in (3.16), was named the ‘regression algorithm’. The two 
algorithms were shown to be equivalent by Evans and Forcina [30]. They showed the 
two algorithms have rather different numerical properties depending on whether the 
design matrix . X has a block diagonal structure, arising with continuous covariates: 
if this is the case, the regression algorithm (3.23) tends to be much more efficient 
but if not, Bergsma’s algorithm tends to be much more efficient in practice. 

Although we have very good practical experience with convergence of the 
algorithm (3.23) to the ML estimator, theoretical results are lacking. Generally 
speaking, convergence properties of constrained optimization problems are more 
difficult to establish than those of unconstrained ones. The Lagrange multiplier 
method turns a constrained optimization problem into the problem of finding a 
saddle point of the Lagrangian function, but finding such a saddle point may 
be more difficult than finding a global (unconstrained) maximum or a minimum. 
Two ways of reformulating the ML estimation problem for marginal models as an 
unconstrained optimization problem have been described. 

Firstly, Bergsma and Rapcsák [14] provided a general method for turning a 
constrained optimization problem into an unconstrained one and applied this to ML 
estimation of marginal models. The advantage of this algorithm is good theoretical 
properties, and it is similar in computational efficiency to the algorithm defined 
by (3.23). 

The second way is via the Fisher scoring algorithm described next. 
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3.8.4.2 Fisher Scoring 

In this section we build on the Fisher scoring algorithm for marginal models 
described by Colombi and Forcina [18]. We wish to find the value of . β in (3.16) 
maximizing the log-likelihood (3.19). Here, . λ is a marginal log-linear parame-
terization as described in Sect. 3.3. Then, by Theorem 3.4, . Λ defined by (3.20) 
is invertible. Differentiating the log-likelihood gives the score vector .s(β) given 
by (3.22). The Fisher information on . β is 

. I(β) = −E
[ds(β) 

dβ ′
]

= X′Λ−1D−1 
m Λ

′−1X. 

The Fisher scoring algorithm is given by 

.β(k+1) = β(k) + step(k)I(β(k) )−1s(β(k) ). (3.24) 

At each iteration, the vector of expected cell frequencies . m needs to be computed 
from . λ, which can be done using the iterative proportional fitting algorithm [see 
Bergsma and Rudas 9]. However, the Newton-Raphson scheme proposed by Glonek 
and McCullagh [see Bergsma and Rudas 9 40] may be numerically more efficient. 

A major potential numerical bottleneck for (3.24) is that . Λ needs to be stored 
and inverted at each iteration. In particular, if there are K cells in the table . Λ is 
a .K × K matrix. A normally much more efficient algorithm can be obtained by 
updating .λ = Xβ directly. We obtain the updating step 

. λ → λ + stepX · I(β)−1s(β) 

= λ − X(X′Λ−1D−1 
m Λ

′−1X)−1X′Λ−1X′Λ−1D−1 
m (n − m) 

= λ − [
Λ′DmΛ − Λ′DmΛC(C′Λ′DmΛC)−1C′Λ′DmΛ

]
D−1 
m (n − m), 

where . C is an orthogonal complement of . X (see (3.17)). In practice, the matrix . C 
typically has low column rank, making the latter updating step relatively efficient if 
implemented well; see Colombi and Forcina [18] for details. 

Overall, the Fisher scoring algorithm appears more cumbersome to implement 
than Lagrangian algorithms, in particular if numerical efficiency is desired. Further-
more, due to the required ‘iteration within iteration’, Fisher scoring algorithms can 
be expected to be slower than Lagrangian algorithms. If parameterizations based 
on a set of marginals which is not ordered decomposable are used, out-of range 
estimates (negative probabilities) can be obtained as described by Colombi and 
Forcina [18]. 

In more general settings, a drawback of Fisher scoring is that it requires 
a parameterization of the distribution in terms of parameters of interest. Such 
parameterizations are available for marginal log-linear models, but not for the more 
general models based on non-log-linear parameters considered by Bergsma [8], 
Lang [48], and Bergsma et al. [12]. 
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3.8.4.3 Software 

The following three R packages are available for marginal modelling: cmm by 
Wicher Bergsma and Andries van der Ark, mph.fit by Joseph Lang, and hmmm by 
Roberto Colombi, Sabrina Giordano, and Manuela Cazzaro. A detailed description 
of the cmm package can be found at stats.lse.ac.uk/bergsma/cmm/index.html. 
The website contains R code with explanations for all the data examples 
in Bergsma et al. [12]. Documentation for mph.fit can be found at 
homepage.stat.uiowa.edu/ jblang/mph. fitting/index.htm and for hmmm at 
rdrr.io/cran/hmmm/; see  also  Colombi et al.  [22]. All three packages can estimate 
a wide variety of models. A special feature of cmm is that it can handle marginal 
models with latent variables, while hmmm can handle hidden Markov models and 
inequality constraints. For features of hmmm, see also Sect. 3.6. 

3.8.5 The GEE Method 

A drawback of ML estimation of marginal models is that all cells in the contingency 
table need to be estimated, making it computationally infeasible if the number 
of cells is large. The GEE method is a quasi-likelihood method which models 
the covariance matrix between marginal observations, while ignoring higher order 
associations, allowing greater computational efficiency at the cost of some statistical 
efficiency. A detailed general overview of the GEE methodology is provided 
by Molenberghs and Verbeke [60, Chapter 8]. In most literature on GEE, the 
association is modelled using correlations. Lipsitz et al. [54] developed the GEE 
methodology based on odds ratios for univariate binary responses. Touloumis et al. 
[82] gave a more general development for multinomial responses. Below, we adapt 
the GEE procedure for general marginal models as described in this chapter, i.e., 
the association is modelled using log-linear parameters and the marginals of interest 
may be multivariate. 

The GEE method derives from the score vector for a generalized linear model for 
a multivariate marginal mean; if .y ∼ MVN(μ,Vy) and .μ = g(Xβ) for some link 
function g, the score equation yielding the maximum likelihood estimator of . β is 

. 
dμ′

dβ 
V−1 
y (y − μ) = 0. (3.25) 

This equation can also yield a consistent estimator of . β if . y is non-normal [see 
Wedderburn 84]. However, there is the difficulty that . Vy is typically unknown and 
potentially difficult to estimate. Liang and Zeger [53] proposed replacing . Vy with a 
potentially incorrect ‘working’ covariance matrix . Ṽy, giving the  GEE  

. 
dμ′

dβ 
Ṽ−1 
y (y − μ) = 0. (3.26) 


 16822 6355 a 16822 6355 a
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 16894 10355 a 16894 10355 a
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Here, . Ṽy can depend on parameters, in particular . μ and parameters describing the 
correlation structure of . y. Liang and Zeger [53] showed that under some conditions, 
the GEE yields a consistent estimator . μ̃ of . μ. Huber’s [43] large sample sandwich 
estimator of the covariance matrix of . μ̃ is then 

. ˜cov(β̃) = Ĩ−1J̃Ĩ−1 

where 

. ̃I = 
dμ′

dβ 
Ṽ−1 
y 

dμ 
dβ ′

∣∣∣
β=β̃ 

J̃ = 
dμ′

dβ 
Ṽ−1 
y V

∗
yṼ

−1 
y 

dμ 
dβ ′

∣∣∣
β=β̃ 

. 

Here, . V∗
y is a consistent estimator of . Vy. 

Let us now give the GEE method for estimating . β in the marginal model (3.16), 
denoting the marginal observed frequency vector by .y = M′n and the corresponding 
expected frequency vector by .μ = E(y) = M′m. Then 

.Vy = M′DmM − N−1μμ′ (3.27) 

where .N = 1′n is the sample size. We can write the marginal model (3.16), with . λ 
given by (3.15), as 

. μ = exp(UXβ) 

where . U is an orthogonal complement of . B, that is, .B′U = 0 and .(B,U) is an 
invertible matrix. Hence, 

. 
dμ′

dβ 
= X′U′Dμ 

so that (3.25) becomes 

.X′U′Dμ Ṽ−1 
y (y − μ) = 0. (3.28) 

A difficulty is that .Vy is typically not invertible, in which case we can 
replace (3.28) by  

.y − μ + VyD−1 
μ BCτ = 0 (3.29) 

where . τ is a parameter to be estimated. Straightforward calculations show that if 
. Vy is invertible, (3.28) and (3.29) are equivalent. Note that (3.29) follows from the 
Lagrangian score equation (3.21) by pre-multiplying the left- and right-hand sides 
by .M′Dm. Replacing . Vy in (3.29) by a working covariance matrix . Ṽy gives a GEE 
for marginal models. A consistent estimator . V∗

y of . Vy is needed to compute . ̃J, and 
for this we can take .V∗

y = M′DnM. 
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It remains to find a working covariance . Ṽy. A simple way to do this is as follows. 
Suppose the marginal model is based on non-nested marginals .M1, . . . ,Mk . Then 
. Vy given by (3.27) is a function of the expected marginal frequencies for the 
following marginals 

.{Mi ∪ Mj |i, j = 1, . . . , k}. (3.30) 

A simple choice of working covariance matrix is obtained by assuming a (potentially 
incorrect) conditional independence model for the marginal .Mi ∪ Mj : 

. (Mi \ Mj ) ⊥⊥ (Mj \ Mi )|Mi ∩ Mj . 

This gives a closed-form expression for the expected marginal frequencies in the 
.Mi ∪ Mj in terms of the expected marginal frequencies in the . Mi , so that (3.29) 
subject to (3.16) can be solved for . β, using, for example, the Newton-Raphson 
method. 

3.8.5.1 Remarks on the GEE Method 

If the working covariance matrix is incorrect, the GEE method loses asymptotic 
efficiency compared to the asymptotically optimal ML method. Above, we proposed 
a simple working covariance, which for univariate marginals corresponds to an 
independence working assumption. Touloumis et al. [82] showed that this leads to a 
potentially big loss of efficiency if there is a strong dependence among the marginal 
observations. Efficiency can be improved by specifying a working covariance matrix 
that is closer to the truth, which can be done by specifying and estimating an 
appropriate parametric model for the marginals in (3.30); Touloumis et al. [82] 
obtained major improvements for univariate marginal models by modelling the 
bivariate marginals using homogeneous association models (see Agresti [1], Chapter 
9, or Forcina and Kateri [34], for overviews of association models). 

The GEE method is a quasi-likelihood method. Another popular quasi-likelihood 
method is composite likelihood, which is based on a quasi-likelihood defined by 
multiplying certain marginal likelihoods; see, e.g., Molenberghs and Verbeke [60, 
Chapter 9] for an overview. Composite likelihood has the advantage that it can be 
used both for marginal and conditional models. On the other hand, the GEE method 
has the advantage that, by improving the specification of the working covariance 
matrix, its asymptotic efficiency can be arbitrarily close to that of the ML method. 

Model comparison using GEE estimation is more difficult than using ML esti-
mation. Model comparison and goodness-of-fit tools were developed by Rotnitzky 
and Jewell [69], and the quasi-likelihood information criterion (QIC) developed by 
Pan [66] is particularly popular. 
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3.9 Areas of Application 

3.9.1 Directed Graphical Models 

Graphical models for categorical data associated with DAGs, or the more general 
chain graphs described by Lauritzen [50], are marginal log-linear models in the 
sense of Bergsma and Rudas [9, 10]. Parameterizations of these models have 
received considerable attention recently, see Evans and Forcina [61], Marchetti and 
Lupparelli [58], Németh and Rudas [30], Rudas [73], and Nicolussi and Colombi 
[64]. For DAGs, the Markov property is 

.Vi ⊥⊥ nd(Vi) | pa(Vi). (3.31) 

Here, for every variable . Vi , .nd(Vi) denotes the non-descendants and .pa(Vi) denotes 
the parents of . Vi . The marginal log-linear parameterization of such models given 
in Rudas et al. [73] is based on a well-numbering of the variables described by 
Lauritzen et al. [51], such that (3.31) is equivalent to 

.Vi ⊥⊥ pre(Vi) \ pa(Vi) | pa(Vi), (3.32) 

where .pre(Vi) is the set of variables preceding . Vi in the well-numbering. The 
parameterization proposed by Rudas et al. [73] is based on the marginals . {Vi} ∪  
pre(Vi) which allows a parameterization as in Theorem 3.1. 

Earlier work on statistical models associated with chain graphs includes Lau-
ritzen and Wermuth [52], Frydenberg [37], Cox and Wermuth [24], Andersson et 
al. [2], Richardson [31], Wermuth and Cox [24], and Drton [27]. For a component 
.K ⊆ V of a chain graph, .ND(K) is the set of nondescendants of . K, i.e., the union of 
those components, except . K, for which no semi-directed path leads from any node 
in . K to any node in these components. .PA(K) is the set of parents of . K, i.e., the 
union of those components from which an arrow points to a node in . K. The  set of  
neighbours of .X ⊆ K, .nb(X ), is the set of nodes in . K that are connected to a node 
in . X and .pa(X ) is the set of nodes in . K from which an arrow points to any node in 
. X . 

Chain graph models are defined by combinations of some of the following 
properties. 

P1 For all components . K, . K ⊥⊥ {ND(K) \ PA(K)} | PA(K), 
P2a For all . K and .X ⊆ K, . X ⊥⊥ {K \ X \ nb(X )} | {PA(K) ∪ nb(X )} , 
P2b For all . K and .X ⊆ K, . X ⊥⊥ {K \ X \ nb(X )} | PA(K), 
P3a For all . K and .X ⊆ K, . X ⊥⊥ {PA(K) \ pa(X )} | {pa(X ) ∪ nb(X )} , 
P3b For all . K and .X ⊆ K, . X ⊥⊥ {PA(K) \ pa(X )} | pa(X ). 

The Type I Markov property (P1, P2a, P3a) is also called the Lauritzen– 
Wermuth–Frydenberg block-recursive Markov property, see Lauritzen andWermuth 
[52] and Frydenberg [37], and the Type II Markov property (P1, P2a, P3b) is 
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Fig. 3.2 Chain graph whose Andersson–Madigan–Perlman interpretation is a smooth model 

also called the Andersson–Madigan–Perlman block-recursive Markov property, see 
Andersson et al. [2]. 

Smoothness of Type I models is implied by the results of Frydenberg [37] and is 
also easily obtained applying Theorem 3.4. 

The following example illustrates that marginal log-linear parameterizations 
may be used to establish smoothness of chain graph models belonging to model 
classes which also contain nonsmooth models. The graph in Fig. 3.2 with Type II 
interpretation is a smooth model and may be parameterized using the marginals 
AB, ABC, ABD, CDE, CDF , CDG, CDEG, CDFG, CDEFG, .ABCDEFG. 
Type II models are not smooth in general, see Drton [27], but in this case 
Theorem 3.4 implies smoothness immediately. 

Drton [27] showed that Type IV models (P1, P2b, P3b) are smooth and gave 
a parameterization. Lupparelli et al. [56] illustrated through examples that these 
models are marginal log-linear. We now apply the general method in Theorem 3.4 
to obtain smoothness based on an interpretable parameterization, also implying the 
number of degrees of freedom associated with a Type IV model. 

Theorem 3.10 Assuming strictly positive discrete distributions, a Type IV model 
for a chain graph is a hierarchical marginal log-linear model, and is, therefore, 
smooth. If the chain graph has components .K1, . . . ,KT , that are well-numbered, 
the parameterization is based on the marginals 

.{PA(Kt ) ∪ X : X ⊆ Kt }∗, K1 ∪ . . .  ∪ Kt , t  = 1, . . . , T , (3.33) 

where .{ }∗ denotes a non-decreasing ordering of the elements of the set. The 
parameters set to zero to define the model are those associated with the effects in 

. {ID(X ,Kt \ X \ nb(X ), PA(Kt )) : X ⊆ Kt } ∪ (3.34) 

. {ID(X ,PA(Kt ) \ pa(X ), pa(X )) : X ⊆ Kt } ∪ ID(Kt ,PRE(Kt ) \ PA(Kt ),PA(Kt )), 

for all components . Kt , where .PRE(Kt ) is the set of components that precede . Kt . 
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Fig. 3.3 The graph of a path 
model 
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The proof is given in Rudas et al. [73]. The parameters not set to zero, i.e., the 
ones not corresponding to (3.34), parameterize the model. These parameters are 
associated with the same effects as those found by Marchetti and Lupparelli [58] to  
have non-zero values in the examples they investigated, although the marginals used 
for the parameterization are different. 

Further relevant work includes Marchetti and Lupparelli [58], who described 
marginal log-linear parameterizations of chain graph models of the multivariate 
regression type. Evans and Richardson [30] introduced a class of marginal models 
corresponding to Acyclic Directed Mixed Graphs (ADMGs), which contain both 
directed and bidirected edges. These models were shown to possess a smooth 
parameterization, and conditions were given for the parameterization to have a 
variation independence property. Nicolussi and Colombi [64] considered Type II 
chain graph models. This class of models, as mentioned above, is known to be not 
smooth, in general, but, by using a marginal log-linear parameterization, a smooth 
subclass could be identified. 

3.9.2 Path Models 

Path models have a long history in statistics and the basic idea is illustrated using 
Fig. 3.3. Intuitively, one may wish to use path models to describe a situation when 
variable F influences E and G, G influences E and O, E influences O and I , and 
O influences I .7 In this case, however, one may say that in addition to the direct 
influence of F on E, F also has an indirect influence on E through G. Similarly, 
E influences I directly and indirectly. Also, one may wish to assume that only 
the influences depicted in the graph exist among the variables. There is a further 
assumption, which is often made but usually remains implicit, namely that variables 
not taken into account only have negligible influences on those analysed. Path 
analysis aims at formulating these assumptions precisely and also at quantifying 
the magnitudes of the influences. 

To achieve these goals, motivated by Goodman [41], Rudas et al. [77] proposed 
the following 2-step approach. 

First, interpret the graph in Fig. 3.3 as a graphical Markov model and parameter-
ize the distributions in this model as a marginal log-linear model. 

7 The notations for the variables are going to be clarified later. 
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The conditional independences associated with the graph are 

. O ⊥⊥ F |GE 

and 

. I ⊥⊥ FG|EO. 

These conditional independences may be conveniently imposed in a marginal 
log-linear model based on the marginals 

. FGEO  and FGEOI,  

and are obtained, as implied by Theorem 3.9, by setting to zero the following 
marginal log-linear parameters8 

. λFGEO  
FO  , λFGEO  

FEO  , λFGEO  
FGO  , λFGEO  

FGEO, 

in the FGEO  marginal, and also 

. λFGEOI  
FI , λFGEOI  

GI , λFGEOI  
FGI , λFGEOI  

FEI , λFGEOI  
FOI , λFGEOI  

GEI , 

. λFGEOI  
GOI , λFGEOI  

FGEI  , λFGEOI  
FGOI  , λFGEOI  

FEOI  , λFGEOI  
GEOI , λFGEOI  

FGEOI  

in the FGEOI  marginal, that is, in the whole table. 
There is a total of .25 = 32 parameters, and 16 out of them are set to zero to 

imply the conditional independences. The remaining parameters parameterize the 
distributions in theMarkov model. The parameters in the present case are interpreted 
as measuring the strength of influence instead of association because of the inherent 
assumption behind using a directed graph to formulate the research hypothesis. 

The remaining parameters belong to four disjoint groups, depending on the 
number of variables included in their effects: the marginal log-linear parameter of 
the empty effect; the marginal log-linear parameters with a single variable in their 
effects; the marginal log-linear parameters with two variables in their effects; and 
the marginal log-linear parameters with more than two variables in their effects. 

The parameters with more than 2 variables in their effects quantify the joint 
influence of several variables on one variable, as these parameters are log-linear 
parameters (determined in a particular marginal) and possess the standard properties 
of log-linear parameters. For example, .λFGEO  

FGE  , which is not set to zero, is a measure 
of the joint influence of F and G on E, in addition to their individual influences. 

8 Setting a parameter to zero means setting it zero for all category combinations of the variables in 
the effect. 
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Although the intention of the path model was to assume that such higher-order 
influences do not exist, their existence is not yet excluded. Indeed, it is very easy to 
find distributions for, say, three categorical variables, where there are no individual 
influences (all 2-way marginal distributions are uniform), but two variables together 
completely determine the third one, illustrating that joint influences on top of the 
individual influences do exist [see, e.g., Rudas 75]. 

Therefore, in the next step of the path model definition, such higher-order 
interactions are excluded. 

Second, assume that among the marginal log-linear parameters not set to zero in 
the first step, all those with more than two variables in their effect are equal to zero. 

In the example, this implies setting to zero the following marginal log-linear 
parameters 

. λFGEO  
FGE  , λFGEO  

GEO , 

and 

. λFGEOI  
EOI . 

To define a path model from the graphical model, a further three parameters are 
set to zero. This means that the existence of the joint influence of F and G on E 
and the joint influence of G and E on O in the FGEO  marginal, and of the joint 
influence of E and O on I in the FGEOI  marginal, are excluded. 

The remaining .32 − (16 + 3) = 13 marginal log-linear parameters parameterize 
all the distributions in the path model associated with the graph in Fig. 3.3. These 
parameters are the univariate distributions of the variables and the strengths of the 
influences associated with the arrows in Fig. 3.3. 

The steps of the definition and parameterization of the model are summarized in 
Table 3.5. 

Table 3.5 The definition and parameterization of the path model associated with Fig. 3.3 

Marginals FGEO FGEOI 

Effects . ∅, F, G, E, O, FG, FE, FO, 
GE, GO, EO, FGO, FGE, 
FEO, GEO, FGEO 

I, FI, GI, EI, OI, FGI, FEI, 
FOI, 
GEI, GOI, EOI, FGEI, 
FGOI, 
FEOI, GEOI, FGEOI 

Effects set to zero to 
define the graphical model 

FO, FEO, FGO, FGEO FI, GI, FGI, FEI, FOI, 
GEI, GOI, FGEI, FGOI, 
FEOI, GEOI, FGEOI 

Effects set to zero to 
define the path model 

FGE, GEO EOI 

Remaining effects which 
parameterize the path model 

. ∅, F, G, E, O, FG, 
FE, GE, GO, EO 

I, EI, OI 
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It has to be pointed out that these parameters provide a parameterization of all 
distributions in the path model. In a practical data analytic situation, this means that 
if a particular path model is used, then all relevant information from the data is 
summarized by the estimates of these parameters obtained from the data. Németh 
and Rudas [61] provide such an example in the context of social status attainment 
with variables F–father’s education, G—father’s occupation, E—son’s education, 
O—son’s occupation, and I—son’s income. They found the path model associated 
with the graph in Fig. 3.3 well fitting to data for several countries, and gave estimates 
and interpretations of the parameters of the model. For further details of applications 
of marginal models to social mobility research, see Németh and Rudas [62]. 

3.9.3 Latent Variable Models 

When some relevant variables in an analysis cannot be observed, i.e., are latent, 
then the analysis of the observed variables applies to a marginal of the entire table. 
Therefore, latent variable models and marginal models are closely related. Under 
certain modelling assumptions, the joint distribution of the latent and observed 
variables may be estimated, but even in this case, testing of the model has to be 
restricted to a comparison of the estimated and observed marginal distributions. 

For example, if the true position of someone on a left-right political scale, say X, 
is difficult to observe, then one may ask two related questions, say A and B, which 
are indicators of X, but may not measure it precisely, rather with some measurement 
error. Thus, if A and B are equal to X perturbed by measurement errors independent 
of X and of each other, then one has 

.A ⊥⊥ B|X. (3.35) 

Measurement errors are usually assumed to be additive when the observations are 
numerical. For categorical data, measurement errors may also take different forms. 
For example, in the case of a binary variable the measurement error may change 
the category with a given probability. Then, the error is independent of the true 
category, if the probability of change does not depend on it. Or, for variables with 
multiple categories, the independent error may alter the category, so that reporting 
any category other than the true one has the same probability, which does not depend 
on the true category. 

As X is latent, and A and B are observed, (3.35) is a simple latent variable model. 
As seen above, it has many straightforward marginal log-linear model definitions. 
One can use the X and XAB marginals, or the X, A, B, XAB marginals, but the 
definition may also be based on the XAB whole table. In either case, the model is 
defined as 

.λXAB 
AB = λXAB 

XAB = 0. 
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To test the latent variable model (3.35), one has to rely on the observed data for 
the AB marginal. The usual procedure is to specify the number of categories of the 
latent variable X and to obtain estimates for the distribution AB, subject to (3.35) so  
that the likelihood of the observed data is maximized. To determine such estimates, 
usually the EM algorithm is applied, see, e.g., Rudas [75]. Then, the estimates and 
the actual observations are compared using some statistical test. 

Several more involved applications of the marginal modelling approach to latent 
variable models are described by Bergsma et al. [12], Bergsma et al. [13], and 
Hagenaars et al. [42]. In one problem, there are two latent variables, Y and Z, which 
are related. Their example refers to election forecasting and Y is political party 
preference out of three parties and Z is candidate preference, out of their respective 
candidates. These are seen as latent variables, which may only be observed in an 
imprecise way. The observed variables are the responses in two waves of a panel 
study to the party preference (A and B) and to the candidate preference (C and 
D) questions. This setup may be seen as an instance of the repeated measurement 
designs considered in Sect. 3.2.1. The model they fit is a graphical model of the 
path analysis type in the sense that the highest order interactions allowed are 
.YZ,  YA,  YB,  ZC,  ZD. 

To provide a marginal log-linear definition of this model, one may use the 
marginals .YZ,XA,  XB,ZC,  ZD, YZABCD  and set all marginal log-linear 
parameters which are defined in the YZABCD  marginal equal to zero. 

Estimates for the univariate marginal distributions of Y and Z show the relative 
popularities of the parties and of their respective candidates. Bergsma et al. [12] 
investigate further the hypothesis that these marginal distributions are identical, i.e., 
the candidates are just as popular as the parties nominating them. This hypothesis is 
called latent marginal homogeneity. 

To formulate latent marginal homogeneity, it is easiest to use the following 
marginals: .Y,  Z,  YZ, YA,  YB,ZC,  ZD, YZABCD. Here also, the path model is 
imposed by setting to zero all parameters which are calculated in the YZABCD  
marginal, and latent marginal homogeneity is imposed by requiring that 

. λY 
Y = λZ 

Z, 

which is a marginal log-linear model. 
Manifest variables are often considered indicators of the latent variables. The 

reliability of such an indicator is the extent to which the manifest variable is 
determined by the latent variable. This, of course, may be measured in many ways; 
one of these is based on the conditional distribution of the manifest variable, given 
the latent variable. 

To consider a very simple model, let Y and Z be latent variables with manifest 
indicators A and . C respectively. We are not interested now in how the latent or the 
manifest variables are related, rather only in to what extent Y determines A and to 
what extent Z determines C. By Theorem 3.2, if the  YZ, YA  and ZC marginals 
are used in a marginal log-linear parameterization, then .λYA  

A and .λYA  
YA  determine the 

conditional distribution of A given Y , and .λZC 
C and .λZC 

ZC determine the conditional 
distribution of C given Z. 



3 Marginal Models: An Overview 111 

If, now, all the variables are assumed to have identical categories, like party and 
candidate preference in the example above, then the requirement that 

. λYA  
A = λZC 

C and λYA  
YA  = λZC 

ZC, 

means equal reliabilities of the two manifest variables. 
The strength of this approach to analysing reliability is that it can be combined 

with any other modelling assumption, given that the relevant marginals may be 
written in a non-decreasing order. For details and applications see Bergsma et al. 
[12]. 

Marginal log-linear models with latent variables have also been considered in the 
context of capture-recapture models, see Bartolucci and Forcina [5] and Stanghellini 
and van der Heijden [81]. In this case also, observed variables are not necessarily 
independent conditionally on the latent variables. 

3.9.4 Further Applications and Extensions 

This section gives brief summaries of some further theoretical developments and 
interesting applications published in the literature. 

Qaqish and Ivanova [67] consider multivariate logistic parameterizations, which 
are generalized by the marginal log-linear parameterizations defined above, and 
provide results for the strong compatibility of such parameters. 

Bartoluci and Forcina [5] apply marginal log-linear parameterizations to develop 
models for the capture-recapture problem. For related work see also Turner [83]. 

Forcina [32] develops a marginal log-linear parameterization of latent class 
models with covariates and obtains identifiability results. 

Bartolucci et al. [7] develop a Bayesian approach to selecting the model best 
supported by the data from among a wide class of marginal models defined by 
equality or inequality constraints on generalized logits or generalized odds ratios. 
They use the Bayes factor to govern model selection. 

Dardanoni et al. [25] analyse intergenerational socioeconomic mobility tables 
for many countries, to test the monotonicity hypothesis stating that a higher 
socioeconomic class is never less advantageous than a lower one. They formulate 
this monotonicity as a marginal model, using the parameterization proposed by 
Bartolucci et al. [6]. 

Shpitser et al. [80] develop marginal log-linear parameterizations for nested 
Markov models and impose sparsity similar to the idea described in Sect. 3.9.2. 

Kuijpers et al. [44] propose methods to formulate and test hypotheses for the 
widely used measure of test score reliability, Cronbach’s alpha, as marginal log-
linear models. Kuijpers et al. [45] provide standard errors of scalability coefficients 
in the case when the items are not binary, and also for large numbers of items, using 
a marginal modelling approach. 

Roverato et al. [70] and Lupparelli and Roverato [57] consider log-mean linear 
parameterizations of marginal models for binary data. These are alternative marginal 
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log-linear parameterizations to the ones considered in the present chapter. Log-mean 
linear parameterizations have the interesting advantage of a closed-form likelihood. 

Bergsma et al. [13] showed how marginal modelling methods can be extended 
to deal with complex sampling designs; in particular, they analysed a data set 
collected via a rotating panel design. The analysis there is carried out on data that 
are partially dependent. Furthermore, they showed how marginal modelling can be 
used for complex statistical models, giving an example of a data analysis using latent 
variables and both log-linear and non-log-linear constraints on the cell probabilities. 

Colombi and Giordano [20] parameterize the two components of a latent Markov 
model (the observed time series and the unobserved Markov chain) with marginal 
log-linear parameters and show that relevant hypotheses may be formulated by 
setting some to zero. 

Colombi and Forcina [21] test inequality hypotheses for marginal log-linear 
parameters. They propose a likelihood-based procedure to test a set of equality 
constraints against positive departures from equality (the inequality constraints) and 
then the latter against the saturated model. 

Ntzoufras et al. [65] discuss aspects of Bayesian inference for graphical marginal 
log-linear models. They provide a strategy to perform Markov chain Monte Carlo 
to obtain posterior densities. Their method also takes into account the requirement 
that the parameter values should be selected in a way which provides compatible 
marginal distributions. 

Colombi et al.  [23] model the latent behaviour of raters with a binary variable 
indicating either one of two possible strategies. A marginal parameterization is used 
to link responses to underlying explanatory factors. 

Bon et al. [16] deal with disclosure limitation of sensitive or confidential 
data. They model the partial information provided by the data custodians as log-
linear models on possibly overlapping marginals of a super-table and investigate 
methods of combining the available information. They also provide an application 
to Australian housing tenure transition data. 

Nicolussi and Cazzaro [63] analyse context specific independences, that is, 
independences which only hold in certain but not all category combinations of the 
variables involved, and show that hierarchical multinomial marginal models may 
be used to model such relationships. For the relationship between context specific 
independence and marginal modeling also see Colombi and Forcina [19]. 
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Chapter 4 
Bayesian Inference for Multivariate 
Categorical Data 

Jonathan J. Forster and Mark E. Grigsby 

4.1 Introduction 

4.1.1 Contingency Tables 

Suppose we have a set of multivariate categorical data, where n units have been 
cross-classified by a number of categorical variables and the counts of the resulting 
cross-classification presented in a contingency table. Let the set of categorical 
variables or factors be . Γ, resulting in a .|Γ |-way contingency table. 

Following the notation introduced by Darroch et al. [5], the set of cells in the 
table is the set .I = ∏

γ∈Γ Iγ , where . Iγ is the set of levels of factor . γ. A particular 
cell will be denoted by .i = (

iγ : γ ∈ Γ
)
, the corresponding cell count by .n(i), and 

the cell probability by .p(i), where this represents the probability that a particular 
unit lies in cell . i. The vector of all the cell probabilities will be written . p, and the 
cell counts . n. The total cell count will be denoted . n, where .n = ∑

i n(i). The 
number of cells in the table is .|I | = ∏

γ

∣
∣Iγ

∣
∣ . This notation is best illustrated by an 

example: 
Suppose we have three variables .A, B, and . C, where A is binary and B and C 

have 3 levels, and that these variables cross-classify some data in a 3-way table. In 
this case, .Γ = {A,B,C} , and a cell in the table is therefore .i = (iA, iB, iC) where 
. iA can take values 1 and . 2, and . iB and . iC take values . 1, 2, or . 3. Hence the cell 
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which contains the data for variables A and B at level 1 and variable C at level 3 is 
.i = (1, 1, 3), and the cell probability is . p(i).

The typical model for data in a contingency table assumes that a known number 
of individual units n are assigned at random to a particular cell . i with probability 
.p(i). Therefore the vector of cell counts . n has a multinomial distribution, which has 
probability function 

.f (n|p) = n!
∏

i

p(i)n(i)

n(i)! . (4.1) 

4.1.2 Log-Linear Models 

One motivation for analysing contingency table data is modelling the associations 
between classifying variables. Such considerations typically include how variables 
are conditionally independent or independent of one another. The standard way 
of doing this is by representing the underlying statistical model as a log-linear 
interaction model. Different association structures, including independence and 
conditional independence, result from models with different forms, and from 
varying parameter values within a particular model. 

We assume that .n(i) is an observation of a multinomial random variable with 
corresponding vector of cell probabilities .p(i). Then, again following [5], we denote 
the log-linear interaction model 

. logp(i) =
∑

a⊆Γ

ξa(ia) i ∈ I (4.2) 

where . ia is the marginal cell .ia = (
iγ , γ ∈ a

)
. As .p(i) is a vector of cell 

probabilities which sum to . 1, a normalising constant . ξ∅ is necessary in (4.2). 
A saturated model is parameterised by a full set of interaction terms, whereas 

setting certain . ξa terms to zero defines a particular non-saturated log-linear model. 
Hence the non-zero terms define the model, and may take arbitrary values. It is 
straightforward to write down the number of possible distinct log-linear models for 
a set of factors . Γ ; there are .2|Γ | possible .a ⊆ Γ, giving rise to .22

|Γ |
different log-

linear models. We use m to denote a model corresponding to a set of interaction 
terms, so each m is a subset of .P(Γ ), the power set of . Γ . 

In order to admit more straightforward analyses and calculations involving the 
log-linear models described above, it is usual to consider a parameterisation of (4.2) 
where the parameters are identifiable and linearly independent by restricting each 
.ξa = {ξa(ia)} to a .da-dimensional subspace where 

.da =
∏

γ∈a

(∣
∣Iγ

∣
∣− 1

)
.
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Then the model is parameterised using a selection of . da components of each . ξa , 
typically 

.βa = {
ξa(ia), iγ > 1 for all γ ∈ a

}
(4.3) 

and, in a slight abuse of notation, we let .βm = {βa, a ∈ m}, with dimensionality 
.dm = ∑

a∈m da represent the parameter vector for model m. For ease of notation, 
we drop the subscript m on . βm and . dm while we consider analysis under a single 
model. 

The log-linear model is expressed in terms of .logp, but since these cell 
probabilities lie in a simplex space, where each .p(i) satisfies .0 < p(i) < 1 and 
.
∑

p(i) = 1, it is useful to consider a multivariate logit transformation 

.θ(i) = logp(i) −
r∑

�=1

a(�) logp(�) (4.4) 

where .
∑

a(�) = 1, .a� ≥ 0. Typically .a� = I [� = i0] for some reference cell 
. i0 (usually a ‘corner-point’ of the contingency table) though .a� = 1/|I | (centred 
logit) can sometimes be more useful. The multivariate logit defined by . a leads to 
the simple linear constraint .

∑
i a(i)θ(i) = 0 and the same inversion to obtain the 

cell probabilities in terms as a function of the logits, 

.p(i) = exp θ(i)
∑

exp θ(i)
. (4.5) 

For model m, the model matrix . X of a non-saturated log-linear model relates the 
vector of multivariate logits . θ to the . dm log-linear model parameters . β. In standard 
matrix notation, the log-linear model may be expressed as 

. θ = Xβ. (4.6) 

The form of this matrix depends on the logit chosen, and must satisfy .aT X = 0. 
Log-linear interaction models described by (4.2) with (4.3) imply model matrices 
with a particular structure. 

4.1.3 Hierarchical, Graphical, and Decomposable Log-Linear 
Models 

Commonly, we do not consider the full set of log-linear interaction models, and 
instead restrict attention to a smaller subset of these called the hierarchical log-
linear models. To obtain these, we impose restrictions on the .ξa(ia), namely that 
setting . ξa equal to zero means we must also set . ξb to be zero for all .b ⊇ a.
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For example, suppose that .Γ = {A,B,C} , and that .ξAB = 0. In this case, we 
require .ξABC = 0 in a hierarchical model. It is not possible to write an explicit 
expression for the number of such models, but this number is much smaller than 
the total number of log-linear models. The generators of a hierarchical log-linear 
interaction model are the maximal sets a such that . ξa is non-zero; a hierarchical 
model is determined uniquely by its generators. 

The set of graphical models form a highly attractive subset of the hierarchical 
models, both for ease of analysis and their obvious interpretation in terms of 
conditional independence (an interpretation which is immediately obvious from the 
graph). Graphical models may be either directed or undirected. A graphical log-
linear model may be represented by a graph, with a set of vertices . V corresponding 
to the variables, and a set . E of edges representing the independence structure. The 
notation .(A,B) is used to represent the edge between variables A and . B. The 
absence of an edge between two vertices A and B means that A is conditionally 
independent of B given all other variables. This is equivalently written as: if 
.(A,B) /∈ E, then .A ⊥⊥ B . | .V \ {A,B} . Variables A and B are (marginally) 
independent if no path of edges exists between vertices A and B, in which case 
.A ⊥⊥ B. 

A subset C of . Γ is called a clique if the subgraph containing only elements of C 
has an edge connecting each element (i.e. is complete), and the inclusion of another 
vertex from . V in C would result in at least one pair of unconnected vertices. A 
graph is triangulated if it contains no chordless cycles of length greater than three, 
and the subset D is said to separate subsets A and B if every path from any vertex 
in A to one in B must pass through a vertex in . D. In such a case, variables in A are 
conditionally independent from those in B, given . D.

A hierarchical model is graphical if its generators correspond to the cliques of 
its (undirected) conditional independence graph. These models form a subset of the 
log-linear models. We will assume throughout that all models include the intercept 
term . ξ∅ and all main effect terms (. ξa where .|a| = 1), since those without are of 
little interest. Then the .

(|Γ |
2

)
possible edges in each graph gives the total number of 

possible graphical models as . 2(
|Γ |
2 ).

Note that any hierarchical model can be represented by an (undirected) condi-
tional independence graph, although such a graph does not necessarily represent a 
single hierarchical model. However, these models will not be excluded from our 
analyses, as they form a rich collection of models with many applications. An 
example of such a model is the model containing the three variables .A, B, and C 
with interaction terms .AB, AC, and BC though no 3-way interaction term .ABC. In 
this case, the 2-way interactions are homogeneous with respect to the third variable; 
for example, the interaction between A and B does not depend on the value of . C.

Although this model is clearly not graphical, real data may be found to follow this 
pattern of association, so this model should not be excluded from our analyses. 

An important subset of graphical models are decomposable models. These are 
defined as models whose joint cell probabilities may be directly expressed as a
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Fig. 4.1 Independence graph 
for the graphical 
(hierarchical) model 
. {(A,B), (B,C)}

function of the marginal probabilities of the cliques of the model. A model is 
decomposable if its graph is triangulated. 

For example, consider the model represented in Fig. 4.1. This graph is clearly 
triangulated (with cliques .{A,B} and .{B,C}), so the model is decomposable and the 
joint cell probabilities . p may be written as a product of the marginal and conditional 
probabilities .pA, .pB|A, .pC|B. Equivalently, the cell probabilities may be directly 
expressed in terms of marginal probabilities of cliques and separators as . p(i) =
p(iAB)p(iBC)/p(iB). 

Decomposable models admit the most straightforward analyses, but clearly 
exclude many potential (and useful) models, and there is often little justification to 
restrict attention to these models other than computational considerations. One key 
reason that decomposable models are analytically more straightforward is that, if the 
model is decomposable, then it can be represented as a Directed Acyclic Graphical 
(DAG) model. 

A directed graph contains edges from one vertex to another, for example . A → B

denotes the presence on an edge from . A to . B, and we call A a parent of B and B 
a child of . A. The edge from A to B will be written .〈A,B〉 . The set of parents of 
B is denoted by .pa(B). A path of length .n ≥ 0 from A to B is a sequence . A =
X0, . . . , Xn = B of distinct vertices such that .〈Xi−1, Xi〉 ∈ E for all . i = 1, . . . , n.

If there is a path from A to B we write .A � B. The set of vertices A such that . A �
B are the ancestors .an(B) of B and the descendants .de(A) of A are the vertices 
B such that .A � B. The nondescendants of A are .nd(A) = V . \ (de(A) ∪ {A}).
A path which starts and ends at the same point is known as a cycle, and a directed 
graph is acyclic if it contains no cycles. A Directed Acyclic Graphical (DAG) model 
implies the conditional independences .A ⊥⊥ nd(A)|pa(A). A DAG admits a perfect 
numbering of the variables in the graph, by numbering the vertices (variables) such 
that edges are necessarily directed from vertices with lower numbers to those with 
higher numbers. For DAG models, the joint probability may be expressed as 

.p(i) =
|Γ |∏

γ=1

P(γ = iγ |pa(γ ) = ipa(γ )) (4.7) 

where the probabilities are unconstrained (except for the requirement for probabili-
ties to be non-negative and sum to one) and hence form a convenient parameterisa-
tion of the model.
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Fig. 4.2 Equivalent DAGs for the undirected graphical model in Fig. 4.1 

As an example of directed graphical representations, consider the model repre-
sented by the undirected graph in Fig. 4.1. Several possible directed versions of this 
graph are possible and displayed in Fig. 4.2. Each of these graphs admit different 
perfect orderings of variables, and one admits two orderings. Working from left to 
right, the first admits orderings BCA and BAC, and the second and third admit 
orderings CBA and ABC respectively. 

The use of graphs to represent the pattern of associations in statistical models 
dates back to Wright [40], but it was [5] who used graphs in contingency 
table analysis, defining the subset of the hierarchical log-linear models known as 
graphical models. 

Early adopters of methods within a Bayesian framework were [36] and [6]. Madi-
gan and York [29] presented a comprehensive discussion on Bayesian graphical 
models for a variety of discrete data problems. Graphical modelling was shown to 
allow prior information to be effectively incorporated into the analysis, and model 
uncertainty properly accounted for. 

4.2 Bayesian Inference for Contingency Tables 

Bayesian inference for Contingency Tables under the multinomial model (4.1) is  
obtained via the posterior distribution for . p given . n

.f (p|n) = f (n|p)f (p)
∫

f (n|p)f (p)dp
(4.8) 

where the prior distribution for .p, .f (p), represents the uncertainty about . p prior 
to observing the cell counts . n.

An important choice in the analysis of log-linear models is that of the prior dis-
tribution .f (p). For the saturated (unconstrained) multinomial model the Dirichlet
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distribution is a natural choice of prior distribution for cell probabilities . p (which 
are positive and sum to one). Its density has the form 

.f (p) = Γ (α)
∏

i Γ (α(i))

∏

i∈I

p(i)α(i)−1 (4.9) 

where . α are parameters which control the location and dispersion of the distribution, 
and . α = ∑

i α(i).

Under multinomial sampling, the likelihood function for a saturated log-linear 
model is given by (4.1) and hence the Dirichlet distribution is a conjugate prior 
distribution for a saturated log-linear model, as it leads to a Dirichlet posterior 
distribution with density of the form 

.f (p|n) ∝
∏

i∈I

p(i)n(i)+α(i)−1. (4.10) 

Conjugacy is convenient in Bayesian statistical analysis as it may (as in this case) 
result in tractable computation. Furthermore, prior specification may be facilitated 
if conjugacy is a result of prior and likelihood having a similar form. In such cases 
the ‘information content’ of the prior may be straightforward to specify. As may 
be seen from expression (4.10), the parameters . α may be considered as a ‘prior 
cell count’. Hence, for reference analyses, where the prior is intended to be only 
weakly informative, small common values of .α(i) are appropriate. In one of the first 
Bayesian approaches to contingency table modelling, [27] considered the limiting 
case where .α(i) = 0, producing an improper prior density (which does not integrate 
to . 1). The problem with this approach is that it will lead to an improper posterior 
density if any cell counts .n(i) are zero. 

Setting .α(i) = 1 results in a uniform prior [26], a conventional choice for a 
weakly informative prior density. Two other common choices for .α(i) are common: 
.α(i) = 1

2 [21], which is Jeffreys’ prior for a multinomial . p; and . α(i) = 1/|I |
[33], which has the appealing interpretation of a single prior observation distributed 
throughout the table. 

For nonsaturated log-linear models, such as hierarchical, graphical, and decom-
posable log-linear models, . p is constrained by the form of the model and it is more 
convenient to work with an unconstrained parameterisation. Typically, these are 
the log-linear parameters . β as in (4.6), or possibly, for a decomposable model, the 
conditional probabilities in the decomposition (4.7). For the former (and dropping 
the model subscript m for the present, for ease of exposition) Bayes theorem in (4.8) 
becomes 

.f (β|n) = f (n|β)f (β)
∫

f (n|β)f (p)dβ
(4.11)



124 J. J. Forster and M. E. Grigsby

where .f (β) is the prior distribution for the unconstrained log-linear model param-
eters . β and .f (n|β) is the multinomial likelihood obtained through (4.1), (4.5), and 
(4.6) 

. f (n|β) = n!
∏

i∈I n(i)! exp
⎡

⎣
∑

j∈M

(
∑

i∈I

n(i)x(i, j)

)

βj

−n log

⎛

⎝
∑

i∈I

exp

⎛

⎝
∑

j∈M

x(i, j)βj

⎞

⎠

⎞

⎠

⎤

⎦

= exp

⎡

⎣
∑

j∈M

tjβj − n log

⎛

⎝
∑

i∈I

exp

⎛

⎝
∑

j∈M

x(i, j)βj

⎞

⎠

⎞

⎠

⎤

⎦ (4.12) 

where .tj = ∑
i∈I α(i)x(i, j)), j = 1, . . . dm and .x(i, j) are the elements of the 

model matrix . X in (4.6). 

4.2.1 Distributions Based on the Normal Distribution 

As defined in Sect. 4.1.2, the log-linear model parameters are unconstrained and 
allowed to take any real value, so that .β ∈ Rd . A natural prior distribution 
for these parameters may therefore be multivariate normal, i.e. . β ∼ N(μ,Σ),

for suitable mean . μ and variance . Σ. The use of such a distribution was first 
investigated by Good [16], motivated by the desire to obtain smoothed estimates 
for cell probabilities with small observed frequencies, an idea further developed by 
Leonard [25] and Laird [24]. The purpose of [23] was to use a Normal distribution 
to effectively encapsulate prior information into the analysis of contingency tables. 
Their approach used a multivariate Normal prior for all parameters together, and as 
such allowed separate specification of prior information for each log-linear model 
main effect or interaction term. However, they found the use of such a prior resulted 
in a generally intractable posterior distribution, and so developed a measure of 
posterior dispersion based on the curvature of the log of the posterior density at 
its mode. 

The prior on . β induces a prior distribution on .logp. Forster [13] showed that 
a multivariate normal prior for .logμ, the log-cell-means in a Poisson log-linear 
model must have a certain form in order for it to be invariant to permutations of 
the set of levels . Iγ of each factor (a reasonable requirement for a reference prior). 
He also derived conditions on the prior to make Poisson and multinomial analysis 
equivalent using such a prior. The distribution takes the form 

. logμ ∼ N(δ1,
∑

a⊆Γ

α2
aT a)
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where the . T a are projection matrices given by 

.T a =
⊗

γ∈Γ

{

1(γ ∈ a)

(

I |Iγ | − 1
∣
∣Iγ

∣
∣
J |Iγ |

)

+ 1(γ /∈ a)
1
∣
∣Iγ

∣
∣
J |Iγ |

}

(4.13) 

and . I d is a .d ×d identity matrix and . J d a .d ×d matrix of 1s. The prior distributions 
for the model parameters .βa, with the exception of . β∅ (corresponding to the 
intercept term), are then given by 

. βa

ind∼ N(0, α2
aΣa) a ⊆ Γ

where 

. Σa = 1

|I |
∏

γ∈a

∣
∣Iγ

∣
∣
⊗

γ∈a

(

I (|Iγ |−1) − 1
∣
∣Iγ

∣
∣
J (|Iγ |−1)

)

a ⊆ Γ.

The prior for . β∅ is 

. β∅ ∼ N(τ, α2
∅)

for a specified value of . τ. It is necessary to assume independence of the model 
parameters, though this is not restrictive as it seems sensible to do so if we are to 
perform a reference analysis. 

Posterior inference using Normal priors, based on Markov chain Monte Carlo 
sampling, is possible following results by Dellaportas and Smith [9]. They present 
a method for sampling from a wide range of generalised linear models using Gibbs 
sampling. Their Gibbs sampler is based on the adaptive rejection sampling method 
proposed by Gilks and Wild [15], which is a technique for sampling from any log-
concave univariate probability density function. 

4.2.2 Distributions Based on the Dirichlet Distribution 

Although the Normal distribution is a natural choice for the log-linear model 
parameters . β it lacks the ease of interpretability of the conjugate Dirichlet prior 
for the saturated model. Prior distributions based on the Dirichlet and suitable for 
the analysis of log-linear model analysis may instead be considered.
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4.2.2.1 Conditional Dirichlet Distribution 

The Dirichlet prior for the saturated model is given in (4.9) and, by straightforward 
transformation of variables, can be expressed as a density for any multivariate logit 
(4.4). To do this, we note that . θ is overspecified (as is . p) since .aT θ = 0 and so when 
we write . θ we are effectively making a selection, . θ\i0 , of any .|I |−1 components of 
. θ (provided .a(i0) > 0) in which case the Jacobian . |J | for the transformation from 
.p\i0 to .θ\i0 is therefore given by 

. 

∣
∣
∣
∣
∂θ

∂p

∣
∣
∣
∣

−1

= 1

a(i0)

∏

j

p(j).

Then the Dirichlet distribution for . θ is 

. f (θ) = Γ (α)
∏

i α(i)

∏

i∈I

p(θ(i))α(i)−1

[
1

a(i0)

∏

i∈I

p(θ(i))

]

= 1

a(i0)

Γ (α)
∏

i α(i)

∏

i∈I

exp(θ(i)α(i))
(∑

exp θ(i)
)α(i)

= 1

a(i0)

Γ (α)
∏

i α(i)
exp

[
∑

i∈I

θ(i)α(i) − α log

(
∑

i∈I

exp θ(i)

)]

where . α = ∑
i α(i).

The saturated log-linear interaction model sets .θ = Xβ, for a suitable full rank 
model matrix . X and full set of interaction parameters .β = {βa, a ⊆ Γ }. Therefore, 
a Dirichlet distribution for . β in the saturated model is obtained by a simple linear 
transformation as 

. f (β) = C

a(i0)

Γ (α)
∏

i α(i)
exp

⎡

⎣
∑

j

(
∑

i∈I

α(i)x(i, j)

)

βj

−α log

⎛

⎝
∑

i∈I

exp

⎛

⎝
∑

j

x(i, j)βj

⎞

⎠

⎞

⎠

⎤

⎦ (4.14) 

where .x(i, j) are the elements of the saturated model matrix . X and C is a constant 
which will depend on the parametrisation adopted. 

The Conditional Dirichlet distribution for a particular non-saturated log-linear 
interaction model as that distribution obtained from expression (4.14) by condition-
ing on certain . βj terms to be zero. More precisely, we partition . β into those terms 
in the model . βm and those not in the model .βm, and condition on .βm = 0. We also 
partition . X into .Xm containing the columns corresponding to the parameters in .βm,
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and .Xm containing the others. Then the conditional Dirichlet distribution for . β is 
obtained from expression (4.14) by summing over . βj for .j ∈ m only: 

. f (βm) ∝ exp

⎡

⎣
∑

j∈M

(
∑

i∈I

α(i)x(i, j)

)

βj − α log

⎛

⎝
∑

i∈I

exp

⎛

⎝
∑

j∈M

x(i, j)βj

⎞

⎠

⎞

⎠

⎤

⎦

= exp

⎡

⎣
∑

j∈M

sjβj − α log

⎛

⎝
∑

i∈I

exp

⎛

⎝
∑

j∈M

x(i, j)βj

⎞

⎠

⎞

⎠

⎤

⎦ (4.15) 

where .sj = ∑
i∈I α(i)x(i, j)), j = 1, . . . dm. 

Care must be taken with any conditioning such as this, as the prior distribution 
obtained through conditioning on a set of complex constraints is not invariant 
under general reparameterisation of those constraints. This is known as the Borel 
paradox. However, the prior distributions induced under various parameterisations 
may be shown to be related by the Borel-Kolmogorov dependence formula [19]. 
Furthermore, we argue that deriving a prior for a log-linear model by conditioning 
on a scale on which the constraints that determine the model are linear, is natural. 

The correspondence of (4.12) and (4.15) makes this the Diaconis-Ylvisaker 
conjugate prior. Massam et al. [30] investigate this structure in detail for hierarchical 
log-linear models. It is clear that the conditional Dirichlet distribution satisfies the 
conditions stated in [30] for the prior to be proper, with a proper initial full Dirichlet 
prior leading to a proper prior on each submodel; see also [19]. The conditional 
Dirichlet conjugate priors are also compatible (in a conditional sense; see [7]). 

4.2.3 Hyper-Dirichlet Distribution 

A sub-class of models which admit straightforward analyses are decomposable 
log-linear models. In these models, we may parameterise directly in terms of 
the unconstrained conditional probabilities appearing in the decomposition (4.7). 
The hyper-Dirichlet distribution was proposed by Dawid and Lauritzen [6] as a  
conjugate prior distribution for the parameters of a decomposable log-linear model. 
Under a hyper-Dirichlet prior, each clique has a Dirichlet marginal distribution, and 
the realisations on overlapping portions of cliques must be consistent regardless of 
the clique from which they are derived. 

For a DAG representation of a decomposable model, we know that a cell proba-
bility may be expressed using the decomposition (4.7). With this parameterisation, 
a natural (closed under sampling) prior family is 

.P(γ |pa(γ ) = ipa(γ )) ∼ Dirichlet(αγ (ipa(γ ))) (4.16)
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independently, for each variable .γ ∈ Γ and each parent combination .ipa(γ ). This  
is the product Dirichlet described by Cowell et al. [4]. For this distribution to be a 
hyper-Dirichlet distribution the parameters .{αγ (ipa(γ ))} must be chosen so that any 
clique marginal prior is also Dirichlet distributed. A straightforward way of ensuring 
this is by deriving the prior distributions on the conditional probabilities (and hence 
also the cliques) as the marginal distributions from a Dirichlet distribution on the 
full set of probabilities. 

Substituting (4.7) into (4.1) it is immediately obvious that, a posteriori, 

. P(γ |pa(γ ) = ipa(γ )) ∼ Dirichlet(nγ (ipa(γ )) + αγ (ipa(γ )))

independently, where .nγ (ipa(γ )) = {n(iγ , ipa(γ )), iγ ∈ Iγ } so the posterior has the 
same form as the prior (and is hyper-Dirichlet if the prior is). 

Marginal inference from a hyper-Dirichlet distribution is straightforward. Using 
the directed representation, we can write down the hyper-Dirichlet distribution as a 
product of independent Dirichlet distributions. Monte Carlo samples may then be 
obtained from each of these distributions in turn by sampling from independent 
gamma distributions and applying the result that if . zi are independent samples 
from Gamma .(ai, b) distributions, then .z/

∑
zi is a sample from a Dirichlet. (a)

distribution. Further convenient properties for computation are introduced later. 

4.2.4 Relationship Between Conditional Dirichlet and 
Hyper-Dirichlet Distributions 

Given that they are both closed under multinomial sampling and directly derived 
from a full Dirichlet prior for the saturated model, it is perhaps not surprising that the 
conditional Dirichlet distribution, for any log-linear model which is a decomposable 
graphical model, can be shown to be hyper-Dirichlet. This is proved by Massam et 
al. [30]. 

The conditional Dirichlet distribution is an attractive prior distribution as its 
parameters may be interpreted as prior data, and inference using this prior is 
straightforward for decomposable models by considering the equivalent hyper 
Dirichlet distribution, which is tractable. The relationship of the conditional Dirich-
let distribution to the hyper-Dirichlet distribution allows it to be considered as a 
natural extension to non-decomposable models. 

4.3 Posterior Inference 

Except in the case of decomposable models, for which tractable posterior com-
putation was described in Sect. 4.2.3, the conditional Dirichlet distribution is not
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generally tractable. It does, however, have some properties which make it amenable 
to computational methods which allow accurate approximate posterior inference. 

A straightforward Normal approximation can be obtained by computing the 
posterior mode and the curvature (negative second derivative of log-posterior) at 
the mode. Because the conditional Dirichlet density is ‘likelihood-like’ then these 
summaries can be straightforwardly obtained by any statistical software for fitting 
log-linear models (provided that fractional cell counts are not prohibited) simply by 
inputting the data as .n + α rather than . n. This approximation can be reasonably 
accurate, but can be unreliable in examples where there are small cell counts. In 
such examples we typically resort to Markov chain Monte Carlo computation where 
we generate a (dependent) sample from (approximately) the posterior distribution, 
from which it is then straightforward to compute a sample from the marginal 
posterior distribution of any function of interest. Summaries in the form of posterior 
expectations are approximated by sample means. 

The posterior distribution for . β in a conditional Dirichlet distribution is amenable 
to computation by a Gibbs sampler. In particular, its posterior density is (globally) 
log-concave in the case where all of the components of . s are positive. This makes 
sampling from univariate conditional posterior distributions accessible using, for 
example, adaptive rejection sampling [15], which is available in standard Gibbs 
sampling software such as OpenBUGS and JAGS. Log-concavity can be established 
by noting that the Hessian of prior (or similarly posterior) density .f (β) can be 
written as 

. H = −(α + n)XT (diag(p) − ppT )X

where . p is a function of . β through (4.4) and (4.6). This Hessian is clearly negative 
definite as, for any .y �= 0, .(Xy)T (diag.(p)−ppT )(Xy) is the variance of a discrete 
distribution with sample space .{[Xy)]i} and probabilities .{pi} and where the . [Xy)]i
cannot all be equal (other than at zero, which only arises when .y = 0) because then 
.aT X = 0 would imply that .

∑
a(�) = 0 rather than 1. Log-concavity of each 

univariate density is a direct consequence. An alternative Gibbs sampling approach 
for conditional Dirichlet distributions, based on Bayesian iterative proportional 
fitting, is presented by Dobra and Massam [11]. 

4.3.1 Example 1 

Consider a . 23 contingency table and the log-linear interaction model which may be 
represented graphically in Fig. 4.1. This model has cliques .{A,B} and .{B,C} , and
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may be parameterised as .P(B)P (A|B)P (C|B). A model matrix for this model (for 
the centred multivariate logit) is given by 

. X = 1√
8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
−1 1 1 −1 1
1 −1 1 −1 −1

−1 −1 1 1 −1
1 1 −1 1 −1

−1 1 −1 −1 −1
1 −1 −1 −1 1

−1 −1 −1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The prior chosen for this example is the diffuse prior with parameters . α(i) = 1
8

for all . i (Perks’ prior). The hyper-Dirichlet distribution may be constructed from 
the ‘full’ Dirichlet distribution as follows. The distribution for .P(B) is obtained 
first, then the conditional distributions .P(A|B = 1), .P(A|B = 2), . P(C|B =
1), and .P(C|B = 2) are obtained in such a way that they are consistent with the 
distribution for .P(B). In this example, .P(B) is distributed as a .Beta( 12 ,

1
2 ), and all 

the conditional densities follow .Beta( 14 ,
1
4 ) distributions. As is clear from the model 

parameterisation, there are five independent components in this decomposition. 
The Gibbs sampler was used to generate samples from this prior, and Fig. 4.3) 

shows kernel density estimates for the five independent distributions produced by 
the sampler, overlaid with the true Dirichlet density. All densities are on the logistic 
scale. 

As can be seen in Fig. 4.3, there is excellent agreement between the kernel density 
estimates from the Gibbs samples and the true densities. This is to be expected, and 
validates the use of the Gibbs sampler in this example; the computation time for 
such a sample is negligible (a few seconds). Although sampling from the prior is 
not usually a requirement in Bayesian analysis, it will be a requirement of accurate 
posterior computation in Sect. 4.4. 

4.3.2 Example 2 

The Gibbs sampler was used to produce a posterior sample for some data concerning 
incidence of coronary heart disease. The data was presented by Edwards and 
Havranek [12], and analysed further by Madigan and Raftery [28] and Dellaportas 
and Forster [8]. 

The data (presented in Table 4.1) concerns 1841 men, who have been cross-
classified in a . 26 table by six factors for coronary heart disease. The six factors are: 
A—Smoking (no or yes); B—Strenuous mental work (no or yes); C—Strenuous 
physical work (no or yes); D—Systolic Blood pressure (.<140 or .≥140); E—Ratio
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Fig. 4.3 Plots showing kernel density estimates from Gibbs samples overlaid with the true density 
functions 

of . α and . β lipoproteins (. <3 or . ≥3); F—Family anamnesis of coronary heart disease 
(negative or positive). 

Posterior samples were obtained for this data using the Gibbs sampler, for the 
most probable (hierarchical) models identified by Dellaportas and Forster [8]. These 
models have posterior probabilities of .>0.05. The prior parameters were set to 
.αi = 1/|I | = 0.015625 for a diffuse prior. Figures 4.4, 4.5, 4.6, and 4.7 show the 
posterior distributions of the 2-way interaction parameters—each figure corresponds 
to a particular model, within which the posterior for each interaction parameter is 
presented. 

4.3.3 Convergence of Gibbs Sampler 

Repeated use of the Gibbs sampler leads to the conclusion that samples produced 
are not highly dependent, as the sampler appears to mix well. For the samples in 
Example 1, the autocorrelations at lag 1 are .0.2, and drop below .0.05 after lag 
. 4. Fig. 4.8 presents time series plots for the data in Example 1. For the sake of 
clarity, only the first 2000 observations are plotted in each case. The time series 
show that the Gibbs sampler is mixing very well, and so the observations are not 
highly dependent. Scatterplots for each pair of variables are shown in Fig. 4.9. There 
is clearly no distinct correlation between parameters.
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Table 4.1 Risk factors for 
coronary heart disease 

B No Yes 

F E D C A No Yes No Yes 

Negative .<3 .<140 No 44 40 112 67 

Yes 129 145 12 23 

.≥140 No 35 12 80 33 

Yes 109 67 7 9 

.≥3 .<140 No 23 32 70 66 

Yes 50 80 7 13 

.≥140 No 24 25 73 57 

Yes 51 63 7 16 

Positive .<3 .<140 No 5 7 21 9 

Yes 9 17 1 4 

.≥140 No 4 3 11 8 

Yes 14 17 5 2 

.≥3 .<140 No 7 3 14 14 

Yes 9 16 2 3 

.≥140 No 4 0 13 11 

Yes 5 14 4 4
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Fig. 4.4 Model .AC + BC + AD + AE + CE + DE + F (posterior probability 0.28)
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Fig. 4.5 Model .AC + BC + AD + AE + BE + DE + F (posterior probability 0.16)
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Fig. 4.6 Model .AC + BC + AD + AE + BE + CE + DE + F (posterior probability 0.07)
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Fig. 4.7 Model .AC + BC + AD + AE + CE + DE + BF (posterior probability 0.07) 
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Fig. 4.8 Time series plots for Gibbs samples in Example 1
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Fig. 4.9 Pairwise scatterplots for Gibbs samples in Example 1 

Time series plots for the data presented in Example 2 are all similar. Figure 4.10 
presents these for each interaction parameter for the most probable model, . AC +
BC +AD+AE+CE+DE+F, though again only the first 2000 observations are 
plotted. Again, these time series show the observations are not highly dependent, 
and that the sampler is mixing well. 

4.4 Model Determination and Model Averaging 

Until now, we have focussed on Bayesian inference for contingency table data using 
a single log-linear interaction model chosen a priori. Using a parsimonious non-
saturated model in his way can bring considerable benefits for inference, providing 
smooth estimates, particularly when data are sparse, and potentially more reliable 
predictions. However, it is rarely the case that we will have prior knowledge of 
which model will be the most appropriate to use. This is an additional component of 
our prior uncertainty. One possible solution is to use a saturated model but use the 
prior on certain log-linear parametetrs to ‘smooth towards’ a more parsimonious 
structure. This is the spirit of several of the previous approaches mentioned in 
Sect. 4.2.1, particularly for a two-way contingency table where the target model is 
one of marginal independence. For tables of higher dimension, [1] extended this type 
of approach to the analysis of general multiway tables using mixtures of multivariate
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Fig. 4.10 Time series plots for Gibbs samples corresponding to model . AC + BC + AD + AE +
CE + DE + F in Example 2 

Normal distributions to model prior opinion, in the spirit of [25]. His method 
partitioned the saturated model parameter . β into subsets . β = (

η,β1, . . . ,βs

)
,

where the elements of . η are non-zero, but the elements of .β1, . . . ,βs may be 
zero. A Normal distribution was then assigned to . β with mean . 0 and variance 
. Σ , where .Σ−1 has a block-diagonal structure of multiples of identity matrices, 
with zeros corresponding to . η and a single dispersion parameter . Pi for each . βi .

Such prior distributions model prior beliefs for each of the . 2s possible models. 
Hypotheses setting .β i = 0 correspond to letting . Pi tend to infinity, whereas 
hypotheses for non-zero . β i values require a choice to be made for . Pi. This choice is 
not arbitrary, as different values will have a pronounced effect on the Bayes factor. 
Albert’s proposal was to place a prior on . Pi, motivated by the approach of Good 
[17]. Following applications to examples involving two- and three-way contingency 
tables, he suggested that . Pi should have a gamma.(νi/2, b2i νi/2) distribution, where 
the choice of . bi depends on prior information, and . νi may vary, though his advocated 
choice .νi = 1 corresponds to a set of Cauchy distributions. 

An alternative approach, which has gained in popularity since the 1990s, is to 
explicitly incorporate model uncertainty into the analysis, making the prior and 
posterior distributions discrete mixtures over competing models with prior model 
probabilities updated to posterior model probabilities favouring those models which 
are best supported by the observed data. Posterior inference and prediction naturally 
smooths over models, weighted by these posterior probabilities. For contingency
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table modelling, this approach was adopted by Madigan and York [29] where the 
class of models under consideration was the decomposable graphical models for 
the table under consideration. This is the approach we shall consider throughout the 
rest of this chapter, with a focus on log-linear interaction models and the conditional 
Dirichlet prior. 

4.4.1 Bayesian Inference Under Model Uncertainty 

Suppose we have a set of models, M , one of which we believe provides a reasonable 
model for our data . n. the cell counts in a contingency table. For the full set of 
log-linear inteaction models .m ⊆ P(Γ ) and hence .M = P(P(Γ )). Each model 
m specifies a distribution for .n, .f (n|m,βm), with the .βm an unknown vector 
of parameters for model m. We use Bayes’ theorem to obtain the joint posterior 
distribution of m and . βm

. f (m,βm|n) ∝ f (n|m,βm)f (m,βm)

∝ f (n|m,βm)f (βm|m)f (m).

Hence the posterior probability of model m may be found explicitly from 

.f (m|n) = f (m)
∫

f (n|m,βm)f (βm|m)dβm∑
m∈M f (m)

∫
f (n|m,βm)f (βm|m)dβm

m ∈ M (4.17) 

where the integral in the numerator 

.

∫

f (n|m,βm)f (βm|m)dβm ≡ f (n|m) (4.18) 

is the marginal likelihood, sometimes called the evidence and interpreted as the 
prior predictive probability of observing the data computed before any data were 
observed. 

If we have two competing models, . m1 and . m2, the problem reduces to the 
calculation of the well-known Bayes Factor, which is the ratio of the posterior odds 
to the prior odds, and we have 

.
f (m1|n)

f (m2|n)
= f (m1)

f (m2)

∫
f (n|m1,βm1

)f (βm1
|m1)dβm1∫

f (n|m2,βm2
)f (βm2

|m2)dβm2
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where the second term on the right-hand side is the Bayes factor for model . m1
against model . m2. Denoting the Bayes factor for comparing models . m1 and . m2 by 
.B12 we have 

.B12 =
∫

f (n|m1,βm1
)f (βm1

|m1)dβm1∫
f (n|m2,βm2

)f (βm2
|m2)dβm2

. (4.19) 

This notation can be extended to the case where we have multiple plausible models, 
by writing .Bjk as the Bayes factor for model . mj against model .mk. The Bayes factor 
is the Bayesian analogue of the classical likelihood ratio, obtained by integration 
instead of maximisation. 

Identifying those models which are best supported by the data is of interest in its 
own right, as it allows inferences about associations, independence, and conditional 
independence amongst the classifying variables. But it is also a very useful approach 
for obtaining smoothed estimates of cell probabilities and other functions of interest, 
particularly in the presence of sparse data. Model uncertainty, as encapsulated by the 
posterior model probabilities, is naturally propagated into inferences and predic-
tions for any quantities which have a ‘model-independent’ interpretation (broadly 
speaking, anything which can be expressed as a predictand). Most significantly, for 
contingency table modelling, with log-linear model uncertainty, this applies to the 
cell probabilities. Suppose our quantity of interest is . φ, which can be expressed 
as a function of model parameters . βm under every model, then we may obtain the 
posterior distribution for . φ using the expression 

.f (φ|n) =
∑

m∈M

f (φ|m,n)f (m|n) (4.20) 

where .f (m|n) is obtained from (4.17). 
There is an important distinction between expression (4.17) for posterior model 

probabilities and expression (4.11) for the posterior distributions of the model 
parameters in the role played by prior normalising constants. In (4.11) any such 
constants can be factorised out of the numerator and denominator and cancel. Hence, 
for example, for conditional Dirichlet distributions, it is of no consequence that the 
prior density (4.15) is known only up to the constant of normalisation for general 
log-linear interaction models. On the other hand, no such factorisation is possible 
for (4.17) and therefore a means of computing the prior normalising constant is 
required if the conditional Dirichlet prior is to be used in this context. This has 
led some authors, as described in Sect. 4.2.1, to prefer the use of Normal priors for 
log-linear parameters. 

This distinction between expression (4.17) and (4.11) also plays a role in the 
use of arbitrary diffuse prior distributions, which are commonly used to represent 
prior uncertainty. While they can be applied without consequence within a single 
model, extreme normalising constants cancelling in (4.11), the same is not true for 
inference under model uncertainty. Several solutions to this have been proposed 
in the literature, including by Spiegelhalter and Smith [37], Berger and Pericchi
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[3], and O’Hagan [32]. In examples where inference is required under a vague or 
default prior specification, we prefer to use a diffuse, but properly defined (non-
limiting), prior. We argue that a conjugate (conditional Dirichlet) prior is particularly 
helpful here, as it allows the user to consider the equivalent data content of the prior. 
Dellaportas and Forster, using (proper) normal priors, justified their choice of prior 
variance by drawing comparisons with the infomration provided by an equivalent 
prior sample. The conditional Dirichlet allows such arguments to be made more 
directly. 

4.4.2 Computation Under Model Uncertainty 

We require to compute the marginal likelihood .f (n|m) defined in (4.18) for each 
.m ∈ M , which presents two major issues. First, the integral in the marginal 
likelihood is often analytically intractable. For log-linear interaction models a 
straightforward expression for the marginal likelihood is only generally available for 
decomposable models with hyper-Dirichlet (or other similar product Dirichlet) prior 
distributions. For the hyper-Dirichlet which is equivalent to conditional Dirichlet, 
and derived from a Dirichlet(. α) for the saturated model, then the resulting marginal 
likelihood is 

.P(n|m) =
∏

γ

∏

ipa(γ )

Γ
[
α(ipa(γ ))

]∏
iγ

Γ [α(iγ , ipa(γ )) + n(iγ , ipa(γ ))]
Γ
[
α(ipa(γ )) + n(ipa(γ ))

]∏
iγ

Γ [α(iγ , ipa(γ ))] . (4.21) 

The second issue which arises is the size of the set, M , of possible models. Even 
for relatively modest numbers of factors, this grows rapidly and computation of the 
marginal likelihood for all .m ∈ M becomes infeasible. A solution proposed by 
Madigan and Raftery [28], which they called Occam’s window, was to eliminate 
many of the models from (4.20). Their approach first eliminates any model with 
probability much smaller than the most probable model, then any model with 
probability lower than a model nested within it. They proposed search strategies 
for identifying a set of potentially acceptable models. Alternative search strategies 
have been proposed by Forster and Webb [14] for decomposable models and [11] 
for log-linear models with conjugate conditional Dirichlet priors. 

An alternative approach to dealing with large numbers of competing models 
is to use Markov chain Monte Carlo (MCMC) methods. This effectively allows 
all possible models to be considered, A Markov chain is constructed so as to 
obtain a sample from .f (m, θmn), and the posterior model probabilities . f (m|n)

are then estimated from this using the Monte Carlo sample proportions. The 
‘reversible jump’ method of sampling was introduced by Green [18] and based 
on the Metropolis-Hastings method. Green presented a general description of the 
method, together with a particular implementation which may be adopted for log-
linear models. This method was adapted by Dellaportas and Forster [8] and applied
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to several classes of log-linear models, using normal priors. MCMC under model 
uncertainty is less attractive for analysis with conditional Dirichlet conjugate priors 
as it would remain limited by the size of the model space, M . This is because 
the prior normalising constants would be required to calculate the acceptance 
probability of proposed transitions in the chain, and these would still need to be 
calculated, either in advance or as each model was proposed for the first time. 

Again, decomposable models are exempt from this difficulty as their prior 
normalising constants are analytically available. Madigan and York [29] proposed 
an MCMC approach to generating from the posterior distribution under decom-
posable model uncertainty which they called .MC3. It is a Metropolis-Hastings 
method where, at each step, transition to a neighbouring model is proposed and 
the acceptance probability calculated using ratios of marginal likelihoods analogous 
to (4.21). This proved extremely effective for decomposable models. For more 
general conditional Dirichlet priors, though, we will focus on methods which 
approximate marginal likelihoods for individual models directly, combining with 
a search strategy where the size of the model space, M , makes computation for all 
.m ∈ M infeasible. The advantage for conjugate priors is that the same method of 
computation can be considered for computing the marginal likelihood and the prior 
normalising constant, as the integrand is of the same functional form in each case. 
If we denote the prior for model m as .f (βm) = C−1

m g(βm|m), where g denotes the 
unnormalised expression given in (4.15), then we can write the marginal likelihood 
(4.18) as  

. f (n|m) =
∫

f (n|m,βm)C−1
m g(βm|m)dβm

=
∫

f (n|m,βm)g(βm|m)dβm∫
g(βm|m)dβm

(4.22) 

and then the integrands in the numerator and denominator can be seen to have 
the same functional form by comparing (4.12) and (4.15) and so . s and . α in the 
denominator are updated to .s + t and .α + n in the numerator. 

4.4.3 Laplace’s Method 

Arguably the most popular analytic approach to approximating integrals in Bayesian 
computation is Laplace’s Method, developed in detail for this purpose by Tierney 
and Kadane [38]. Significantly [30] propose it for approximating both marginal 
likelihoods and posterior model probabilities for conjugate inference for log-linear 
models. Laplace’s method is based on the principle that, provided L has a unique 
maximum . ̃θ, or is at least dominated by a single mode, then, for large . n, the 
value of the integral strongly depends on the properties of L around the maximum;
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specifically the log-integrand can be well-approximated by a quadratic function with 
the same mode and curvature at the mode. The approximation is 

. 

∫

enL(θ)dθ = (2π)
dm
2 enL(̃θ)

n
dm
2
∣
∣−H (̃θ)

∣
∣
1
2

(1 + O(n−1))

where . ̃θ is the posterior mode, and . H is the Hessian (second derivative) matrix of 
L. Equivalently, 

. log
∫

f (n|θ)g(θ)dθ = log f (n|̃θ) + log g(̃θ)

+ d

2
log 2π − d

2
log n − 1

2
log
∣
∣−H (̃θ)

∣
∣+ O(n−1)

(4.23) 

where . H is the Hessian for .log
(
n−1f (n|θ)g(θ)

)
. Kass and Wasserman [22] show  

that . H can be replaced in (4.23) by the Fisher (or observed) information matrix at 

the expense of the error increasing to .O(n− 1
2 ). 

Raftery [34] considered the problem of using Laplace’s method to approximate 
Bayes factors for generalised linear models, utilising the output of standard statis-
tical software in terms of the maximum likelihood estimator .̂θm, the deviance, and 
the observed or expected Fisher information matrix to modify (4.23) at the expense 
of loss of accuracy. Nevertheless, on application to the calculation of Bayes factors 
for generalised linear models, the approximations were found to be of acceptable 
quality. 

For a conditional Dirichlet prior (posterior), Laplace’s method results in the 
approximation 

. log
∫

g(β)dβ ≈ dm

2
log 2π − 1

2
log
∣
∣
∣αXT (diag(p) − ppT )X

∣
∣
∣
1/2 + log g(β̃)).

(4.24) 

One key feature of a conditional Dirichlet prior is that, provided that the software 
allows non-integer cell counts, as does R for example, then the actual posterior 
mode and Hessian required in (4.24) can be obtained as the ‘maximum likelihood 
estimate’ and (inverse) variance-covariance matrix arising from ‘cell counts’ .n + α. 

Diciccio et al. [10] compared several methods of estimating the Bayes factor 
when it is possible to obtain a sample from the posterior distribution. They presented 
a modified version of Laplace’s method based on this, and a Bartlett adjustment to 
Laplace’s method which improved the Laplace estimate by an order of magnitude. 
They also considered importance sampling and reciprocal importance sampling, two 
special cases of bridge sampling, which is described in detail in Sect. 4.4.5.
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4.4.4 Evaluation of Laplace’s Method for the Conditional 
Dirichlet 

The aim of applying Laplace’s method to the Conditional Dirichlet distribution is to 
obtain the normalising constant (marginal likelihood) for the (mostly) analytically 
intractable density function which results by conditioning on a particular log-linear 
model. Because, for decomposable models, the normalising constant is analytically 
available, this allows us to directly assess the fitness of Laplace’s method for this 
purpose. 

As Laplace’s method approximates the log-integrand by a quadratic around the 
mode, an approximation which improves with increasing sample size n, it does 
raise a concern over whether it can accurately approximate the prior normalising 
constant for the modest values of . α which are likely to be used. In particular, it 
is straightforward to observe that the tails of the conditional Dirichlet distribution 
are lighter than those of the Normal distribution, and so Laplace’s method is 
likely to underestimate normalising constants when .α(i) is small. The conditional 
Dirichlet distribution as expressed in (4.15) can be seen to have (conditional) tails 
which decay in each direction like .exp(−|βj |), more slowly than the quadratic 
assumed by Laplace’s method. This means that Laplace’s method is likely to 
produce approximations which underestimate the conditional Dirichlet normalising 
constants. In order to check how significant this underestimation is, and any 
dependence on the dimension and complexity of the log-linear model, we apply 
the method to certain conditional Dirichlet distributions resulting from several log-
linear models which are decomposable, and hence of a tractable form, having known 
normalising constants. Similarly, as the approximation is of order .O(n−1) it is clear 
that the accuracy of the approximation will improve for large sample sizes. This is 
also investigated by obtaining Laplace approximations for increasing sample sizes, 
using a selection of models. The results are summarised in Figs. 4.11 and 4.12. 

Figure 4.11 contains 8 plots representing 8 different log-linear models. Each plot 
is of the error in the log of the Laplace approximation (given as the log of the 
approximate value minus the log of the true value), against the value of the cell 
parameter .α(i) (the hypothetical ‘sample’ in each cell). The parameters are equally 
distributed throughout the cells in each case. The cell parameter runs from 0.25 to 
25 in each case. The 8 models are: 

(a) .A + B .[2] (e) .A + B + C + D . [4]

(b) .AB + BC .[5] (f) ABCD . [16]
(c) ABC .[8] (g) .A(3)B(3)C(3)D(3) . [81]

(d) .A(3)B(3)C(3) .[27] (h) .A(4)B(4)C(4)D(4) . [256]

All variables have 2 levels, except where indicated, and the numbers in square 
brackets give the number of model parameters in each case.
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Fig. 4.11 Plots showing convergence of Laplace estimates for various models with equal samples 
in each cell 

It is clear that for sample sizes greater than about 10 in each cell, the error of the 
approximation is negligible, and so the Laplace approximation is excellent. This 
is true for all the models. However it is also clear that, for certain models, the 
Laplace approximation for small values of cell parameters is poor, and so may 
not be reliably used to determine the normalising constant for (reference) prior 
distributions. Indeed, with all cell parameters equal to .0.5, the approximation for 
the 4-way saturated model where all variables have four levels has an error of 
.−39, which is huge. Examination of Fig. 4.11 shows that the error of the Laplace 
approximation increases significantly with increasing numbers of parameters in the 
model. 

The approximations presented in Fig. 4.11 are all based on equal parameters 
in each cell. This is fine for prior distributions (where it seems that the Laplace 
approximation is of little use anyway), but is unrealistic for posterior distributions. 
In order to consider the unbalanced situation, Laplace approximations were obtained 
for posterior distributions where all the data was in a single cell. The results are 
presented graphically in Fig. 4.12. In each case, the ‘Cell Parameter’ refers to the 
data in the single cell. All other cells have a parameter of .0.25, representing a prior 
distribution based on a .Dirichlet ( 141) distribution. 

The graphs in Fig. 4.12 show that, when the data is distributed as described above, 
there is a considerable error in the Laplace approximation for all but the simplest 
model. It is therefore clear that the Laplace approximation to the normalising 
constant for conditional Dirichlet distributions is only reliable when there are at least
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Fig. 4.12 Plots showing convergence of Laplace estimates for various models with unbalanced 
cell counts 

a few observations in each cell. Exhaustive use of the Laplace approximation leads 
to the ‘rule of thumb’ that the approximation produced acceptable results when there 
were at least 5 observations in 80% of the cells, though note that the accuracy of the 
approximation always improves with greater total sample size and deteriorates with 
increasing numbers of model parameters. 

In all the approximations presented, the error in the log normalising constants is 
negative, which implies that the approximation for the normalising constant is too 
small, as expected. In summary, it is clear that a more reliable method for obtaining 
prior normalising constants and marginal likelihoods for sparse tables is required. 

4.4.5 Bridge Sampling 

The class of techniques known as bridge sampling were introduced by Bennett [2], 
although they were studied in depth by Meng and Wong [31] and DiCiccio et al. 
[10]. The method allows the estimation of the ratio of two normalising constants, 
though it can be modified to allow the estimation of a single normalising constant. 

Suppose we have two densities, . f1 and .f 2, and write these as 

.fi = gi

Ci
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where .Ci = ∫
gi for .i = 1, 2. Now let . γ be a function which satisfies 

. 0 <

∣
∣
∣
∣

∫

γ (θ)f1(θ)f2(θ)dθ

∣
∣
∣
∣ < ∞.

Then we may write 

.
C1

C2
=
∫

g1(θ)γ (θ)f2(θ)dθ
∫

g2(θ)γ (θ)f1(θ)dθ
. (4.25) 

Now let our unnormalised density of interest (prior or posterior) be denoted by . g(θ),

the associated normalising constant by C, and the normalised density by .f (θ), so 
that .C = ∫

g(θ)dθ and .f (θ) = g(θ)
C

. Suppose we have a sample from f , and 
denote this by .θ1, . . . , θm. Let .q(θ) be some density from which we may easily 
obtain a sample, and denote that sample by .̃θ1, . . . , θ̃M. Now, in expression (4.25), 
let .g1 = g, .C1 = C, .g2 = q, and .C2 = 1. Then 

.C =
∫

g(θ)γ (θ)q(θ)dθ
∫

q(θ)γ (θ)f (θ)dθ
= Eθ∼q [g(θ)γ (θ)]

Eθ∼f [q(θ)γ (θ)] . (4.26) 

Using our samples, the bridge estimator of C introduced by Meng and Wong is 
given by 

. ̂C =
1
M

∑
i g(θ̃i)γ (θ̃i)

1
m

∑
i q(θi)γ (θi)

.

Clearly, a choice has to be made for the function . γ. Several obvious choices 
are available—for example, .γ = 1

q
or .γ = 1

g
. These reduce the bridge estimate 

to the commonly used estimates based on Importance Sampling and Reciprocal 
Importance Sampling. However, Meng and Wong found the optimal choice, in terms 
of minimising the mean squared error, is 

.γ (θ) ∝
[
mg(θ)

C
+ Mq(θ)

]−1

. (4.27) 

This would appear to be of little practical use, as it requires the normalising constant, 
C, in its calculation. However, it is possible to use an estimate of C produced by an 
alternative approximation method, and substitute this value in expression (4.27). 
For example, an estimate based on Laplace’s method may be used, and indeed this 
is a technique which DiCiccio et al. found produced a discernible increase in the 
accuracy of the approximation compared to other bridge samplers (for example, 
importance sampling). 

In practice, repeated applications of the bridge sampler may be used to iteratively 
update the approximation, using the previous value of C each time. This is the
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method which will be applied in the next section to the conditional Dirichlet 
distribution. 

We will apply bridge sampling to estimate the normalising constant of the 
conditional Dirichlet distribution. For this purpose, we choose q to  be a Normal  
density with mean equal to the mode of the conditional Dirichlet distribution, and 
variance matrix equal to the inverse of the Hessian matrix of second derivatives. 
The bridge estimate (4.26) allows the size of the samples from densities . q and f to 
differ, though for this application they will be equal, and denoted by . m.

Let the (un-normalised) conditional Dirichlet density (as in (4.15)) be denoted by 
.g(β), the sample from this be denoted .β(1),β(2), . . . ,β(m), and the Normal sample 

generated from density q be denoted .̃β(1)
, β̃

(2)
, . . . , β̃

(m)
. The bridge sampler will 

be applied iteratively, with the j th iteration denoted . Cj . Then the bridge estimate is 
given by the expression 

. Cj =
∫

g(β)dβ ≈
∑

i g(β̃
(i)

)γj (β̃
(i)

)
∑

i q(β(i))γj (β
(i))

where 

. γj (β) =
[
mg(β)

Ci−1
+ mq(β)

]−1

and . C0 is the estimate for the normalising constant by Laplace’s method. 

4.4.6 Numerical Examples 

In this section, the bridge sampler will be used to obtain prior and posterior 
normalising constants for a set of log-linear models where the true value is also 
available, as in Sect. 4.3.1 (Laplace approximations). Successive runs of the bridge 
sampler produce values which, after about 3 iterations, seem to fluctuate slightly 
about a common value. Hence, to produce the estimates below, the bridge sampler 
is run iteratively 10 times, taking the Laplace estimate as a starting value, and the 
result presented is the mean of the final 7 iterations. 

Table 4.2 gives the bridge sampling estimates for the log of the prior normalising 
constants, together with the error (expressed as the estimate minus the true value), 
and the value of the prior parameters, which are the same for each cell. All variables 
have 2 levels, except where indicated. 

It is clear from the table that the bridge sampling approximation is extremely 
good, even for distributions where the prior parameter is small. It therefore 
represents a huge improvement over the Laplace estimates, where the errors were 
of a much higher magnitude. Such accuracy is also evident when the parameters in 
each cell are not equal (the unbalanced case).
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Table 4.2 Bridge estimates, and their respective errors, of normalising constants for various 
models 

Hierarchical 

log-linear model Prior parameter Bridge approximation Error in bridge approximation 

.A + B 0.25 . 2.29 . 0

.AB + BC 0.125 . 9.16 . 0

ABC 0.125 . 16.15 . 0.01

.A(3)B(3)C(3) 0.5 .−5.86 . −0.05

.A + B + C + D 0.0625 . 4.57 . −0.01

ABCD 0.0625 . 43.94 . 0.11

.A(3)B(3)C(3)D(3) 0.5 .−61.78 . 0.33

Fig. 4.13 Independence 
graph for the 
non-decomposable graphical 
(hierarchical) model 
. {(A,B), (B,C), (C,D), (D,A)}

The approximations in Table 4.2 were all obtained using Gibbs sample sizes of 
10,000. This choice was motivated by the desire for the bridge estimate to vary by 
less than 0.1 about its limit, and for the sample to be produced reasonably quickly 
using the Gibbs sampler. Smaller sample sizes are adequate for simpler models. 

We have demonstrated the accuracy of the method of bridge sampling to 
determine the normalising constants for the conditional Dirichlet prior for several 
decomposable models (where exact results are possible). However, there is one 
graphical model with up to and including 4 variables which is not decomposable. 
This is the model represented by Fig. 4.13. 

Table 4.3 gives the normalising constants for the conditional Dirichlet distri-
butions for this model, with varying numbers of levels of the variables. The prior 
parameters in each case are symmetric, with a single observation split throughout 
the table (i.e. . α(i) = 1

|I | ).
Note that many other non-graphical log-linear models exist for which this 

approach is required; for example, the model .AB + BC + AC.



148 J. J. Forster and M. E. Grigsby

Table 4.3 Normalising 
constants for model 
. AB + BC + CD + DA

Levels of .A,B,C,D . log(Normalising Constant) 

.2, 2, 2, 2 1.45 

.3, 2, 2, 2 2.75 

.2, 3, 2, 2 3.67 

.3, 3, 2, 2 6.64 

.3, 3, 3, 2 10.09 

.3, 3, 3, 3 12.78 

4.4.7 Example: Risk Factors for Coronary Heart Disease 

In Sect. 4.3.2, the Gibbs sampler was used to obtain posterior samples from a 
number of models fitted to a contingency table summarising concerning incidence 
of coronary heart disease, originally presented by Edwards and Havranek [12], and 
analysed further by Madigan and Raftery [28] and Dellaportas and Forster [8]. 

The marginal likelihood for a log-linear model with conditional Dirichlet prior 
is given by (4.22) and therefore the Bayes factor, the second ratio of the right of 
(4.19), can be written as 

. B12 =
∫

f (n|m1, θm1)g(θm1 |m1)dθm1∫
f (n|m2, θm2)g(θm2 |m2)dθm2

∫
g(βm2

|m2)dβm2∫
g(βm1

|m1)dβm1

where .f (n|m, θm) is the likelihood under model m and .f (θm|m) is the prior under 
model m. 

In this application, the prior approximation to .log
∫

g(θm|m)dθm will 
be obtained using the bridge sampler, and the posterior approximation to 
.log

∫
g(n|m, θm)g(θm|m) obtained using Laplace’s method. This is sensible, 

as the sample size is large, with cell counts of at least 5 in 80% of the cells. 
The results are presented in Table 4.4, which gives the estimated log Bayes 
factors for several models, taken against the most probable hierarchical model 
.AC +BC +AD +AE +CE +DE +F, for a prior where .a(i) = 1/64. A sample  
size of 5000 was used for the prior estimates. 

The top three models in the table are the most probable hierarchical models (iden-
tified by Dellaportas and Forster), and the fourth is the most probable decomposable 
model. There is a good deal of agreement between the bridge/Laplace estimates and 

Table 4.4 Estimated Bayes factors for heart disease data 

Log Bayes Log Bayes 

Hierarchical log-linear model factor estimate factor (D&F) 

.AC + BC + AD + AE + BE + DE + F .0.49 . 0.57

.AC + BC + AD + AE + BE + CE + DE + F .1.35 . 1.34

.AC + BC + AD + AE + CE + DE + BF .1.79 . 1.42

.BC + ACE + ADE + F .8.25 .>6
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those obtained by Dellaportas and Forster. Note that we are using different prior 
densities here, so don’t expect exact agreement with their results. 

4.5 Further Examples 

The data from [12] have been used throughout this chapter to illustrate Bayesian 
inference for log-linear models. Here we present two further illustrative examples. 

4.5.1 Example 1: Lymphoma and Chemotherapy 

This example concerns 30 patients suffering from lymphocytic lymphoma, and 
cross-classifies their type of lymphoma L (nodular or diffuse) against their response 
to combination chemotherapy R and their sex S. The data are presented in Table 4.5 
and were originally analysed by Skarin et al. [35]. 

Three different diffuse prior distributions are investigated, in order to determine 
the posterior model probabilities for the 8 potential graphical models. The first is 
the conditional Dirichlet distribution with parameters .α(i) = 1/2, corresponding 
to conditioning on Jeffreys’ prior for the saturated model. The second is the 
conditional Dirichlet distribution with parameters .α(i) = 1/8, which corresponds 
to a single observation distributed evenly between all cells (Perks’ prior). Note that 
the equivalence of the hyper-Dirichlet and conditional Dirichlet distributions is used 
to ease the calculations. Elsewhere the methods described above, such as bridge 
sampling using Monte Carlo samples, are used. The third prior distribution is a 
log-Normal prior with parameters chosen using the same considerations as [8]. The 
posterior model probabilities are presented in Table 4.6 (models with probability 
less than .0.01 are excluded). 

All priors identify the most probable model, namely .RC + CS. Similar proba-
bilities are also obtained for the model .RC +RS. However, the various priors differ 
with respect to models .RC + S and .RCS. As expected, the conditional Dirichlet 
distribution with .α(i) = 1/8 tends to favour the simpler model .RC + S. 

Table 4.5 Chemotherapy 
and lymphoma 

Remission 

Cell type Sex No Yes 

Nodular Male 1 4 

Female 2 6 

Diffuse Male 12 1 

Female 3 1
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Table 4.6 Posterior model probabilities for cancer data using various prior distributions 

Conditional Dirichlet Conditional Dirichlet Log-normal 

Model .α(i) = 1/2 .α(i) = 1/8 prior 

.RC + CS .0.48 .0.42 . 0.48

.RC + S .0.19 .0.38 . 0.30

.RC + RS .0.22 .0.18 . 0.17

RCS .0.09 .0.01 . 0.05

4.5.2 Example 2: Toxaemia in Pregnancy 

The data in Table 2 are presented in [20] and is a cross-classification of record 
13,384 pregnant women by their socio-economic class (C—5 levels), their smoking 
habit (S—none, light, or heavy), and whether or not they suffer from two toxaemic 
signs, hypertension (H ) and proteinuria (P ). The data was collected in England 
between 1968 and 1977, and the aim of the analysis of the .2×2×3×5 contingency 
Table 4.7 is to determine relationships between the variables, via the posterior model 
probabilities for all possible graphical models. 

As in the first example, three prior distributions are used. These are the 
conditional Dirichlet distribution with parameters .α(i) = 1/2, the conditional 
Dirichlet distribution with parameters .α(i) = 1/60, and a log-Normal prior. Under 
each of the distributions, a maximum of two models were identified as having 
posterior probabilities greater than .0.001. These are the models .HP +PS+SC and 

Table 4.7 Toxaemia in 
pregnancy 

Proteinuria 

Yes No 

Hypertension Hypertension 

Social class Smoking Yes No Yes No 

1 None 28 82 21 286 

Light 5 24 5 71 

Heavy 1 3 0 13 

2 None 50 266 34 785 

Light 13 92 17 284 

Heavy 0 15 3 34 

3 None 278 1101 164 3160 

Light 120 492 142 2300 

Heavy 16 92 32 383 

4 None 63 213 52 656 

Light 35 129 46 649 

Heavy 7 40 12 163 

5 None 20 78 23 245 

Light 22 74 34 321 

Heavy 7 14 4 65
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Table 4.8 Posterior model probabilities for Toxaemia data using various prior distributions 

Conditional Dirichlet Conditional Dirichlet Log-normal 

Model .α(i) = 1
2 .α(i) = 1

60 prior 

.HP + PS + SC .0.9950 .1.0000 . 1.0000

.HPS + SC .0.0050 .0.0000 . 0.0000

.HPS + SC, and their respective probabilities are shown in Table 4.8. These results 
conflict somewhat with the classical approach based on stepwise model selection 
using analysis of deviance. That approach prefers model . HP + PS + SC + CH.

However, each of the priors used here gives a posterior model probability .< 10−6 to 
this model. The reason for this is that the five levels of factor C mean that to include 
any log-linear term involving this factor requires an increase in dimensionality of 
the log-linear parameter of at least 4. The Bayesian approach adopted here is much 
more cautious about adding extra complexity to the model unless it is justified by 
a commensurate improvement in fit. One way to address this is to consider models 
which allow extra interactions but parameterised more efficiently, which is possible 
for ordinal factors (but outside the scope of this chapter; see [39] for further details). 

4.6 Summary 

In this chapter we have described a Bayesian methodology for log-linear models, 
with particular attention paid to the use of conjugate conditional Dirichlet distri-
bution, which has the attractive property that its parameters may be interpreted as 
prior cell counts. This makes it useful for both reference analyses, where small prior 
values are used, and as an informative prior, where (hypothetical) prior cell counts 
may be available. Our treatment relies heavily on the pioneering work of Dawid and 
Lauritzen [6] and [30], but focussing on practical computational methodology. Our 
main focus has been on inference under model uncertainty where computation of the 
marginal likelihood is the key. The requirement to obtain normalising constants for 
the unnormalised forms of both the prior and posterior conditional Dirichlet leads us 
to recommend the use of a bridge sampler for approximating the required integrals, 
particularly for the prior. 
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Chapter 5
Simple Ways to Interpret Effects
in Modeling Binary Data

Alan Agresti, Claudia Tarantola, and Roberta Varriale

5.1 Introduction

Suppose you are consulting with a non-statistician colleague in academia, gov-
ernment, or industry, for a study that has a binary response variable. If you use
a standard binary regression model such as logistic or probit regression, is your
colleague able to understand its natural effect measures, such as odds ratios or
probit differences? In our consulting experiences as well as teaching such methods
to students in various disciplines, interpretation can be challenging.

Models for binary responses that apply link functions to the probability of
“success,” such as logistic regression models, are generalized linear models that
employ non-linear link functions. With such models, effect parameters are not as
simple to interpret as slopes and correlations for ordinary linear regression. This
article surveys simple measures that can supplement the ordinary model-based
measures, being easier to interpret. Our intention is not to present new methodology
but rather to show ways of using existing approaches to supplement the most popular
model-based analyses as well as more complex models for binary data.

We consider a binary response variable y taking values 0 and 1 and a set
of explanatory variables .(x1, . . . , xp), which may be a mixture of quantitative
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and categorical. In describing effect summaries for comparing two groups of a
categorical explanatory variable, we sometimes use a separate indicator variable
z to distinguish between the groups. The logistic regression model, defined by

. log

[
P(Y = 1)

1 − P(Y = 1)

]
= α + βz + β1x1 + · · · + βpxp,

is a generalized linear model (GLM) with link function logit.[P(Y = 1)] =
log[P(Y = 1)/(1 − P(Y = 1))]. This model has effects most naturally interpreted
using odds ratios. For example, adjusting for the other explanatory variables, the
odds that .y = 1 for the group having .z = 1 divided by the odds that .y = 1 for the
group having .z = 0 are

.
P(Y = 1 | z = 1, x1, . . . , xp)/P (Y = 0 | z = 1, x1, . . . , xp)

P (Y = 1 | z = 0, x1, . . . , xp)/P (Y = 0 | z = 0, x1, . . . , xp)
= exp(β).

The coefficient .βk of .xk is the change in the log odds per each 1-unit increase in .xk ,
adjusting for the other explanatory variables, so .exp(βk) is a multiplicative effect of
each 1-unit increase in .xk on the odds of response .y = 1 versus response .y = 0.

To compare two levels of an explanatory variable such as two groups, however, it
is easier for methodologists or practitioners to understand a difference or a ratio of
probabilities than a ratio of odds. In our experience, many (even some statisticians)
misinterpret the odds ratio as if it were a ratio of probabilities. When two groups
have probabilities close to 0, the ratio of odds is similar to the ratio of probabilities,
but this is not true otherwise. In fact, [22] noted that when the probabilities exceed
.0.2, the odds ratio is better approximated by the square of the ratio of probabilities.
For example, if an odds ratio is 9, one group may have success probability merely
about 3 times the success probability for the other group.

Other aspects of logistic regression that are due to its nonlinear link function
are not as well known to users. For instance, suppose explanatory variables .x1
and .x2 are uncorrelated, such as in many experimental designs. In ordinary linear
models, the estimated effect of .x1 is the same when .x1 is the sole predictor
as when .x1 and .x2 are joint predictors. For logistic regression, this is not the
case with model-based odds effect measures. For instance, the effect .β∗

1 when
.x1 is the sole predictor relates approximately to the effect .β1 when .x2 is also

in the model by .β∗
1 ≈ β1

√
3.29/[3.29 + β2

2 var(x2)], where .3.29 = π2/3 is the
variance of the standard logistic distribution [18]. For the model with probit link,

.β∗
1 = β1

√
1/[1 + β2

2 var(x2)]. Equality of the effects in the two cases is, however,
approximately true for the simpler measures discussed in this article.

The structure of this paper is as follows. In Sect. 5.2, we show that generalized
linear models using the identity link function and the log link function, although not
as natural for binary data, have simpler summaries and can sometimes supplement
logistic and probit models. We illustrate these summary measures with an Italian
study to model an employment response variable. In Sect. 5.3, we focus on probit
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and logit models and we present alternative probability-based summaries that can
be used to study the effect of an explanatory variable, while adjusting for other
explanatory variables in the model. For group comparisons, these include average
differences and average log-ratios of probabilities and comparisons that result
directly from corresponding latent variable models. In this section we also show
the correspondence between these effect measures obtained for logistic and probit
models and the model-based effect measures obtained with the identity and log
link functions. We conclude this section illustrating the proposed measures with the
Italian study. Section 5.4 uses the measures of Sect. 5.3 to aid in interpreting effects
for more complex models, such as generalized additive models. We illustrate with
an example about horseshoe crab mating, generalizing existing results for a logistic
model.

5.2 Alternative Models for Binary Data

Standard models for binary response variables are special cases of the GLM

.link[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp, (5.1)

for link functions such as the logit and probit. For describing effects, we find it
useful to refer to the model expressed as

.F−1[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp, (5.2)

where the link function .F−1 is the inverse of a standard cumulative distribution
function (cdf). For logistic regression, .F(z) = exp(z)/[1 + exp(z)] is the standard
logistic cdf. For probit regression, F is the standard normal cdf, which we denote
by .Φ. The nonlinear link function naturally produces effects on the link scale. For
example, with the probit link, .β is the difference between .F−1[P(Y = 1)] when
.z = 1 and when .z = 0, and .βk is the change in .F−1[P(Y = 1)] per each 1-unit
increase in .xk , adjusting for the other explanatory variables. Such effect measures
are not easy to interpret by those who need to understand the effects in more real-
world terms. Although the probit model was the first model for binary data to
receive much attention (pre-dating logistic regression by nearly 10 years), its use by
methodologists has undoubtedly been hampered by the difficulty of interpretation
unless one uses a corresponding latent variable model. The same applies to other
link functions that are potentially very useful, such as those with log-log and
complementary log-log link functions.

In addition, effects often behave in a way that is counterintuitive to those mainly
familiar with ordinary linear models. For example, as mentioned in the introductory
section, if an explanatory variable uncorrelated with .x1 is added to a logistic
regression model, the partial effect of .x1 is typically different than in the model
without the other explanatory variable; it would be identical in an ordinary linear
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model. For contingency tables, this relates to standard collapsibility results [e.g., 1,
pp. 53–54]. For example, consider several 2 .× 2 tables relating binary y to binary
.x1 at different levels for .x2. If the difference or the ratio of proportions is the
same in each table, then when .x1 and .x2 are marginally independent, the marginal
table collapsing over .x2 has the same value for that measure. For the odds ratio,
however, collapsibility occurs when .x1 and .x2 are conditionally independent, given
y, rather than marginally independent. Because of this, regardless of correlation
structure among explanatory variables, it can be challenging to compare the effect
of an explanatory variable to its effect when other variables are added to the model.
Generally, the relation between conditional and marginal effect measures depends
on the model and measure considered. For related literature, particularly for logistic
regression, see [4, 7, 8, 10, 19], and [20]. Related remarks also occur in comparing
effects in marginal models for multivariate responses with effects in corresponding
models that add a random effect to the model [1, pp. 495–497].

5.2.1 Identity and Log Link Models for Binary Data

For comparing groups, simple difference and ratio measures on the proportion scale
result from alternative link functions in model (5.1). For the identity link function,
the coefficient .β of an indicator variable in that model is the difference between
.P(Y = 1) for two groups, adjusting for other variables. The corresponding model
is called the linear probability model. For the log link function, .β is the log ratio of
probabilities.

Generalized linear models with identity and log link functions are relatively
rarely used for binary data. The link values for the linear probability model are
restricted to the [0, 1] range, rather than the entire real line that is the range of linear
predictor values in the model. The log-link values are restricted to negative values.
Because of these restrictions, ordinary maximum likelihood (ML) fitting of such
models, assuming a binomial distribution for the response, may fail. One can always
fit the linear probability model using least squares, as in fitting ordinary linear
models, but the fitted values may be outside [0, 1] for some values of explanatory
variables. When ML works for such a model and it fits the data decently, however,
one obtains the advantage of simpler interpretation of effects than in the logistic
model.

The appearance of the linear probability model is similar to the logistic and probit
models for probabilities between about 0.2 and 0.8. To illustrate, the first panel in
Fig. 5.1 shows 500 observations in which X was uniformly distributed over (0, 100),
and conditional on .X = x, .P(Y = 1) follows a logistic model with .P(Y = 1)

increasing from 0.2 to 0.8 over the range of x values. (For clarity of showing the
data, the binary observations are jittered slightly.) The figure also shows the ML fits
of the logistic and linear probability models. The appearance of the log-link model
is similar to the logistic and probit models when probabilities are uniformly less
than about 0.25 over the ranges of explanatory-variable values and similar to those
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models with link applied to .P(Y = 0) when probabilities are uniformly above about
0.75. To illustrate, the second panel of Fig. 5.1 shows 500 observations in which X

was uniformly distributed over (0, 100), and conditional on .X = x, .P(Y = 1)

follows a logistic model with .P(Y = 1) increasing from 0.01 to 0.25 over the range
of x values. The figure also shows the ML fits of the logistic model and the model
with log link.

When we have reason to expect probabilities to fall in the previously specified
ranges, we believe that it can be helpful in summarizing the size of an effect to use
the models with identity and log link functions, even if only to supplement ordinary
logistic and probit models. In addition, the binary models with identity and log
links share the property with ordinary linear models that effects remain stable when
explanatory variables are added to the model that are uncorrelated with ones already
in the model.

5.2.2 Example: Models for Italian Survey Data

In this section, we fit generalized linear models with logit, log and indentity
link functions to some data from a simple random sample of about 100,000
Italians from the Toscana region in December 2015. The information comes from
administrative sources collected and organized by Istituto Nazionale di Statistica
(Istat). Administrative data relevant for the labor statistics derive mainly from social
security and fiscal authority and are organized in an information system having
a linked employer-employees structure. From this data structure it is possible to
obtain information on the statistical unit of interest, i.e., the worker. The response
variable y indicates whether the subject is present in any administrative source
(1 .= yes, 0 .= no). Assuming there are no measurement errors, a person not present
in an administrative labor source either is not working or is doing so illegally, so in
the following we refer to y as whether employed (1 .= yes, 0 .= no). The examined
explanatory variables are .x1 .= gender (1 .= female, 0 .= male), .x2 .= Italian (1 if the
individual is an Italian citizen, 0 otherwise), and .x3 .= pension (1 if the individual is
receiving a pension, 0 otherwise). For Istat confidentiality reasons, we cannot report
the exact data, but we provide in tables the approximate cross-classified sampled
proportions.

We first restrict attention to the 27,775 subjects having age over 65. The sample
proportions that were employed (.y = 1) in the eight cases that cross classify the
three explanatory variables were small, so we fitted models both with logit and log
links, as shown in Table A1 of the Appendix. The main-effects model fits are

.logit[P̂ (Y = 1)] = −1.8686 − 1.3236x1 − 0.4295x2 + 0.2162x3

and

.log[P̂ (Y = 1)] = −2.0374 − 1.2388x1 − 0.3619x2 + 0.2003x3
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Fig. 5.1 Data sets showing
jittered binary data and fits of
logistic regression model and
(1) linear probability model
when .P(Y = 1) varies from
0.2 to 0.8, (2) log-link model
when .P(Y = 1) is less than
0.25
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Table 5.1 Fitted values for Istat sample of older subjects, for models with logit and log links for
predicting employment using gender (G), Italian (I), and pension (P)

Main effects Gender/Italian interaction

Logit link Log link Logit link Log link Sample proportion

G I P .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) (Sample size)

1 1 1 0.0321 0.0321 0.0314 0.0314 0.0316 (13,300)

1 1 0 0.0260 0.0263 0.0255 0.0257 0.0244 (2300)

1 0 1 0.0485 0.0461 0.0865 0.0864 0.0690 (100)

1 0 0 0.0395 0.0378 0.0709 0.0708 0.0812 (200)

0 1 1 0.1109 0.1109 0.1118 0.1118 0.1116 (11,000)

0 1 0 0.0913 0.0908 0.0920 0.0915 0.0949 (600)

0 0 1 0.1608 0.1593 0.1106 0.1111 0.1238 (100)

0 0 0 0.1337 0.1304 0.0911 0.0909 0.0800 (100)

Note: The sample sizes for the sample proportions were not the actual ones used but are rounded
to the nearest hundredth, for Istat confidentiality reasons

Table 5.1 shows the fitted values for the two models. They are uniformly very close,
with the absolute difference averaged over the 27,775 cases being only 0.000097.
The residual deviances (for the grouped data files) are 13.17 and 13.85, with df =
4.

The log-link model has the advantage of simplicity of interpretation, the expo-
nentiated coefficients estimating ratios of probabilities instead of ratios of odds. For
instance, adjusting for whether an Italian citizen and whether receiving a pension,
the probability that a woman is employed is estimated to be .exp(−1.2388) = 0.2897
times the probability that a man is employed.

Table 5.1 also shows sample proportions for the eight cases. Both models show
clear lack of fit for the non-Italians, although the sample sizes for those cases
are relatively small. In fact, for non-Italians, fitted and sampled values are quite
different. Improved fits result from adding an interaction term between gender and
whether an Italian citizen to reflect that the gender effect seems to be larger for
Italian citizens than for non-citizens. Table 5.1 also shows fitted values for the model
with this interaction term, with logit and log links. For this model, fitted values are
again uniformly very close, with the absolute difference averaged over the 27,775
cases being only 0.000062. The residual deviances are 1.35 and 1.42 with df = 3.

We next consider the 72,225 subjects having age under 65. The sample propor-
tions that were employed (.y = 1) in the eight cases that cross classify the three
explanatory variables fell between 0.20 and 0.75, so we fitted models both with
logit and identity links, as shown in Appendix Table A2. The main-effects model
fits are

.logit[P̂ (Y = 1)] = 0.3502 − 0.6440x1 + 0.7017x2 − 1.8737x3
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and

.P̂ (Y = 1) = 0.5876 − 0.1386x1 + 0.1513x2 − 0.4078x3

Again, the identity-link model has the advantage of simplicity of interpretation. For
instance, adjusting for whether an Italian citizen and whether receiving a pension,
the probability that a woman is employed is estimated to be 0.1386 lower than the
probability that a man is employed. (Interestingly, the estimated effects of .x2 and
.x3 have reverse sign from the estimated effects for the older sample, and the gender
effect in the logit model is about half the size.)

Table 5.2 shows the fitted values for the two models and sample proportions for
the eight cases. The fits are quite close, with the absolute difference averaged over
the 72,225 cases being only 0.00430. These two models show lack of fit for the non-
Italians with a pension, although these are only 195 of the 72,225 cases. Improved
fits result from adding an interaction term between the Italian citizen and pension
variables. The gender main-effect estimate in the identity-link model changes only
from .−0.1386 to .−0.1397. Table 5.2 also shows fitted values for the interaction
models with logit and identity links. They are quite close, with the average absolute
difference being only 0.00286. The residual deviances are 15.80 and 30.32 with
.df = 3, not particularly large for this enormous sample size.

We do not wish to suggest by these examples that one should not use logistic
regression. Indeed, an obvious advantage of it compared to the models with log and
identity links is that it is relevant regardless of the range of values for .P(Y = 1).
However, we believe that the log-link model and identity-link model can sometimes
supplement the logit-link model, in particular by providing effect interpretations that
are simpler for many to understand.

Table 5.2 Fitted values for Istat sample for younger subjects, for models with logit and identity
links for predicting employment using gender (G), Italian (I), and pension (P)

Main effects Italian/Pension interaction

Logit Identity Logit Identity Sample proportion

G I P .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) (Sample size)

1 1 1 0.1876 0.1924 0.1845 0.1775 0.1991 (3400)

1 1 0 0.6006 0.6002 0.6011 0.6020 0.5974 (27,700)

1 0 1 0.1027 0.0410 0.2153 0.2119 0.2202 (100)

1 0 0 0.4271 0.4489 0.4243 0.4334 0.4339 (5200)

0 1 1 0.3054 0.3310 0.3012 0.3171 0.2879 (3800)

0 1 0 0.7411 0.7389 0.7416 0.7416 0.7453 (27,500)

0 0 1 0.1789 0.1797 0.3433 0.3516 0.3372 (100)

0 0 0 0.5867 0.5875 0.5840 0.5731 0.5725 (4400)

Note: The sample sizes for the sample proportions were not the actual ones but are rounded to
the nearest hundred, for Istat confidentiality reasons
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5.3 Alternative Effect Measures for Explanatory Variables

Because of the range restrictions for probabilities, the identity and log links are often
not appropriate. But even in fitting a model such as logistic or probit regression, one
can construct summary measures based on differences and ratios of probabilities to
help others understand the size of the effects. In this section, we describe two types
of interpretation that supplement estimated model-parameter effects with simpler
effects reported on the probability scale rather than on the scale of the link function.
Such effects also exhibit greater stability in terms of the impact of uncorrelated
explanatory variables.

When a binary regression model of generalized linear model form contains
solely main effects, .P(Y = 1) changes monotonically as a quantitative explanatory
variables increases, with others at fixed values. This is the situation that we assume
in forming these supplementary summary measures.

5.3.1 Probability Effect Measures

A simple summary for the effect of an explanatory variable .xk averages the rate of
change in .P(Y = 1), as a function of .xk . For this, we consider the expression (5.2)
of the model, namely .F−1[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp. Let .f (y) =
∂F (y)/∂y denote the corresponding probability density function. For a quantitative
explanatory variable .xk , the rate of change in .P(Y = 1) when other explanatory
variables are fixed at certain values .x∗ is

.∂P (Y = 1|x = x∗)/∂xk = f (α + βz∗ + β1x
∗
1 + · · · + βpx∗

p)βk.

These measures are denoted in different ways depending on the context; for
example, the econometric literature [6] uses the term elasticity, while the statistics
literature calls them either marginal effects or partial effects. Long and Mustillo
[16] and many others refer to such an instantaneous effect as a marginal effect. This
terminology is a bit misleading, as this partial derivative refers to a conditional effect
of .xk rather than its marginal effect as the term marginal is commonly used (i.e., for
a sole predictor, collapsing over the other explanatory variables). Some authors, e.g.
[14], instead use the term partial effect, which we use in this paper.

For the logit link, the partial effect for .xk on .P(y = 1) has the expression

.∂P (Y = 1|x = x∗)/∂xk = βkP (y = 1|x = x∗)[1 − P(y = 1|x = x∗)].

This takes values bounded above by its highest value of .βk/4 that occurs when
.P(Y = 1|x = x∗) = 1/2. For probit models, the highest value of this instantaneous
change is .βk/

√
2π , also when .P(Y = 1|x = x∗) = 1/2. These maximum values

need not be relevant, as .P(Y = 1) need not be near 1/2 for most or all the data.
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Any particular way of fixing values of the explanatory variables has its corre-
sponding partial effect value for .xk . Long and Mustillo [16] summarize various
versions. Here, we mainly consider the average partial effect, which estimates the
partial effect of .xk at each of the n sample values of the explanatory variables,
and then averages them. We could instead estimate the partial effect with every
explanatory variable, including .xk , set at its mean, which is the partial effect at
the mean. Or, we could set all explanatory variables at values considered to be of
particular interest. This might be more appropriate if the sample is not random or not
representative of the population of interest, in which case it is sometimes referred
to as a partial effect at a representative value. For each version, the summary value
obtained still reflects the effect of .xk adjusting for the explanatory variables, unlike
an averaging of the effect over values of a random effect in a generalized linear
mixed model, in which case the effect changes nature to being population-averaged
and can have quite different magnitude.

For a categorical explanatory variable, for each version one would instead use a
discrete change, estimating the change in .P(Y = 1) for a change in an indicator
variable. To compare two groups, for instance, for the n sample observations, we
could find the difference between estimates of .P(Y = 1) when .z = 1 and when .z =
0 at the sample values for the other predictors and average the obtained values. When
the number of possible values of the categorical explanatory variable is greater than
two, the discrete change is computed as the difference in the predicted probabilities
for cases in one category relative to the reference level.

Discrete changes are also relevant for quantitative explanatory variables, to
summarize estimated changes in .P(Y = 1) over a particular range of .xk values.
For example, to summarize the effect of a quantitative variable .xk on y, it can be
useful to report the difference between the model-fitted estimate of .P(Y = 1) at
the maximum and minimum values of .xk , when other explanatory variables are set
at particular values such as their means. A caveat for such measures is that their
relevance depends on the plausibility of .xk taking extreme values when all other
explanatory variables fall at their means. Also, this summary can be misleading
when outliers exist on .xk , in which case one can instead report the estimated
probabilities at more resistant quantiles. Reporting them at the upper and lower
quartiles of .xk summarizes the estimated change in .P(Y = 1) over the range of
the middle half of the observations on .xk , with other explanatory variables fixed.
Such a measure has greater scope for reflecting reality.

A useful and easy-to-obtain measure that we’ve not seen proposed for the two-
group comparison focuses on ratios of estimated probabilities for the two groups.
For example, we could average the n log-ratios of probability estimates, to obtain a
measure comparable to the effect in the log-link GLM, and then exponentiate that
average for interpretive purposes. Again, other versions are possible, such as finding
the ratio at the mean of the other explanatory variables. Such measures would seem
to be especially useful when fitted probabilities are near 0 for the groups being
compared.

Greene [9, pp. 775–785] showed how to obtain standard errors for the maximum
likelihood estimators of some effect measures based on instantaneous rates of
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change and differences of probabilities. We have used the bootstrap to obtain a
standard error (SE) for the log-ratio measure just proposed. Mood [18] pointed out
that the average partial effect has behavior reminiscent of effects in ordinary linear
models, in the sense that it is roughly stable when we add an explanatory variable
to the model that is uncorrelated with the variable for which we are describing
the effect. Such behavior is expected, as such an average partial effect typically
takes similar value as the effect using the linear probability model discussed in
Sect. 5.2. The effect measures are available in software, such as presented by Leeper
[13], Long and Freese [15, pp. 341–351], and Sun [21, pp. 527–531]. Agresti and
Tarantola [3] and Iannario and Tarantola [12] proposed analogous measures for
modeling ordinal data.

5.3.2 A Probability Summary for Ordered Comparison of
Groups

It is sometimes realistic to regard a categorical variable as crude measurement of an
underlying continuous latent variable .y∗ that, if we could observe it, would be the
response variable for an ordinary linear model. In fact, model (5.2) is implied by a
model in which a latent response has conditional distribution with standard cdf given
by the inverse of the link function [1, p. 252]. We next use this connection to suggest
an alternative way to summarize an effect, in the context of comparing two groups
(.z = 0 and .z = 1). Let .y∗

1 and .y∗
2 denote independent underlying latent variables

for the binary response, representing the underlying distributions when .z = 1 and
when .z = 0 respectively. At a particular setting .x for other explanatory variables,
.P(Y ∗

1 > Y ∗
2 ; x) is a summary measure of relative size, suggested by Agresti and

Kateri [2] for ordinal response variables.
The normal latent variable model with .y∗ ∼ N(βz + β1x1 + · · · + βpxp, 1)

implies the probit model

.Φ−1[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp,

with .α the cutpoint on the underlying scale between .y∗ values for which .y = 1 and
for which .y = 0. For this model,

.P(Y ∗
1 > Y ∗

2 ; x) = P

[
(y∗

1 − y∗
2 ) − β√
2

>
−β√

2

]
= Φ

(
β√
2

)
. (5.3)

This is true regardless of the .x value, so we denote it by .P(Y ∗
1 > Y ∗

2 ). For the logit
link,

.P(Y ∗
1 > Y ∗

2 ) ≈ exp(β/
√

2)

[1 + exp(β/
√

2)] , (5.4)
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for the .β coefficient of z in the logistic model.
When the latent variable model for binary data is realistic, this type of probability

comparison of the groups supplements the ordinary interpretation of the effect
coefficient .β. As .β increases from 0, the probability increases from 0.5 toward 1.
In addition, a natural way to construct a summary measure of predictive power is to
estimate .R2 for the linear model that is specified for the underlying latent response
variable. McKelvey and Zavoina [17] suggested this measure for a probit model for
ordinal responses, for which the underlying latent variable model is the ordinary
normal linear model, but it applies also for binary data and for other link functions
for ordinal data [3].

5.3.3 Example: Measures for Italian Survey Data

We illustrate these measures for the example from earlier in this article of modeling
Italian employment status. For simplicity, here we consider only the main effects
models.

The average partial effect for a logistic model approximates the corresponding
effect from the binary model with identity link. For the younger age group, we
obtained the gender effect of .−0.1386 (.SE = 0.0035) with the identity-link model.
The estimated average partial effect for the model with logit link is .−0.1409
(.SE = 0.0035). This can be easily found with an existing package in R applied
to the ungrouped data file, with code such shown in Table A2 in the Appendix.

The average partial effect for log-ratios that we suggested for a logistic model
approximates the corresponding effect from the binary model with log link. For
the older age group the gender effect estimate is equal to .−1.2388 (.SE = .0.0516)
with the log-link model. The estimated average log-ratio partial effect for the model
with logit link is .−1.2398 (.SE = 0.0517). Table A3 in the Appendix presents
edited R code for obtaining the estimated average log-ratio partial effect and for
using the bootstrap with 1000 resamplings of the data to obtain its SE. As one
can do with the log-link model parameter estimate, one could utilize the asymptotic
normality of the sample measure to obtain a correponding confidence interval for the
population value, such as the 95% confidence interval .−1.2398 ± 1.96(0.0517),
which is (.−1.341,−1.138). The exponentiated endpoints of the interval, that is
(0.26, 0.32), are a confidence interval on the probability-ratio scale. (Recall that
the log-link model provided ML estimate 0.2897.) Alternatively, one can find a
bootstrap confidence interval, such as shown with the percentile method in Table A3.

Whether a latent variable is sensible for measuring propensity toward employ-
ment is debatable. But if so, from Eq. (5.4) with the estimated gender effect .β̂ =
−1.3236 for the older sample, the estimated probability that a randomly selected
female would be higher on the latent variable than a randomly selected male is
.exp(−1.3236/

√
2)/[1 + exp(−1.3236/

√
2)] = 0.282. For the younger sample, the

effect is .exp(−0.6440/
√

2)/[1 + exp(−0.6440/
√

2)] = 0.388.



5 Interpreting Effects in Modeling Binary Data 167

5.4 Generalized Additive Model for Binary Data

A generalized additive model (GAM) replaces the linear predictor in a binary
generalized linear model (GLM) by additive unspecified smooth functions. Its basic
version has the form

.link[P(y = 1)] = s1(x1) + · · · + sj (xj ) + · · · + sp(xp),

where the smooth function .sj is typically based on cubic splines [11] and more
generally uses basis expansions of low rank with complexity controlled by ridge
penalties on regression coefficients [e.g. 23]. The name additive derives from
the additive structure of the predictor. GAMs have the advantage over GLMs of
greater flexibility, with an ordinary GLM with .sk(xk) replaced by .βkxk . In practical
application, it is often helpful to use both smooth and linear terms in a model.
Using a graphical portrayal of a GAM fit, we may discover patterns that we would
miss with ordinary GLMs, and we may obtain potentially better estimates of mean
responses. A disadvantage of GAMs and other smoothing methods, compared with
GLMs, is that interpretability is even more difficult. It can be more difficult to
summarize an effect and judge when it has substantive importance.

Fasiolo et al. [5] described an efficient visual method for interpreting GAMs,
using the mcgViz package in R. The proposed methods include ones to bin the
data and summarize them in a form that can be displayed effectively, interactive
Q-Q plots, portrayals of conditional residuals, and visualizations of the uncertainty
of the fitted smooth effects. To supplement these with simple numerical summaries,
we believe that measures that aid in interpreting binary GLMs can also be useful for
GAMs. When an effect of a quantitative explanatory variable seems to be monotonic
and not highly variable in the degree of non-linearity, useful measures include
measures of average partial rates of change of probabilities and comparisons of the
fitted probability at extreme values or quartiles or other quantiles of the explanatory
variable.

How does one describe quantitatively the effect of an explanatory variable or
obtain a confidence intervals for the true effect? Here, we suggest a way to construct
an estimated average partial effect using the fit of a GAM. For explanatory variable
k, let .xi(k) denote the values of the other explanatory variables for observation
i. The fitted rate of change for explanatory variable .xk for observation i can be
approximated by

.[P̂ (y = 1 | xi(k), xik + ε) − P̂ (y = 1 | xi(k), xik − ε)]/2ε

for a very small .ε. Finding the mean of these values for the n observations yields an
approximate average partial effect for that predictor. We suggest starting with a trial
value such as .ε = 0.000001 and then using a smaller value yet to ensure that results
are stable to several decimal places. For comparing two groups, one could find an
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average difference or average ratio of estimated probabilities at the n values of the
explanatory variables.

5.4.1 Example: GAM for Horseshoe Crab Study

We illustrate the use of the average partial effect in the context of GAMs with a
data set analyzed extensively with logistic regression in [1], from a study of nesting
horseshoe crabs. During spawning season, a female migrates to the shore to breed.
With a male attached to her spine, she lays clusters of eggs, which are fertilized
externally. During spawning, other male crabs, called satellites, may cluster around
the pair and fertilize the eggs. The response outcome for each female crab is whether
she had any satellites (1 .= yes, 0 .= no). Explanatory variables associated with this
response were the female crab’s carapace (shell) width, which is a summary of her
size, and her color (four categories from light to dark), which is a surrogate for the
crab’s age, older crabs being darker. In the sample, width had a mean of .26.3 cm and
a standard deviation of .2.1 cm. Logistic modeling showed that width had a positive
effect on the presence of a satellite, and color being dark (category 4) had a negative
effect.

The logistic ML fit with predictors width and an indicator for color that is 1 for
dark-colored crabs and 0 for others is

.logit[P̂ (Y = 1)] = −11.6790 + 0.4782(width) − 1.3005(color),

with standard errors of 0.104 for width and 0.526 for color. Table A4 in the appendix
shows edited results for the logistic regression and a GAM fit with these data, which
is

.logit[P̂ (Y = 1)] = −11.2470 + s(width) − 1.2805(color),

s(width) being a smoothing spline. Figure 5.2 shows the GAM fit, with jittered
observations. Adding an interaction term does not provide a significantly improved
fit.

Table A5 in the Appendix shows edited R code for finding the average partial
effects for width and for color for this GAM as well as for the corresponding logistic
model. Interpretation is relatively simple. For the logistic fit at the .n = 173 observed
width values, the average rate of change is .0.087 in the estimated probability of
a satellite per 1 cm increase in width, adjusting for color. At those width values,
the estimated probability of a satellite averages .0.261 lower if the crab has dark
color than if it has a lighter color. For the GAM, the corresponding values are .0.085
(standard error .= 0.015) and .0.254 (standard error .= 0.112), quite similar because
the logistic model fits relatively well.

Table A6 in the Appendix shows edited R code for using the bootstrap with 1000
resamplings of the data to obtain standard errors and confidence intervals for the
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Fig. 5.2 Portrayal of GAM fit for the effects of width and color (black for dark, red for other
colors) on jittered responses for whether a female horseshoe crab has at least one satellite

average partial effects in the GAM. For example, the bias-corrected and accelerated
(BC.a) confidence interval of (.−0.466,−0.028) for the average partial effect for
color indicates that at the sampled width values, the probability of a satellite is
estimated to average between .0.028 and .0.466 lower if the crab has dark color than
if it has a lighter color. The relatively wide interval reflects partly that the sample
had only 22 dark-colored crabs.

5.5 Discussion and Future Research

Future research could apply the methods of this paper to other models for binary
responses. In particular, using alternative link functions to aid in interpretation
would be useful for marginal models, whether fitted by GEE methods or maximum
likelihood. The binary and log links are more challenging for random effects
models, as the usual assumption of normally-distributed random effects adds
another restriction to models with bounded range values. Effect measures such as
average partial effects are also relevant for models for multi-category responses. See
[3] for their use with cumulative link models for ordinal responses.

Perhaps more challenging for future research is the development of effect
measures for generalized additive models. The average partial effect measure
presented in this article is of use when relationships are monotone, but often that
is not the case. Even when it is the case, difference or ratio effects are sometimes
highly variable across the range of an explanatory variable, and a single summary
may be too simplistic. Also for the binary generalized linear models considered
here, we assumed that .P(Y = 1) is monotone in quantitative explanatory variables,
and alternative measures are needed when this is not the case.

In summary, in these days in which statistical science is ever more visible,
partly because of the emergence of data science and methods for “big data,” it is
increasingly important for statisticians to develop ways to present relatively simple
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summaries of complex methods that will be understandable by a relatively wide
audience. We hope that this paper is a step in that direction.

Acknowledgments The authors appreciate helpful comments from two referees and from Pablo
Inchausti and Maria Kateri.

Appendix

This appendix provides the source code for the R analyses described in the text.

Table A1 R code for fitting logistic and log-link models to the older-age Istat sample

-------------------------------------------------------------------------------
>Italian1 <- read.csv("http://www.stat.ufl.edu/~aa/cat/data/Italian_older.csv",
+ header=TRUE)
>mod.logit <- glm(empl ~ female + italian + pension, family=binomial,
+ data=Italian1)
>summary(mod.logit) # fit of logistic model; default link is logit

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8686 0.1631 -11.46 <2e-16
female -1.3236 0.0546 -24.26 <2e-16
italian -0.4295 0.1632 -2.63 0.0085
pension 0.2162 0.0948 2.28 0.0225
---
>mod.log <- glm(empl ~ female + italian + pension, family=binomial(link=log),
+ data=Italian1)
>summary(mod.log) # fit of model with log link function

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0374 0.1465 -13.91 <2e-16
female -1.2388 0.0516 -24.00 <2e-16
italian -0.3619 0.1460 -2.48 0.013
pension 0.2003 0.0885 2.26 0.024
-------------------------------------------------------------------------------
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Table A2 R code for fitting logistic and linear probability models to the younger-age Istat sample
and finding the average partial effect for the logistic regression model

-------------------------------------------------------------------------------
>Italian2 <- read.csv("http://www.stat.ufl.edu/~aa/cat/data/Italian_younger.csv",
+ header=TRUE)
>mod.logit <- glm(empl ~ female + italian + pension, family=binomial,
+ data=Italian2)
>summary(mod.logit)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3502 0.0224 15.6 <2e-16
female -0.6440 0.0161 -39.9 <2e-16
italian 0.7017 0.0225 31.2 <2e-16
pension -1.8737 0.0288 -65.1 <2e-16
---
> mod.linprob <- glm(empl ~ female + italian + pension,

family=quasi(link=identity, variance="mu(1-mu)"), data=Italian2)
>summary(mod.linprob) # fit of linear probability model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5876 0.0052 112.4 <2e-16
female -0.1386 0.0035 -40.1 <2e-16
italian 0.1513 0.0052 29.1 <2e-16
pension -0.4078 0.0052 -78.4 <2e-16
---
>library(mfx)
>logitmfx(mod.logit, atmean=FALSE, data=Italian2)
Marginal Effects:

dF/dx Std. Err. z P>|z|
female -0.14062 0.00346 -40.6 <2e-16
italian 0.15820 0.00512 30.9 <2e-16
pension -0.41602 0.00508 -81.9 <2e-16
-------------------------------------------------------------------------------
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Table A3 R code for finding average log-ratio partial effect and bootstrap SE and bootstrap CI
for the logistic regression model applied to the older-age Istat sample

-------------------------------------------------------------------------------
>library(plyr)
>library(boot)
>attach(Italian1)
---
APER.log<-function(formula, data, indices, fam, var_exp)

{
dat<-data[indices,]
mod <- glm(formula, family=fam, data=dat)
pred.prob <- (predict(mod,type="response"))
var_exp_ind<-var_exp[indices,]
r_new<- as.data.frame(cbind(var_exp_ind, pred.prob))
r1_new<-count(r_new, vars = c(names(r_new)))
row_r1<-nrow(r1_new)
pred.prob.Male_new<-r1_new$pred.prob[1:(row_r1/2)]
pred.prob.Female_new<-r1_new$pred.prob[((row_r1/2)+1):row_r1]
r2_new <- count(var_exp_ind[,-1],vars = c(names(var_exp_ind)[-1]))
APER.log_new <- ((log(pred.prob.Female_new/pred.prob.Male_new)%*%r2_new$freq)
+ /sum(r2_new$freq))
return(APER.log_new)
}
APER.log(formula=empl ~ female + italian + pension, data=Italian1, indices=
+ c(1:nrow(Italian1)), fam=binomial,var_exp=cbind(female, italian, pension))

[,1]
[1,] -1.2398
---
APER.log_boot <- boot(data=Italian1, statistic=APER.log, R=1000,

formula=empl ~ female + italian + pension, fam=binomial,
var_exp=cbind(female, italian, pension) )

> APER.log_boot
Bootstrap Statistics :

original bias std. error
t1* -1.2398 -0.00039268 0.051689
---
> boot.ci(APER.log_boot,type="perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Intervals :
Level Percentile
95% (-1.344, -1.141 )
-------------------------------------------------------------------------------
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Table A4 R code for GAM fit for using width and color as predictors of whether a female
horseshoe crab has any satellites

-------------------------------------------------------------------------------
>Crabs <- read.table("http://www.stat.ufl.edu/~aa/cat/data/Crabs.dat",
+ header=TRUE)
>Crabs$c4 <- ifelse(Crabs$color == 4, 1, 0) # indicator for color cat. 4
>fit.glm <- glm(y ~ width + c4, family=binomial, data=Crabs)
>summary(fit.glm)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.6790 2.6925 -4.338 1.44e-05
width 0.4782 0.1041 4.592 4.39e-06
c4 -1.3005 0.5259 -2.473 0.0134

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.96 on 170 degrees of freedom
---
>library(gam)
>fit.gam <- gam(y ~ s(width) + c4, family=binomial, data=Crabs)
>summary(fit.gam)

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 185.4678 on 167.0001 degrees of freedom
Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)
s(width) 1 17.774 17.7736 18.3127 3.15e-05
c4 1 5.928 5.9278 6.1076 0.01446
Residuals 167 162.084 0.9706
>fit.gam$coefficients
(Intercept) c4
-11.2470 -1.2805
-------------------------------------------------------------------------------
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Table A5 R code for finding the average partial effects for width and for color for the logistic
regression model and for the generalized additive model for the presence of horseshoe crab
satellites

-------------------------------------------------------------------------------
> Crabs <- read.table("http://www.stat.ufl.edu/~aa/cat/data/Crabs.dat",

header=TRUE)
> Crabs$c4 <- ifelse(Crabs$color == 4, 1, 0) # indicator for dark color
> fit <- glm(y ~ width + c4, family=binomial, data=Crabs)
> library(mfx)
> logitmfx(fit, atmean=FALSE, data=Crabs) # with atmean=TRUE, finds
Marginal Effects: # effect only at the mean

dF/dx Std. Err. z P>|z|
width 0.08748 0.02447 3.5748 0.00035
c4 -0.26142 0.10569 -2.4735 0.01338
---
dF/dx is for discrete change for the following variables: "c4"

#Function to obtain Average Partial Effects in a GAM model
APE_GAM<-function(formula,data,indices, pvar1,pvar2, fam,epsilon){

d <- data[indices,]
fit <- gam(formula,family=fam, data=d)
data_plus <- data
data_minus <- data
data_plus[,pvar1] <- data[,pvar1] + epsilon
data_minus[,pvar1] <- data[,pvar1] - epsilon
data1_plus <- data_plus[,c(pvar1, pvar2)]
data1_minus <- data_minus[,c(pvar1, pvar2)]
tvec <- (predict(fit, data1_plus, type="response")

- predict(fit,data1_minus, type="response"))/(2*epsilon)
APE <- mean(tvec)
return(APE)

}

# APE for width
> APE_GAM(formula = y ~ s(width) + c4, data=Crabs, indices=c(1:nrow(Crabs)),
+ pvar1=5, pvar2=8, fam=binomial, epsilon=0.000001)
[1] 0.0850665

# Function to obtain a discrete change in a GAM model
dchange_GAM <-function(formula, data, indices, pvar1, pvar2, fam,epsilon){

d <- data[indices,]
fit <- gam(formula,family=fam, data=d)
data_plus <- data
data_minus <- data
data_plus[,pvar2] <- 1
data_minus[,pvar2] <- 0
data1_plus <- data_plus[,c(pvar1, pvar2)]
data1_minus <- data_minus[,c(pvar1, pvar2)]
tvec <- (predict(fit, data1_plus, type="response")

- predict(fit, data1_minus, type="response"))
APE <- mean(tvec)
return(APE)
}

dchange_GAM (formula = y ~ s(width) + c4,data=Crabs,indices=c(1:173),
pvar1=5, pvar2=8, fam=binomial,epsilon=0.000001)

[1] -0.2539021
-------------------------------------------------------------------------------
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Table A6 R code for using a bootstrap to find confidence intervals for the average partial effects
for width and for color for the generalized additive model for the presence of horseshoe crab
satellites

-------------------------------------------------------------------------------
#width variable
> APE_boot <- boot(data=Crabs, statistic=APE_GAM, R=1000, formula =
+ y ~ s(width) + c4, pvar1=5, pvar2=8, fam=binomial, epsilon=0.000001)
> APE_boot
Bootstrap Statistics :

original bias std. error
t1* 0.0850665 -0.0007855886 0.01513634
> boot.ci(APE_boot, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Level BCa
95% ( 0.0536, 0.1122 )

#color variable
> disc_boot_1 <- boot(data=Crabs, statistic=dchange_GAM, R=1000, formula =
+ y ~ s(width) + c4, pvar1=5, pvar2=8, fam=binomial, epsilon=0.000001)
> disc_boot_1
Bootstrap Statistics :

original bias std. error
t1* -0.2539021 -0.002005479 0.1118384

boot.ci(disc_boot_1, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Level BCa
95% (-0.4658, -0.0285 )
-------------------------------------------------------------------------------
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Chapter 6 
Mean and Median Bias Reduction: A 
Concise Review and Application to 
Adjacent-Categories Logit Models 

Ioannis Kosmidis 

6.1 Overview 

The first part of this chapter provides an example-driven, concise review of the 
developments in a fast growing body of literature about mean and median bias 
reduction (BR) in parametric estimation via adjusted score equations; see [10] for  
mean BR (mBR) and [15] for median BR (mdBR). Particular focus is placed on 
how these methods can be used as a remedy for the numerical and inferential 
consequences of boundary maximum likelihood (ML) estimates in categorical 
response models, which are illustrated in Sect. 6.2. Sections 6.3 and 6.4 describe 
how the mean and median bias of the ML estimator can be reduced in general 
parametric models through the appropriate adjustment of the gradient of the log-
likelihood. Section 6.5 discusses the validity of inference when the ML estimates are 
replaced by mBR or mdBR estimates in standard first-order procedures. Section 6.6 
takes a close look at the equivariance properties of mBR and mdBR estimators under 
transformation of the model parameters. We also present an approximation of the 
bias of general transformations of mBR estimators, which can be used to correct for 
the bias of transformations of the model parameters using only the mBR estimates, 
the second derivatives of the transformation, and the expected information matrix. 
The bias approximation is used to get mBR estimates of odds ratios from mBR 
estimates of regression coefficients in logistic regression models. 

The second part of this chapter uses the results from the first to develop, for 
the first time, mBR and mdBR procedures for adjacent-categories logit (ACL) 
models for ordinal responses (see, for example, [2], Chapter 4 for an introduction). 
Section 6.7 reviews the proportional odds (PO) and non-proportional odds (NPO) 
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versions of the ACL models, and their key properties, including their equivalence 
to baseline-category logit (BCL) models, and discusses how that equivalence can 
be exploited for ML estimation. A real-data case study is used to illustrate that 
boundary estimates can also cause numerical and inferential issues for ACL models. 
Section 6.8 then details how and when the equivariance properties of mBR and 
mdBR, and implementations of the latter for BCL models, can be used for mBR 
and mdBR for the PO and NPO versions of ACL models. Finally, Sect. 6.9 details 
how the mBR estimates can be used for the explicit correction of the estimates of 
ordinal superiority summaries. 

6.2 Boundary Estimates in Categorical Response Models 

It is well known that ML estimation of regression models with categorical responses 
may result in estimates on the boundary of the parameter space. The data patterns 
that result in boundary estimates in general multinomial logistic regression models 
(also known as baseline category models models; see [1, Section 7.1]) have been 
studied extensively and are completely characterized. For a range of binomial 
regression models, [38] proves that a certain degree of “overlap” on the data is 
a necessary and sufficient condition for the ML estimates to have finite values. 
Albert and Anderson [4] enrich the arguments in [38] generalizing the results in the 
case of baseline-category logit (BCL) models for nominal responses. In particular, 
[4] categorize the possible configurations for the sample points into complete 
separation, quasi-complete separation, and overlap, and then show that separation 
is necessary and sufficient for the ML estimate to have at least one infinite-valued 
component. Geometric representations of (quasi-)complete separation for binomial 
logistic regression –when the ACL and BCL models reduce to exactly the same 
form– are given in [4, Figure 1], and for multinomial responses in [27, Figure 1]. 

Example 6.1 (Separation in Logistic Regression) A simple illustration of a com-
pletely separated data set is shown in Fig. 6.1. The data consists of 100 realizations 
of two continuous covariates . x2 and . x3, and a response y that ends up being 0 
whenever .x2 + 2x3 > 0. ML estimation of the logistic regression model with 
.log{π/(1 − π)} = β1 + β2x2 + β3x3, where . π is the probability of observing 
.y = 1 given x, results in the estimated logistic discriminant line in Fig. 6.1, 
with the log-likelihood attaining its global maximum value of 0, and the fitted 
value 0 being assigned to all observations with .y = 0, and 1 to the rest. 
The detectseparation R package [25] that implements the methods in the 
unpublished PhD thesis by Konis [17] can be used to show that the ML estimates of 
. β1, . β2 and . β3 are .−∞, .+∞ and .+∞ respectively. 

While there is no ambiguity in reporting infinite estimates, estimates on the 
boundary of the parameter space can (i) cause numerical instabilities to fitting 
procedures, (ii) lead to misleading output when estimation is based on iterative 
procedures with a stopping criterion, and more importantly, (iii) cause havoc
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Fig. 6.1 The data described in Example 6.1. The dashed line is the line .0 = β̂2x2 + β̂3x3, where  
the fitted probabilities are all . 0.5

Table 6.1 ML, mBR and 
mdBR estimates for the 
logistic regression model in 
Example 6.1. The estimated 
standard errors (S.E.) are 
based on the expected 
information matrix at the 
estimates. The z-statistic is 
computed as estimate over 
estimated S.E., and the 
p-value is computed as 
.2min(Φ(z.), 1 − Φ(z. )), 
where .Φ(·) is the cumulative 
distribution function of the 
standard Normal distribution 

Parameter Estimate Estimated S.E. z-statistic p-value 

Maximum likelihood 

.β1 −22.397 13879.616 −0.002 0.999 

.β2 62.578 20968.761 0.003 0.998 

.β3 132.228 44964.541 0.003 0.998 

Mean bias reduction 

.β1 −2.001 1.552 −1.289 0.197 

.β2 5.266 1.997 2.637 0.008 

.β3 11.166 3.984 2.803 0.005 

Median bias reduction 

.β1 −2.583 1.984 −1.302 0.193 

.β2 6.325 2.628 2.406 0.016 

.β3 13.321 5.293 2.517 0.012 

to asymptotic inferential procedures, and especially to the ones that depend on 
estimates of the standard error of the estimators (for example, Wald tests and related 
confidence intervals), oftentimes leading to wrong inferences. For example, the ML 
estimates in Table 6.1 have been obtained using the glm() function in R [37]. 
Despite the fact that the ML estimates for . β1, . β2 and . β3 are in reality infinite, the 
stopping criteria of the fitting procedure that glm() implements are met for finite 
values of the parameters, which are returned. The reported estimated standard errors 
are also finite and substantially larger than the estimates. This results in small, in 
absolute value, z-statistics, and hence no evidence against the individual hypotheses 
.β2 = 0 and .β3 = 0; one would expect at least some evidence against the hypotheses 
given that the value of the response has been fully determined by the values of . x2
and . x3.
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One way to circumvent the numerical and inferential issues associated with 
boundary ML estimates is to replace ML with an alternative estimation method that 
(i) has comparable or sometimes better asymptotic properties than the ML estimator 
generally does, and (ii) tends to result or results in estimates away from the boundary 
of the parameter space. Popular examples of such alternative estimation methods are 
the mean bias-reducing adjusted score functions approach in [10], and the median 
bias-reducing adjusted score functions approach in [15], which we briefly review in 
Sects. 6.3, 6.4, and 6.6. 

6.3 Mean Bias Reduction 

Let .�(θ) be the log-likelihood about a parameter vector . θ with .θ ∈ �v . Assuming 
that the model at hand is appropriate, then under fairly general regularity conditions 
about the model, the ML estimator .θ̂ = argmax �(θ) has mean bias . Eθ (θ̂ −
θ) = O(N−1), where N is a measure of information about . θ , usually –but not 
necessarily– the sample size. 

If .S(θ) = ∇�(θ), [10] shows that we can define an alternative estimator . θ∗ with 
mean bias .Eθ (θ

∗ − θ) = O(N−2), which is asymptotically smaller than the bias of 
. θ̂ , as the solution of 

.S(θ) + A(θ) = 0v , (6.1) 

where 

. At(θ) = 1

2
trace

[
i(θ)−1 {Pt(θ) + Qt(θ)}

]
(t = 1, . . . , v) .

In the above expression, .Pt (θ) = Eθ (S(θ)S(θ)�St (θ)) and . Qt(θ) =
−Eθ (j (θ)St (θ)), and .j (θ) = −∇∇��(θ) and .i(θ) = Eθ (S(θ)S(θ)�) are 
the observed and expected information matrix about . θ , respectively, with all 
expectations taken with respect to the model. 

Mean bias reduction has been found to result in estimates away from the 
boundary of the parameter space in a range of categorical data models; see, for 
example, [10] and [14] for binomial logistic regression; [31] for the estimation of 
simple complementary log–log-models; [22, Section 6] for row-column association 
models; [6, 23], and [26, Section 6] for BCL models; and [19] for cumulative link 
models. 

If . θ is the canonical parameter of a full exponential family [see 33, Chapter 5], 
like in binomial and multinomial logistic regression, then .j (θ) = i(θ) and . j (θ)

does not depend on the stochastic part of the model. Hence, .Qt(θ) = 0v×v , where 
.0v×v is a .v × v matrix of zeros, and some algebra [see 10, Section 3] gives that the
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solution of the mean bias-reducing adjusted score equations (6.1) is equivalent to 
the maximization of the penalized log-likelihood 

.�(θ) + 1

2
log det{i(θ)} , (6.2) 

where the penalty is the logarithm of the Jeffreys prior. Recent work by [24] 
considers the impact of penalized likelihoods like (6.2) in the estimation of many 
well-used binomial-response generalized linear models, including logistic, probit, 
complementary log-log, and cauchit regression. Among other results, [24] prove 
that maximizing the likelihood after penalizing it by arbitrary positive powers of the 
Jeffreys prior always results in finite estimates, and derive the shrinkage directions 
implied by the penalty. 

6.4 Median Bias Reduction 

The median bias-reducing adjusted score functions of [15] is another method that 
has been found to result in finite estimates in extensive simulation studies with 
logistic regression and BCL models (see [26], Section 6) and with cumulative link 
models [12]. 

The ML estimator generally has median bias .P(θ̂t ≤ θt ) = 1/2 + O(N−1/2). 
[15] show that we can define an alternative estimator . θ† with . P(θ

†
t ≤ θt ) = 1/2 +

O(N−3/2), which is asymptotically closer to .1/2 than the median bias of . θ̂ , as the  
solution of 

.S(θ) + A(θ) − i(θ)F (θ) = 0v . (6.3) 

In the above expression, .Ft(θ) = [i(θ)−1]�t F̃t (θ), with 

. F̃tu(θ) = trace

[
ĩu(θ)

{
1

3
Pt (θ) + 1

2
Qt(θ)

}]
(t = 1, . . . , v) ,

and .ĩu(θ) = [i(θ)−1]u[i(θ)−1]�u /[i(θ)−1]uu .(u = 1, . . . , v), where . Au and . Atu

denote the uth column and .(t, u)th element of a matrix A. 
When .j (θ) = i(θ), expression (6.3) simplifies in a similar manner as expres-

sion (6.1) does. In fact, for one-parameter models (.v = 1) that are exponential 
families in canonical parameterization, it can be shown that mdBR is formally 
equivalent to the maximization of .�(θ) + log det{i(θ)}/6 (see [15], Section 2.1). 
However, mdBR has no penalized likelihood interpretation for .v > 1.
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6.5 Inference with Mean and Median Bias Reduction 

According to the results in [10] and [15], both . θ∗ and . θ† have the same asymptotic 
distribution as the ML estimator generally does, and hence are asymptotically 
efficient. Therefore, the distribution of those estimators for finite samples can be 
approximated by a Normal with mean . θ and variance-covariance matrix .{i(θ)}−1. 
The derivation of this result relies on the fact that both the adjustments .A(θ) and 
.A(θ) − i(θ)F (θ) to the score functions for mBR and mdBR in (6.1) and (6.3), 
respectively, are of order .O(1) as .N → ∞. Hence, the score function .S(θ), which 
is .Op(

√
N), dominates the adjustments as information increases. The implication 

is that standard errors for the components of . θ∗ and . θ† can be computed exactly as 
for the ML estimator, using the square roots of the diagonal elements of . {i(θ)}−1

of .{j (θ)}−1 at the estimates. Furthermore, first-order inferences, like standard Wald 
tests and Wald-type confidence intervals and regions are constructed in a plugin 
fashion, by replacing the ML estimates with the mBR or mdBR estimates in the 
usual procedures in standard software. 

Example 6.2 (Separation in Logistic Regression (Continued.)) Continuing from 
Example 6.1, Table 6.1 provides the estimates of . β1, . β2 and . β3 from mBR 
and mdBR. The estimates have been computed using the default arguments of 
the brglm_fit() method of the brglm2 R package [21]. brglm_fit() 
implements a variant of the quasi-Fisher scoring procedure 

.θ(k+1) = θ(k) + {i(θ(k))}−1U(θ(k)) , (6.4) 

where .U(θ) := S(θ) + A(θ) if the intention is to compute the mean BR estimates, 
and .U(θ) := S(θ) + A(θ) − i(θ)F (θ) if the intention is to compute the mdBR 
estimates; see [26] for details on the quasi-Fisher iterations and the form of the 
adjusted scores for mBR and mdBR in generalized linear models. Convergence 
has been rapid and brglm_fit() reported no issues for either mBR or mdBR. 
Furthermore, the estimates and estimated standard errors appear to be finite. Note 
that the estimates and estimated standard errors from mBR are typically closer in 
absolute value to zero than those from mdBR. Importantly, the z-statistics for . β2
and . β3 are all away from zero, and, in contrast to ML, both mBR and mdBR suggest 
at least some evidence against the individual hypothesis .β2 = 0 and .β3 = 0, which 
agrees with the fact that the value of the response has been fully determined from 
the values of . x2 and . x3.
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6.6 Bias Reduction and Parameter Transformation 

6.6.1 Maximum Likelihood Estimation and General Parameter 
Transformations 

The ML estimator is equivariant in the sense that the ML estimator of .g(θ) is 
exactly .g(θ̂) for any one-to-one transformation . g(·). Hence, there is no need to 
maximize the log-likelihood about .g(θ) if the ML estimator of . θ has already been 
computed. In contrast, the mBR and mdBR estimators are equivariant only for 
specific transformations . g(·). 

6.6.2 Mean Bias Reduction and Linear Parameter 
Transformations 

The mBR estimator is equivariant under linear transformations for the parameters, 
in the sense that the mBR estimator of . Cθ for a known matrix C is exactly .Cθ∗. 
The same is not true for the mdBR estimator. 

For example, using Table 6.1, the mBR estimate of .β2−β3 in Example 6.2 is sim-
ply .5.266−11.166 = −5.9. The mdBR estimate, however, is not . 6.325−13.321 =
6.996, but rather .−7.227, which is obtained by reparameterizing the model in 
terms of .β2−β3 and computing the mdBR estimate by solving (6.3) in the new 
parameterization. 

6.6.3 Median Bias Reduction and Component-Wise Parameter 
Transformations 

On the other hand, the mdBR estimator of .(g1(θ1), . . . , gv(θv))
� is 

.(g1(θ
†
1 ), . . . , gv(θ

†
v ))� for any set of one-to-one functions .g1(·), . . . , gv(·). In other 

words, the mdBR estimator is equivariant under component-wise transformations. 
The same is not true for the mBR estimator. For example, the mdBR estimate of the 
odds-ratio .exp(β2) in Example 6.2 is exactly .exp(6.325), but  .exp(5.266) is not an 
mBR estimate of .exp(β2).
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6.6.4 Mean Bias Reduction and General Parameter 
Transformations 

Di Caterina and Kosmidis [9] show that there is a simple way to derive the mean 
bias of .h(θ∗) for any three-times differentiable function .h : C → D, with . C ⊂ �p

and .D ⊂ �, where . θ∗ is an mBR estimator of . θ with .O(N−2) bias. In particular, 
[9] show that the estimator .h(θ∗) of .ζ = h(θ) has mean bias 

.E(h(θ∗) − h(θ)) = 1

2
trace

{
i(θ)−1∇∇�h(θ)

}
+ O(N−2) , (6.5) 

where .∇∇�h(θ) is the hessian of .h(·) at . θ . Note that for linear transformations, 
.∇∇�h(θ) = 0v×v , and hence .E(h(θ∗) − h(θ)) = O(N−2), which confirms the 
discussion in Sect. 6.6.2 that the mBR estimator is exactly equivariant for linear 
transformations of the parameters. The first term in the right-hand side of (6.5) can 
be evaluated at . θ∗ and be used to derive mean BR estimators of .h(θ), based only 
on . θ̂∗, .i(θ̂∗), and .∇∇�h(θ∗). An obvious mean BR estimator resulting from (6.5) 
is .h(θ∗) − trace

{
i(θ∗)−1∇∇�h(θ∗)

}
/2. 

For example, consider the special case of estimation of the odds-ratio . exp(βj )

in Example 6.1, which was estimated using the equivariance properties of mdBR in 
Sect. 6.6.3. Expression (6.5) gives that the odds-ratio at the mBR estimator has 

.E(exp(β∗
j )) = exp(βj )

[
1 + 1

2
vjj (θ)

]
+ O(N−2) , (6.6) 

where .vjj (θ) = [i(θ)−1]jj . Hence, two mean BR estimators of .ζj = exp(βj ) with 
.O(N−2) bias are 

. ζ ∗
j = exp(β∗

j )

[
1 − 1

2
vjj (θ

∗)
]

and ζ ∗∗
j = exp(β∗

j )

1 + vjj (θ∗)/2
,

arising from subtracting an estimate of the bias at .θ := θ∗ from .exp(β∗
j ), and 

dividing .exp(β∗
j ) by the correction factor .1 + vjj (θ

∗)/2 from the right-hand side 
of (6.6), respectively. The estimator .ζ ∗∗

j for the odds-ratio . ζj has the advantage 
of being always positive, while . ζ ∗

j takes negative values if .vjj (θ
∗) > 2. For  

example, to the accuracy reported in Table 6.1, . ζ ∗
2 = exp(5.266)(1 − 1.9972/2) =

−192.48, which is clearly nonsensical as an odds-ratio estimate. In contrast, 
.ζ ∗
2 = exp(5.266)/(1 + 1.9972/2) = 64.66. The approximation . exp{vjj (θ)/2} ≈
1 + vjj (θ)/2 for small .vjj (θ) can be used to show that the mean BR estimator . ζ ∗∗

j

closely relates to the mean BR estimator .ζ ∗∗∗
j = exp{β∗

j − vjj (θ
∗)/2} derived in 

[28]. 
The discussion in Sect. 6.5 implies that estimated standard errors for mBR 

estimators of transformed parameters constructed on the basis of (6.6) can be 
computed using the delta method, as for the ML estimator.
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6.7 Adjacent-Categories Logit Models 

6.7.1 Proportional and Non-proportional Odds Models 

We now turn our attention in applying mBR and mdBR from Sects. 6.3 and 6.4 to 
ACL models. 

Adjacent-categories logit models (see, for example, [2], Chapter 4 for an intro-
duction) are a prominent family of regression models for ordinal responses, where 
the local odds ratios of consecutive categories of an ordinal response variable are 
linked with linear combinations of parameters and explanatory variables. Suppose 
that we observe realizations of n independent random vectors of frequencies 
.Y1, . . . , Yn, where .Yi = (Yi1, . . . , Yik)

� has a k-category multinomial distribution 
with ordered categories .1 < 2 < . . . < k, total .mi = ∑k

j=1 Yij and probability 

vector .(π1(xi), . . . , πk(xi))
� with .

∑k
j=1 πj (xi) = 1, where . xi = (xi1, . . . , xip)�

is a p-vector of covariate values. An ACL model has 

. log
πj (x)

πj+1(x)
= ηj (x) (j = 1, . . . , k − 1) , (6.7) 

where .ηj (x) is typically a linear combination of unknown model parameters and a 
covariate vector x. 

The specification of .ηj (x) results in ACL models with particular properties. The 
PO version of the ACL model has 

.ηj (x) = αj + β�x , (6.8) 

and .p + k − 1 scalar model parameters .θ = (α1, . . . , αk−1, β1, . . . , βp)�. 
Straightforward algebra starting from (6.7) gives that 

. 
πj (x2)

πj+1(x2)
= exp{β�(x2 − x1)} πj (x1)

πj+1(x1)
for any x1, x2 ∈ �p

and j ∈ {1, . . . , k − 1} . (6.9) 

As a result, adjacent-categories odds are indeed proportional with a constant of 
proportionality that does not depend on the category. The NPO version of the ACL 
model has 

.ηj (x) = αj + β�
j x , (6.10) 

with .(k − 1)(p + 1) scalar model parameters .θ = (α1, . . . , αk−1, β
�
1 , . . . , β�

k−1)
�, 

where .βj = (βj1, . . . , βjp)�. Figure 6.2 shows the adjacent-categories log-odds 
for two distinct categories under the PO and the NPO versions of the ACL model, 
for .x ∈ �. Note that under the PO version of the model the log-odds for distinct
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x1 x2 

log πj (x) 
πj+1(x) 

βj(x2 − x1) 

log πk(x) 
πk+1(x) 

βk(x2 − x1) 

x1 x2 

log πj (x) 
πj+1(x) 

β(x2 − x1) 

log πk(x) 
πk+1(x) 

β(x2 − x1) 

Fig. 6.2 The adjacent-categories log-odds for categories j and k, .j = k, under the proportional 
odds (left) and the non-proportional odds (right) versions of the model, for .x ∈ �. The probability 
for category j at covariate value x is denoted . πj (x)

categories are parallel lines, which in turn implies (6.9) for any pair of categories. 
On the other hand, under the NPO version of the model the log-odds are not parallel 
lines, so (6.9) is not generally satisfied. 

The most general version of the ACL model is the partial proportional odds 
model with 

. ηj (x) = αj + ξ�
j x(np) + ρ�x(p) ,

where .x(np) and .x(p) are sub-vectors of x with distinct components characterizing 
the PO and NPO effects, respectively. All subsequent derivations, results, and 
discussions can be written in terms of the more general partial proportional odds 
version, and then PO and NPO can be presented as special cases. Nevertheless, we 
focus on the PO and NPO versions separately, to keep the notation concise, and 
because some of the following results are specific to PO and not to NPO. 

Expressions (6.8) and (6.10) immediately imply that the ACL model provides 
valid category probabilities across the parameter space and regardless of whether 
the local odds .πj (x)/πj+1(x) are modelled as proportional or non-proportional. 
This is in contrast to other popular ordinal-response regression models, like 
cumulative-logit models [29], whose NPO versions [35] may provide invalid cate-
gory probabilities in subsets of the parameter space and covariate space, and, hence, 
result in hard-to-circumvent issues with estimation, inference, and prediction.
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6.7.2 Equivalence with Baseline-Category Logit Models 

Writing .log{πj (x)/πk(x)} = ∑k−1
l=j log{πl(x)/πl+1(x)}, it is simple to show that 

both the PO and NPO versions of the ACL model for ordinal responses can be 
written as BCL models for nominal responses (see [2], Section 4.1) where the k 
category is used as reference. 

In particular, the NPO version of the ACL model in (6.10) is equivalent to a BCL 
model with 

. log
πj (x)

πk(x)
= γj + δ�

j x (j = 1, . . . , k − 1) , (6.11) 

where .γj = ∑k−1
l=j αl and .δj = ∑k−1

l=j βl . The PO version of the ACL model in (6.8) 
is equivalent to a BCL model with 

. log
πj (x)

πk(x)
= γj + (k − j)ζ�x (j = 1, . . . , k − 1) , (6.12) 

where .γj = ∑k−1
l=j αl and .β = ζ . 

6.7.3 Maximum Likelihood Estimation 

A consequence of the equivalence between the BCL and ACL models is that we 
can estimate the latter using the ML estimates for the former. The equivariance 
of the maximum ML estimator under one-to-one transformations of the model 
parameters guarantees that after computing the ML estimates for the parameters 
of BCL model (6.11), the model parameters of the NPO version of the ACL can be 
estimated as .α̂j = γ̂j −γ̂j+1 and .β̂j = δ̂j −δ̂j+1 .(j = 1, . . . , k−1)with .γ̂k = 0 and 
.β̂k = 0p, where . 0p is a p-vector of zeros. Correspondingly, once the ML estimates 
for the parameters of BCL model (6.12) have been obtained, the model parameters 
of the PO version of the ACL model can be estimated as .α̂j = γ̂j − γ̂j+1 and . β̂ = ζ̂

.(j = 1, . . . , k − 1). 
So, ML estimation of ACL models can be performed using ready ML imple-

mentations for fitting the BCL models (6.11) and (6.12), like the multinom() 
function of the nnet R package [39] that exploits the equivalence of BCL models 
with neural networks, and the brmultinom() function of the brglm2 R package 
[21] that exploits the equivalence of BCL models with Poisson log-linear models.
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6.7.4 Exponential Families 

The BCL model is a full exponential family distribution with natural parameters 
. γj and . δj for the NPO version (6.11) of the ACL model, and . γj and . ζ for the PO 
version (6.12) of the ACL model .(j = 1, . . . , k − 1). Hence, another consequence 
of the equivalence of ACL models to BCL models is that both the PO and NPO 
versions of the ACL model are full exponential families. Specifically, the sufficient 
statistics in the NPO parameterization are .

∑j

l=1

∑n
i=1 yil for . αj , . 

∑j

l=1

∑n
i=1 yilxi

for . βj , and .
∑j

l=1

∑n
i=1 yil for . αj and .

∑k−1
j=1

∑n
i=1(k − j)yij xi for . β in the PO 

parameterization .(j = 1, . . . , k − 1) (see, also, [2], Section 4.1). 

6.7.5 Infinite Maximum Likelihood Estimates 

As is the case for their equivalent BCL models, depending on the data configuration, 
the ML estimates of ACL models can have infinite components, resulting in issues 
for both iterative estimation procedures and for first-order inference about the 
parameters. In fact, infinite ML estimates for the PO and NPO versions of the 
ACL model result if, and only if, separation occurs for the equivalent BCL models. 
Example 6.3 below uses a real data set to illustrate the consequences that separation 
can have in the estimation of, and inference from, ACL models. 

Example 6.3 (Infinite ML Estimates in ACL Models) The data set in Table 6.2 
comes from [36] and concerns an experiment for investigating factors that affect 
the bitterness of white wine. There are two factors in the experiment, namely 
temperature at the time of crushing the grapes (with two levels, “cold” and “warm”) 
and contact of the juice with the skin (with two levels “Yes” and “No”). For each 
combination of factors two bottles were rated on their bitterness by a panel of 9 
judges. The responses of the judges on the bitterness of the wine were taken on a 
continuous scale in the interval from 0 (“None”) to 100 (“Intense”) and then they 
were grouped correspondingly into 5 ordered categories, labelled as “1”, “2”, “3”, 
“4”, and “5”. 

Figure 6.3 shows the empirical adjacent logits . log{(yij + 1/2)/(yij+1 + 1/2)}
.(j = 1, . . . , 4) for the bitterness rating for all combinations of temperature and 
contact. Note that .1/2 has been added to all frequencies as a means of getting 

Table 6.2 The wine tasting 
data [36] 

Bitterness rating 

Temperature Contact 1 2 3 4 5 

Cold No 4 9 5 0 0 

Cold Yes 1 7 8 2 0 

Warm No 0 5 8 3 2 

Warm Yes 0 1 5 7 5
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Fig. 6.3 The empirical adjacent logits .log{(yij + 1/2)/(yij+1 + 1/2)} .(j = 1, . . . , 4) for the 
bitterness rating for all combinations of levels for temperature and contact 

estimates of the adjacent-categories logits with second-order mean bias (see, for 
example, [13]), avoiding infinite estimates in the process. 

There seems to be evidence that the adjacent logits for the combinations of 
temperature and contact are parallel (see, also, Fig. 6.2), or in other words, the 
adjacent odds ratios across temperature and/or contact levels do not depend on the 
rating. The latter hypothesis can be formally tested by estimating the NPO version 
of the ACL model 

. log
πj (t, c)

πj+1(t, c)
= αj + β1j t + β2j c (j = 1, . . . , 4) , (6.13) 

where t is 1 if temperature is warm and 0 otherwise, c is 1 if contact is yes and 
0 otherwise, and .πj (t, c) is the probability of a bitterness rating j at t and c. The  
hypotheses of parallel adjacent logits can then be written in terms of the model 
parameters as .β11 = . . . = β14 = β1 and .β21 = . . . = β24 = β2, and tested using 
the value of the Wald statistic 

.W = θ̂�C� {
Ci(θ̂)−1C�}−1

Cθ̂ , (6.14) 

where . θ̂ is the ML estimate of .θ = (α1, . . . , α4, β11, . . . , β14, β21, . . . , β24)
� for 

model (6.13), and .i(θ) is the expected information matrix at . θ . The contrast matrix 
C we  use in (6.14) has the form 

.C =
[
03×4 C1 03×4

03×4 03×4 C1

]
with C1 =

⎡
⎣
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤
⎦ ,
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Table 6.3 Top: ML estimates and estimated standard errors (in parenthesis) from fitting the 
ACL model in (6.13) on the data in Table 6.2. The estimates are obtained using the vglm() 
function of the VGAM R package [42] version 1.1-5 with default converge criteria (epsilon = 
.10−7 in vglm.control()). Bottom: ML estimates and estimated standard errors using stricter 
convergence criteria (epsilon = .10−9 in vglm.control()). The estimated standard errors 
are computed as the square roots of the diagonal of the inverse of the expected information matrix 
at the ML estimates. The column .�(θ̂) gives the maximized log-likelihood for each fit 

epsilon .�(θ̂) Rating (j ) .α̂j .β̂1j . β̂2j

.10−7 . −15.29 1 −0.83 (0.59) −20.26 (10047.96) −1.10 (1.21) 

2 0.67 (0.52) −1.21 (0.66) −0.87 (0.64) 

3 3.08 (1.05) −1.98 (0.92) −1.54 (0.83) 

4 20.22 (10732.18) −19.89 (10732.18) 0.04 (1.08) 

.10−9 . −15.29 1 −0.83 (0.59) −25.26 (122409.18) −1.10 (1.21) 

2 0.67 (0.52) −1.21 (0.66) −0.87 (0.64) 

3 3.08 (1.05) −1.98 (0.92) −1.54 (0.83) 

4 25.22 (130748.2) −24.89 (130748.24) 0.04 (1.08) 

where .0a×b is an .a×b matrix of zeros. General results about the limiting distribution 
of the ML estimator under mild regularity conditions (see, for example, [30, 
Section 7.1 and Section 7.2] and [8, Section 9.1]) can be used to show that the 
Wald statistic has asymptotically a . χ2

6 distribution. 
Table 6.3 shows the ML estimates of the ACL model in (6.13), as computed 

using the vglm() function of the VGAM R package [42]. No warnings or errors 
were returned when fitting the model. As has been the case in the logistic regression 
model of Example 6.1, the estimates and estimated standard errors for . α4, . β11 and 
.β14 are atypically large in absolute value. It is also clear that these estimates and 
estimated standard errors increase in absolute value as the convergence criteria get 
stricter, while the maximized log-likelihood value remains the same to the displayed 
accuracy. 

These issues are not due to the implementation of the vglm() function; instead 
they are consequences of quasi-complete separation for this particular combination 
of data and model (6.13). TheML estimates . ̂α4, . β̂11 and . β̂14 in Table 6.3 are formally 
. ∞, .−∞ and .−∞, the corresponding estimated standard errors are all . ∞, and the 
likelihood surface has an asymptote at .−15.29 as . α4, . β11 and . β14 diverge to . ∞, . −∞
and .−∞, respectively, along a ray in the parameter space. 

Note here that the estimated standard errors appear to diverge faster than the 
ML estimates do as the convergence criteria get stricter. As a result, the typically 
reported Z-statistics for individual hypothesis tests about the parameters will tend 
to be spuriously small in absolute value regardless of the strength of the evidence 
against the hypotheses. Hence, the naive use of the computer output for inference 
about the parameters of ACL models is likely to lead to invalid conclusions when 
data separation occurs. More importantly, having estimates on the boundary of the 
parameter space violates the assumptions required for the asymptotic . χ2 distribution
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of (6.14). Consequently, it is hard to justify the performance and validity of the Wald 
statistic in that case. 

6.8 Mean and Median Bias Reduction for ACL Models 

A consequence of the ACL models being full exponential family distributions (see 
Sect. 6.7.4) is that mean BR can be implemented by maximizing the penalized 
likelihood in (6.2). Nevertheless, as for ML, mean BR estimates for ACL models 
can be conveniently computed through a ready implementation for mean BR in 
BCL models coupled with the equivariance of the mean BR estimator under linear 
transformations (see Sect. 6.6.2). 

Kosmidis and Firth [23] prove that the equivalence of BCL models and Poisson 
log-linear models (see, also, [34] and [5] for authoritative descriptions of that 
equivalence) extends to the mBR estimates, and describe a simple algorithm for 
mBR estimation of BCL models, each iteration of which consists of the following 
steps: 

P1 Rescale the Poisson means to match the observed multinomial totals. 
P2 Add half a leverage based on the rescaled means to the observed multinomial 

frequencies. 
P3 Estimate, using ML, the equivalent Poisson log-linear model to the adjusted 

frequencies. 

Iteration stops when the differences between successive estimates or, alternatively, 
the mean BR adjusted scores in (6.1) are smaller than a pre-determined, small 
positive constant. An alternative criterion can be based on the change of the mean 
BR penalized likelihood (6.2) between successive iterations. mBR estimates for 
ACL models can then be computed as follows 

S1 Compute mBR estimates of the parameters . γj and . δj of the BCL model in (6.11) 
for the NPO version (or . γj and . ζ of the BCL model in (6.12) for the PO version) 
.(j = 1, . . . , q) by iterating steps P1, P2, and P3. 

S2 Calculate the mBR estimates for the NPO version of the ACL model as . α∗
j =

γ ∗
j − γ ∗

j+1 and .β
∗
j = δ∗

j − δ∗
j+1 (or .α

∗
j = γ ∗

j − γ ∗
j+1 and .β

∗ = ζ ∗ for the PO 
version) .(j = 1, . . . , q), with .γ ∗

k = 0 and .β∗
k = 0p. 

Implementation of mdBR for ACL models is not as direct as that of mBR. A 
maximum penalized likelihood interpretation of mdBR does not exist for general 
ACL models, like it does for mBR. Also, since contrasts of parameters are not 
component-wise transformations, algorithms for mdBR for BCL models (see [26, 
Section 6] for extensions of the results in [23]) can only be used to get mdBR 
estimates . β† of . β in the PO version of the ACL model. In other words, the estimates 
.γ
†
j − γ

†
j+1 and .β†

j = δ
†
j − δ

†
j+1 .(j = 1, . . . , q) are not mdBR estimates, unless 

.k = 2. Hence, for general ACL models, computing the mdBR estimates . θ† must
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Table 6.4 Mean BR estimates and estimated standard errors (in parenthesis) from fitting the ACL 
model in (6.13) on the data in Table 6.2. The estimates are obtained using the bracl() function 
of the brglm2 R package [21] version 0.7.2 with default convergence criteria. The estimated 
standard errors are computed as the square roots of the diagonal of . i(θ∗)−1

Rating (j ) .α∗
j .β∗

1j . β∗
2j

1 −0.76 (0.59) . −1.65 (1.60) −0.82 (1.08) 

2 0.62 (0.52) . −1.12 (0.66) −0.80 (0.64) 

3 2.73 (0.99) . −1.75 (0.87) −1.38 (0.81) 

4 1.53 (1.83) . −1.26 (1.68) 0.07 (1.03) 

rely on implementing and solving the mdBR adjusted score equations (6.3). That 
can certainly be done (using, for example, the quasi-Fisher scoring iteration (6.4)), 
with the only effort being in deriving .Pt(θ) using the expressions for mBR in BCL 
models in [18, Appendix B.5]. 

Example 6.4 (Infinite ML Estimates in ACL Models (Continued.)) Table 6.4 gives 
the mBR estimates from fitting the ACL model in (6.13) on the data in Table 6.2. 
The mBR estimates are computed using the .bracl() function of the brglm2 
R package, which implements mBR through the corresponding Poisson log-linear 
model, as detailed earlier. No convergence issues have been reported; the absolute 
values of the components of the adjusted score functions in (6.1) at the mBR 
estimates are all less than .10−6, and all estimates and estimated standard errors 
remain unchanged to the reported accuracy as the convergence criteria get stricter. 

The Wald statistic (6.14) when . θ̂ is replaced by . θ∗ has value .1.067, which is small 
compared to the value of the .95% quantile of a . χ2

6 distribution (.12.592), providing 
no evidence against the simpler PO model with .β11 = . . . = β14 = β1 and . β21 =
. . . = β24 = β2. 

Comparing the mBR estimates in Table 6.4 to the ML ones in Table 6.3, we  
notice that the mBR estimates are shrunken towards zero relative to ML ones. 
As a result, the fitted multinomial probabilities at the mBR estimates are closer 
to .(1/5, 1/5, 1/5, 1/5, 1/5)� than ones at the ML estimates. In other words, 
mBR shrinks the model towards equi-probability across observations. This is a 
generalization of the shrinkage effect of mBR we observed in Example 6.2 and 
that [24] study theoretically in the special case of logistic regression (.k = 2). 

It is interesting to note that the shrinkage direction of mBR in cumulative logit 
models for global cumulative odds [19] is rather different; the fitted multinomial 
probabilities at the mBR estimates for the PO version of the cumulative logit model 
would be closer to  .(1/2, 0, 0, 0, 1/2)� than the ones at the ML estimates. In other 
words, mBR shrinks the cumulative logit model towards a logistic regression model 
for the end categories. 

The ML, mdBR, and mBR estimates for . β1 for the PO version of the ACL model 
are .−1.69, .−1.61, and .−1.56, respectively, with corresponding estimated standard 
errors .0.41, .0.39, and .0.38. The respective estimates for . β2 are .−0.96, .−0.92, and 
.−0.90, respectively, with corresponding estimated standard errors .0.32, .0.31, and
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.0.31. The shrinkage towards equi-probability that mBR delivers is also apparent 
in the estimates for the PO version of the ACL model. As is the case in logistic 
regression, mdBR also tends to shrink estimates towards zero, but that shrinkage 
effect is less strong than from mBR. 

6.9 Mean Bias Reduction of Ordinal Superiority Summaries 

The mean BR estimates for ACL models can be used to get improved estimates 
of other model summaries by using the bias of transformations of the mean RB 
estimator in expression (6.5). 

A prominent example of such a summary are the ordinal, model-based superi-
ority measures for comparing distributions of two groups, adjusted for covariates 
that are introduced in [3]. In ordinal-response models with a latent variable 
interpretation, such as cumulative-link models [29], ordinal superiority measures 
can be defined directly on the latent scale, which results in exact (for probit, log-
log, and complementary log-log link) or approximate expressions (for logit link) 
that are functions of only the coefficient of the indicator variable characterizing 
the two groups being compared. This fact has been exploited in [12], who used the 
equivariance properties of the mdBR estimator (see Sect. 6.6.3) to directly transform 
the mdBR estimates of the group indicator parameter to deliver mdBR estimates of 
ordinal superiority measures. 

In more general models for ordinal responses that may also lack a latent variable 
interpretation (like ACL models), ordinal superiority measures are instead defined 
in terms of category probabilities that necessarily depend on all model parameters. 
Suppose that the covariate vector is .(w�, z)�, where z is a group indicator variable 
taking value 0 for group 1 and value 0 for group 2, and denote by .πj (w, 1) and 
.πj (w, 0) .(j = 1, . . . , k) the model-based probabilities of category j at covariate 
values w, for group 1 and group 2, respectively. The dependence of the probabilities 
on the model parameters has been suppressed here for notational convenience. 

Agresti and Kateri [3] propose comparing the distribution of the ordinal response 
at group 1 to that at group 2, at covariate values w, through the ordinal superiority 
measure 

.Δ(w; θ) =
∑
r>s

πr(w, 1)πs(w, 0) −
∑
s>r

πr(w, 1)πs(w, 0) . (6.15) 

If the two distributions are identical then .Δ(w; θ) = 0. Positive values of . Δ(w; θ)

indicate that for covariates w, it is more likely to observe higher response categories 
in group 1 than in group 2, and vice versa for negative values. A related ordinal 
superiority measure is 

.γ (w; θ) = 2Δ(w; θ) − 1 , (6.16)
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which takes values between 0 and 1, and is interpreted as the probability that the 
response category in group 1 is higher than the response category in group 2, while 
adjusting for covariates w (see [16], for details). In practice, the covariate setting 
w can be taken to be a representative value from a sample of covariate values 
.w1, . . . , wn, e.g.  .w̄ = ∑n

i=1 wi/n. Alternatively, if the sample of covariate values 
is representative of the population of interest then summary ordinal superiority 
measures can be defined as 

.Δ̄(θ) = 1

n

∑
Δ(wi; θ) and γ̄ (θ) = 1

n

∑
γ (wi; θ) . (6.17) 

Agresti and Kateri [3] propose estimating the ordinal superiority measures by 
replacing . θ in expressions (6.15), (6.16), and (6.17) by the ML estimator . θ̂ , and 
use the delta method to construct inferences about those measures. Note here that 
because of the specific equivariance properties of the mBR and mdBR estimator (see 
Sect. 6.6), replacing . θ by the mBR estimator . θ∗ or a mdBR estimator . θ† does not, in 
general, result in mBR or mdBR estimators of the measures. In fact, despite it being 
the case that the resulting estimators will be consistent under the same conditions 
that their ML counterparts are, they may end up having much worse finite-sample 
mean and/or median bias properties than the ML version does. 

mdBR estimators of (6.15), (6.16), and (6.17) are not easy to construct. In 
contrast, an easy-to-compute mBR estimator of .Δ(w; θ) and of the other ordinary 
superiority measures can be derived using expression (6.5). In particular, an mBR 
estimator of .Δ(w; θ) is 

. Δ∗(w; θ∗) = Δ(w; θ∗) − B∗(w; θ∗) .

where 

. B∗(w; θ) = 1

2
trace

{
i(θ)−1∇∇�Δ(w; θ)

}
,

is the first term in the right-hand side of expression (6.5). Computing . Δ∗(w; θ∗)
requires only the mBR estimator . θ∗ that can be obtained using the procedures in 
Sect. 6.8, the corresponding estimated category probabilities at .(w�, 1) and .(w�, 0), 
the matrix .i(θ∗)−1, and the hessian .∇∇�Δ(w; θ∗). All these quantities, except 
.∇∇�Δ(w; θ∗), are readily available or can be readily computed once the model has 
been estimated using mBR, as is done, for example, in Sect. 6.3 for ACL models 
and in [19] for cumulative link models. For specific ordinal-response models, the 
hessian .∇∇�Δ(w; θ) can be analytically obtained with some algebraic effort. For 
example, if .πj (w, z) is based on cumulative link models one can work with the 
expressions for the derivatives of .Δ(w; θ) in [3, Web appendix A]. Alternatively, a 
very accurate approximation of .∇∇�Δ(w; θ∗) can be obtained for general models 
using a ready implementation of .Δ(w; θ) and numerical differentiation routines, 
like the ones provided in the numDeriv R package [11]. This is the route that the 
ordinal_superiority() method of the brglm2 R package takes.
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Due to the equivariance properties of mBR estimation in Sect. 6.6.2 under linear 
transformations, mBR estimators of .γ (w; θ), .Δ†(θ), and .γ †(θ) are readily obtained 
by replacing .Δ(w; θ) by .Δ∗(w; θ∗) in expressions (6.16) and (6.17). Wald-type 
inferences about the mBR estimators of the ordinal superiority measures can be 
constructed as proposed in [3, Section 5], using the mBR estimates of the ordinal 
superiority measures along with estimated standard errors obtained using the delta 
method, based on .i(θ∗), and numerical gradients. 

Example 6.5 (mBR for Ordinal Superiority Measures from ACL Model) In order to 
assess the finite sample properties of the mBR estimator of ordinal superiority scores 
in ACL models, we consider the example in [7, Section 4.3], where the bitterness 
ratings “2”, “3”, and “4” in Table 6.2 are merged into a single rating “2–4”. Like 
the PO version of the cumulative logit model [see 7, Section 4.8], the ML estimates 
for .α2−4 and . β1 for the PO version of the ACL model (6.13) are .+∞ and . −∞
respectively. The mBR estimates of .θ = (α1, α2−4, β1, β2)

�, on the other hand, 
take the finite values .θ∗ = (−1.247, .5.331, .−3.291, .−1.181)�. If  .γ (w, θ) is the 
ordinal superiority measure for temperature setting w (.w = 0 for cold and . w = 1
for warm), and z indicates contact (.z = 1) or not  (.z = 0) of the juice with the skin, 
then .γ (0, θ∗) = 0.594 and .γ (1, θ∗) = 0.575, indicating that there is almost . 60%
chance of higher bitterness ratings when there is contact of the juice with the skin. 

We simulate .10,000 samples from the PO version of the ACL model at . θ̄ , and we 
compute .γ (w, θ̂) and .γ ∗(w, θ∗) for each sample. The simulation-based estimates 
of the finite-sample relative biases of .γ (w, θ̂) are .0.84% and .1.56% for . w = 0
and .w = 1, respectively. As expected, the mBR version .γ ∗(w, θ∗) is found to have 
smaller finite-sample relative biases at .0.13% and .−0.02% for .w = 0 and . w =
1, respectively. The corresponding percentages of underestimation are .48.48% and 
.44.69% for .γ (w, θ̂), and .52.12% and .51.14% for .γ ∗(w, θ∗). Hence, in this case, 
mBR also results in improvements in median bias. Finally, both estimators appear to 
perform satisfactorily in terms of Wald-type inferences based on them. The coverage 
probability of the nominally .95% Wald-type confidence intervals based on . γ (w, θ̂)

are .94.8% (.w = 0) and .94.6% (.w = 1), and .94.7% (.w = 0) and .95.1% (.w = 1) for  
those based on .γ ∗(w, θ∗). 

6.10 Supplementary Material 

The supplementary material consists of three scripts that replicate all the numerical 
results and graphics reported in the paper, and is available at https://ikosmidis. 
com/files/bracl_supplementary_v0.2.zip. The results are exactly reproducible in R 
version 4.1.2, and with the following packages: VGAM version 1.1-5 [42], tibble 
3.1.6 [32], dplyr 1.0.7 [41], ggplot2 3.3.5 [40], colorspace 2.0-2 [43], 
and ordinal 2019.12-10 [7], brglm2 0.8.2 [21], enrichwith 0.3.1 [20], and 
detectseparation 0.2 [25].

https://ikosmidis.com/files/bracl_supplementary_v0.2.zip
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Chapter 7 
Regularization and Predictor Selection 
for Ordinal and Categorical Data 

Jan Gertheiss and Gerhard Tutz 

7.1 Introduction 

In regression modeling, categorical variables can be challenging. Categorical 
predictors, for instance, are typically included in the model in the form of dummy 
variables that encode the occurrence of specific categories. That means a categorical 
predictor with k categories contributes .k−1 parameters. If the numbers of categories 
for single variables are large and/or several categorical predictors are available, 
the number of parameters becomes very large, and inference can be affected 
strongly. Also, an uneven distribution of the observations across the categories of 
the covariate can result in poor estimates. In classical linear regression, for instance, 
dummy coefficients referring to categories with only a small number of observations 
typically have large variance. In binary regression, it even happens from time to 
time that only observations from one response class are found within a specific 
category of an explanatory variable, which leads to inflated dummy coefficients 
tending towards .±∞. Therefore, in typical applications only a few categorical 
predictors with a manageable number of categories are used, often obtained after 
fusing categories. If those categorical variables are ordinal, an alternative, and quite 
popular approach in applied statistics, is to treat those variables as metric and use 
the classical, or corresponding generalized linear model. 

A typical example for ordinal variables as described above is the the ICF 
(International Classification of Functioning, Disability and Health) [74], which can 
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be used by health professionals to document the health and functioning of patients 
in a standardized form. For instance, the patient’s ability to walk can be assessed 
on a five-point (ordinal) scale ranging from ‘no problem’ to ‘complete problem’. 
Usually, however, not only one aspect of a person’s health will be evaluated but 
one may easily end up with dozens of corresponding variables. In addition, extreme 
categorizations will (hopefully) occur less often than those for milder problems. 
Finally, not only five-point but also nine-point scales exist within the ICF; for 
details, see Sect. 7.4, where the so-called ICF Core Set for chronic widespread 
pain will be considered. At this point, we can note that, if using ICF assessment as 
independent variables in a regression model, we are usually faced with a situation as 
sketched above: a relatively large number of (ordinal) covariates, with at least some 
having a relatively large number of levels, and potentially uneven distribution of 
the observations across levels. For the adequate handling of such settings, advanced 
and flexible methods that provide a sparse representation of categorical variables 
are needed, including, but not limited to, the selection of relevant variables. One 
approach to obtain sparse models uses regularization methods based on adequate 
penalty terms that reduce the number of effective parameters. Alternatives include 
Bayesian methods and both supervised and unsupervised machine learning tools. 

Within a Bayesian framework, model selection may be done by using the spike 
and slab distribution, which has been propagated as a modeling tool in structured 
additive regression [53]. Specifically, sparse Bayesian modeling with nominal and 
ordinal categorical predictors can be done by placing a spike and slab prior on 
appropriate differences of regression coefficients [49]. As an alternative, (model-
based) clustering may be applied on the categories’ effects, which can also be done 
in a Bayesian framework [36]. 

Penalization methods may become computationally demanding if the number 
of categories is very large. Then, an alternative way to fuse categories and select 
variables is to use recursive partitioning methods, also called trees. Tree-type 
methods for structuring categorical predictors that also work in high dimensions 
have been considered by Tutz & Berger [64]. Also, boosting methods can be used for 
both model fitting and selection, in particular with ordinal covariates [5, 23, 30, 39]. 

In this chapter we will focus on penalty-based regularization for categorical, in 
particular ordinal, predictors, but will also make some comments on regularization 
for nominal covariates and categorical response models in Sect. 7.5. The approaches 
are embedded within the general class of (generalized) additive regression models. 

Given a response y with distribution from a simple exponential family, and a set 
of covariates .x1, . . . , xp, a generalized additive model has the form [29]: 

.η = α + f1(x1) + . . . + fp(xp), μ = h(η), (7.1) 

where . μ is the (conditional) mean of y given the covariates, h is a (known) 
response function, and . η is the equivalent of the linear predictor in generalized 
linear models [41, 45]. This differs from a generalized linear model in that non-
linear functions . fj , .j = 1, . . . , p, are allowed in . η, but still the structure of .η
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is additive. Of course, if the functions . fj are restricted to be linear, a generalized 
linear model is obtained as a special case. 

Generalized additive models are, in particular, useful to obtain more flexible 
forms of predictor terms for quantitative, continuous explanatory variables. For 
those kinds of predictors, it is typically assumed that functions . fj are reasonably 
smooth; and one way to fit such models, as for instance implemented in the popular 
R [51] package mgcv [78], is to specify a set of basis functions for each predictor. 
That means, one assumes that 

.fj (x) =
qj∑

r=1

βjrBjr(x), (7.2) 

with .Bj1(x), . . . , Bjqj
(x) being the set of basis functions chosen for function . fj , 

and .βj1, . . . , βjqj
the corresponding basis coefficients; . qj is the number of basis 

functions chosen for predictor . xj . By fitting the basis coefficients, the function . fj is 
fitted implicitly. For instance, a popular choice in case of a continuous x is the so-
called B-spline basis, leading to . fj being modeled as a spline function; see, e.g., [11, 
13, 14] for details on (B-)splines. The big advantage of the basis functions approach 
is that after plugging-in the observed data . xij , .i = 1, . . . , n, .j = 1, . . . , p, the  
vector . �fj = (fj (x1j ), . . . , fj (xnj ))

� can be written as . �Bjβj , with matrix . ( �Bj )ir =
Bjr(xij ) and vector .βj = (βj1, . . . , βjqj

)�. So model (7.1) can be written as a 
(generalized) linear model with coefficients . βjr , .j = 1, . . . , p, .r = 1, . . . , qj , and 
basis coefficients can be fitted accordingly, for instance by maximum likelihood 
(ML). 

However, basis functions do not need to be smooth, and also categorical 
predictors can be modeled within the framework of additive models. Suppose one 
has a categorical predictor . xj with levels .1, . . . , kj . Then there is a somewhat 
natural basis: the basis of (dummy) functions often referred to as dummy variables 
(.l = 1, . . . , kj ) 

.Bjl(x) =
{
1 if x = l,

0 otherwise.
(7.3) 

Since it is known that . xj can only take values .1, . . . , kj , we do not need to 
think about the type and number of basis functions, placing of knots, etc., as one 
usually has to do with continuous covariates. For means of identifiability, however, 
some linear restrictions need to be placed on the basis/dummy coefficients . βjl . 
Typically, this is done by specifying a so-called reference category, e.g., category 
1 for categorical predictor . xj , and setting the corresponding .βj1 = 0. However, 
one may also set .

∑
l βjl = 0, which is also known as ‘effect coding’. In case of a 

continuous . xj a popular constraint is 

.

n∑

i=1

fj (xij ) = 0 for all j, (7.4)
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which translates into .
∑

l njlβjl = 0 for categorical predictor . xj , with .njr being 
the number of samples with level r being observed for . xj . Since the latter is 
the typical constraint in generalized additive models, also used in mgcv [78], 
we will use (7.4) here as well. After having fit the functions/basis coefficients, 
however, one can switch between constraints easily, because switching between the 
constraints mentioned above for some . fj yields an equivalent model as it simply 
means a vertical shift of the entire function . fj and a corresponding change in the 
constant . α in (7.1). However, it should be noted that by changing the constraint, 
the interpretation of .β-coefficients changes, too. In the case of standard dummy 
coding with reference category, elements of . βj refer to differences to the reference 
category. In the cases of the other two constraints given above, those . βs give  
differences to some, hypothetical, ‘mean category’. This also needs to be taken into 
account when interpreting measures of uncertainty such as confidence intervals. 

The rest of this chapter is organized as follows. In Sect. 7.2, we will discuss reg-
ularization for ordinal covariates in the framework of generalized additive models. 
We will present different types of penalties for smoothing, fusion of categories, 
and/or variable selection. In addition, we will sketch some tools for statistical 
inference that are available in generalized additive models employing quadratic 
(smoothing) penalties and show how those can be used for ordinal predictors with 
corresponding penalties as well. Based on the latter, we will present stepwise 
selection, in particular forward selection, as an alternative, and more classical, 
method for variable/model selection with ordinal predictors. We will compare those 
more classical procedures to L.1-type regularization in numerical experiments in 
Sect. 7.3. As already mentioned, Sect. 7.4 presents a case study on real-world data 
(ICF Core Set), comparing forward model selection for ordinal predictors in a 
generalized additive modeling framework to results obtained earlier [23] when using 
L.1-regularization. Section 7.5 discusses L.1-type regularization for nominally scaled 
predictors and categorical response, and Sect. 7.6 concludes. 

7.2 Regularization for Ordinal Covariates 

In generalized additive models with continuous covariates, the problem with the 
basis functions approach is that typically a rather large number of basis functions 
needs to be chosen to be sufficiently flexible with respect to the type of functions 
that can be fitted. With a large basis, however, the number of basis coefficients to be 
fitted becomes large, too. As a consequence, resulting functions tend to be wiggly 
and thus hard to interpret. Therefore, a penalty term .Jj (βj ) is typically added for 
each covariate . xj , penalizing wiggly basis coefficients and thus wiggly functions . fj . 
Instead of maximizing the usual log-likelihood .l(β) one maximizes the penalized 
log-likelihood 

.lp(β) = l(β) −
p∑

j=1

λjJj (βj ),
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where the parameters .λj , j = 1, . . . , p, are non-negative, variable-specific smooth-
ing parameters, . βj contains all coefficients that belong to covariate . xj (as defined 
above), and . β is a vector comprising all .β-coefficients. For B-splines with equally 
spaced knots, widely used penalties are quadratic difference penalties 

. Jj (βj ) =
kj∑

s=d+1

(Δdβjs)
2,

where . Δ is the difference operator, operating on adjacent B-spline coefficients, that 
is, .Δβjs = βjs − βj,s−1,Δ

2βjs = Δ(βjs − βj,s−1) = βj,s − 2βj,s−1 + βj,s−2, and 
so on. The method is referred to as P-splines (for penalized splines). An alternative 

form of the penalties uses the representation .
∑kj

s=d+1(Δ
dβjs)

2 = β�
j Kdβj , where 

the corresponding matrix .Kd has a banded structure and gives the differences in 
matrix form; for details see [14, 60]. B/P-splines have the advantage that in the 
limit, with strong smoothing, a polynomial is fitted. If a penalty of order d is used 
and the degree of the B-spline is higher than d, for large values of . λj the fit of the 
function .fj (.) will approach a polynomial of degree .d−1. Other penalties explicitly 
penalize . fj ’s curvature as given by the second derivative. A P-spline with second-
order penalty can be considered a discrete approximation. 

7.2.1 Quadratic Smoothing Penalties for Ordinal Predictors 

Quadratic smoothing penalties as described above are very common when fitting 
generalized additive models with continuous covariates. For instance, they are 
implemented in the popular R add-on package mgcv [78]. 

If the predictor is categorical, the number of basis/dummy coefficients to be fitted 
can easily become large as well (as already described above), and fitted coefficients 
tend to have high variance and be wiggly across categories. Consequently, one may 
use penalized fitting analogously to the case of continuous covariates. In particular 
with ordinal predictors, the approach is straightforward. 

7.2.1.1 Basic Ideas 

If a (quadratic) difference penalty is put on the (dummy) coefficients with 
basis (7.3), this gives exactly the smoothing penalty for ordinal predictors proposed 
earlier [21, 65, 66]. More precisely, with . βjl , .l = 1, . . . , kj , denoting the dummy 
coefficient of level l of predictor . xj , the penalty primarily used is the first-order 
penalty 

.Jj (βj ) =
kj∑

l=2

(βjl − βj,l−1)
2, (7.5)
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with .βj = (βj1, . . . , βjkj
)�. Alternatively, however, the second-order penalty 

.Jj (βj ) =
kj −1∑

l=2

(βj,l+1 − 2βjl + βj,l−1)
2, (7.6) 

penalizing deviations from linearity can be used as well [20]. The strength of 
the penalty is determined by parameter . λj , which may be different for different 
predictors . xj . In case of .λj = 0, for both penalties (7.5) and (7.6), the usual 
maximum likelihood estimates are obtained. If .λj → ∞ in case of penalty (7.5), 
the fit .fj (x) = 0 for all .x ∈ {1, . . . , kj } is obtained because of the constraint (no 
matter which one is chosen from the options given above). If penalty (7.6) is chosen, 
large . λj leads to a function . fj being linear in the class labels .1, . . . , kj . One of the 
benefits of considering ordinal predictors along with penalties (7.5) and (7.6) in the  
framework of generalized additive models is that after implementing basis (7.3) in  
the appropriate way, gam() from mgcv can be used for model fitting [24]. 

7.2.1.2 Further Statistical Inference in Generalized Additive Models 

Besides model fitting, considering ordinal predictors in the framework of general-
ized additive models has additional advantages, since we can make use of various 
tools originally developed for continuous covariates. As also described in [24], this 
particularly refers to: 

• estimation of penalty/smoothing parameters, 
• further statistical inference, such as confidence intervals, and 
• checking significance of smooth terms. 

A prerequisite for at least some of those tools is to rewrite the model with the 
quadratic smoothing penalty as a (generalized) linear mixed model. Starting with 
penalty (7.5), we may rewrite our model in terms of .β̃j = D̃1βj with 

. D̃1 =
[
1 0 . . . 0

D1

]
, and D1 =

⎛

⎜⎝
−1 1 0 0 . . .

0 −1 1 0 . . .
...

. . .
. . .

. . .
. . .

⎞

⎟⎠ .

Let us denote the subvector consisting of the last .kj − 1 elements of . β̃j by 
.uj = (uj1, . . . , uj,kj −1)

�, such that .ujl = βj,l+1 − βjl and .uj = D1βj , with . D1

from above (and .D�
1 D1 = K1 from page 202). The entries of . uj are now interpreted 

as iid random effects with .ujl ∼ N(0, τ 2j ); compare [18, 20, 57]. Then, for given 

variance parameters . τ 2j , .j = 1, . . . , p (note, the random effects’ variance may vary 

between covariates), maximizing the log-likelihood over . β̃j yields estimates that are 
equivalent to the smoothed dummies obtained via penalty (7.5), with a one-to-one
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correspondence of penalty parameter . λj and variance parameter . τj . Alternatively, 
smoothed dummy coefficients can be derived in a Bayesian framework (as the 
mode of the posterior density) by putting a Gaussian random walk prior (with prior 
variance . τ 2j ) on the dummy coefficients [21]. Analogously, penalty (7.6) can be 
derived/interpreted in a mixed model/Bayesian framework. For that purpose, we 
replace . D̃1 above by . D̃2 with 

. D̃2 =
⎡

⎣
1 0 0 . . . 0
0 1 0 . . . 0

D2

⎤

⎦ , and D2 =
⎛

⎜⎝
1 −2 1 0 0 . . .

0 1 −2 1 0 . . .
...

. . .
. . .

. . .
. . .

. . .

⎞

⎟⎠ .

Then, the last .kj −2 elements of . β̃j are denoted by .uj = (uj1, . . . , uj,kj −2)
�, such 

that .ujl = βj,l+2 − 2βj,l+1 + βjl , and as before .ujl ∼ N(0, τ 2j ) are interpreted as 
iid random effects; compare [20, 78]. 

Estimation of Penalty Parameters Both approaches, the mixed model and 
Bayesian interpretation, can be used for determining the variance components 
. τ 2j , and thereby the penalty parameters . λj . In theory, we may integrate out the 
random effects from the joint density of the response and random effects, giving the 
marginal likelihood of the fixed effects and the variance parameters. Maximizing 
this likelihood leads to ML estimates of the fixed effects and variance parameters. 
In generalized linear mixed models, however, calculating the integral analytically 
is often not possible, and also numerically demanding. The standard approach 
is the so-called Laplace approximation [4], which essentially cycles through the 
penalized log-likelihood given above and plugging-in the corresponding estimates 
of regression/basis coefficients to obtain an approximate profile likelihood for 
the variance parameters that can be maximized. In the Bayesian framework, the 
smoothed dummies are then interpreted as an empirical Bayes estimator, since 
. τ 2j are estimated from the data. In a fully Bayesian approach, we could choose a 

hyperprior, e.g., an Inverse Gamma, for . τ 2j and apply Markov Chain Monte Carlo 
(MCMC); but we won’t follow this path here. 

A problem with ML estimation of variance parameters is that those estimates are 
typically biased downwards, that is, the true variance tends to be underestimated, in 
particular if the number of fixed effects is large. As an alternative to ML that reduces 
this bias, so-called restricted maximum likelihood (REML) estimation has been 
proposed, which can be motivated in different ways [15, 27, 28, 33, 48]. Eventually, 
in the linear mixed model, the (profile) log-likelihood is (additively) corrected such 
that the number/structure of fixed effects is taken into account. In generalized 
mixed models, this can be done analogously within Laplace approximation. It 
should be noted that REML cannot be used to compare models with different 
fixed effect structures. Nevertheless, REML is very popular for estimating variance 
components in mixed models, due to the reduced bias, and hence for determining 
smoothing/penalty parameters in (generalized) additive models as well [76]. With
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ordinal predictors as considered here, it is exactly the latter that REML will 
be used for. Model comparison/selection will be discussed in more detail in 
Sect. 7.2.2 below. Besides likelihood-based methods, prediction error methods such 
as (generalized) cross-validation or the Akaike Information Criterion (AIC) can also 
be used for smoothness selection [75, 79]. 

Confidence Intervals In particular, the Bayesian interpretation of quadratic 
smoothing penalties is useful to derive confidence intervals. In the Gaussian 
identity link/linear mixed model case, one can derive the covariance matrix of 
the regression/basis coefficients’ posterior distribution. In the generalized case 
the corresponding matrix from the penalized iteratively weighted least squares 
algorithm (PIRLS) used to estimate the parameters is taken. Using this matrix, let’s 
say . Vβ , one can calculate (point-wise) credible intervals for function .f̂j = Bj β̂, 
denoting the vector of .f̂j (x) values at evaluation points . xij . For each element . f̂j i of 
. ̂fj , we obtain an approximate .(1 − α)100% credible interval via .f̂j i ± z1−α/2

√
vji , 

where . vji is the ith diagonal element of .BjVβB�
j , and . zq is the q-quantile of 

the standard normal distribution. It turns out that those credible regions also have 
good frequentist coverage rates [37, 46], and this is also the case when applied 
to smoothed ordinal effects [24]. As pointed out earlier though, interpretation 
of regression parameters, and hence the confidence intervals, changes depending 
on the constraint chosen (compare Sect. 7.1). Therefore, coverage can only be 
calculated/interpreted with respect to a “true” function where the chosen constraint 
holds. A problem, however, can occur with the second-order penalty (7.6), where 
substantial under-coverage is observed if the fitted regression function is close to 
being linear [24]. This problem is also found for (generalized) additive models with 
continuous covariates, and the suggested fix is to change the target of inference 
to the smooth term plus the overall model intercept [37, 78]. If simultaneous 
confidence intervals/confidence bands are needed instead of point-wise ones, we 
could also proceed like in the continuous case by posterior sampling [78]. 

Significance of Ordinal Predictors In general, we would like to test null hypoth-
esis .H0 : fj (x) = 0 for all potential x. With ordinal predictors, this means for all 
levels of the predictor of interest. Analogously to the confidence intervals above, 
let .f̂j = Bj β̂ denote the vector of .f̂j (x) evaluated at the predictor levels (i.e., with 
appropriately chosen dummy-matrix . Bj ). Then, following [77, 78], we can define a 
Wald-type test statistic 

. T = f̂�j V
−
j f̂j ,

where .V−
j is an appropriately chosen pseudo-inverse of .Vj = BjVβB�

j . Under 
. H0, the distribution of T is obtained via a linear combination of random variables 
following specific .χ2-distributions. For details on this linear combination and the 
pseudo-inverse . V−

j , see  [77, 78].
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When taking the mixed models perspective of penalty (7.5), the null hypothesis 
above can alternatively be written as .H0 : τ 2j = 0. In the Gaussian/linear mixed 
model with only one smooth term/variance component a (restricted) likelihood ratio 
test can be used [9, 10, 52], which also works well with ordinal data [18, 20, 57], and 
provides extensions/approximations in case of multiple ordinal predictors/smooth 
terms [18, 26, 52]. To the best of our knowledge, however, no generalization exists 
beyond models with Gaussian response. Therefore we will use the Wald-type test 
here. 

7.2.2 Smoothing and Selection 

Smoothing of ordinal predictors strongly reduces the effective number of parame-
ters. However, if many explanatory variables are available smoothing alone is not 
sufficient. Typically, the researcher also wants to select variables, that is, he/she 
wants to include only variables that contribute to explaining the variation of the 
response. A modern, and overwhelmingly popular, approach in the “theory and 
methods”-oriented statistics community, is the so-called sparsity-inducing penalties 
approach, which means that by using appropriately designed penalty terms, the 
number of covariates in the model is also reduced. In applied statistics, however, 
more classical approaches, such as stepwise selection, are also still quite common. 
In what follows, we will hence introduce both penalty-based variable selection for 
categorical, in particular ordinal, factors and stepwise selection using the inferential 
tools presented above (Sect. 7.2.1.2). 

7.2.2.1 Group Lasso and Similar Approaches 

Selection of categorical predictors can be obtained by using the penalty term 

.Jj (βj ) = √
kj ||βj ||2, (7.7) 

where .||βj ||2 = (β2
j1 + · · · + β2

jkj
)1/2 is the .L2-norm of the parameters of the j th 

group, which refers to one categorical predictor. The penalty has been called the 
group lasso [80], and is an extension of Tibshirani’s lasso [58]. The latter penalizes 
the sum of absolute values of regression coefficients, which leads to parameters that 
can be estimated to be exactly zero. If the regression coefficient of a continuous 
or binary covariate is exactly zero, the variable is excluded from the model. 
That means, all the covariates with non-zero coefficients are selected. With multi-
categorical predictors, however, exclusion of single (dummy) coefficients does not 
necessarily lead to variable selection since the entire group of dummy coefficients 
that belong to a factor needs to be set to zero simultaneously to have it excluded from 
the model. The group lasso penalty (7.7) is able to do exactly that: it select groups



208 J. Gertheiss and G. Tutz

of parameters simultaneously and, given an appropriate penalty parameter, excludes 
whole predictors from the explanatory term. As an alternative to the group lasso, we 
may also use other sparsity-inducing penalties, such as SCAD [16] or MCP  [81], on 
the norm of subvectors . βj , leading to group SCAD, group MCP, etc.; see also [31]. 

Penalty (7.7) can be used for any categorical variable, including ordinal ones. 
With ordinal covariates, however, penalty (7.7) does not exploit the additional 
information obtained from the categories’ ordering. In order to use this additional 
information, and to smooth across categories of the selected variables as we did in 
Sect. 7.2.1, we can switch to a group-wise, sparsity-inducing penalty on the vectors 
of pairwise differences .δj = (δj1, . . . , δj,kj −1)

�, with .δjl = βj,l+1 − βjl [23], 
similarly to Sect. 7.2.1.2. If all components from . δj are set to zero, we have 
coefficients .βj1 = . . . = βjkj

. That means, all levels of predictor . xj have the 
same ‘effect’. If all levels have the same effect/coefficient, it does not make sense 
to distinguish between them, and . xj can be excluded from the model. In fact, 
when looking at the potential constraints on the coefficients .βj1, . . . , βjkj

from 
Sect. 7.1, such as (7.4), it becomes clear that .βj1 = . . . = βjkj

also means that 
.βj1 = . . . = βjkj

= 0. 
It should be noted that .βj1 = . . . = βjkj

= 0 follows from .δj = 0 no 
matter which constraint is chosen: dummy coding with reference category r , i.e., 
.βjr = 0, where r may even change across variables, effect coding with .

∑
l βjl = 0, 

or (7.4). More generally speaking, when using a group-wise penalty on . δj the 
penalized maximum likelihood estimate is invariant against the constraint chosen, 
since switching between the constraints mentioned in Sect. 7.1 simply means a 
vertical shift of the entire . βj vector (as already pointed out), and hence does not 
affect . δj at all. Also, the model fit is not affected, because the constant . α (which 
does change if changing the constraint) is not penalized. If using the more general 
penalty (7.7), by contrast, the result is not invariant under changes of the constraint. 
That is why dummy variables (7.3) are typically ‘standardized’ in some sense 
[12, 54] when penalty (7.7) is used. The same applies to analogous group-wise, 
sparsity-inducing penalties, such as group SCAD and group MCP. 

7.2.2.2 Forward/Backward Selection in Generalized Additive Models 

When considering ordinal smoothing penalties in the framework of generalized 
additive models, methods such as statistical testing developed there can also be 
used for stepwise variable selection. Generally speaking, in case of so-called 
forward selection we usually start with a model containing only an intercept, 
i.e., no covariates at all (but we may also start with a small model containing 
only a set of mandatory covariates, which have to be included for substantial 
reasons). Next, we add covariates until the model is not improved anymore. Using 
backward selection, by contrast, one starts with the full model containing all the 
covariates available, and successively excludes covariates until the model does 
not improve anymore/deteriorates significantly. Of course, we may also combine 
the two directions by either including or excluding covariates in each step of
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the algorithm. If the number of predictors is relatively large compared to the 
sample size, forward selection in particular appears attractive, since the full model 
(the starting point for backward selection) is sometimes hard to fit. Furthermore, 
stepwise selection typically leads to smaller models that are easier to interpret. 
When implementing the concrete algorithm, however, one needs to choose both the 
criterion deciding on the covariate to include/exclude, and the stopping criterion. 

A popular choice is the AIC, which can be used for both tasks. For instance, 
the AIC is the default in the standard R step() procedure. When choosing the 
mixed models interpretation of generalized additive models, we may either use the 
marginal or conditional AIC. The marginal AIC approach, however, favors simpler 
models excessively [78], while the conditional AIC is biased towards larger/too 
large models [25]. A correction to fix the latter problem has, for example, been 
proposed by Wood et al. [79] and implemented in mgcv. Consequently, we may 
easily use this version of the AIC with smoothed ordinal predictors as well. 

A common alternative to the AIC, or other information criteria, is stepwise 
selection via p-values/statistical testing (an approach that is particularly popular 
among applied researchers) either “automatically”, in terms of an algorithm, or 
intuitively “by hand”. In case of forward selection, for instance, in each step the 
variable that maximizes the model’s goodness-of-fit is added, until the newly added 
variable is not statistically significant, i.e., the model does not improve significantly 
anymore. With backward selection, we exclude variables until the model becomes 
significantly worse than the model from the step before or the initial/full model. 
By using the tests presented in Sect. 7.2.1.2, we can also proceed this way with 
ordinal predictors. For selecting the variable to add, we can, for instance, use the 
model’s deviance (as the measure of goodness-of-fit). However, it should be noted 
that, regardless of whether the AIC, p-values, or some other criteria were used 
for model selection, standard inference for the model previously selected on the 
data at hand can be misleading. This issue is typically discussed under the term 
post model selection inference; see, e.g., [34] and references therein. For instance, 
this means that tests as given above typically do not control the type I error rate, 
as they would on a fixed model (which had, for example, been chosen for some 
substantial reason without looking at the data also used for estimating unknown 
model parameters). Also, the .α-level used for stepwise selection as described above 
should be interpreted as a tuning parameter controlling rather model complexity 
than the type I error rate with respect to irrelevant predictors; see also the simulation 
studies in Sect. 7.3. 

7.2.3 Level Fusion 

An alternative approach to reducing the number of parameters is to identify clusters 
of categories that are to be distinguished in their effect on the responses. When 
dealing with ordinal covariates, this can, for instance, be done by a variant of
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the fused lasso [59]. Alternatively, more classical approaches, such as stepwise 
selection, can be employed on appropriately recoded dummy variables [70]. 

7.2.3.1 Fused Lasso and Similar Approaches 

For ordered predictors it is natural to assume that clusters of categories refer to 
adjacent categories. A penalty that is inspired by the so-called fused lasso [59] and 
enforces the fusion of adjacent categories is [22, 32, 65] 

.Jj (βj ) =
kj −1∑

l=1

w
(j)
l |βj,l+1 − βjl |, (7.8) 

where the .w
(j)
l are additional, appropriately chosen weights. Those weights may, for 

instance, depend on the number of observations in the respective categories [2, 6], 
compare also Sect. 7.5. Also, they can be chosen proportionally to the absolute 
difference between unpenalized dummy coefficients, yielding a variant of the 
adaptive (fused) lasso [82]. Of course, instead of the lasso-type penalty on the 
differences of adjacent coefficients, we may also use sparsity-inducing penalties 
such as SCAD [16] or MCP  [81]. In general, we recode the model using parameters 
.δjl = βj,l+1 −βjl as done in Sect. 7.2.2.1, and may then use any penalty that is able 
to shrink .δ-parameters exactly to zero, but individually (that is, not in a group-wise 
fashion, as done in Sect. 7.2.2.1). 

A problem of the standard fused lasso (7.8) is that in special cases it does not 
lead to the desired fusion at all. Specifically, if weights are constant across levels, 
i.e., .w(j)

1 = . . . = w
(j)

kj −1 (e.g., in a balanced design), and unpenalized estimates 
are monotone across levels, the penalty essentially only depends on the distance 
between the two most extreme categories and no fusion is obtained in between. In 
this case, switching to the adaptive version or non-convex penalties can help [56]. 
Also compare SCOPE and the “Range” penalty in Sect. 7.5.1.2. 

7.2.3.2 Stepwise Selection After Recoding 

Technically, reparametrization by .δ-coefficients as described above is done by 
introducing modified dummy variables 

.zjl =
{
1 if xj > l,

0 otherwise.
(7.9) 

For instance, if having an ordinal predictor . xj with four levels, we need dummies 
. zj1, . zj2, . zj3 such that [70]:
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Level .zj1 .zj2 . zj3

1 0 0 0 

2 1 0 0 

3 1 1 0 

4 1 1 1 

Instead of sparsity-inducing penalties, we could also run classical selection algo-
rithms on the recoded data, that means, on the z-dummies. For instance, AIC-based 
stepwise selection as implemented in the R function step(). 

7.3 Numerical Experiments: L1-Regularization vs. Forward 
Selection 

In recent decades there has been tremendous methodological research on L.1-
regularization for variable and model selection in a range of models and settings. 
With more than 35,000 citations on Google Scholar, for instance, the original 
lasso paper [58] is one of the most popular contributions to statistical learning. 
Many applied researchers, however, still use more classical approaches for model 
selection, such as forward/stepwise selection, as pointed out already. In this section, 
we hence compare the forward selection procedures for ordinal predictors described 
above to L.1-regularization in some illustrative simulation studies. We will focus 
on ‘classical’, medium-sized problems with both a moderate number of (ordinal) 
predictors and sample size. 

7.3.1 Smoothing and Selection of Covariates 

Assuming the data analyst’s goal is variable selection rather than fusion of cat-
egories, we are going to compare forward selection based on the ordinal 
basis within mgcv (compare Sect. 7.2.2.2) to our group lasso approach (from 
Sect. 7.2.2.1). In addition, we will consider the common R step() function on 
a linear (lm()) model with either linear effects across levels or classical factor 
modeling. That means, ordinal predictors are either included in lm() as numerical 
variables or factors. 

7.3.1.1 Simulation Setup 

In our first simulation study, we assume that there are three influential (ordinal) 
predictors with effects as shown in Fig. 7.1. The effect of X1 is almost linear across
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Fig. 7.1 True effects of influential predictors in simulation study 1 

levels, X2 is non-monotone, and X3 is monotone but nonlinear, with smaller effect 
size than X1 and X2. In addition, we generate seven irrelevant predictors X4–X10, 
i.e., with effects being zero. Factor levels are randomly drawn from .{1, . . . , 5}, 
which means that the design is approximately balanced with each covariate having 
the same number of categories. The sample size is .n = 100, and the error term is 
standard normal. 

Using the data generated, we select the most appropriate model by the methods 
given above. In case of the ordinal forward selection, we consider .α = 0.05, . α =
0.1, and the (conditional) AIC. Smoothing parameters are determined by REML 
here, whereas the group lasso uses fivefold cross-validation. 

7.3.1.2 Results and Discussion 

We ran the simulation 1000 times and report the results in terms of selection 
frequencies and mean squared error (MSE) in Figs. 7.2 and 7.3, respectively. Mean 
model sizes in terms of the number of predictors/factors being chosen (not the 
number of estimated parameters) are provided in Table 7.1 (so the ‘truth’ is 3 here). 
Grey bars in Fig. 7.2 indicate that the covariate is actually relevant (i.e., X1, X2, 
X3, which is known in simulations). So, heights close to one are desirable here. In 
case of black bars (X4–X10) on the other hand, the covariate is just noise, which 
means that selection frequencies, which are averaged across X4–X10 in Fig. 7.2 
(bottom right), should be low. In case of an influential covariate (X1, X2, X3), the 
mean squared error is calculated as the mean across all five levels, and illustrated 
as boxplots across replicates .1, . . . , 1000 in Fig. 7.3. In case of X4-X10 (Fig. 7.3, 
bottom right), it is also averaged across X4-X10 for each replicate. That is why
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Fig. 7.2 Selection frequencies for predictors in simulation study 1 

each boxplot in Fig. 7.3 is made of 1000 data points, and the box is still visible even 
if selection frequencies for noise variables are below 25% (for a non-zero MSE, just 
one noise variable has to be selected). 

When looking at Fig. 7.2, we see that all the methods considered quite consis-
tently select predictor X1 having approximately linear effects. If the effects are 
non-monotone (X2), the linear model in particular suffers, which is not surprising, 
of course. If effect sizes go down (X3) selection frequencies drop as well. Only the 
group lasso and AIC-based forward selection for ordinal predictors within gam() 
still produce selection frequencies well above 50%. This, however, comes at a 
price: irrelevant covariates (X4–X10) are selected very frequently as well; see also 
Table 7.1. This behavior (of selecting too large models) is well known for L.1-
regularization with tuning parameters chosen via (standard) cross-validation (see, 
e.g., [17] and references therein). That is why remedies such as the relaxed lasso [43] 
and stability selection [44] have been proposed, and are highly recommended for 
ordinal/categorical predictors as well. Although correction against over-complex
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Fig. 7.3 Estimation accuracy (MSE) in simulation study 1 

Table 7.1 Mean model sizes (incl. standard deviation) in terms of the number of predictors/fac-
tors being chosen 

gam(0.05) gam(0.1) gam(AIC) grplasso step(factor) step(linear) 

2.493 (0.964) 3.158 (1.126) 4.824 (1.446) 6.251 (2.302) 3.472 (1.480) 3.195 (1.274) 

models [79] is supposed to be employed within gam() when selecting the model 
via (conditional) AIC, this might not be sufficient here, see Table 7.1. Eventually, 
however, it is for the data analyst to decide whether he/she is willing to risk that 
some influential covariates are missed for the sake of a sparse model, as is the 
case here when using forward selection with a small . α. As already pointed out in 
Sect. 7.2.2 though, . α should merely be interpreted as a tuning parameter for stepwise 
selection, which does not necessarily control the type I error rate with respect to 
irrelevant predictors. Figure 7.2 indeed shows that the relative frequency of truly 
irrelevant covariates X4–X10 is (slightly) larger than . α; with .α = 0.1, for example, 
it is about 13% in the setting considered here.
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In terms of the MSE (Fig. 7.3), it becomes clear that smoothing, either within 
gam() or the group lasso, works very well for ordinal predictors. It adapts well 
to different situations, whereas purely linear modeling obviously suffers in case of 
very non-linear, or even non-monotone, effects. The classical factor model does not 
seem to be a preferable choice for ordinal data either. 

7.3.2 Level Fusion and Selection 

L.1-regularization, in particular variants of the fused lasso [59], have become very 
popular for fusion of regression parameters, and might even be called the current 
state of the art. When it comes to ordinal predictors, those methods can also be 
used for level fusion (compare Sect. 7.2.3.1). Rather classical approaches, such as 
forward selection, applied on split-coded variables as described in Sect. 7.2.3.2, 
however, have been largely neglected. In what follows, we are going to compare 
those two approaches in a simulation study, that is, the fused lasso with penalty 
being chosen via fivefold cross-validation and the standard R (AIC-based) step() 
procedure on split-coded variables. As before, we will focus on medium-sized 
problems. 

7.3.2.1 Simulation Setup 

The setting from above is slightly altered such that predictors X1 and X2 now have 
partly constant effects over categories (see Fig. 7.4). The rest of the setting (sample 
size, error term, etc.), however, remains unchanged. In total, we still have 10 ordinal 
covariates (with 5 levels each), seven of which (X4–X10) have zero effect on the 
response. 

7.3.2.2 Results 

Figure 7.5 shows the overall selection frequencies of the (ordinal) factors, with a 
covariate being counted as selected if at least two categories were not fused. We see 
that both methods are very successful in selecting X1 and X2 (having the largest 
effects). In case of X3, selection frequencies are a bit higher for the fused lasso, 
but this is also the case when looking at noise variables X4–X10. When looking 
at fusion frequencies between levels (Fig. 7.6), we obtain the same (and expected) 
result: L.1-regularization with tuning parameters chosen via cross-validation tends to 
select slightly more complex models. The main advantage of penalization is found 
with respect to the MSE (Fig. 7.7), in particular for covariates with small (X3) or 
zero (X4-X10) effect.
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Fig. 7.4 True effects of influential predictors in simulation study 2 
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Fig. 7.5 Selection frequencies for predictors in simulation study 2 

7.4 Case Study: The ICF 

The ordinal group lasso [23] as described in Sect. 7.2.2.1 has originally been 
developed for analyzing the ICF Core Set for chronic widespread pain (CWP). 
ICF Core Sets constitute a first attempt to make the ICF [74] applicable in clinical 
practice. In total, the ICF consists of about 1400 so-called ICF categories, each 
of which refers to a health or a health-related domain. (To clarify, ICF categories 
should not be confused with the categories of a categorical variable. In World Health 
Organization (WHO) terminology category denotes the whole factor.) Each ICF 
category is attributed to one of four ICF components:
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Fig. 7.6 Fusion frequencies in simulation study 2 when using the fused lasso or stepwise/forward 
selection on split-coded predictors 

(b) body functions (e.g. b140 ‘attention function’ ) 
(d) activities and participation (e.g. d450 ‘walking’ ) 
(e) environmental factors (e.g. e1101 ‘drugs’ ) 
(s) body structures (e.g. s770 ‘additional musculoskeletal structures related to 

movement’ ) 

The coding scheme for (b), (d), and (s) is 0 (no problem), 1 (mild problem), 
2 (moderate problem), 3 (severe problem) and 4 (complete problem). For (e), a 
differentiation is made between barriers and facilitators resulting in the coding 
scheme . −4 (complete barrier), . . . ., . −1 (mild barrier), 0 (no barrier/facilitator), . +1 
(mild facilitator), . . . ,  . +4 (complete facilitator). In other words, ICF categories are 
ordinally scaled variables with five or nine levels. Those variables may be used by
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Fig. 7.7 Estimation accuracy (MSE) for predictors in simulation study 2 

health professionals to document the health and functioning of patients by rating 
these on the levels described above [23]. 

In a first step, condition-specific ICF Core Sets, such as the Core Set for CWP 
consisting of 67 categories, which represent a large selection from the 1400 original 
ICF categories, were constructed based on mostly qualitative methods [7, 8]. On the 
one hand, the goal of the data analysis revisited here was to validate the ICF Core 
Set for CWP by comparing it to the physical health component summary measure 
(PCS) calculated from the well-established questionnaire SF-36 [42, 72], which is 
filled out by the patients. On the other hand, ICF categories should be identified that 
could also be used in more general health surveys. That is why the SF-36 outcome 
was regressed on the 67 (ordinal) factors from the ICF Core Set for CWPwhile using 
the (ordinal) group lasso for variable selection in a Gaussian model with identity 
link [23]. The data set considered is publicly available as part of the R package 
ordPens [19]. 

The group lasso selected 33 predictors, that means, about half of the predictors 
available. As we learned from Sect. 7.3, however, this model might be too large. 
So we ran the forward selection as proposed here as well, with .α = 0.05 and 
.α = 0.1. After convergence, we manually removed predictor e580, which clearly 
showed insignificant effect in the final model for both . α values. The output of 
the resulting models is given in Figs. 7.8 and 7.9, and the fitted smooth effects 
are provided in Figs. 7.10 and 7.11, respectively. Interestingly, for instance, the 
model from Fig. 7.9 only has 11 predictors explaining more than 44% of the 
deviance (note, in the Gaussian model this value is simply calculated as . 1 −
residual sum of squares/total sum of squares). The group lasso, for comparison, 
selects 33 predictors explaining about 46% [23]. Also for comparison, when running 
the GAM for ordinal predictors on the experts-selected, so-called Brief Core Set 
consisting of 26 variables, the deviance explained is about 41% (not shown in detail 
here), so even worse than the model with only 10 predictors in Figs. 7.8 and 7.10. In
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Family: gaussian 
Link function: identity 

Formula: 
phcs ˜ s(d450, bs = "ordinal", m = 2) +  
s(e1101, bs = "ordinal", m = 2) + 
s(d455, bs = "ordinal", m = 2) +  
s(e450, bs = "ordinal", m = 2) +  
s(d910, bs = "ordinal", m = 2) +  
s(b140, bs = "ordinal", m = 2) +  
s(d410, bs = "ordinal", m = 2) +  
s(d720, bs = "ordinal", m = 2) +  
s(b455, bs = "ordinal", m = 2) +  
s(b730, bs = "ordinal", m = 2)  

Parametric coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 32.4075 0.3089 104.9 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  0.1 ‘ ’ 1  

Approximate significance of smooth terms: 
edf Ref.df F p-value 

s(d450) 1.000 1.001 30.171 < 2e-16 *** 
s(e1101) 5.026 6.019 4.502 0.000207 *** 
s(d455) 3.111 3.637 4.782 0.003969 ** 
s(e450) 3.481 4.453 2.340 0.047827 * 
s(d910) 1.000 1.001 21.434 5.4e-06 *** 
s(b140) 2.456 2.962 3.049 0.033594 * 
s(d410) 1.000 1.000 4.979 0.026199 * 
s(d720) 1.000 1.001 6.790 0.009504 ** 
s(b455) 1.000 1.001 6.493 0.011198 * 
s(b730) 1.000 1.001 4.406 0.036435 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  0.1 ‘ ’ 1  

R-sq.(adj) = 0.399 Deviance explained = 42.8%
-REML = 1364.6 Scale est. = 40.073 n = 420 

Fig. 7.8 R output for the final ICF model after using foward selection with .α = 0.05 and mgcv 
with second-order smoothing penalty on dummy coefficients 

summary, forward selection appears to work well here for choosing a sparse model 
with good fit to the data. 

When looking at the fitted effects (Figs. 7.10 and 7.11), one can see that smooth 
terms with effective degrees of freedom (edf) being (close to) one in Figs. 7.8 
and 7.9, respectively, are fitted as (virtually) linear. For most of the variables with 
‘no problem’, ‘mild problem’, . . . . scale, such as d450 (‘walking’), d455 (‘moving 
around’), and d910 (‘community life’), fitted functions are decreasing, indicating 
negative effects on overall health (as given by PCS). Interestingly, however, CWP
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Family: gaussian 
Link function: identity 

Formula: 
phcs ˜ s(d450, bs = "ordinal", m = 2) +  
s(e1101, bs = "ordinal", m = 2) +  
s(d455, bs = "ordinal", m = 2) +  
s(e450, bs = "ordinal", m = 2) +  
s(d910, bs = "ordinal", m = 2) +  
s(b140, bs = "ordinal", m = 2) +  
s(b640, bs = "ordinal", m = 2) +  
s(d540, bs = "ordinal", m = 2) +  
s(d720, bs = "ordinal", m = 2) +  
s(b455, bs = "ordinal", m = 2) +  
s(b740, bs = "ordinal", m = 2)  

Parametric coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 32.407 0.306 105.9 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Approximate significance of smooth terms: 
edf Ref.df F p-value 

s(d450) 1.000 1.000 31.556 < 2e-16 *** 
s(e1101) 5.002 5.995 4.531 0.000178 *** 
s(d455) 3.006 3.555 5.086 0.002244 ** 
s(e450) 3.252 4.167 2.211 0.063234 . 
s(d910) 1.000 1.000 16.358 6.33e-05 *** 
s(b140) 2.405 2.911 2.851 0.044812 * 
s(b640) 2.353 2.906 3.019 0.051379 . 
s(d540) 1.000 1.000 2.680 0.102397 
s(d720) 2.117 2.543 3.244 0.025819 * 
s(b455) 1.001 1.002 8.020 0.004856 ** 
s(b740) 1.000 1.000 5.242 0.022556 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) = 0.41 Deviance explained = 44.3%
-REML = 1360.5 Scale est. = 39.338 n = 420 

Fig. 7.9 R output for the final ICF model after using forward selection with .α = 0.1 and mgcv 
with second-order smoothing penalty on dummy coefficients
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Fig. 7.10 R/mgcv plots for the model from Fig. 7.8 chosen by forward selection with . α = 0.05

patients with poorer overall health seem to have less problems with exercise 
tolerance functions (b455) and complex interpersonal interactions (d720). For b140 
(‘attention functions’), estimated effects in the upper categories appear less reliable 
as indicated by the wide confidence intervals (dashed lines). The same is true 
for b640 (‘sexual functions’) in Fig. 7.11. The two environmental factors e1101 
(‘drugs’) and e450 (‘individual attitudes of health professionals’) show reverse 
effects. With respect to e1101, patients for whom drugs are neither a facilitator 
nor barrier tend to have the best overall health. On the other hand, patients with 
poor health do not, or cannot afford to, care about individual attitudes of health 
professionals (e450).



222 J. Gertheiss and G. Tutz

0 1 2 3  

−6
 

−4
 

−2
 

0 
2 

d450 

s(
d4

50
,1

) 

−3 −1 1 3 

−8
 −

6 
−4

 −
2 

0 
2 

e1101 
s(

e1
10

1,
5)

 
0 1 2 3 4  

−4
 

−2
 

0
2 

d455 

s(
d4

55
,3

.0
1)

 

−4 −2 0 2 4 

−4
 

−2
 

0 

e450 

s(
e4

50
,3

.2
5)

 

0 1 2 3 4  

−6
 

−4
 

−2
 

0 
2 

d910 

s(
d9

10
,1

) 

0 1 2 3 4  

−2
0

2
4

6
8

 

b140 

s(
b1

40
,2

.4
1)

 

0 1 2 3 4  
−4

 
−2

0
2 

b640 

s(
b6

40
,2

.3
5)

 

−5
 −

4 
−3

 −
2 

−1
 

0 
1 

d540 

s(
d5

40
,1

) 

0 1 2 3  

−1
0

1
2

3
4

 

d720 

s(
d7

20
,2

.1
2)

 

0 1 2 3 4  

−1
0

1
2

3
4

5
 

b455 

s(
b4

55
,1

) 

0 1 2 3 4  

−4
−2

0 
1 

2 

b740 

s(
b7

40
,1

) 

2
4

6
 

0 1 2 3  

Fig. 7.11 R/mgcv plots for the model from Fig. 7.9 chosen by forward selection with . α = 0.1

7.5 Nominal Predictors and Categorical Response 

7.5.1 Fusion Penalties for Nominal Predictors 

Now let the categorical predictor . xj have unordered levels .1, . . . , kj . That means 
the response categories have no inherent ordering and the numbers .1, . . . , kj have 
to be considered as mere labels for response categories. Then, it is natural to use the 
dummy variables (7.3) as basis functions since they do not use any order. 

7.5.1.1 All-Pairs Penalties 

A penalty that enforces the building of clusters of categories that share the same 
effect is 

.Jj (βj ) =
∑

r<s

w
(j)
rs |βjr − βjs |, (7.10)
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where the sum (within each categorical predictor) is over all pairs of categories 
. r, s. Penalty (7.10) was originally introduced in the ANOVA framework under 
the name CAS-ANOVA (for collapsing and shrinkage in ANOVA) [2], and later 
used for regression as well [22]. Since the penalty only considers differences of 
coefficients, it is invariant against (group-wise) vertical shifts and hence invariant 
against the concrete constraint that is chosen (see Sect. 7.1). For the weights .w(j)

rs a 

useful choice is .w(j)
rs = (kj + 1)−1

√
(n

(j)
r + n

(j)
s )/n, where .n(j)

r and .n(j)
s are the 

number of observations in category r and s of predictor . cj , respectively [2, 22]. 
But other types of weights have been proposed as well; for instance, weights that 
make sure that coefficient paths have a ‘tree-like’ structure, which means that 
categories that have been fused for some . λ remain fused for increased penalty as 
well, in other words, they “cannot ‘split’ anymore in the future” [6]. As before with 
ordinal predictors, weights can be chosen to be data-adaptive giving a version of the 
adaptive lasso [82], also with oracle properties [2, 22]. Alternatively, concave and 
non-decreasing penalties can be used [35, 47]. 

A problem with “all-pairs” penalties as given above is that they favor clusters of 
unequal size [56]. To make things clearer, consider the following very simple but 
illustrative example (which is similar to [22, 56]). There is only one factor with 
nine levels and ten observations on each level. The true level-specific means of 
y show a three-cluster structure as illustrated by the dashed line in Fig. 7.12 (top 
left); simulated data (assuming standard normal errors/noise) is given as boxplots. 
Figure 7.12 (top right) also shows the coefficient paths when applying CAS-
ANOVA 7.10 to the data at hand (top left), with the y-axis corresponding to the 
strength of the penalty, and colors giving the “true” grouping. We see that the green 
coefficients on the right remain to form their own groups, even for penalization 
where all the other (red and black) coefficients are fused already. This means that 
for no value of the penalty parameter . λ, is the correct grouping obtained in this 
example (with the data simulated). Under some circumstances, results are better 
when switching to the adaptive version, but a more promising approach appears to 
be the SCOPE penalty proposed very recently [56], and described below. 

7.5.1.2 The SCOPE and Range Penalty and Tree-Structured Approaches 

In order to circumvent the preference of “all-pairs” penalties for clusters of unequal 
size, the basic idea of SCOPE [56] is to switch to a first-order difference penalty on 
sorted regression coefficients. Let .βj(l) be the lth smallest entry of . βj , then SCOPE 
is defined as 

.Jj (βj ) =
kj −1∑

l=1

ρj (βj (l+1) − βj(l)), (7.11)
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Fig. 7.12 Toy example with simulated data (top left) and coefficient paths for CAS-ANOVA (top 
right), SCOPE (center left) and Range penalty (center right), and Structree (bottom left); y-axis 
corresponds to the amount of penalty/fusion step if not given otherwise 

where . ρj is a concave (and non-convex) non-decreasing penalty function [56], 
specifically, the MCP [81]. Although the penalty looks similar to the ordinal case 
from Sect. 7.2.3.1, there is an important difference: now the ordering is not defined 
by the levels’ ordering but by the size of the coefficients. An algorithm for fitting 
linear and logistic models with the SCOPE penalty is implemented in R package 
CatReg [55]. When applying this penalty on the simulated data from Fig. 7.12 (top 
left), we indeed obtain very nice coefficient paths as seen from Fig. 7.12 (center left).
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Although not observed in the example given here, SCOPE-paths do not necessarily 
have a tree-like structure, which may be seen as a drawback [6]. 

One important feature of the SCOPE-algorithm [55] applied above is that it starts 
by sorting the categories/coefficients according to the unpenalized estimates. So we 
may think that we could do the same but then proceed with the fused lasso, like in 
the ordinal case. This, however, leads to the so-called ‘Range’ penalty [56] 

.Jj (βj ) =
kj −1∑

l=1

|βj(l+1) − βj(l)| = max
l

βjl − min
l

βjl, (7.12) 

which only shrinks the largest and the smallest of the coefficients together, but does 
not encourage fusion in between. This is also nicely seen in Fig. 7.12 (center right): 
even categories with ordinary least squares estimates very close to each other are 
not fused until they are collapsed with one of the most extreme levels. This also 
makes clear that the same happens with the ordinal fusion penalty (7.8), if weights 
are constant across levels and unpenalized estimates are monotonically increasing 
or decreasing. 

An alternative approach that is not based on penalties but designed such that a 
clear hierarchy of clusters is always obtained is tree-structured modeling [64]. The 
method explicitly fuses categories of nominal or ordinal predictors successively by 
recursive partitioning with stopping based on an information criterion (AIC/BIC), 
statistical testing, or cross-validation. It also allows parametric and smooth compo-
nents in the predictor and can be seen as a combination of parameter estimates of 
a generalized additive model and a hierarchical clustering process for categories. It 
can be applied by using the R package structree [1], which yields the coefficient 
paths shown in Fig. 7.12 (bottom left) when applied to the toy data from Fig. 7.12 
(top left). It is seen that the coefficients distinctly reflect the true underlying structure 
of the clusters. 

7.5.2 Regularization for Multi-categorical Response Models 

Now let the response variable be multi-categorical with .y ∈ {1, . . . , k} and . πr(x) =
P(y = r|x) denoting the probability of a response in category r given a vector 
of explanatory variables . x. We first consider ordinal responses, then the case of 
nominal responses. 

7.5.2.1 Ordinal Responses 

Classical ordinal response models have the form 

.gr(π(x)) = F(βr0 + x�βr ), r = 1, . . . , k − 1, (7.13)
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where .π(x)� = (π1(x), . . . , πk(x)), .gr(·) are transformation functions, and .F(·) a 
strictly monotonic distribution function. The most widely used models are: 

– the cumulative model, which uses .gr(π(x)) = π1(x) + · · · + πr(x), 
– the adjacent categories model, with .gr(π(x)) = πr(x)/(πr+1(x) + πr(x)), 
– the sequential model, which uses .gr(π(x)) = πr(x)/(πr(x) + · · · + πk(x)). 

If .β1 = · · · = βk−1, and .F(·) is the logistic distribution function one obtains 
the proportional odds model [40]. If parameters may vary across categories the 
logistic version is known as the non-proportional odds model or partial proportional 
odds model [3]. However, the general form generates a variety of models; see, for 
example, [60]. 

In the general model (7.13) the parameters are category-specific, which makes 
it a model with many parameters, typically leading to estimates with large variance 
and interpretation being difficult. The most often used restriction (as, for instance, in 
the proportional odds model) is .β1 = · · · = βk−1 = β, which means one has global 
effects, that is, effects that do not vary across categories. However, the restriction is 
frequently too restrictive and yields poor data fit. 

A compromise between data fit and models with a simple structure (a specific 
type of ‘bias-variance trade-off’) is obtained by assuming that parameters vary not 
too strongly across categories. With .β�

r = (βr1, . . . , βrp) a penalty that enforces 
the smoothness of effects across categories is [68] 

. Jj (β .j ) =
k−1∑

l=2

(βlj − βl−1,j )
2,

where .β�
.j = (β1j , . . . , βk−1,j ) collects the parameters linked to variable . xj . The  

penalty is similar to (7.5); however, smoothing is not across categories of the 
explanatory variable but across categories of the response. For large smoothing 
parameters the parameter becomes global. A disadvantage, at least in some situa-
tions, is that this type of difference penalty does not enforce variable selection. An 
alternative and sparsity-inducing version is 

. Jj (β .j ) =
(

k−1∑

l=1

β2
lj

)1/2

+ ζ

(
k−1∑

l=2

(βlj − βl−1,j )
2

)1/2

= ||β .j ||2 + ζ ||Dβ .j ||2,

where . D is a matrix that generates differences and . ζ is an additional smoothing 
parameter. The first term enforces selection of variables while the second term 
enforces the choice between global and category-specific effects. For large, but not 
too large, . ζ some but not all of the variables will have global effects. For very large 
. ζ all effects are global. Details on how to obtain solutions are given in [50]. 

An alternative way to simplify the complex parameter structure that is found in 
the general models (7.13) is to separate the location structure from the dispersion 
structure. Models that are able to separate these effects are the location-scale model
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and the location-shift model. The location-scale model, which was proposed by [40] 
for cumulative models, has the form 

. gr(π(x, z)) = F

(
βr0 + x�β

exp(z�γ )

)
, r = 1, . . . , k − 1,

where . z is an additional vector of covariates, which can be distinct, can overlap with 
. x or can be identical to . x, and . γ are the corresponding weights. While . βr0 + x�β

represents the location, the term .exp(z�γ ) represents dispersion. If .z�γ → ∞ in 
the cumulative model, the response probabilities are concentrated in the extreme 
categories .π1(x, z) and .πk(x, z) indicating strong dispersion; if . z�γ → −∞
the probability becomes one for one of the response categories indicating low 
dispersion. 

The location-shift model avoids the multiplicative structure by postulating 

. gr(π(x, z)) = F
(
βr0 + x�β + (k/2 − r)z�γ

)
, r = 1, . . . , k − 1,

where the weight .(k/2 − r) scales the linear term .z�γ such that the difference 
between adjacent linear predictors .ηr = βr0 + x�β + (k/2 − r)z�γ becomes 
.ηr −ηr−1 = βr0−βr−1,0−z�γ . Thus the difference between adjacent predictors is 
widened or shrunk by .z�γ depending on the sign. Its value determines whether there 
is more concentration in middle or extreme categories, which indicates dispersion 
effects; details are given in [62, 63], and an overview on ordinal models was given 
by [61]. Both the location-scale and the location-shift models simplify to the ordinal 
models with global parameters if .γ = 0. 

Variable selection now refers to two sources of variation, namely location and 
dispersion effects, which suggests a penalty of the form 

. J (β, γ ) = λ

p∑

j=1

|βj | + ζ

m∑

j=1

|γj |,

where . λ and . ζ are smoothing parameters, and . z is a vector of dimension m. If  
.ζ → ∞, models with global parameters are fitted. Thus, the penalty also chooses 
between models with category-specific and those with global effects. 

7.5.2.2 Nominal Response Models 

A general model for nominal response categories with global and category-specific 
explanatory variables is the multinomial logit model 

.πr = P(y = r|x) = exp(βr0 + x�βr + (wr − wk)
�α)

∑k
s=1 exp(βs0 + x�βs + (ws − wk)�α)

, (7.14)
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which can also be given in the form 

. log

(
πr

πs

)
= βr0 − βs0 + x�(βr − βs) + (wr − ws)

�α,

The vector . x contains all the variables that do not vary across categories; for exam-
ple, in choice experiments variables like gender and age. The vectors . w1, . . . ,wk

represent vectors that vary across categories, for example the price in the choice 
of travel mode. In the model, the difference between prices, with category k as the 
reference category, determine the response probabilities. If . wr are constant across 
all categories one obtains the classical multinomial logit model. 

With .β�
r = (βr1, . . . , βrp) and the parameters referring to the variable . xj

collected in .β�
.j = (β1j , . . . , βk−1,j ) a penalty that enforces selection of variables 

is 

. J (β,α) = λ

p∑

j=1

||β .j ||2 + ζ

m∑

j=1

|αj |,

where .α� = (α1, . . . , αm). Details are given in [67], and an extended version is 
given in [38]. 

7.6 Concluding Remarks 

Structuring and selection of explanatory variables in regression has been considered 
within the framework of generalized additive models. In particular, penalty-based 
methods for ordinal predictors have been compared to stepwise procedures to 
investigate the merits of the different approaches. In general, the penalty terms 
that are to be used depend on the scaling of the explanatory variables, nominal 
variables call for other penalty terms than ordinal variables. Although we restricted 
ourselves to the framework of generalized additive models here, at least some of 
the penalties discussed could also be used in an extended framework such as quasi-
likelihood methods. This is particularly true for the quadratic smoothing penalties 
implemented for use within mgcv, since the latter also supports quasi-likelihood 
(and further extensions); see [78] for details. 

Stepwise selection, potentially combined with quadratic smoothing penalties for 
ordinal predictors as considered in detail here, works well in moderate settings 
with not too many categories and variables. For high-dimensional problems with a 
very large number of categories and/or covariates, appropriately designed, sparsity-
inducing penalties and tree-based approaches should be more efficient. 

While the focus of this paper was on categorical, in particular ordinal, predictors, 
we also briefly considered multi-categorical response models, where some ideas 
from categorical predictors can be borrowed. A topic of future research could be the
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combination of both. This appears particularly relevant for, e.g., questionnaires with 
many ordinally scaled items where some items may serve as independent and some 
as dependent variables. Taking one step further, we may also try to describe and 
analyze dependence within a large set of ordinal variables by appropriately designed 
graphical models or structural equations. Furthermore, ordinal data are found in 
settings such as time series and functional data. Generally speaking, a very popular 
approach for handling ordinal data is to assume a latent continuous variable, with 
ordinal data being obtained via (latent) thresholds. This has, for instance, already 
been done for ordinal functional data [71] and structural equation modeling [69]. 
Assuming a latent continuous variable, however, is not always reasonable. For 
example, some measures of location, dispersion, symmetry, and (serial) dependence 
for the case of ordinal (time series) data which do not require a latent continuous 
variable are found in [73]. Although some of the ordinal regression models given 
in Sect. 7.5, such as the proportional odds model, can also be motivated as a latent 
variable approach, many others cannot, and we have not made this assumption at any 
time in this chapter. For many other settings with ordinal data, however, methods 
that do not rely on a latent variable assumption are still needed. Eventually, of 
course, it must be decided by the data analyst whether the latent variable approach 
makes sense or not; and the greater the number of available options that are tailored 
to specific situations the better. 
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Chapter 8 
An Overview of ARMA-Like Models 
for Count and Binary Data 

Mirko Armillotta, Alessandra Luati, and Monia Lupparelli 

8.1 Introduction 

Traditionally, time series modelling has been mostly applied to data that are 
continuously valued. From the early specifications of [59] and [56], to the for-
malization by Box and Jenkins [8, 9], autoregressive (AR) and moving average 
(MA) models have been regularly applied in many fields, from finance to energy 
and neural networks, see for example [39, 57] and [49]. Non-linear models, such 
as the generalized autoregressive conditional heteroscedastic models [7, 26] or the  
threshold and smooth transition models [53, 54], up to the class of score driven 
models [16, 36], are essentially grounded on autoregressive dynamics. Though 
often employed regardless of the discrete nature of the data generating process, 
continuous models cannot adequately describe the dynamic trend of count or binary 
data. Notable examples where ad hoc models for discrete data are required include 
the number of clicks on a website and the daily counts of people infected with a rare 
disease or, as far as binary data are concerned, the presence or absence of an edge 
in a random network system and the success or failure of an industrial process. 

Despite some relevant instances that we aim to discuss in this chapter, ARMA 
models for discrete valued time series have not enjoyed the same popularity of 
linear models for continuous time series. One of the reasons certainly lies in 
the fact that linear processes are related to second order stationarity, which fully 
characterizes Gaussian time series, while for discrete or count data the concept 
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of autocovariance needs to be adapted [50]. Moreover, the Wold representation, 
which allows every covariance-stationary process to be written as the sum of two 
processes, one deterministic and one stochastic, has no direct interpretation in the 
integer-valued case, see [21]. As a matter of fact, modelling discrete valued time 
series entails challenging aspects which are directly related to the nature of the 
random generating process. 

In recent years, the interest in the analysis of discrete dynamic data has been 
considerably increasing. A useful classification of time series models in two main 
families is due to [15], who distinguished between observation driven models [61] 
and parameter driven ones [60]. In parameter driven models, two different time 
series processes are the object of inference: the process generating the observed 
data, say .{Yt }t∈Z, and an unobservable, latent, process .{ξt }t∈Z which presents a 
dynamic formulation and carries a stochastic error term .{et }t∈Z. Observation driven 
models, on the other hand, are fully described by the observed time series coming 
from the process .{Yt }t∈Z, since the latent process .{ξt }t∈Z is simply defined as 
a deterministic function of the past history of . Yt . For example, the well known 
generalized autoregressive conditional heteroskedastic (GARCH) model introduced 
by Bollerslev [7] generalizing [26], is an observation driven model. Indeed, in a 
GARCH model, the unobservable latent process is the conditional variance . σ 2

t and 
is just defined as a non linear function of past values of the observation process 
.{Yt }t∈Z. Specifically, to complete the example, in a GARCH(1,1) model one has 
that .σ 2

t = ω + αy2
t−1 + βσ 2

t−1 with .ω > 0, α > 0, β > 0. Conversely, in 
one of the most popular parameter driven models for the latent variance, the so 
called Stochastic Volatility model, [52], the latent process is modelled as . at =
α + βat−1 + et , where .at = 2 log σt and . et is an independent and identically 
distributed sequence of Gaussian random variables, in short .et ∼ IIDN(0, ν). 
Since for parameter driven models estimation can be difficult as it is often not 
possible to compute the associated likelihood in closed form, observation driven 
models are sometimes preferred. For this reason, in the present contribution, the 
focus will be on observation-driven models. 

Contributions related with observation driven models for discrete-valued time 
series include the works by Davis et al. [19], Benjamin et al. [5] and Ferland et al. 
[27], among others. With the focus on the dynamic trend of count data, recent 
contributions can be envisaged in the works of [1, 18, 40, 47] and [14] and [34]. 
A different stream of the literature concerned with the development of models for 
time dependent count data is constituted by Integer Autoregressive models (INAR) 
[2, 3]. The latter are also categorized as observation-driven models and an ARMA 
version (INARMA) has been recently discussed in [58]. However, such models rely 
on the so-called generalized Steutel and van Harn thinning operator [51] and have 
a completely different methodological treatment with respect to the models that we 
shall discuss in the present chapter. For this reason, we shall not cover the theory 
of integer autoregressive models. A comprehensive review of these models can be 
found in [48]. 

The aim of this chapter is to provide a comprehensive overview of the literature 
on observation driven models for discrete valued time series, with a special focus
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on count and binary data. In particular, stochastic properties and estimation are 
discussed for notable ARMA-like models, such as BARMA [41], GARMA [5], 
GLARMA [19], M-GARMA [62], and log-linear Poisson [30] models. These 
models are generally referred as ARMA-like models as they are designed to account 
for the direction and the magnitude of three relevant effects in the analysis of 
temporal data. More precisely, ARMA-like models may include an autoregressive-
like effect, a moving average type effect and the dependence with respect to the past 
predictions of the random process. The specification for these effects eventually 
depends on a suitable link function which is selected according to the probabilistic 
assumption underlying the data generating process. 

The stochastic properties of discrete ARMA models can be derived by following 
two different methods, one based on the theory of Markov chains and the other on 
the perturbation approach. The latter developed by Fokianos et al. [30] is based on 
the analysis of a modified version of the discrete process, which allows one to derive 
properties of the original processes. An alternative method, based on Markov chain 
theory without irreducibility assumptions, has been considered by Matteson et al. 
[42] and Douc et al. [23]. This approach leads to obtaining probabilistic properties 
of the discrete variable by defining the latent process as a Markov chain of order 
one. To illustrate these methods, an example for the GARMA model is given, taken 
from [42]. An application to log-linear Poisson autoregression provided by Douc 
et al. [23] is reported, as well. 

As far as inference is concerned, the properties of the maximum likelihood 
estimator (MLE) and Quasi MLE (QMLE) have been widely studied for discrete-
valued models; see [18, 23], and [1], among others. Specifically, the use of the 
generalized linear model (GLM) of [43] for dynamic discrete data provides a 
natural extension of continuous-valued time series to integer-valued processes. 
Then, inference based on likelihood theory can be acquired directly from the GLM 
framework, as well as principles for hypothesis testing and model diagnostics. For 
the case of misspecified models, results related to quasi-likelihood inference are 
also illustrated, together with the conditions required for strong, consistent, and 
asymptotic normality of QMLE, based on the work of [23] and [24]. Clearly, the 
exact likelihood inference and the asymptotic properties of the MLE are obtained as 
a special case. 

To conclude the review, two applications of ARMA-like models are illustrated. 
The first illustration is concerned with the analysis of a time series related to 
the daily number of deaths from COVID-19 in Italy, from March to December 
2020. The analysis is performed under the assumption of a Poisson and a negative 
binomial distribution for the data generating process. Model comparison is carried 
out by using penalized likelihood criteria. The second empirical analysis regards 
the binary series of signs of log-returns for the weekly closing prices of Johnson & 
Johnson, by using BARMA and Bernoulli GARMA and GLARMA models.
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8.2 General Overview 

Let us consider a stochastic process .{Yt }t∈Z, the information set of past observations 
of the process .Ft−1 = σ {(Xs+1, Ys), s ≤ t − 1} up to the time .t − 1 and a vector 
of covariates . Xt up to time t , where .σ {X} refers to the .σ -field generated by the 
random variable X, defined as the smallest sigma-field with respect to which the 
variable is measurable. For the definition of the sigma-field see Billingsley [6, p. 19-
20]. The corresponding realizations are denoted with the lower-case counterparts, . yt

and . xt , respectively. The focus, throughout the chapter, is on the case when . {Yt }t∈N
is discrete-valued. Suppose that the distribution of the process lies in the general 
class of the one-parameter exponential family, 

.q(Yt |Ft−1 ) = exp {Yt f (ηt ) − A(ηt ) + d(Yt )} , (8.1) 

where the conditional expected value is defined as 

. μt = E(Yt |Ft−1 ) = A
′
(ηt )

and .ηt = g(μt ) with .g(·) a twice-differentiable, one-to-one monotonic function, 
which is called the link function, see [43]. 

In Eq. (8.1) it is assumed that the dynamics of the density (or mass) function 
.q(Yt |Ft−1) are captured by the parameter . μt , or equivalently . ηt , called the linear 
predictor. The function .A(·) (log-partition) and .d(·) are specific functions which 
define the particular distribution of interest. In the framework of the exponential 
family of [43], .f (ηt ) is the canonical parameter. The mapping .f (·) is a twice-
differentiable bijective function, chosen in accordance with to the model of interest. 
The conditional variance is 

. σ 2
t = V(Yt |Ft−1 ) = A

′′
(ηt ) = υ(μt ) .

Example 8.1 In Eq. (8.1), the Poisson distribution is obtained by setting .f (ηt )= ηt , 
.ηt = g(μt )= log(μt ), .A(ηt )= exp(ηt )= μt and .d(Yt )= log(1/Yt !). The condi-
tional expectation is then .E(Yt |Ft−1)=V(Yt |Ft−1)= exp(η)= μt . 

Clearly, since for the Poisson distribution the canonical parameter is .ηt = log(μ), 
see [43], one has .f (ηt ) = ηt . 

Example 8.2 The Gaussian distribution (with known variance) is obtained by 

setting .f (ηt )= ηt , .g(μt )= μt

σ 2
t

, .A [g(μt )] = μ2
t

2σ 2
t

and . d(Yt )= log

[
− 1√

2πσ 2
t

.exp
(
− Y 2

t

2σ 2
t

)]
. One can verify that .μt = σ 2

t ηt , so  .A(ηt )= σ 2
t η2t /2, whose first 

and second derivatives are respectively . μt and . σ 2
t .
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It can be convenient to consider the following dynamic representation for the 
time varying conditional mean, 

.g(μt ) = ηt = xT
t β + zt , (8.2) 

.zt =
p∑

j=1

φj

[
h(Yt−j ) − xT

t−j β
]

+
k∑

j=1

γj (zt−j + εt−j ) +
q∑

j=1

θj εt−j , (8.3) 

where . p, k, and q are integers representing the maximum lag order of their 
respective additive terms, and . εt , generally called prediction error, is defined in 
the following way: 

.εt = h(Yt ) − ḡ(μt )

νt

(8.4) 

and . νt is some scaling sequence, for example: 

• .νt = σt , Pearson residuals 
• .νt = σ 2

t , Score-type residuals 
• .νt = 1, No scaling 
• . νt = V[h(yt ) |Ft−1 ]
where .V[h(yt ) |Ft−1 ] is the variance of the function .h(Yt ), conditional to the past 
information .Ft−1. 

The function .h(Yt ) is called the “data-link function” because it is applied to the 
observation process . Yt whereas .ḡ(μt ) is said to be “mean-link function” because 
it is applied only to the conditional mean, unlike the link function .g(·) which, in 
principle, can be applied to any parameter or moment of the probability distribution. 
Both the functions .h(Yt ) and .ḡ(μt ) are twice-differentiable, one-to-one monotonic; 
their shape depends on the specific model (8.2)–(8.3) and the distribution of interest 
in Eq. (8.1). Note that the terminology “link function” generally refers to the 
specification of a function .g(·) modelling the dependence between a transformation 
. ηt of the conditional expected value . μt and a linear predictor including information 
related to past values . zt or to a covariate set . xt . The same terminology is adopted for 
the specification of functions .h(·) and .ḡ(·) since, in some instances belonging to the 
exponential family distribution, convenient choices for these functions correspond 
to the canonical link function. Nevertheless, .h(·) and .ḡ(·) might be different from 
. g(·), so that the model (8.2)–(8.3) is able to encompass a wide range of existing 
models developed in the literature, as special cases. Some examples are presented 
in the next section. 

Despite the fact that it is not constrained to assume a specific formulation, in 
general, it is useful to choose the mean-link function as follows: 

.ḡ(μt ) = E[h(Yt ) |Ft−1 ] , (8.5)
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in order to obtain .εt ∼ MDS (Martingale Difference Sequence), i.e. the difference 
.E[h(Yt ) − ḡ(μt )|Ft−1] = 0. In general, a MDS has conditional expectation 
.E[εt |Ft−1 ] = 0 and, as a consequence, unconditional expectation .E(εt ) = 0. 
Moreover it is uncorrelated, i.e. .E(εt εt−s) = 0, with .s �= 0. This is a really useful 
construct in probability theory because it does not require the usual assumption 
of independence of the errors. Furthermore, most limit theorems that hold for an 
independent sequence will also hold for an MDS. 

Moreover, if .νt = √
V[h(Yt ) |Ft−1 ], then the residuals in Eq. (8.4) form a 

white noise (WN) sequence, with unit variance. In practical situations, an explicit 
formula for the conditional moments .E [h(Yt )|Ft−1] and .V [h(Yt )|Ft−1] is not 
always available. In these cases, it seems reasonable to use an approximation 
constructed from their Taylor expansions; for example, the second order expan-
sions are: .ḡ(μt ) = E [h(Yt )|Ft−1] ≈ h(μt ) + 1

2h
′′(μt ) σ 2

t , . V [h(Yt )|Ft−1] =
E
[
h(Yt )

2|Ft−1
] − E [h(Yt )|Ft−1]2 ≈ m(μt) + 1

2m
′′(μt ) σ 2

t − ḡ(μt )
2, where 

.m(·) = h(·)2. 
We remind the reader that the process .{Yt }t∈Z is observed whereas .{μt }t∈Z is 

not. However, it can be shown by backward substitutions in (8.2)–(8.3), that the 
process .{μt }t∈Z is a deterministic function of the past .Ft−1. This is the reason why 
Eqs. (8.2)–(8.3) belong to the class of “observation driven models”, see [15], where 
error terms are typically defined as MDS. 

The parameters . φ, . θ , and . γ in Eq. (8.3) model the direction and the magnitude of 
three relevant effects in the analysis of temporal data. First, the autoregressive-like 
effect, which represents the dependence on the past observations; then, the effect 
of the moving average part is considered for modelling the dependence between 
prediction error terms over time; finally, the effect of the past memory accounts 
for the dependence with respect to the past predictions rather than to the past 
observations. In some sense, the latter term can accounts for the dependence of 
the process from its whole past, since . μt depends on all the past observations 
.Yt−1, Yt−2, . . . . In principle, any effect can be specified in the model through 
different link functions. In practice, however, these functions are typically tailored 
to the nature of the data generating process. 

8.3 Some Relevant Models 

This section describes the most relevant models developed in the literature of 
ARMA-like time series for binary and count observations generated from proba-
bility distributions mainly belonging to the exponential family.
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8.3.1 GARMA 

A well-known specification for discrete-valued time series is the generalized 
autoregressive moving average model, GARMA, [5]. The distribution of the process 
is defined to be the one-parameter exponential family (8.1). From Eqs. (8.2)–(8.3) 
the GARMA model is obtained when .k = 0, by setting .g ≡ ḡ ≡ h, and .νt = 1, so  
that, the three link functions are equivalent and no scaling is applied: 

.ηt = xT
t β +

p∑
j=1

φj

[
g(Yt−j ) − xT

t−j β
]

+
q∑

j=1

θj

[
g(Yt−j ) − ηt−j

]
. (8.6) 

The model includes the autoregressive and the moving average effects by using 
the same link function g. The dependence on the past memory is not considered 
directly by a specific factor. This means that model (8.6) would be employed when 
the immediate past values of the observed process .Yt−j , j = 1, . . . ,max(p, q) may 
be considered influential. In general, . εt is not a Martingale difference sequence and 
then the mean-link function . ḡ does not follows (8.5); instead, it is just set to be 
equivalent to g. However, there still is a special case in which .εt ∼ MDS, such as 
.g ≡ h : identity (see the M-GARMA model below). 

Although this model is suitably applicable in practice to every distribution 
encompassed in (8.1), in the context of count data, it has been mainly used with 
a Poisson or a Negative Binomial (NB) distribution, see [5]. 

The estimation of the model (8.6) is usually performed by maximizing the log 
likelihood .L(ρ) = ∑n

t=1 log q(Yt |Ft−1 ), with respect to the associated vector of 
parameters .ρ = (β, φ1, . . . , φp, θ1, . . . , θq)′. This is done in practice through an 
iterated re-weighted least square (IRLS) procedure and the asymptotic normality 
of the estimator is established as .

√
n(ρ̂ − ρ) ∼ N(0, I (ρ)−1) where . ρ̂ is the 

maximum likelihood estimator and .I (ρ) is the information matrix evaluated at 
the true parameter value, see [5, Sec. 3.1]. Under the Poisson distribution, strong 
consistency of the MLE is available [28, Theorem 3.1]. Section 8.3.4 provides 
further details about such results. More general results concerning the asymptotic 
properties of the Quasi MLE are introduced in Sect. 8.6. 

8.3.2 M-GARMA 

A suitable extension of the GARMA model in Eq. (8.6) has recently been introduced 
by Zheng et al. [62]; it allows the residuals . εt to be a Martingale difference sequence 
and for this reason it has been called Martingalized GARMA (M-GARMA). It is 
obtained from (8.2)–(8.3) for .k = 0, .g(μt ) = E[h(yt ) |Ft−1 ] = ḡ(μt ) and .νt = 1: 

.ḡ(μt ) = xT
t β+

p∑
j=1

φj

[
h(Yt−j ) − xT

t−j β
]
+

q∑
j=1

θj

[
h(Yt−j ) − ḡ(μt−j )

]
. (8.7)
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For its particular construction, in this model, a crucial role is played by the data-link 
function h which would entirely determine the mean-link function. The usefulness 
of M-GARMA lies in the possibility of writing .h(Yt ) as a standard ARMA model 
simply by adding .h(Yt )−ḡ(μt ) to both sides of (8.7) and rearranging the covariates: 

. h(Yt ) = xT
t α +

p∑
j=1

φjh(Yt−j ) + εt +
q∑

j=1

θj εt−j ,

where .α =
(
1 −∑p

j=1 φBj
)

β and B is the lag operator, such as .Bjxt = xt−j . 

Note that when .ḡ(μt ) = E[h(yt ) |Ft−1 ] = h(μt ), a GARMA model with the linear 
predictor .ηt = E[h(yt ) |Ft−1 ] is obtained. Also, the use of the first-order Taylor 
approximation for .ḡ(·) around . μt provides 

. ḡ(μt ) = E[h(Yt ) |Ft−1 ] ≈ h(μt ) .

Thus, the standard GARMA model has been derived as a particular case of 
the M-GARMA model when a linear approximation of . ḡ is used. This leads 
to consideration of the application of the representation in Eq. (8.7), instead of 
the usual GARMA model (8.6), in all the cases when the expression . ḡ(μt ) =
E[h(Yt ) |Ft−1 ] has a closed form. This happens only for certain distributions, (such 
as Log-normal, Gamma, and Beta, among others) and suitable choices of the data-
link function . h(·). The interested reader can find an exhaustive treatment of these 
cases under Table 1 of [62]. 

The estimation of (8.7) has been performed in [62] with the Gaussian MLE, 
that is a maximum likelihood estimation performed by maximizing the Gaussian 
likelihood instead of the true likelihood of the model. Only the consistency of such 
an estimator is available. Asymptotic normality has been developed only under the 
special case .q = 0. 

8.3.3 GLARMA 

A promising class has been developed by Rydberg and Shephard [47] and Davis 
et al. [19] under the name of generalized Linear Autoregressive Moving Average 
(GLARMA) models; Again, the distribution belongs to the exponential family (8.1). 
GLARMA models can be written based on Eqs. (8.2)–(8.3) by setting .p = 0 and 
.h : identity: 

. ηt = xT
t β + zt ,

.zt =
k∑

j=1

γj (zt−j + εt−j ) +
q∑

j=1

θj εt−j , (8.8)
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. εt = Yt − μt

νt

.

In these models, the error component and the past lag of the latent process are 
considered. However, the effect of past lags of the discrete process . Yt are not 
directly specified in the model. This means that model (8.8) would be suitable 
when the whole past memory of the observed process .Yt−j , j = 1, 2, . . . may be 
influential. The usefulness of model (8.8) with a scaling sequence . νt is considered 
when the discrete data are not constrained in a closed interval, that is when counts 
are modelled [25]. Notice that this model is equivalent to an ARMA model on the 
linear predictor (minus the constants and covariates): 

. ηt − xT
t β = zt =

k∑
j=1

γj zt−j +
q̃∑

j=1

τj εt−j ,

where .q̃ = max(k, q) and .τj = γj + θj . Or alternatively, in terms of . ηt , we have  

. ηt = xT
t α +

k∑
j=1

γjηt−j +
q̃∑

j=1

τj εt−j ,

where .α =
(
1 −∑k

j=1 γjB
j
)

β. 

For the Poisson distribution, the asymptotic normality of the MLE for the 
parameters .ρ = (β, γ1, . . . , γk, θ1, . . . , θq)′ has been discussed in [20], namely 

.
√

n(ρ̂ − ρ)
d−→ N(0, I (ρ)−1) where . ρ̂ is the maximum likelihood estimator and 

.I (ρ) is the information matrix evaluated at the true value of the parameters. For 
more general results see Sect. 8.6. 

8.3.4 Poisson Autoregression 

Poisson autoregression, henceforth Pois AR, introduced by Fokianos et al. [30], is 
obtained when (8.1) is Pois.(μt ), with .f (ηt ) = log(ηt ), and in Eq. (8.2)–(8.3), one 
has .q = 0 and .g ≡ h : identity: 

.μt = xT
t α +

k∑
j=1

γjμt−j +
p∑

j=1

φjYt−j . (8.9) 

Obviously, the parameters in Eq. (8.9) are constrained to the positive real line. 
A variant of (8.9) is the log-linear Poisson autoregression, henceforth Pois log-
AR, [28] which is obtained when .q = 0, .f (ηt ) = ηt , .g(μt ) = log(μt ), and
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.h(Yt ) = log(Yt + 1): 

. log(μt ) = xT
t α +

k∑
j=1

γj log(μt−j ) +
p∑

j=1

φj log(Yt−j + 1) . (8.10) 

The models (8.9) and (8.10) consider lagged effects for the discrete variable and 
the mean process explicitly and do not include an error component. However, note 
that, for Poisson data, the GARMA model (8.6) with identity or log links can be 
considered as a constrained Poisson autoregression where .γj = −θj and . φj is 
replaced by .φj +θj , in Eqs. (8.9) or (8.10), so that the Poisson autoregression model 
can be rewritten in ARMA form. 

The model in (8.10) could also be used for Negative Binomial data, by rewriting 
the distribution in terms of the expected value parameter . μt , see  [12]: 

.q (Yt |Ft−1) = Γ (ν + Yt )

Γ (Yt + 1)Γ (ν)

(
ν

ν + μt

)v (
μt

ν + μt

)Yt

(8.11) 

where . ν is the dispersion parameter (if an integer, it is also known as the number 
of failures) and the usual probability parameter would be .pt = ν

ν+μt
. The  

distribution (8.11) with model (8.10) is obtained from the distribution (8.1), by  
setting the non-canonical link .g(μt ) = log(μt ) and .f (ηt ) = ηt − log(ν + eηt ), 

with .A(ηt ) = −ν log
(

ν
ν+eηt

)
and .d(Yt ) = log Γ (ν+Yt )

Γ (Yt+1)Γ (ν)
. 

Consistency and asymptotic normality of the MLE for the parameters . ρ =
(α, γ1, . . . , γk, φ1, . . . , φp)′ has been established in [30] for the linear model (8.9) 

and in [28] for the log-linear model (8.10), that is .
√

n(ρ̂ −ρ)
d−→ N(0, I (ρ)−1). The  

same properties have been discussed in [12], for the Poisson Quasi MLE applied 
under the Negative binomial distribution (8.11), with limiting covariance matrix 
.J (ρ)−1I (ρ)J (ρ)−1, where .J (ρ) is the associated Hessian matrix of the Poisson 
quasi log-likelihood. See also Theorem 8.6 for details about limiting covariance 
matrices in a quasi-likelihood framework. 

8.3.5 BARMA 

In case of dynamic binary data, a relevant model is the Binomial ARMA (BARMA) 
model [41, 50] which is obtained when (8.1) is Bin.(a, μt ), where the number of 
trials a is known, and the probability parameter is .pt = μt/a. By setting .k = 0, 
.h : identity and .νt = 1 in (8.2)–(8.3), we have 

.ηt = xT
t β +

p∑
j=1

φj

[
Yt−j − xT

t−j β
]

+
q∑

j=1

θj

[
Yt−j − μt−j

]
.
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Note that, when .h : identity, the mean-link function in (8.5) automatically reduces 
to .E(Yt |Ft−1 ) = μt . Instead, the link function g can be any suitable function, 
typically logit or probit. This model is designed for Binomial distribution in (8.1). 
The BARMA model includes the autoregressive effect and the moving average part. 
The model could be also generalized to consider the dependence with respect to the 
long memory term with a suitable link function. 

Consistency and asymptotic normality of the MLE for the parameters of the 
BARMA model, .ρ = (β, φ1, . . . , φp, θ1, . . . , θq)′, are available as special case of 
Moysiadis and Fokianos [45, Theorem 2], with limiting distribution .N(0, I (ρ)−1). 

8.3.6 Discussion 

Models for binary time series have not enjoyed the same developments as models for 
count data. However, enhancements in this direction could provide useful insights 
in several fields. The generalization to the non-binary case could be also interesting 
for the analysis of temporal categorical data. However, the distributions of these 
kinds of data require the estimation of multiple latent models, e.g. the categorical 
distribution with K levels needs latent processes .(p1,t , . . . , pK,t ) to be modelled 
simultaneously, leading to a multivariate time series model not encompassed in 
the distribution (8.1) and the model (8.2), (8.3). For this reason, the non-binary 
categorical data are not treated in this contribution. To the best of our knowledge 
this part of the literature seems to be barely explored; the interested reader can see 
[29] and [45] on suitable time series models for temporal categorical data. 

8.4 Weak Stationarity 

We pass on now to examine stationarity and ergodicity for some of the models high-
lighted in the previous section. A stochastic process .{Xt }t∈Z, is strictly stationary 
if, for any integer k and for any ordered set of subscripts, .t1, t2, . . . , tk , the joint 
distribution of .(Xt ,Xt1 , Xt2 , . . . , Xtk ) depends only on . t1 − t, t2 − t, . . . , tk − t

but not on t . In particular, the distribution of . Xt does not depend on the absolute 
position t . So the mean, variance, and other higher moments, if they exist, remain the 
same across t . Ergodicity is a property which ensures the sample mean (or moment) 
of the time series, or any measurable functions of it, converges asymptotically to 
the associated expectation. See Hayashi [37, p. 101] for details. However, the way 
to prove such properties strongly depends on the specific nature of the stochastic 
process itself. See Sect. 8.5 for a brief discussion. 

A stochastic process .{Xt }t∈Z, is said to be weakly stationary (or covariance 
stationary) if the first two moments are finite and are the same across t . It can 
be directly verified by checking that the functional form of the first two moments 
is not time dependent. If the first two moments are finite, then strict stationarity
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implies weak stationarity. In this section, we consider weak stationarity conditions 
for GARMA, M-GARMA and GLARMA models. For the BARMA model, no 
direct results on weak stationarity are available in the literature so far. However, 
strong stationarity is proved for BARMA, see [45], which we shall consider in 
Sect. 8.5 along with the Poisson autoregression, derived by Fokianos et al. [30] and 
Fokianos and Tjøstheim [28]. 

8.4.1 GARMA 

For the GARMA model in (8.6) for .g ≡ h : identity, one has .εt = Yt − μt , 
with zero conditional and unconditional mean value. Moreover the process . εt is 
uncorrelated. The observation process can be expressed in the form 

.Yt = μt + εt . (8.12) 

By setting .wt = Yt − xT
t β and by replacing the expression of (8.6) in (8.12), a  

standard ARMA model is obtained: 

.wt =
p∑

j=1

φj wt−j +
q∑

j=1

θj εt−j + εt . (8.13) 

Of course (8.13) can be easily rearranged via polynomial notation in: 

. wt = Ψ (B) εt

where .Ψ (B) = 1 + ψ1B + ψ2B
2 + · · · = Φ(B)−1 Θ(B), . Φ(B) = 1 − φ1B −

· · · − φpBp, .Θ(B) = 1 + θ1B − · · · − θqBq , and B is the lag operator; provided 
that .Φ(B) is invertible, i.e. that .Φ(z) �= 0, .∀z ∈ C such that .|z| < 1, see  [11]. 
Indeed, .E(wt ) = Ψ (B), E(εt ) = 0 and then .E(Yt ) = β in the case where . xT

t β =
β. The autocovariance does not depend on time t because of the uncorrelated . εt . 
Concerning the variance, the situation is slightly more involved: 

. V(Yt ) = V(xT β + wt)

= V(wt ) = E(ε2t )

= E [Ψ (B) εt Ψ (B) εt ]

=
∞∑
i=0

∞∑
j=0

ψi ψjE(εt−i εt−j )

=
∞∑
i=0

ψ2
i E(ε2t−i )
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= ϕE
[
Ψ (2) (B) υ(μt )

]
, (8.14) 

where .Ψ (2)(B) = 1 + ψ2
1B + ψ2

2B2 + . . . . Expression (8.14) is obtained 
remembering that .E(ε2t ) = V(εt ) = E

[
E(ε2t | Ft−1)

] = E [υ(μt )]. The expression 
of the unconditional variance for the mean can be found as follows: . V(Yt ) =
V(μt ) + V(εt ) since . εt and . μt are uncorrelated. So, 

. V(μt ) = E
{[

Ψ (2)(B) − 1
]
υ(μt )

}
.

The particular expression for .υ(μt ) in (8.14) depends on the distribution under 
investigation from (8.1). For example, in case of Poisson distribution, . υ(μt ) = μt

so that 

. V(Yt ) = Ψ (2)(B)E(μt ) = Ψ (2)(B) β = Ψ (2)(1) β,

where .Ψ (2)(1) = 1+ψ2
1 +ψ2

2 + · · · =∑∞
j=1 ψ2

j ; it can be seen that the variance is 
constant over t and no additional conditions are required for weak stationarity apart 
from the usual invertibility of .Φ(B). For other distributions, further invertibility 
conditions could be required; for example, in the Bernoulli case, even .Ψ (2)(B) needs 
to be invertible to assure stationarity. This proof is due to [5]. 

We remark that these conditions do not work for other link functions that are 
different from the identity; the reason is that, in general, the prediction error in (8.6) 
.εt = h(Yt ) − ηt is not an MDS (apart from the special case .g ≡ h : identity). 

In order to develop an asymptotic theory for the maximum likelihood estimator 
much more attention has been paid to assessing strict stationarity and ergodicity for 
the GARMA model than to proving weak stationarity. For this reason, we will deal 
with these results in the following section. 

8.4.2 M-GARMA 

The M-GARMA model (8.7) allows the prediction error to be an MDS. However, 
the distribution of . εt does depend on .Ft−1; for this reason, [62] pointed out that, 
in general, the classical condition of invertibility for .Φ(B) is not sufficient for 
the existence of a stationary distribution of the process .{g(Yt )}Z . By using  the  
theory of Markov chains, the authors showed that the standard invertibility condition 
holds only for the special cases in which .ḡ(μt ) = g(μt ) + c, where c is some 
function which is constant with respect to . μt ; the authors call these special cases 
the canonical link functions (a survey of these link functions is presented in [62]); 
for the other cases they provided only strict stationarity conditions. However, the 
authors required .q(y | Ft−1) to be positive everywhere (. R+); this condition is not 
satisfied for discrete-valued observation process . yt . Thus, the latter results are valid
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only for continuous distributions; indeed, in the paper, the attention of the authors 
is focused on Beta and Gamma distributions. 

8.4.3 GLARMA 

For the GLARMA models, according to [47] and Dunsmuir and Scott [25, eq. 11-
12], an autoregressive representation is available 

. zt =
k∑

j=1

γj zt−j +
q∑

j=1

θj εt−1−j + εt−1 ,

which can be made equivalent to (8.8) by suitable redefinition of the degrees k and 
q and the autoregressive and moving average coefficients as shown in Dunsmuir 
and Scott [25, Sec. 3.4]. Then, similarly to the GARMA model, weak stationarity 
conditions follow immediately by rewriting the model as an .MA(∞): 

. zt = Ψ ∗(B) εt =
∞∑

j=1

ψ∗
j εt−j ,

where .Ψ ∗(B) = 1 + ψ∗
1B + ψ∗

2B2 + · · · = Γ (B)−1 Θ(B) − 1, . Γ (B) = 1 −
γ1B − · · · − γkB

k , and .Θ(B) = 1 + θ1B − · · · − θqBq . The model is initialized 
at .zt = 0 and .εt = 0 for .t ≤ 0. In general, the process .{εt } is an MDS and, in 
the special case in which Pearson residuals are chosen, it is a stationary WN(0,1) 
and, automatically, . zt will be (weakly) stationary (and . Yt as well) under the usual 
stationarity and invertibility conditions: roots of .Γ (B) and .Θ(B) lie all outside the 
unit circle on the complex plan). See [25] for details. Nevertheless, no results are 
available for strict stationarity apart from the simplest case when .k = 0, q = 1; see  
[19, 25], and [18]. 

8.5 Strong Stationarity 

Strong stationarity and ergodicity for the models discussed so far can be derived 
based on several different approaches, see [31] for a comprehensive introduction. 
We mainly consider two of them. One is is the perturbation approach introduced 
by Fokianos et al. [30] and Fokianos and Tjøstheim [28], for the linear and log-
linear Poisson autoregression models, respectively. The other is the Markov chain 
theory without irreducibility developed by Matteson et al. [42], by extending the 
perturbation argument with Feller properties. These authors showed an application 
of their approach to the GARMA model as well, see Sect. 8.5.1. An alternative
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approach to Markov chain theory without irreducibility assumption is presented 
by Douc et al. [23]. In this latter paper, an application to the log-linear Poisson 
autoregression is available, see Sect. 8.5.2. Similar results are established on the 
BARMA model, see [45]. For the M-GARMA model, only results for continuous 
variables are available by Zheng et al. [62]. For the GLARMA model, no direct 
strict-stationarity results have been developed in the literature. 

The perturbation approach is an indirect way to establish the stability properties 
of the discrete process .{Yt } and consists of defining a real-valued version of the 
process, by adding a small real perturbation m to the original process and then 
showing stochastic properties on the new perturbed process .{Y (m)

t }. Moreover, it 
can be proved that, as .m → 0, the two processes are arbitrarily close, Appendix 
Section “Perturbation Approach” provides details. TheMarkov chain theory without 
irreducibility allows one to extends results of the perturbation approach to the orig-
inal process, by exploiting the fact that .{μt } can be interpreted as a Markov chain. 
Showing stationarity and ergodicity for such a chain allows one to draw conclusions 
on the strict stationarity of the integer-valued process . {Yt }. The difference in this 
approach between [42] and [23] lies only in the additional assumptions required. 

We first report an application of the perturbation approach and its extension with 
Feller properties to the GARMA model in Sect. 8.5.1. Then, an example of the 
approach of [23] to the log-linear Poisson autoregression is presented in Sect. 8.5.2. 
We postpone all the theoretical tools required for the application of the two methods 
in Appendix Section “Technical Details”. 

8.5.1 Strict Stationarity and Ergodicity for the GARMA Model 

In this section, the conditions under which there exists a strict-sense stationary and 
ergodic version of the observation process .{Yt }t∈N for the GARMA(1,1) model are 
given. Define 

.Yt | Y0:t−1 ∼ q(μt ), (8.15) 

.g(μt ) = β + φ
[
g(Y ∗

t−1) − β
]+ θ

[
g(Y ∗

t−1) − g(μt−1)
]

(8.16) 

where . Y ∗
t is a function which maps the value of . Yt to the domain of g. The process 

.Y0:t−1 is the set of past values of . Yt from the time 0 until .t − 1; .q(μt ) is a synthetic 
notation for (8.1). Three separate cases are considered: 

1. .q(μ) is defined for any .μ ∈ R. In this case, the domain of g is . R and .Y ∗
t = Yt is 

taken. 
2. .q(μ) is defined for only .μ ∈ R+(or . μ on any one-sided open interval by 

analogy). In this case, the domain of g is .R+ and .Y ∗
t = max {Yt , c} for some 

.c > 0 is taken.
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3. .q(μ) is defined for only .μ ∈ (0, a) where .a > 0 (or any bounded open 
interval by analogy). In this case, the domain of g is .(0, a) and . Y ∗

t =
min {max (Yt , c) , (a − c)} for some .c ∈ (0, a/2) is taken. 

Valid link functions g are bijective and monotonic. Choices for Case 2 include the 
log link, which is the most commonly used, and the link, parametrized by .α > 0, 

. g(μ) = log(eα μ − 1)/α

which has the property that .g(μ) ≈ μ for large . μ. Examples of valid link functions 
for Cases 1 and 3 are the identity and logit functions, respectively. Note that 
model (8.15) is more general than the class of models developed in (8.1) in the 
sense that it is not necessarily assumed that .q(·) belongs to the exponential family. 

8.5.1.1 Perturbed Model 

The perturbation approach consists of adding a small real-valued perturbation to 
the discrete-valued time series model in order to obtain a .ϕ-irreducible process 
(see Definition 8.1 in Appendix Section “Technical Details”); then the standard 
tools for Markov chains (Appendix Section “Markov Chain Specification”) could be 
used to assess stationarity and ergodicity for the perturbed version of the GARMA 
model. First, ergodicity and stationarity results for the following perturbed model 
are obtained: 

. Y
(m)
t | Y

(m)
0:t−1 ∼ q(μ

(m)
t )

.g(μ
(m)
t ) = β +φ

[
g(Y

(m)∗
t−1 ) − β

]
+ θ

[
g(Y

(m)∗
t−1 ) − g(μ

(m)
t−1)

]
+mZt−1, (8.17) 

where .Zt ∼ N(0, 1) are independent, identically distributed random perturbations, 
for any .m > 0, which is a scale factor associated with the perturbation. The value 
.μ

(m)
0 is a fixed constant that is taken to be independent of m, so that .μ(m)

0 = μ0. 

Theorem 8.1 The process .{μ(m)
t }t∈N specified by the perturbed process (8.17) is an 

ergodic Markov chain and thus is stationary for an appropriate initial distribution 
for .μ(m)

0 , under the conditions below. This implies that the perturbed process 

.{Y (m)
t }t∈N is stationary and ergodic when .μ(m)

0 is initialized appropriately. The 
conditions are: 

1. .E(Y
(m)
t | μ

(m)
t ) = μ

(m)
t . 

2. (.2 + δ moment condition): There exist .δ > 0, .r ∈ [0, 1 + δ) and non-negative 
constants .d1, d2 such that 

.E(|Y (m)
t − μ

(m)
t |2+δ | μ

(m)
t ) ≤ d1|μ(m)

t |r + d2.
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3. g is bijective, increasing, and 

a. .g : R �→ R is concave on . R+ and convex on . R−, and . |φ| < 1
b. .g : R+ �→ R is concave on . R+, and . |φ| , |θ | < 1
c. .|θ | < 1; no additional conditions on .g : (0, a) �→ R. 

The proof can be found in the appendix of [42]. This approach yields stationarity 
and ergodicity of the perturbed model. In order to extend these conclusions to the 
original unperturbed model the results of the following section are required. 

8.5.1.2 Unperturbed Model 

In this section, the existence of a stationary distribution for the observation process 
.{Yt }t∈N of the original (unperturbed) class of GARMA models is proved. Since 
.{Yt }t∈N is not itself a Markov chain, by using the results of Appendix Section “Feller 
Conditions”, the existence of a strict-sense stationary ergodic process . {Yt }t∈N
is proved by showing that the Markov chain .{μt }t∈N has a unique stationary 
distribution. First, the existence of a stationary distribution for the Markov chain 
is shown by using the weak Feller property. Let .Y0(x) denote the random variable 
. Y0 conditioned on .μ0 = x. The results of this section are due to [42]. 

Theorem 8.2 The process .{μt }t∈N specified by the GARMA model (8.16) has a 
stationary distribution, and thus is stationary for an appropriate initial distribution 
for . μ0, under the following conditions: 

1. .Y0(x) ⇒ Y0(x
′) as .x → x′. 

2. .E(Yt | μt) = μt . 
3. (.2 + δ moment condition): There exist .δ > 0, .r ∈ [0, 1 + δ), and non-negative 

constants .d1, d2 such that 

. E(|Yt − μt |2+δ | μt) ≤ d1 |μt |r + d2.

4. g is bijective, increasing, and 

a. .g : R �→ R is concave on . R+ and convex on . R−, and . |φ| < 1
b. .g : R+ �→ R is concave on . R+, and . |φ| , |θ | < 1
c. .|θ | < 1; no additional conditions on .g : (0, a) �→ R. 

The proof is postponed to Appendix Section “Main Proofs”. 
Then, uniqueness of the stationary distribution for . μt is shown. It is further 

assumed that the distribution .πz(·) of .g(Yt ) conditional on .g(μt ) = z varies 
smoothly and not too quickly as a function of z. This mean that .πz(·) has the 
Lipschitz property 

. sup
w,z∈R:w �=z

‖πw(·) − πz(·)‖T V

|w, z| < B < ∞ (8.18)
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where .‖·‖T V is the total variation norm [44, p. 315]. 

Theorem 8.3 Suppose that the conditions of Theorem 8.2 and the Lipschitz condi-
tion (8.18) hold, and that there is some .x ∈ R that is in the support of . Y0 for all 
values of . μ0. Then there is a unique stationary distribution for .{μt }t∈N. This implies 
that .{Yt }t∈N is strictly stationary when . μ0 is initialized appropriately. 

The proof of the theorem is based on the asymptotic strong Feller property (see 
Definition 8.7 in the Appendix) and it can be found in [42] and Proposition 8 in 
[23]. 

A similar procedure can be followed to prove strict stationarity and ergodicity 
for the GARMA model with more than one lag. See [42] for further discussion. 

8.5.2 Strict Stationarity and Ergodicity for Log-Linear Poisson 
Autoregression 

The work of [23] is intended to provide an alternative proof of stationarity and 
ergodicity for the discrete process . Yt , by weakening the Lipschitz assumption (8.18), 
which is not satisfied in several widely applied observation-driven models. The 
authors specify a broad class of observation-driven models, such as the log-linear 
Poisson autoregression, as follows. Let .(X, d) be a locally compact, complete and 
separable metric space and denote by . X the associated Borel sigma-field. Let 
.(Y,Y) be a measurable space, H a Markov kernel from .(X,X ) to .(Y,Y) and 
.(x, y) �→ fy(x) a measurable function from .(X × Y,X ⊗ Y) to .(X,X ). 

An observation-driven model on . N is a stochastic process .{(Xt , Yt )}t∈N on its 
space .X × Y satisfying the following recursions: for all .t ∈ N, 

.Yt+1|Ft ∼ H(Xt ; ·), Xt+1 = fYt+1(Xt ) (8.19) 

where .Ft = σ(Xl, Yl; l ≤ t, l ∈ N) and .fYt+1 is a generic function depending on 
the observation process .{Yl, }l≤t+1. Similarly .{(Xt , Yt )}t∈N is an observation driven 
time series model on . N if the previous recursion holds for all .t ∈ N with . Fk =
σ(Xl, Yl; l ≤ t, l ∈ N). 

Denote by Q the transition probability associated with .{Xt }t∈Z, defined implic-
itly by the recursions (8.19); see Appendix Section “Technical Details” for details. 
General conditions expressed in terms of H and f are derived by Douc et al. 
[23] so that the processes .{Xt }t∈Z and .{(Xt , Yt )}t∈Z admits a unique invariant 
probability distribution. In Appendix Section “Technical Details”, we highlight the 
proof for strict-stationarity and ergodicity for the discrete process in Eq. (8.19). We  
give only an example of this general approach on the so-called log-linear Poisson 
autoregression, [28]. 

Only the aspects of the proof which significantly differ from those in Sect. 8.5.1 
are shown. We redirect the reader to Appendix Sections “Coupling Construction”–
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“Assumptions and Results of the Alternative Markov Chain Approach Without 
Irreducibility” for the details. 

Let us consider a Markov chain .{Xt }t∈Z with a transition kernel Q given 
implicitly by the following recursive equations: 

. Yt+1|X0:t , Y0:t ∼ P(eXt )

Xt+1 = d + a Xt + b ln(Yt+1 + 1)

where .P(λ) is the Poisson distribution with parameter . λ. Let  .X = R so . d(x, x′) =
|x − x′| and the function .fy(x) = d + a x + b ln(1 + y). 

Theorem 8.4 If .|a+b|∨|a|∨|b| < 1 and there is some .x ∈ R that is in the support 
of . Y0 for all values of . X0. Then there is a unique stationary distribution for .{Xt }t∈N. 
This implies that .{Yt }t∈N is strictly stationary when . X0 is initialized appropriately. 

The proof is in Appendix Section “Main Proofs”. We remark that, for this method, 
the attention is put on showing stability conditions for the model with only one lag. 
The extension to orders greater than the first could be challenging; see [23]. 

8.6 Inference 

The inferential procedures related to observation-driven models for discrete pro-
cesses usually rely on maximum likelihood estimation. However, a misspecified 
version is available, namely Quasi MLE (QMLE), where the likelihood function 
considered for the estimation is not necessarily paired with the conditional distribu-
tion assumed as a data generating process, see [4, 61], and [38]. 

For linear and log-linear Poisson autoregressive time series models, [30] and [28] 
developed maximum likelihood estimation. Quasi-likelihood inference for negative 
binomial processes has been introduced in [12]. Ahmad and Francq [1] established 
consistency and asymptotic normality of the QMLE for the specific case of the 
Poisson distribution. For the general framework (8.19), [23] proved the consistency 
of MLE and QMLE. Asymptotic normality, in the same setting, is later discussed 
by Douc et al. [24]. Comparable results have been derived by Davis and Liu [18], 
based on the approach developed by Neumann [46]. The aim of this section is to 
give a brief introduction to QMLE for the framework summarized by Eq. (8.19). 

Let .(Θ, d) be a compact metric subspace of . Rp. Define the parameter vector 
.θ ∈ Θ and the QMLE 

.θ̂n,x = argmax
θ∈Θ

Lθ
n,x〈Y1:n〉 , (8.20)
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with corresponding conditional (quasi) log-likelihood function 

. Lθ
n,x〈Y1:n〉 = n−1 log

(
n∏

t=1

h(f θ 〈y1:t−1〉(x); yt )

)
,

where .h(f θ 〈y1:t−1〉(x); yt ) is the density function coming from the kernel H 
in (8.19) and the notation .f θ 〈ys:t 〉(x) = f θ

yt
◦ f θ

yt−1
◦ · · · ◦ f θ

ys
(x), .s ≤ t refers 

to the so-called Iterated Random Function (IRF), see [22], with the convention 
.f θ 〈y1:0〉(x) = x. Moreover, let .X0 = x be the starting value of the chain . Xt

in (8.19); then the likelihood is conditional to the starting point x. The dependence 
on the parameter vector . θ is emphasized by the notation .f θ

ys
(·) = fys (·). 

The following results are due to [23] and [24]. We make the following assump-
tions. 

.(B1) .{Yt }t∈Z is a strict-sense stationary and ergodic stochastic process. 

.(B2) .∀(x, y) ∈ X×Y, the functions .θ �→ f θy(x) and .v �→ h(v, y) are continuous. 

.(B3) There exists a family of finite random variables . 
{
f θ 〈Y−∞:t 〉 : (θ, t) ∈ Θ × Z

}
such that for all .x ∈ X, 

(i) . limm→∞ supθ∈Θ d
[
f θ 〈Y−m:0〉(x), f θ 〈Y−∞:0〉

] = 0, a.s.
(ii) . limt→∞ supθ∈Θ

∣∣logh(f θ 〈Y1:t−1〉(x);Yt ) − logh(f θ 〈Y−∞:t−1〉;Yt )
∣∣ =

0, a.s.
(iii) .E

[
supθ∈Θ

(
logh(f θ 〈Y−∞:t−1〉;Yt )

)
+
]

< ∞, where the notation .(·)+ is 

the positive part. 

.(B4) The true parameter vector . θ� is  assumed to be in . Θo, the interior of . Θ . 

.(B5) The function .
∫

H(x�, dy) logh(x, y) has a unique maximum .{x�}. 
Conditions .(B1)–.(B2) are required for the estimator .θn,x to be well-defined. 

Assumption .(B3)-(i) assures that, regardless of the initial value of .X−m = x, the  
chain . X0 (and thus . Xt ) can be approximated by a quantity involving the infinite 
past of the observations. Intuitively, .(B3)-(ii) allows the conditional log-likelihood 
function to be approximated by a stationary sequence involving the infinite past 
of . Yt . .(B3)-(iii) is required in order to obtain a solvable maximization problem 
and holds for the discrete . Yt [23, Rem. 18]. Assumption .(B5) corresponds to an 
identification condition. 

Theorem 8.5 Assume that .(B1)–.(B5) hold and .f θ�〈Y−∞:0〉 = f θ 〈Y−∞:0〉 implies 
that .θ = θ�. Then, for all .x ∈ X, 

. lim
n→∞ θ̂n,x = θ�, a.s.

These results establish strong consistency of the QMLE. For the proof and other 
details see [24]. An example of the derivation of Theorem 8.5 for the one lag log-
linear Poisson AR can be found in [23]. See also [1], for a similar result.
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Finally, the condition under which the QMLE (8.20) is asymptotically normally 
distributed are investigated. Define the score function 

. χθ (xt (θ), yt ) = ∇θ xt (θ)
∂ logh(xt , yt )

∂xt

,

and the Hessian matrix 

. Kθ(xt (θ), yt ) = ∇2
θ xt (θ)

∂ log h(xt , yt )

∂xt

+ ∇θ xt (θ)∇θ xt (θ)′ ∂
2 log h(xt , yt )

∂x2
t

.

Then, define the following functions .f •〈Y−∞:t−1〉 : θ �→ f θ 〈Y−∞:t−1〉 and 
.f •〈Y1:t−1〉(x) : θ �→ f θ 〈Y1:t−1(x)〉. A further assumption is required. 

.(B6): For all .y ∈ Y, the function .v �→ h(v, y) is twice continuously differentiable. 
Moreover, there exist .ε > 0 and a family of a.s. finite random variables 

. 
{
f θ 〈Y−∞:t 〉 : (θ, t) ∈ θ × Z

}

such that .f θ�〈Y−∞:0〉 is in the interior of . X, the function .θ �→ f θ 〈Y−∞:0〉 is 
twice continuously differentiable on some ball .B(θ�, ε) and for all .x ∈ X, 

(i) a.s., 

. lim
t→∞

∥∥∥χθ�

(f •〈Y1:t−1〉(x), Yt ) − χθ�

(f •〈Y−∞:t−1〉, Yt )

∥∥∥ = 0

where . ‖·‖ is any norm on . Rp. 
(ii) a.s., 

. lim
t→∞ sup

θ∈B(θ�,ε)

∥∥Kθ (f •〈Y1:t−1〉(x), Yt ) − Kθ (f •〈Y−∞:t−1〉, Yt )
∥∥ = 0

where . ‖·‖ denote any norm on .p × p-matrices with real entries. 
(iii) 

.E

[∥∥∥χθ�

(f •〈Y−∞:0〉, Y1)
∥∥∥2
]

< ∞,

E

[
sup

θ∈B(θ�,ε)

∥∥Kθ (f •〈Y−∞:0〉, Y1)
∥∥
]

< ∞
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Moreover, the matrix 

. J (θ�) = E

[(∇θg
θ�〈Y−∞:0〉

) (∇θf
θ�〈Y−∞:0〉

)′ ∂2

∂x2

× logh
(
f θ�〈Y−∞:0〉, Y1

)]

is non-singular. 

Intuitively, .(B6) assumes that the score function and the information matrix of 
the data can be approximated by the their counterpart with the infinite past of the 
process. In addition, all of these quantities are assumed to exist. 

Theorem 8.6 Assume .(B1)–.(B6) hold and .θ̂n,x
p−→ θ�. Then, 

. 
√

n(θ̂n,x − θ�)
d−→ N(0,J (θ�)−1I(θ�)J (θ�)−1) ,

where 

. I(θ�) = E

[(
∇θf

θ�〈Y−∞:0〉
) (

∇θf
θ�〈Y−∞:0〉

)′

×
(

∂

∂x
logh

(
f θ�〈Y−∞:0〉, Y1

))2
]

.

The proof relies on the argument of [24]. 
Note that, for a correctly specified MLE, Eq. (8.20) is the exact MLE and 

.J (θ�) = I(θ�) in Theorem 8.6, providing the standard ML inference. For further 
details see [24]. When the quasi-likelihood comes from the Poisson distribution, [1] 
proved a similar result for Theorem 8.6. An analogous conclusion can be found in 
[12] for the Negative Binomial distribution. 

The results of Theorems 8.5–8.6 apply to all the observation-driven models 
presented so far, like those introduced in Sect. 8.3, since they can be written as 
special cases of the framework (8.19). 

8.7 Applications 

8.7.1 Number of Deaths from COVID-19 

The recent outbreak of the new coronavirus called COVID-19 in late 2019 lends 
itself to a current illustration of the model specified in Eqs. (8.1)–(8.3). The time 
series we consider is related to the daily number of deaths from COVID-19 in Italy 
from 21st February 2020 to 20th December 2020. The data can be downloaded
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Fig. 8.1 Top: daily count from COVID-19 deaths in Italy (left) and corresponding ACF (right). 
Bottom-left: ACF standardized residuals for log-AR Poisson model. Bottom-right: ACF standard-
ized residuals for log-AR NB model 

from the GitHub repository of the 2019 Novel Coronavirus Visual Dashboard 
operated by the Center for Systems Science and Engineering (CSSE) at Johns 
Hopkins University (JHU), https://github.com/CSSEGISandData/COVID-19. The  
time series has a sample size equal to .n = 304 and is plotted in Fig. 8.1, along with 
its autocorrelation function (ACF). The latter shows a temporal correlation spread 
over several lags in the past. We argue that observation driven models for discrete 
time series data may be effective in this case. The long-time dependence suggests 
the use of a feedback mechanism, captured by the latent process. 

We fit models coming from two different distributions; the Poisson distribution: 

. P (Yt = y|Ft−1) = exp(−μt)μ
y
t

y! , y = 0, 1, 2, . . .

and the NB: 

. P (Yt = y|Ft−1) = Γ (ν + y)

Γ (y + 1)Γ (ν)

(
ν

ν + μt

)v (
μt

ν + μt

)y

, y = 0, 1, 2, . . .

(8.21) 

where .ν > 0 is the dispersion parameter and . μt is the conditional expectation; 
the latter is the same for both distributions. Indeed, Eq. (8.21) is defined in terms 
of mean rather than of the probability parameter .pt = ν

ν+μt
and accounts for 

overdispersion in the data as, in (8.21), .V(Yt |Ft−1) = μt (1 + μt/ν) ≥ μt . In  
the Poisson distribution, the mean and variance are equal.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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In order to set a model selection procedure we have estimated the following one-
lag models: the log-linear Poisson autoregression (8.10) 

. log(μt ) = α + φ log(yt−1 + 1) + γ log(μt−1) ,

the GARMA model (8.6) 

. log(μt ) = α + φ log(y�
t−1) + θ

[
log(y�

t−1) − log(μt−1)
]
,

where .y�
t−1 = max {yt , c} with .c = 0.1 and .α = (1 − φ)β, and the GLARMA 

model in Eq. (8.7) 

. log(μt ) = α + γ log(μt−1) + θ

(
yt−1 − μt−1

st−1

)
,

where .st = √
μt for the Poisson distribution and .st = √

μt (1 + μt/ν) for the NB. 
QMLE has been carried out. The log-likelihood function of the Poisson and NB 

distributions is maximized by using a standard optimizer of R based on the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. The score functions, written in terms 
of predictor .xt = logμt , are:  

. χn(θ) = 1

n

n∑
t=1

(
yt − exp xt (θ)

)∂xt (θ)

∂θ
,

. χn(θ) = 1

n

n∑
t=1

(
yt − (yt + ν) exp xt (θ)

exp xt (θ) + ν

)
∂xt (θ)

∂θ
.

The solution of the system of non-linear equations .χn(θ) = 0, if it exists, provides 
the QMLE of . θ (denoted by . θ̂ ). See Sect. 8.6 for details on inference. In NB models, 
the estimation of . ν is required. We used the moment estimator, as in [13]: 

. ̂ν =
{
1/n

n∑
t=1

[(
yt − μ̂t

)2 − μ̂t

]
/μ̂2

t

}−1

,

where .μ̂t = μt(θ̂) from the Poisson model. Clearly, we replace each quantity 
with the sample counterparts computed at . θ̂ . The results of the analysis are 
summarized in Table 8.1. In the likelihood-based framework, model selection is 
based on information criteria, such as the Akaike information criterion (AIC) and 
the Bayesian information criterion (BIC). All the coefficients of the estimation are 
significant at the usual 5% level. Both AIC and BIC select the NB log-AR model as 
the best, in the goodness-of-fit sense.
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Table 8.1 MLE results from COVID-19 death counts (standard errors in brackets). Lowest 
values of AIC and BIC are given in bold 

Models .α̂ .φ̂ .γ̂ .θ̂ .ν̂ .AIC . BIC

Pois .log-AR 0.154 0.619 0.357 – – 24.204 35.355 

(0.035) (0.060) (0.062) – 

Pois GARMA 0.211 0.976 – -0.360 – 24.163 35.314 

(0.036) (0.006) – (0.061) 

Pois GLARMA 0.187 – 0.961 0.038 – 28.047 39.198 

(0.031) – (0.008) (0.003) 

NB .log-AR 0.061 0.569 0.424 – 10.733 15.227 26.378 
(0.023) (0.036) (0.035) – 

NB GARMA 0.157 0.976 – -0.441 9.123 15.262 26.413 

(0.022) (0.004) – (0.034) 

NB GLARMA 0.712 – 0.822 0.177 4.756 16.636 27.787 

(0.072) – (0.016) (0.011) 

We then assess the adequacy of fit. We check the behaviour of the standardized 
Pearson residuals .et = [Yt − E(Yt |Ft−1)] /

√
V(Yt |Ft−1), which is done by taking 

the empirical version . ̂et from the estimated quantities. If the model is correctly 
specified, the residuals form a white noise sequence with constant variance. The 
autocorrelation function (ACF) in our case appears uncorrelated for the NB case 
(see Fig. 8.1, for log-AR models), except for mild residual autocorrelation at weekly 
lags, which may depend on how the recorded data are reported, rather than on any 
actual infection cycles or occurrence of events on certain specific days of the week. 

Another check comes from the probability calibrations, as defined in [33]. 
In particular, [17] introduced a non-randomized version of Probability Integral 
Transform (PIT) for discrete data. It can be built by defining the following 
conditional distribution function 

.F(u|yt ) =

⎧⎪⎪⎨
⎪⎪⎩
0, u ≤ Pt (yt − 1)

u−Pt (yt−1)
Pt (yt )−Pt (yt−1) , Pt (yt ) ≤ u ≤ Pt(yt − 1)

1, u ≥ Pt (yt )

(8.22) 

where .Pt (·) is the cumulative distribution function at time t (in our case Poisson or 
NB). If the model is correct, .u ∼ Unif orm(0, 1) and the PIT (8.22) will appear 
to be the cumulative distribution function of a .Unif orm(0, 1). The PIT (8.22) is 
computed for each realization of the time series .yt , t = 1 . . . , n and for values . u =
j/J, j = 1, . . . , J , where J is the number of bins (usually equal to 10 or 20); then 
its mean .F̄ (j/J ) = 1/n

∑n
t=1 F(j/J |yt ) is taken. The outcomes are probability 

mass functions, which are obtained in terms of differences .F̄ (
j
J
) − F̄ (

j−1
J

) plotted 
in Fig. 8.2. The NB PIT’s appear to be closer to .Unif orm(0, 1) for log-linear 
autoregression and GARMA models than for the remaining models.
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Fig. 8.2 Top: PIT’s for the Poisson models. Bottom: PIT’s for the NB models 

Table 8.2 Predictive performance from COVID-19 death counts (smallest values in bold) 

Models Distribution Logs qs sphs rps dss 

.log-AR Poisson 9.1054 . −0.0205 . −0.1260 32.6055 21.1890 

NB 4.6168 . −0.0324 . −0.1458 29.3324 14.0354 
GARMA Poisson 9.0849 . −0.0212 . −0.1274 32.5241 21.1019 

NB 4.6345 . −0.0320 . −0.1448 29.7812 14.1704 

GLARMA Poisson 11.0270 0.0009 . −0.0822 36.5751 26.0447 

NB 5.3215 . −0.0176 . −0.1033 74.0710 16.1614 

In order to assess the predictive power of each model, we refer to the concept 
of sharpness of the predictive distribution defined in [33]. It can be measured 
by some average quantities related to the predictive distribution, which take the 
form .1/n

∑n
t=1 d[Pt (yt )], where .d(·) is a scoring rule, see [32]. We used some 

of the usual scoring rules employed in the literature: the logarithmic score (logs) 
.− logpt (yt ), where .pt (·) is the probability mass at the time t ; the quadratic score 
(qs) .−2pt (yt ) + ‖p‖2, where .‖p‖2 = ∑∞

k=0 p2
t (k); the spherical score (sphs ) 

.−pt (yt )/‖p‖; the ranked probability score (rps) .
∑∞

k=0[Pt(k) − 1(yt ≤ k)], and the 
Dawid-Sebastiani score (dss) .( yt−μt

σt
)2 + 2 log σt , where . μt and . σt are the mean and 

variance of .Pt(yt ). These scores are applied to different models and distributions. 
The results are summarized in Table 8.2. The NB log-AR model is chosen as the 
best model, as it has the best predictive performance for all the scoring rules, which 
confirms the result of the goodness-of-fit analysis.
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8.7.2 Returns Sign for J&J Stock 

In financial time series analysis, it is well known that the expected value of 
the stock returns is unpredictable, as, unconditionally, returns behave like white 
noise sequences. However, the sign of the returns can be predicted, as well as its 
volatility, see for instance [10]. Recently, a literature on sign prediction for stock 
returns through binary times series has flourished, see Moysiadis and Fokianos [45, 
Sec. 6.1] for a survey. 

We apply the binary time series approach for sign prediction to BARMA, 
GARMA, and GLARMA models. The time series of logarithmic returns for the 
weekly closing prices of the Johnson & Johnson (J&J) stock from 2/1/1970 to 
17/5/2021 is considered. These data can be found at http://finance.yahoo.com. The  
length of the series is .n = 2682. More precisely, the log-return series is derived as 
.rt = log(P c

t ) − log(P o
t ), where . P c

t is the closing price of the stock at time t and 
. P o

t is its associated opening price. The binary time series of signs is generated as 
follows: .Yt = 1 when the logarithmic return at time t is positive, such as when the 
price change is positive, and .Yt = 0 otherwise (negative price change). The time 
series of stock log-returns is plotted in Fig. 8.3. The ACF of the returns is reported, 
as well. As expected, no temporal correlation is detected in the log-returns time 
series, which is in line with the aforementioned unpredictability of return means. 

The result of the ML estimation is presented in Table 8.3. All the coefficients are 
significant at the usual nominal levels. The information criteria select the GLARMA 
model. The employed models seem to be adequate for the data analysed, as the 
ACF in Fig. 8.4 show uncorrelated residual errors. The Bernoulli distribution is 
well adapted to the empirical distribution of the model (Fig. 8.5). The predictive 
performance is measured by using the same scoring rule of the previous application. 
In Table 8.4, the GLARMA model is selected again by the majority of the scores. 

1970 1990 2010−0
.1

5
0.

00
 

0.
10

 

Returns J&J stock 

Time 

lo
g 

re
tu

rn
s 

0 5 10 20 30 

0.
0

0.
4

0.
8 

Time 

AC
F 

ACF J&J stock 

Fig. 8.3 Weekly log-returns for the J&J stock (left) and corresponding ACF (right)
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Table 8.3 MLE results for J&J return sign (standard errors in brackets .×103). Lowest values of 
AIC and BIC are given in bold 

Models .α̂ .φ̂ .γ̂ .θ̂ .AIC × 10−1 . BIC10−1

BARMA 0.308 –0.444 – 0.449 371.868 373.637 

(0.4612) (0.8877) (0.8891) 

GARMA 0.170 . −0.992 – 0.988 371.437 373.205 

(0.0568) (0.0009) – (0.0013) 

GLARMA 0.007 – 0.910 0.035 371.364 373.132 
(0.0009) – (0.0112) (0.0048) 
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Fig. 8.4 Left: ACF standardized residuals for the Bernoulli GARMA model. Right: ACF of 
standardized residuals for the Bernoulli GLARMA model 
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Fig. 8.5 PIT’s for the Bernoulli models
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Table 8.4 Predictive performance for J&J return sign (smallest values in bold) 

Models Logs qs sphs rps dss 

BARMA 0.6947 . −0.4984 . −0.7060 0.2508 . −1.7808 
GARMA 0.6916 . −0.5015 . −0.7082 0.2492 . −1.7788 

GLARMA 0.6915 . −0.5017 . −0.7083 0.2492 . −1.7793 

8.8 Concluding Remarks 

The most notable observation-driven models for discrete data have been reviewed. 
The basic stochastic properties required to guarantee their correct use have been 
presented, as well as the technical tools for their practical application. Increased 
availability and interest in discrete data encourage the use of these time series 
models, which will be promising key tools in future works on binary and count 
data. 

For theoretical and substantive reasons, the analysis of discrete-valued times 
series would benefit from the specification of a unified framework able to encompass 
most of the models available in the literature. As a matter of fact, it is not trivial to 
explore whether the models that we have discussed are nested, and, consequently, 
to derive stochastic properties that simultaneously hold across models. In addition, 
model comparison becomes complicated when direct relationships among different 
models are unknown. 

Concerning probabilistic properties, up to the present time, strict stationarity and 
ergodicity have not been established explicitly for a number of the models reviewed 
in this chapter (GLARMA and M-GARMA for discrete variables, for example). In 
principle, the theoretical tools presented in Appendix Section “Technical Details” 
would be sufficient to show stability conditions for such models, as well as any 
general framework encompassed in (8.1) and (8.3), but the derivations of such 
stationarity conditions might not be immediate and far from obvious, as shown in 
Sect. 8.5 for the GARMA and log-AR models. Then, this would be a useful step 
further for the literature. 

Another aspect which may be interesting to consider is related to the inferential 
assumptions reported in Sect. 8.6, which could be generalized to distributions other 
than Poisson and Negative Binomial and for several different models encompassed 
in (8.1) and (8.3). Lastly, model selection procedures could also be further investi-
gated. We view these aspects as promising topics for future research.
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Appendix 

Technical Details 

Markov Chain Specification 

In order to derive strict stationarity and ergodicity conditions, the problem is 
reformulated in terms of Markov chain theory. Let us consider an observation driven 
model in the most general form: 

.Yt | Ft−1 ∼ q(·;μt) (8.23) 

.μt = cδ(Y0:t−1) (8.24) 

where we adopt the shorthand notation . Yt for the process and, as before, . yt its 
realization. The function q is simply the density function which comes from (8.1), 
whereas . cδ is some function which describes the form of the dependence from the 
observation. In general, .Ys:t = (Ys, Ys+1, . . . , Yt ) where .s ≤ t . The symbol . δ is the 
vector of parameters of the model. Of course, the initial values .μ0:p−1 are supposed 
to be known. The model in (8.24) can be rewritten as: 

. μt = gδ(Yt−p:t−1, μt−p:t−1).

This way of writing the observation driven model [15] gives a Markov p-structure 
for . μt and then implies that the vector .μt−p:t−1 forms the state of a Markov chain 
indexed by t . In this case it is possible to prove stationarity and ergodicity of . {Yt }t∈N
by first showing these properties for the multivariate Markov chain .

{
μt−p:t−1

}
t≥p

, 
then shifting the results back to the time series model .{Yt }t∈N. 

Some useful definitions for theorems based upon the theory of Markov chains 
asserted throughout the paper are introduced. Define a general Markov chain . X =
{Xt }t∈N on a state space S with .σ -algebra . F and define . P t (x,A) = P(Xt ∈
A | X0 = x) for .A ∈ F as the t-step transition probability starting from state 
.X0 = x. 

Definition 8.1 A Markov chain X is .ϕ-irreducible if there exists a non-trivial 
measure . ϕ on . F such that, whenever .ϕ(A) > 0, .P t (x,A) > 0 for some .t = t (x, A), 
for all .x ∈ S. 

Also, the definition of aperiodicity as stated in [44] is needed. Define a period 
.d(α) = gcd

{
t ≥ 1 : P t (α, α) > 0

}
. 

Definition 8.2 An irreducible Markov chain X is aperiodic if .d(x) ≡ 1, .x ∈ X. 

Definition 8.3 A set  .A ∈ F is called a small set if there exists an .m > 1, a non-
trivial measure v on . F , and a .λ > 0 such that for all .x ∈ A and all .C ∈ F , 
.P m(x, C) ≥ λ v(C).
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Let .Ex(·) denote the expectation under the probability .Px(·) induced on the path 
space of the chain defined by .Ω = ∏∞

t=0 Xt with respect to . F∞ = ∨∞
t=0 B(Xt )

when the initial state .X0 = x; where .B(Xt ) is the Borel .σ -field on . Xt . 

Theorem 8.7 (Drift Conditions) Suppose that .X = {Xt }t∈N is .ϕ-irreducible on S. 
Let .A ⊂ S be small, and suppose that there exist .b ∈ (0,∞), .ε > 0, and a function 
.V : S → [0,∞) such that for all .x ∈ S, 

.Ex [V (X1)] ≤ V (x) − ε + b1{x∈A}, (8.25) 

then X is positive Harris recurrent. 

The function V is called the Lyapunov function or energy function. 
Positive Harris recurrent chains possess a unique stationary probability distribu-

tion . π . Moreover, if . X0 is distributed according to . π , then the chain X is a stationary 
process. If the chain is also aperiodic, then X is ergodic, in which case if the chain 
is initialized according to some other distribution, then the distribution of . Xt will 
converge to . π as .t → ∞. 

A stronger form of ergodicity, called geometric ergodicity, arises if (8.25) is 
replaced by the condition 

.Ex [V (X1)] ≤ βV (x) + b1{x∈A} (8.26) 

for some .β ∈ (0, 1) and some .V : S → [1,∞). Indeed, (8.26) implies (8.25). Even-
tually, stationarity and ergodicity for the GARMA model would be accomplished if 
at least one of the sufficient condition (8.25), (8.26) above is fulfilled. 

Unfortunately, a problem can occur when the distribution in (8.23) is not 
continuous (that is, Bernoulli, Poisson,. . . . ). In fact, in these cases the Markov chain 
.
{
μt−p:t−1

}
n≥p

may not be .ϕ-irreducible. This occurs whenever . Yt can only take a 
countable set of values and the state space .μt−p:t−1 is . Rp. Then, given a particular 
initial vector .μ0:p−1, the set of possible values for . μt is countable. Definition 8.1 is 
not satisfied. For this reason, additional theoretical tools are required: 

• Perturbation approach 
• Feller conditions. 

Perturbation Approach 

First, define the perturbed form of an observation driven time series model: 

.Y
(m)
t | Y

(m)
0:t−1 ∼ q(·;μ

(m)
t ) (8.27) 

.μ
(m)
t = gδ,t (Y

(m)
0:t−1,mZ0:t−1), (8.28)
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where .Zt ∼ φ are independent, identically distributed random perturbations having 
density function . φ, .m > 0 is a scale factor associated with the perturbation, and 
.gδ,t (·,mZ0:t−1) is a continuous function of .Z0:t−1 such that .gδ,t (y, 0) = gδ,t (y) for 
any y. The  value  .μ(m)

0 is a fixed constant that is taken to be independent of m, so  

that .μ(m)
0 = μ0. The perturbed model is constructed to be .ϕ-irreducible, so that one 

can apply usual drift conditions to prove its stationarity. 
Then, it can be proved that the likelihood of the parameter vector . δ calculated 

using (8.28) converges uniformly to the likelihood calculated using the unperturbed 
model as .m → 0. More precisely, the joint density of the observations . Y = Y

(m)
0:t

and first t perturbations .Z = Z0:t−1, conditional on the parameter vector . δ, the  
perturbation scale m, and the initial value . μ0, is:  

. f (Y,Z | δ,m,μ0) = f (Z | δ,m,μ0) × f (Y | Z, δ,m,μ0)

=
[

t−1∏
k=0

φ(Zk)

]
t∏

k=0

f
(
Y

(m)
k ;μk(mZ)

)

where .μk(mZ) is the value of .μ(m)
k induced by the perturbation vector . mZ

through (8.28), with .μ0(mZ) = μ0. The likelihood function for the parameter 
vector . δ implied by the perturbed model is the marginal density of Y integrating 
over Z, i.e., 

. Lm(δ) = f (Y | δ,m,μ0) =
∫

f (Y,Z | δ,m,μ0)dZ.

Let the likelihood function without the perturbations be denoted by . L, so that 

. L(δ) =
t∏

k=0

f
(
Y

(m)
k ;μk(0)

)
.

Theorem 8.8 Under regularity conditions 1 and 2 below, the likelihood function 
.Lm based on the perturbed model (8.27)–(8.28) converges uniformly on any 
compact set K to the likelihood function . L based on the original model, i.e., 

. sup
δ∈K

|Lm(δ) − L(δ)| m→0−−−→ 0

for any fixed sequence of observations .y0:t and conditional on the initial value . μ0. 

So if . L is continuous in . δ and has a finite number of local maxima and a unique 
global maximum on K , the maximum-likelihood estimate of . δ based on . Lm

converges to that based on . L. The proof is in [42]. Regularity Conditions: 
1. For any fixed y the function .q(y;μ) is bounded and Lipschitz continuous in . μ, 

uniformly in .δ ∈ K .
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2. For each t , .μt(mZ) is Lipschitz in some bounded neighbourhood of zero, 
uniformly in .δ ∈ K . 

Regularity condition 1 holds, e.g., for .q(y;μ) equal to a Poisson or binomial density 
with mean . μ, or a negative binomial density with mean . μ and precision parameter 
. ϕ. .μt(mZ) can easily be constructed to satisfy condition 2. One can choose to 
use the perturbed model (with fixed and sufficiently small perturbation scale m) 
instead of the original model, without significantly affecting finite-sample parameter 
estimates, in order to get the strong theoretical properties associated with stationarity 
and ergodicity. 

Although, it has been shown that the perturbed and original models are closely 
related, and although one can use drift conditions to show the stationarity and ergod-
icity properties of the perturbed model, this approach does not yield stationarity 
and ergodicity properties for the original model. In fact, this approach addresses 
consistency of parameter estimation for the perturbed model when .t → ∞ for fixed 
m and then shows that as .m → 0 the finite sample estimates (for a fixed number 
of observations t) of the perturbed model approach those of the original one. In 
order to show real proprieties of the original model one should consider both limits 
.t → ∞ together with .m → 0 in which a substantial technical difficulty associated 
with interchanging the limits arises. For this reason, the Feller properties introduced 
in the next section are needed. 

Feller Conditions 

To deal with the lack of the .ϕ-irreducibility condition, the Feller properties can be 
used instead. 

Definition 8.4 A chain evolving on a complete separable metric space S is said to 
be “weak Feller” if .P(x, ·) satisfies .P(x, ·) ⇒ P(y, ·) as .x → y, for any .y ∈ S and 
where . ⇒ indicates convergence in distribution. 

In the absence of .ϕ-irreducibility, the “weak Feller” condition can be combined with 
a drift condition (8.25) or (8.26) to show the existence of a stationary distribution 
[55]: 

Theorem 8.9 Suppose that S is a locally compact complete separable metric space 
with . F the Borel .σ -field on S, and the Markov chain .{Xt }t∈N with transition kernel 
P is weak Feller. Let .A ∈ F be compact, and suppose that there exist .b ∈ (0,∞), 
.ε > 0, and a function .V : S → [0,∞) such that for all .x ∈ S, the drift 
condition (8.25) holds. Then there exists a stationary distribution for P . 

Uniqueness of the stationary distribution can be established using the “asymptotic 
strong Feller” property, defined in [35]. Before doing it, further definitions are 
required: 

Definition 8.5 Let S be a Polish (complete, separable, metrizable) space. A “totally 
separating system of metrics” .{dt }t∈N for S is a set of metrics such that for any . x, y ∈
S with .x �= y, the  value .dt (x, y) is non-decreasing in t and .limt→∞ dt (x, y) = 1.
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Definition 8.6 A metric  d on S implies the following distance between probability 
measures . μ1 and . μ2: 

. ‖μ1 − μ2‖d = sup
Lipdφ=1

(∫
φ(x)μ1(dx) −

∫
φ(x)μ2(dx)

)
(8.29) 

where 

. Lipdφ = sup
x,y∈S:x �=y

|φ(x) − φ(y)|
d(x, y)

is the minimal Lipschitz constant for . φ with respect to d. 

Definition 8.7 A chain is “asymptotically strong Feller” if, for every fixed .x ∈ S, 
there is a totally separating system of metric .{dt } for S and a sequence .tn > 0 such 
that 

. lim
δ→∞ lim sup

t→∞
sup

y∈B(x,δ)

∥∥P tn(x, ·) − P tn(y, ·)∥∥
dt

= 0

where .B(x, δ) is the open ball of radius . δ centred at x, as measured using some 
metric defining the topology of S. 

Definition 8.8 A “reachable” point .x ∈ S means that for all open sets A containing 
x, .
∑∞

t=1 P t(y,A) > 0 for all .y ∈ S. 

Theorem 8.10 Suppose that S is a Polish space and the Markov chain . {Xt }t∈N
with transition kernel P is asymptotically strong Feller. If there is a reachable point 
.x ∈ S then P can have at most one stationary distribution. 

This is an extension of [35]. The results of this section lay the foundation 
for showing the convergence and asymptotic properties of maximum likelihood 
estimators for the discrete-valued observation driven models. 

Coupling Construction 

Introduce a kernel . H̄ from .(X2,X⊗2) to .(Y2,Y⊗2) satisfying the following 
conditions on the marginals: for all .(x, x′) ∈ X2 and .A ∈ Y , 

.H̄ ((x, x′);A × Y) = H(x,A), H̄ ((x, x′);Y × A) = H(x′, A). (8.30) 

Let .C ∈ Y⊗2 such that .H̄ ((x, x′);C) �= 0 and the chain .

{
Zt = (Xt ,X

′
t , Ut )

}
t∈Z on 

the“extended” space .(X2×0, 1,X⊗2⊗P(0, 1)) with transition kernel . Q̄ implicitly
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defined as follows. Given .Zt = (x, x′, u) ∈ X2×{0, 1}, draw .(Yt+1, Y
′
t+1) according 

to .H̄ ((x, x′); ·) and set 

. Xt+1 = fYt+1(x), X
′
t+1 = f

Y
′
t+1

(x′),

. Ut+1 = 1C(Yt+1, Y
′
t+1),

. Zt+1 = (Xt+1, X
′
t+1, Ut+1).

The conditions on the marginals of . H̄ , given by (8.30) also imply conditions on the 
marginals of . Q̄: for all .A ∈ X and .z = (x, x′, u) ∈ X2 × {0, 1}, 

.Q̄(z;A × X × {0, 1}) = Q(x,A), Q̄(z;X × A × {0, 1}) = Q(x′, A). (8.31) 

For .z = (x, x′, u) ∈ X2 × {0, 1}, write 

.α(x, x′) = Q̄(z;X2 × {1}) = H̄ ((x, x′);C) �= 0. (8.32) 

The quantity .α(x, x′) is thus the probability of the event .{U1 = 1} conditionally on 
. Z0, taken on .Z0 = z. Denote by . Q� the kernel on .(X2,X⊗2) defined by: for all 
.z = (x, x′, u) ∈ X2 × {0, 1} and .A ∈ X⊗2, 

. Q�((x, x′);A) = Q̄(z;A × {1})
Q̄(z;X2 × {1})

so that using (8.32), 

.Q̄(z;A × {1}) = α(x, x′)Q�((x, x′);A). (8.33) 

This shows that .Q�((x, x′); ·) is the distribution of .(X1, X
′
1) conditionally on 

.(X0, X
′
0, U1) = (x, x′, 1). 

Assumptions and Results of the Alternative Markov Chain Approach 
Without Irreducibility 

In what follows, if .(E, E) is a measurable space, . ξ a probability distribution on 
.(E, E), and R a Markov kernel on .(E, E), denote by . PR

ξ the probability induced on 

.(EN, E⊗N) by a Markov chain with transition kernel R and initial distribution . ξ . 
Denote by . ER

ξ the associated expectation. Consider the following assumptions. 

(A1) The Markov kernel Q is weak Feller. Moreover, there exist a compact set 
.C ∈ X ,.(b, ε) ∈ R+∗ × R+∗ and a function .V : X → R+ such that
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. QV ≤ V − ε + b1C.

(A2) The Markov kernel Q has a reachable point. 
(A3) There exists a kernel . Q̄ on .(X 2 × {0, 1} ,X⊗2 ⊗ P({0, 1})), a kernel . Q� on 

.(X 2,X⊗2), and a measurable function .α : X2 → [1,∞), and real numbers 

.(D, ζ1, ζ2, ρ) ∈ (R+)3 × (0, 1) such that for all .(x, x′) ∈ X2, 

.1 − α(x, x′) ≤ d(x, x′)W(x, x′) (8.34) 

.EQ�

δx⊗δx′ [d(Xt ,X
′
t )] ≤ Dρtd(x, x′) (8.35) 

.EQ�

δx⊗δx′ [d(Xt ,X
′
t )W(Xt ,X

′
t )] ≤ Dρtdζ1(x, x′)Wζ2(x, x′). (8.36) 

Moreover, for all .x ∈ X, there exists .γx > 0 such that 

. sup
x′∈B(x,γx)

W(x, x′) < ∞

Some practical conditions from checking (8.35) and (8.36) in (A3) can be denoted. 

Lemma 8.1 Assume that either (i) or (ii) or (iii) (defined below) holds. 

(i) There exist .(ρ, β) ∈ (0, 1) × R such that for all . (x, x′) ∈ X2

.d(X1, X
′
1) ≤ ρd(x, x′), PQ�

δx⊗δx′ − a.s. (8.37) 

.Q�W ≤ W + β (8.38) 

(ii) Equation (8.35) holds and W is bounded. 
(iii) Equation (8.35) holds and there exist .0 < α < α′ and .β ∈ R+ such that for 

all . (x, x′) ∈ X2

. d(x, x′) ≤ Wα(x, x′)

. Q�W 1+α′ ≤ W 1+α′ + β

Then, (8.35) and (8.36) hold. 

Assumption (A1) implies, by Tweedie [55], that the Markov kernel Q admits at 
least one stationary distribution. Assumptions (A2)–(A3) are then used to show that 
this stationary distribution is unique. 

Note that assumptions (A1)–(A2) are the same as those of Theorems 8.9 
and 8.10 of Appendix Section “Feller Conditions” and they can be proved for each 
observation driven model as has been done for the GARMA model in Sect. 8.5.1;
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assumption (A3) weakens the Lipschitz condition (8.18) by introducing a function 
W in (8.34). This allows to treat models which do not satisfy the Lipschitz 
condition (8.18); for example the log-linear Poisson autoregression of [28], see 
Sect. 8.5.2. 

Theorem 8.11 Assume that (A1)–(A3) hold. Then, the Markov kernel Q in (8.19) 
admits a unique invariant probability measure. 

Proposition 8.1 Assume that the Markov kernel Q admits a unique invariant 
probability measure. Then, there exists a strict-sense stationary ergodic process on 
. Z, .{Yt }t∈Z, the solution to the recursion (8.19). 
These results can be found in [23]. 

Main Proofs 

Proof of Theorem 8.2 

Following [42], Theorem 8.9 is applied to the chain .{g(μt )}t∈N to show that it has a 
stationary distribution; this implies the same result for the chain .{μt }t∈N. The state 
space .S = R of .{g(μt )}t∈N is a locally compact complete separable metric space 
with Borel .σ -field. A drift condition for .{g(μt )}t∈N is given under the conditions of 
Theorem 8.1, for the compact set .A = [−M,M] (the drift condition holds when the 
perturbation .m = 0). All that remains is to show that the chain .{g(μt )}t∈N is weak 
Feller. Let .Xt = g(μt ). For .X0 = x, the GARMA model can be rewritten as 

. X1(x) = γ + φ(g(Y ∗
0 (g−1(x))) − γ ) + θ(g(Y ∗

0 (g−1(x))) − x).

Since .g−1 is continuous, .Y0(g−1(x)) ⇒ Y0(g
−1(x′)) as .x → x′. Since the . ∗

that maps . Y0 to the domain of g is continuous, it follows that . Y ∗
0 (g−1(x)) ⇒

Y ∗
0 (g−1(x′)) as .x → x′. Since g is continuous, then . g(Y ∗

0 (g−1(x))) ⇒
g(Y ∗

0 (g−1(x′))). So .X1(x) ⇒ X1(x
′) as .x → x′, showing the weak Feller property. 

This ends the proof. 

Proof of Theorem 8.4 

The proof is based on the results of Appendix Sections “Coupling Construction”– 
“Assumptions and Results of the Alternative Markov Chain Approach Without 
Irreducibility”. The conditions (A1)–(A2) for the log-linear Poisson autoregression 
are proved as in Sect. 8.5.1 for the GARMA model. We report the proof of (A3). 

Lemma 8.2 If .|a + b| ∨ |a| ∨ |b| < 1, then (A3) holds.
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Proof Define . Q̄ as the transition kernel Markov chain .{Zt }t∈Z with . Zt =
(Xt ,X

′
t , Ut ) in the following way. Given .Zt = (x, x′, u), if  .x ≤ x′, draw  

independently .Yt+1 ∼ P(ex) and .Vt+1 ∼ P(ex′ − ex) and set .Y ′
t+1 = Yt+1 + Vt+1. 

Otherwise, draw independently .Y ′
t+1 ∼ P(ex′

) and .Vt+1 ∼ P(ex − ex′
) and set 

.Yt+1 = Y ′
t+1 + Vt+1. 

. Xt+1 = d + a x + b ln(Yt+1 + 1),

X′
t+1 = d + a x′ + b ln(Y ′

t+1 + 1),

Ut+1 = 1Yt+1=Y ′
t+1

= 1Vt+1=0,

Zt+1 = (Xt+1, X
′
t+1, Ut+1)

where . Q̄ satisfies the marginal condition (8.31). Moreover, define for all . x� =
(x, x′) ∈ X2,.Q�(x�, ·) as the law of .(X1, X

′
1) where 

. X1 = d + a x + b ln(Y + 1), Y ∼ P(ex∧x′
), (8.39)

X′
1 = d + a x′ + b ln(Y + 1),

and set for all .x� = (x, x′) ∈ R2, 

. α(x�) =
{
exp−ex∨x′ + ex∧x′}

.

Then, . Q̄ and . Q� satisfy (8.33). Using twice .1 − e−u ≤ u,it follows that 

. 1 − α(x�) = 1 −
{
exp−ex∨x′ + ex∧x′} ≤ ex∨x′ − ex∧x′

ex∨x′
(1 − e−|x−x′|) ≤ W(x, x′)|x − x′|

with .W(x, x′) = e|x|∨|x′| so that (8.34) holds true. To check (8.35) and (8.36), 
Lemma 8.1 is applied, by checking option (i). Note first that 

.PQ�

δx⊗δx′
{|X1 − X′

1| = |a||x − x′|} = 1, (8.40) 

so that (8.37) is satisfied. To check (8.38), it can be shown that 

. lim
|x|∨|x′|→∞

Q�W(x, x′)
W(x, x′)

= 0 (8.41) 

and for all .M > 0, 

. sup
|x|∨|x′|≤M

Q�W(x, x′) < ∞ (8.42)
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Without loss of generality, assume .x ≤ x′. Using  (8.39) provides 

.Q�W(x, x′) = E
(
e|X1|∨|X′

1|
)

≤ E
(
e|X1|

)
+ E

(
e|X′

1|
)

. (8.43) 

First, consider the second term of the right-hand side of (8.43), 

.E
(
e|X′

1|
)

≤ e|d|E(e|ax′+b ln(1+Y )). (8.44) 

Noting that if u and v have different signs or if .v = 0, then .|u + v| ≤ |u| ∨ |v|. 
Otherwise, .|u + v| = (u + v)1v>0 ∨ (−u − v)1v<0. This implies that 

. e|u+v| ≤ e|u| + e|v| + eu+v1v>0 + e−u−v1v<0.

and plugging this into (8.44), 

. E(e|X′
1) ≤ e|d| (e|a||x′| + E[(1 + Y )|b|] + eax′

E[(1 + Y )b]1b>0

+e−ax′
E[(1 + Y )−b]1b<0

)
.

Note that for all .γ ∈ [0, 1], 

. E[(1 + Y )γ ] ≤ [E(1 + Y )]γ = (1 + ex)γ ≤ 1 + eγ x ≤ 1 + eγ x′
.

Moreover, since .|b| ∈ [0, 1], .b1b>0 ∈ [0, 1] and .−b1b<0 ∈ [0, 1]. Therefore, 

. E(e|X′
1) ≤ e|d| (e|a||x′| + 1 + e|b||x| + eax′

(1 + ebx′
)1b>0 + e−ax′

(1 + e−bx′
)1b<0

)

≤ e|d| (e|a||x′| + 1 + e|b||x| + e|a||x′| + e|a+b||x′|)

≤ e|d| (1 + 4eγ (|x|∨|x′|)) ,

where .γ = |a| ∨ |b| ∨ |a + b| < 1. The first therm of the right hand side of (8.43) 
is treated as the second term by setting .x′ = x. So  

. E(e|X1|) ≤ e|d| (1 + 4eγ (|x|∨|x′|)) ,

so that using (8.43), 

.Q�W(x, x′) ≤ 2e|d| (1 + 4eγ (|x|∨|x′|)) .
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Since .γ ∈ (0, 1) and .W(x, x′) = e|x|∨|x′|, and (8.43) clearly implies (8.41) 
and (8.42), this proves (A3) and together with (A1)–(A2) provides stationarity 
conditions for the process .{Yt } of Theorem 8.4. 

Computational Aspects 

The replication code for the application in Sect. 8.7 is available at https://github. 
com/mirkoarmillotta/covid_code. First, a function for the log-likelihood and the 
gradient of the log-linear Poisson autoregression is provided. The code for the other 
models works in a similar way and it is available upon request. Then, a function 
to perform the QMLE is presented. Finally, we give the code for the COVID-19 
example and the relative plots. The code to perform the PIT is due to [17] and it is 
available in the reference therein. 
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Chapter 9 
Advances in Maximum Likelihood 
Estimation of Fixed-Effects Binary Panel 
Data Models 

Francesco Valentini, Claudia Pigini, and Francesco Bartolucci 

9.1 Introduction 

Panel data play a major role in applied research and the related literature has been 
rapidly growing in recent decades. The use of this type of data has become common 
practice in a wide range of applications across many fields [see, among others, 39, 
43, 52, 75]. 

This data structure, consisting of longitudinal observations over time for every 
unit in the sample, is more informative than cross-sectional data. As such, it 
makes it possible to formulate statistical models that account for unobserved 
heterogeneity, which comes into play whenever the behavior of an individual is 
influenced by characteristics that cannot be directly measured and controlled for 
by the analyst, such as individual preferences, innate abilities, or risk attitudes. 
On the contrary, unobserved heterogeneity often gives rise to identification issues 
with cross-sectional data, especially if correlated with the model covariates. This 
happens, for instance, when the individual latent trait represents the degree of labor 
market attachment and preference for a high value career in a model for female 
labor supply, as this latent trait strongly affects both the response variable and one 
of its main determinants, such as family composition. In this case, the presence 
of unobserved heterogeneity compromises the correct identification of the effect of 
fertility on labor force participation [49]. 
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In order to properly account for individual-specific latent traits, applications 
whose aim is to uncover causal links largely rely on the use of panel data and 
of the so-called fixed-effects approach, which consists in modeling the individual 
unobserved heterogeneity through fixed parameters to be estimated. This strategy 
is frequently adopted in applied econometrics [5, 52, 75], while the mainstream 
approach in applied statistics is based on random-effects models [54, 69, 72]. Fixed-
effects models have the advantage of avoiding distributional assumptions on the 
unobserved heterogeneity parameters and allow them to depend on the covariates 
in a nonparametric way. Practitioners make extensive use of linear models and 
several methodological approaches have been developed in this context to account 
for unobserved heterogeneity. We refer the reader to the books cited at the beginning 
of this section for a thorough description of estimation and inferential procedures 
for linear panel data models. 

With binary, discrete, or somehow limited response variables, the linear panel 
data model must be reformulated. One possibility is to rely on a Generalized Linear 
Model (GLM) formulation [57] based on a distribution belonging to the exponential 
family for the response variable and a suitable link function relating the expected 
value of this distribution to the linear predictor. However, methodological issues 
arise with the application of the fixed-effects approach because the Maximum Like-
lihood (ML) estimator is inconsistent due to the presence of incidental parameters, 
that is, nuisance parameters whose number increases with the sample size [55, 61]. 

An additional challenge, especially in economic analyses with binary data, is 
related to the dynamic formulation that includes the lagged dependent variable in 
the set of covariates. This formulation allows us to identify the so-called true state 
dependence [48], that is, how the experience of an event in the past affects the 
probability of the same event occurring in the future. This effect is separate from 
that of the unobserved heterogeneity, which has an influence on the probability of 
that same event at all times. Dynamic binary choice models are adopted in a wide 
range of economic applications aimed at investigating individual decisions, such 
as labor market participation [50, 53], portfolio choices and financial conditions of 
households [2, 27, 45], migrants’ remittances [24], and firms’ access to credit [62]. 

Fixed-effects binary panel data models, with both a static and a dynamic 
formulation, have been developed in the recent econometric literature, which has 
been growing rapidly in the last two decades. Early surveys are provided by Arellano 
[6] and Arellano and Hahn [9], while the recent paper by Fernández-Val and 
Weidner [42] extensively reviews approaches and methods concerning only models 
for long panels, where the number of time occasions is relatively large. However, 
models for fixed-T panel data are still interesting due to the large availability of 
data sets of this type. For instance, most national household and workforce surveys 
are based on a rotating sampling scheme where subjects are interviewed a limited 
number of times. 

The present chapter provides an extensive review of estimation approaches to 
fixed-effects binary choice models for longitudinal data where subjects are observed 
on a limited number of time occasions. This survey covers the two main groups 
of fixed-effects estimation approaches, differing as to how they deal with the
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inconsistency of the ML estimator arising from the incidental parameter problem: 
target-corrected estimators on the one hand, aimed at reducing the order of the bias, 
and conditional inference on the other, based on conditioning on sufficient statistics, 
which directly eliminates the source of this bias and is specific to the logit model. 
In addition, special attention will be devoted to dynamic models, which have been 
the focus of the majority of the most recent contributions. 

The chapter is organized as follows. Section 9.2 establishes notation for general 
panel data models for continuous responses. Section 9.3 presents binary choice 
panel data models. Section 9.4 describes the fixed-effects approach and discusses 
the related incidental parameter problem. Section 9.5 surveys estimation approaches 
based on bias reduction techniques and Sect. 9.6 reviews the conditional inference 
approach. Section 9.7 presents a simulation study comparing the finite sample 
performance of some of the reviewed approaches for the fixed-effects dynamic 
logit model and Sect. 9.8 illustrates an empirical application on female labor supply. 
Section 9.9 provides a brief review of the software packages available to estimate 
the models described in this work. Finally, Sect. 9.10 provides concluding remarks. 

9.2 Preliminaries 

We consider n units, indexed with .i = 1, . . . , n, observed at time occasions . t =
1, . . . , T . This is the case of a balanced panel dataset, where all units are observed 
at the same time occasions. For simplicity, we do not consider explicitly unbalanced 
panel datasets, where each subject i is observed for a specific number . Ti of time 
occasions, but the approaches considered throughout the chapter can be directly 
extended to this case. 

A general specification for a linear panel data model is of the form 

.yit = αi + x′
itβ + εit , (9.1) 

where . yit is the dependent variable and . αi represents the individual traits that cannot 
be directly observed or measured and then allows us to account for unit-specific 
time-invariant heterogeneity. Moreover, . xit is a .k×1 vector of exogenous covariates 
and . β is the corresponding vector of regression parameters. Finally, . εit is a random 
variable with zero mean and variance equal to . σ 2

ε , representing idiosyncratic shocks. 
Different specifications and estimation approaches for (9.1) can be adopted 

according to the hypotheses formulated on the individual unobserved heterogeneity 
parameter . αi . In a nutshell, the fixed-effects approach consists in treating these 
individual intercepts as fixed parameters to be estimated. In practice, this usually 
amounts to treating the subject identifier as a categorical variable or, equivalently, 
applying the so-called within-group transformation to eliminate the individual 
intercepts. Alternatively, . αi can be eliminated by taking the first differences of 
(9.1). The main advantage is that consistency of the OLS estimator of . β in these 
formulations does not require any distributional assumption for the . αi , which
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are also allowed to be correlated with the model covariates in a nonparametric 
way. In contrast, if . αi is assumed to be a random variable, usually distributed as 
.N(0, σ 2

α ), expression (9.1) defines a random-effects model. A Generalized Least 
Squares or ML estimator of . β can be easily derived and its consistency relies on the 
independence between . αi and the model covariates. 

The inclusion of the lagged response variable in the set of regressors in (9.1) 
complicates matters, as the time-constant dependence between the response variable 
and the unobserved heterogeneity parameter gives rise to an endogeneity problem. 
Within the random-effects approach, applying sequential factorization to write 
the likelihood recursively leaves us with the problem of handling the correlation 
between . yi0 and . αi , the solutions to which will be briefly mentioned in the next 
section with reference to binary choice models. With the fixed-effects formulation, 
the endogeneity problem is tackled by the instrumental variable approach, and its 
generalizations based on the Generalized Method of Moments [4, 7, 8, 25]. 

The econometric literature on linear panel data models is indeed vast; we refer 
the reader to [5, 75], and [52], among others, for details on model formulations 
and related inferential strategies, as they are not the object of this review. However, 
some related extensions are worth mentioning as they are pervasive in the applied 
statistical literature. The first is represented by Linear Mixed Models (LMMs) for 
longitudinal data [54, 72]. LMMs can be seen as a generalization of random-effects 
models, in that slope parameters are also considered as random variables, further to 
the intercept . αi . Frequentist estimation is usually carried out by ML under the same 
independence assumption between the unobserved heterogeneity and covariates as 
the traditional random-effects model. 

Another approach in a different direction is the generalization represented by 
finite-mixture models [59], in which every random effect is assumed to be discrete. 
This approach can be regarded as semi-parametric because a discrete distribution 
may adequately approximate any continuous distribution. This only partially relaxes 
the distributional assumption on the random effects, which are still required to 
be independent of the regressors. An extension in this respect is the concomitant 
variable approach [37] applied to finite-mixture models [73], where the probability 
of each mixture component is allowed to depend on individual time-constant 
covariates. 

9.3 Binary Choice Panel Data Models 

A convenient way to represent panel data models for binary dependent variables 
is the latent variable formulation, according to which the response variable for 
individual i at time t , . yit , is assumed to depend on a latent continuous variable 
. y∗

it , representing the propensity of an event to occur and is conceived as a function
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of a linear index. It is assumed that 

. yit = 1{y∗
it ≥ τ } ,

y∗
it = αi + x′

itβ + εit ,

where .1{·} is the indicator function, so that the outcome . yit assumes values 1 
or 0 according to whether or not the latent variable crosses the threshold . τ , 
which is usually fixed at 0. As for the linear model, . αi represents the unobserved 
heterogeneity and . xit collects the exogenous explanatory variables associated with 
the parameter vector . β. Finally, . εit is a zero mean and constant variance error 
component representing the effect of idiosyncratic shocks. 

It is straightforward to extend the latent variable formulation to accommodate 
dynamic models, as it amounts to augmenting the set of explanatory variables by 
the lagged dependent variable. We have that 

.yit = 1{αi + x′
itβ + yi,t−1γ + εit > 0} , (9.2) 

where . γ measures the true state dependence, as defined by Heckman [48]. 
Throughout this work we will consider . γ as time-invariant. We also assume . yi0
to be the known initial observation for the i-th subject. For ease of exposition, what 
follows is based on the static formulation even though most results are still valid for 
dynamic models. 

The initial latent variable formulation implies that the probability of . yit = 1
given . αi and . xit is 

.p(yit = 1|αi, xit ) = F(αi + x′
itβ) , (9.3) 

where .F(·) denotes a general functional form for the inverse link function depending 
on the distributional assumption formulated on the idiosyncratic component. For 
instance, by assuming a standard normal distribution for . εit , we have the probit 
model according to which .p(yit = 1|αi, xit ) = Φ(αi + x′

itβ), where .Φ(·) is the 
standard normal cdf, while from a standard logistic cdf the logit model derives, 
according to which 

. p(yit = 1|αi, xit ) = exp(αi + x′
itβ)

1 + exp(αi + x′
itβ)

.

Notice that in both the probit and logit models, the variance of the error term . εit is 
known and equal to 1 or .π2/3, respectively. Differently from the linear model, the 
variance of . εit is not identified and therefore cannot be treated as a parameter to be 
estimated. This is because any positive value for such variance is coherent with the 
same frequency of 0s and 1s observed in the sample. 

As in the case of continuous response variables, modeling and estimation 
approaches differ according to the hypotheses on the unobserved heterogeneity . αi .
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Assuming that every . αi is a random variable, typically with distribution .N(0, σ 2
α ), 

also yields a random-effects model and specular extensions to include random 
slopes are represented by Generalized Linear Mixed Models (GLMMs); see [69]. 
Parameters can be estimated by ML and, as for the linear model, consistency relies 
on the independence between . αi and the covariates. A partial extension is considered 
by Mundlak [60] and Chamberlain [30] for models where . αi is allowed to depend on 
the model covariates in a linear manner. In the same vein is the concomitant variable 
approach to latent class analysis for categorical data [13, 44], where the mass 
probabilities associated with the support points are allowed to depend parametrically 
on individual characteristics. 

The random-effects approach to model discrete responses is widely employed 
in applied statistics [54], and is therefore not treated in this chapter. Nevertheless, 
it is worth recalling that random-effects models, differently from fixed-effects 
formulations, require appropriate handling of the initial observation . yi0, as it is  
correlated with the unobserved heterogeneity parameters . αi , whereas it is usually 
considered as given within fixed-effects approaches. A solution to the so-called 
“initial-conditions” problem was first put forward by Heckman [49], while a popular 
alternative is provided by Wooldridge [74]. Discussions and comparisons between 
these and other, less conventional, approaches are given by Arulampalam and 
Stewart [11], Akay [1], Rabe-Hesketh and Skrondal [65], and Skrondal and Rabe-
Hesketh [67], while a review of the most recent extensions of Heckman’s approach 
is given by Lucchetti and Pigini [56]. 

The remainder of the chapter first discusses the fixed-effects approach and the 
incidental parameter problem that arises with nonlinear binary choice models and 
then reviews the most recent solutions. 

9.4 Fixed-Effects Approach and Incidental Parameter 
Problem 

In the following, we clarify how the incidental parameter problem arises within the 
ML estimation of binary fixed-effects models. 

As anticipated in Sect. 9.1, the fixed-effects approach consists in modeling the 
time-invariant individual unobserved characteristics by means of fixed individual 
intercepts to be estimated along with the regression parameters. A feasible approach 
is to include a set of individual dummy variables among the covariates. It is worth 
stressing that, within the fixed-effects approach, it is possible to identify only 
parameters related to the time-varying explanatory variables. In fact, it would be 
impossible to simultaneously identify the individual intercept and the parameters 
for time-constant covariates.
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In principle, the ML framework can be seen as a standard technique to obtain 
an estimate of the whole set of parameters. It is possible to build the log-likelihood 
function for the sample relying on the formulation in Eq. (9.3), as  

. 	(α1, . . . , αn,β) =
n∑

i=1

	i(αi,β) , (9.4)

	i(αi,β) =
T∑

t=1

logp(yit |xit ;αi,β) ,

where we define .	i(αi,β) as the individual log-likelihood and where . p(yit |xit ;αi,β)

= F(αi + x′
itβ)yit

[
1 − F(αi + x′

itβ)
]1−yit . The ML estimator of the parameters 

is then obtained by maximizing the log-likelihood function in Eq. (9.4) w.r.t. the 
parameters .(α1, . . . , αn,β

′)′. 
The aforementioned technique consists in an optimization problem involving 

a .(k + n)-dimensional space and it is computationally cumbersome with a large 
number of individuals. In order to overcome this problem, we can obtain the same 
results by relying on the maximization of the concentrated log-likelihood, also 
known as profile log-likelihood. In this case, the ML estimator of . β is derived by 
concentrating out the . αi , meaning that for any value of . β the individual intercepts 
are evaluated at their ML estimates and then as the solution of 

.α̂i (β) = argmax
αi

T∑

t=1

logp(yit |xit ;αi,β) , . (9.5) 

β̂ = argmax 
β 

n∑

i=1 

T∑

t=1 

logp(yit |xit ; α̂i (β), β) . (9.6) 

Here each individual intercept estimate .α̂i (β) is a function of . β but it is easy to  
compute since it depends only on data specific to individual i. In this way, we face n 
optimization problems in a unidimensional space. Starting from a given value of . β, 
it suffices to iterate optimization problems in Eqs. (9.5) and (9.6) until convergence. 

The maximization of the concentrated log-likelihood is also useful to understand 
how the incidental parameter problem [61] arises. From Eq. (9.5), it is clear that only 
T observations contribute to the ML estimator of each individual intercept so that it 
is impossible to consistently estimate the parameters .α1, . . . , αn. Furthermore, since 
the parameters are not orthogonal [see 55], the bias in .α̂i (β) spreads to the estimator 
of the slope parameters, . β̂. 

The estimation bias in .α̂i (β) disappears only if .T → ∞. Therefore, the ML 
estimator . β̂ is not consistent when T is fixed and only .n → ∞, meaning that, in 
general, .plim

n→∞
β̂ ≡ β∗ �= β0, where . β0 is the true parameter value. 

The problem mentioned above is clarified through an intuitive example provided 
by Lancaster [55] on continuous data. Consider a random variable . zit following a
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Gaussian distribution such that .zit ∼ N(δi, σ
2
0 ). The ML estimator for the mean 

parameters is given by .δ̂i = T −1∑T
t=1 zit and for the variance parameter is . σ̂ 2 =

(nT )−1∑n
i=1

∑T
t=1(zit − δ̂i )

2, which is inconsistent for .n → ∞ and fixed T since 
it converges to .(T −1)σ 2

0 /T . This is due to the limited number of observations over 
T for each . δ̂i . 

In order to characterize the bias of the ML estimator due to the incidental 
parameter problem for binary choice models, it is useful to recall the description 
provided by Arellano and Hahn [9]. Under suitable regularity conditions [see 47, 
Section 7], we have that 

.β∗ = β0 + B
T

+ O

(
1

T 2

)
, (9.7) 

where the leading term of the bias, . B, is of order .T −1 and the remainder is of order 
.T −2. Moreover, if .n, T → ∞, . β̂, centered on its probability limit, is asymptotically 

normal, namely .
√

nT (β̂ − β∗)
d−→ N(0,Ω). Under these general conditions, the 

ML estimator is asymptotically biased even if T grows at the same rate as n. In  
particular, for .n/T → ρ, with .ρ ∈ (0,+∞), we have  

. 
√

nT (β̂ − β0) = √
nT (β̂ − β∗) + √

nT
B
T

+ O

(√
n

T 3

)
d−→ N(B

√
ρ,Ω) .

The bias also arises in the expected score function of the concentrated log-
likelihood, described below. The following results are provided by Arellano and 
Hahn [9]. Let us denote with .	i(α̂i(β),β) the concentrated log-likelihood for 
subject i, and the individual score function for . β, .sβi (α̂i (β),β), as  

. 	i(α̂i(β),β) =
T∑

t=1

logp
(
yit |xit ; α̂i (β),β

)
,

sβi (α̂i (β),β) = ∂	i(α̂i(β),β)

∂β
.

The bias of the ML estimator of . β arises because the expected score function, 
evaluated at .β = β0 with .n → ∞ and T fixed, does not converge in probability to 
. 0 as .α̂i (β0) does not converge to the true value . αi0. The bias of the expected score 
function is: 

.E

[
1

T
sβi (α̂i (β0),β0)

]
= Si (β0)

T
+ o

(
1

T

)
, (9.8) 

where .Si (β0)/T is the component of order .T −1 and the remainder is of order 
smaller than .T −1.



9 MLE for Fixed-Effects Binary Panel Data Models 283

Finally, it is possible to consider the bias of the profile likelihood. Consider now 
the infeasible concentrated log-likelihood function for subject i, which is given by 
.	i(ᾱi(β),β), where .ᾱi (β) is the ML estimate of . αi when .T → ∞, so that . ̄αi(β0)

may be substituted with . αi0. The bias in the expected concentrated likelihood can 
be characterized as 

. E

[
1

T
	i(α̂i(β),β) − 1

T
	i(ᾱi(β),β)

]
= Li(β)

T
+ o

(
1

T

)
,

so that this difference tends to disappear as .T → ∞ because it contains a component 
of order .T −1 given by .Li(β)/T . 

Two different streams of literature have been developed in order to overcome 
the incidental parameter problem, giving rise to target corrections and conditional 
inference. Within the first approach, the literature has investigated how to reduce 
the leading bias component of the ML estimator by correcting either the estimator 
[38, 40, 47], the score [29], or the concentrated likelihood [19]. The second approach 
is based on conditioning the response probabilities on sufficient statistics for the 
incidental parameters. Main contributions in this field are those by Chamberlain [30] 
for the static version of the model and by Chamberlain [31], Honoré and Kyriazidou 
[51], and Bartolucci and Nigro [14, 15] for the dynamic setup. 

9.5 Target-Corrected Estimators 

Target corrections are classified by Arellano and Hahn [9] in three main cate-
gories: bias-corrected estimators, correction of the moment equation, and corrected 
objective-function estimators. The general idea underlying this approach is to 
mitigate the bias of the ML estimator, reducing its order from .T −1 to .T −2. The  
advantage of this approach is given by its wide applicability. Indeed, the results are 
easy to adapt to binary choice models, both static and dynamic, regardless of the 
functional form assumed for the error term. 

In this section, we consider recent contributions and provide a unified framework 
that embeds them in the classification by Arellano and Hahn [9]. For this reason, we 
avoid technical details, for which we refer the reader to [6] and [9]. In particular, we 
first discuss analytic and jackknife corrections of the ML estimator, for which the 
main contributions have been provided by Hahn and Newey [47], Fernández-Val 
[40], Hahn and Kuersteiner [46], and Dhaene and Jochmans [38]. We then move 
to the correction of the first order conditions of a modified likelihood function as 
proposed by Carro [29], and finally we deal with modifications of the (profile) 
likelihood function, discussing [10, 23], and [19].
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9.5.1 Bias Correction of the ML Estimator 

Bias corrections of the ML estimator of . β can be obtained analytically or by 
applying a jackknife method. The former can be achieved by deriving . B in Eq. (9.7) 
and using the sample counterpart, so as to obtain 

.β̂BC = β̂ − B̂

T
, (9.9) 

where .B̂ = B̂(β̂). The analytical expression for . B̂ can be derived by an asymptotic 
expansion of the ML estimator not reported here, and for which we refer the reader 
to the original works. In particular, [47] derive the analytical bias correction for a 
general static formulation of nonlinear panel data models. Hahn and Kuersteiner 
[46] extend this result to a general dynamic formulation for nonlinear panel models 
and derive regularity conditions for the estimator, under the assumptions that 
covariates are independent across subjects and are also stationary, meaning that 
their probability distribution does not change when shifted in time. Finally, [40] 
derives an analytical bias formula for binary static and dynamic choice models with 
predetermined regressors. 

Hahn and Newey [47] argue that a relevant part of the incidental parameters bias 
is removed so that the asymptotic distribution of .β̂BC is centered on . β0 as long as 

T grows faster than .n1/3. In fact, if .
√

nT (B̂ − B)/T
p−→ 0, the confidence intervals 

of the bias-corrected estimator will be centered on the true value of the parameter 
. β0 only if .T/n1/3 → ∞, since it can be proved that 

. 
√

nT (β̂BC − β0) = √
nT (β̂ − β∗) −

√
n

T
(B̂ − B) + O

(√
n

T 3

)
d−→ N(0,Ω) .

Because . β̂ is used to compute . B̂, the bias of the ML estimator could spread to 
. B̂, especially when T is small. Therefore [47] propose iterating the procedure 

in Eq. (9.9) by updating the estimation of . B̂ at the s-th step so that  . β̂
(s)

BC =
β̂ − B̂

(
β̂

(s−1)
BC

)
. The resulting estimator .β̂

(∞)

BC is also shown to have better finite 

sample properties. 
An alternative way to perform the bias correction is to rely on the panel jackknife 

estimator. This is proposed by Hahn and Newey [47] and based on the general 
jackknife formula provided by Quenouille [63]. The bias correction is formed by 
using the variation in the ML estimators obtained using samples where each time 
occasion is dropped sequentially. Specifically, we have 

.β̂JK = T β̂ − T − 1

T

T∑

t=1

β̂(t) ,
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where .β̂(t) is the ML estimator computed after subtracting the t-th observation from 
the sample. Hahn and Newey [47] show that the order of the bias of .β̂JK is reduced 
to .T −2. 

The previous version of the panel jackknife estimator cannot be directly extended 
to handle dynamic formulations. Dhaene and Jochmans [38] provide two different 
estimators based on the split-panel jackknife (SPJ) for dynamic nonlinear models. 
They consider sub-panels consisting of a reduced number of consecutive observa-
tions for each subject in order to preserve the dynamic structure of the data. 

Consider a subset of consecutive observations .S ⊂ {1, . . . , T } such that . |S| ≥
Tmin, where . |S| denotes the cardinality of the subset . S and .Tmin is the least number 
of observations for which the ML estimator exists. Let us denote with . θ = (β ′, γ )′
the vector of slope and state dependence parameters of the dynamic model (9.2) and 
.	(θ) the corresponding profile likelihood where nuisance parameters . α1, . . . , αn

have been concentrated out. Dhaene and Jochmans [38] show that a consistent 
estimator of the leading component of the bias of the ML estimator is 

. 
|S|

T − |S| (θ̂S − θ̂) ,

where . ̂θS is the ML estimator of . θ based on the subset of observations considered 
in . S and . ̂θ is the ML estimator based on the full data set. 

This split-panel jackknife estimator described above could suffer from the 
arbitrary choice of the sub-panel . S . Define an integer number .G ≥ 2 such that 
.T ≥ G · Tmin and suppose to split the panel into a collection of G non-overlapping 
sub-panels .{S1, . . . ,SG}. 

A consistent estimator for the bias can be obtained by averaging the estimators 
.θ̂Sg

over the subsets . Sg , for  .g = 1, . . . , G, so that the estimate of the leading bias 
component becomes 

. 
1

G − 1
(θ̄S − θ̂) , θ̄S =

G∑

g=1

|Sg|
T

θ̂Sg
.

Then the bias corrected estimator, .θ̂JK , is derived by subtracting from the ML 
estimator the estimated bias as follows: 

.θ̂SPJ = G

G − 1
θ̂ − 1

G − 1
θ̄S . (9.10) 

In cases where splitting the sample in G sub-panels would lead to an arbitrary 
choice of the partitions, the authors propose to average the estimator over many sets 
of sub-panels characterized by different cardinalities [see 38, for details]. 

A peculiarity of this approach is that it allows for generated regressors, which 
typically arise when handling endogeneity and sample selection. It is also important 
to mention that consistency of .θ̂SPJ requires strong regularity conditions such
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as stationarity of covariates, a sufficient degree of mixing, and independence of 
observations across subjects. 

Dhaene and Jochmans [38] also prove that the split-panel jackknife procedure 
can be used to correct the profile likelihood function instead of the estimator. A 
consistent bias-adjusted estimator is then obtained by maximizing the resulting 
modified function. Finally, an interesting extension of the split-panel jackknife 
estimator, as well as analytical corrections, to the case of both individual and time 
incidental parameters is provided by Fernández-Val and Weidner [41]. 

9.5.2 Bias Correction of the Score and Likelihood Functions 

An alternative approach to reduce the bias of the ML estimator is to correct the 
estimating equation, because the incidental parameter problem affects the first order 
conditions of the concentrated log-likelihood, as shown in expression (9.8). Bias
corrections of the score function have been proposed by Arellano [6], Carro [29], 
Arellano and Hahn [9], and Fernández-Val [40]. 

The proposals of [6] and [29] have been most frequently considered in later works 
as a benchmark. They are based on an earlier work by Cox and Reid [33], whose 
solution to mitigate the bias arising from the incidental parameter problem is to find 
a reparametrization such that the nuisance parameters are information orthogonal to 
the other parameters of interest. Arellano applies this general idea to fixed-effects 
static binary choice models and expresses the modification in terms of the model’s 
original parameters. Carro [29] extends [6]’s work to dynamic binary choice models 
and shows that the order of bias of the ML estimator is reduced from .O(T −1) to 
.O(T −2). Carro’s proposal relies on the solution of the modified estimating equation 
in the following expression 

. Msθ ,i (θ) = sθ i (α̂i (θ), θ) − 1

2

1

sααi
(α̂i(θ), θ)

[
sθααi

(α̂i(θ), θ)

+sαααi
(α̂i(θ), θ)

∂α̂i(θ)

∂θ

]

+ ∂

∂αi

{
1

E
[
sααi

(α̂i(θ), θ)
]E

[
sθαi

(α̂i(θ), θ)
]
}

= 0 , (9.11) 

where the subscripts in the score function .s(·) denote the derivatives of the profile 
likelihood w.r.t. a parameter (e.g., .sααi

= ∂2	(θ, αi(θ))/∂α2
i ). The estimator of . θ

that satisfies Eq. (9.11) exhibits a bias of .O(T −2) and shares the same asymptotic 
properties of the ML estimator. 

Along with the modification of first order conditions, there is a class of 
approaches dealing with bias-corrected estimators of the objective functions. Bester 
and Hansen [23] make use of a penalty function for the unconstrained likelihood
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function, differently from other approaches exploiting the profile likelihood. Let us 
define the penalized objective function by 

. Q(α1, . . . , αn, θ) =
n∑

i=1

	i(αi, θ) − πi(αi, θ) ,

whose maximand is the bias-adjusted estimator. A crucial role is played by the 
penalty function .πi(αi, θ), defined as 

. πi(αi, θ) = 1

2

[
trace

(
−Î

−1
αi

V̂ αi

)
− 1

]
,

which can easily extended to accommodate multiple fixed effects. The terms . ̂Iαi

and .V̂ αi
are the information for the parameter . αi and a heteroskedasticity- and 

autocorrelation-robust estimator for the variance of the expected score, respectively. 
Formally, we have 

. ̂Iαi
= 1

T
sααi

(αi, θ) ,

V̂ αi
= 1

T

m∑

l=−m

min(T ,T +l)∑

t=max(1,1+l)

sαi ,t (αi, θ)sαi ,t−l (αi, θ)′ ,

where m is a bandwidth parameter and the additional subscript in the score function 
indicates the t-th observation-specific contribution to the individual score. The main 
advantages of this approach are its wide applicability for static and dynamic models 
and the computational easiness, since it only requires the calculation of the score 
function and the Hessian matrix. Bester and Hansen [23] argue about the asymptotic 
equivalence of their approach with those previously discussed, highlighting the 
trade-off between the generality of their proposal and the better finite sample 
properties of other model-specific bias-corrected estimators like those of [40] and 
[29]. 

Arellano and Hahn [10] propose two corrections for the profile likelihood. The 
first one is called “trace-based” correction. It is not restricted to the likelihood setting 
and is extremely close to the methodology proposed by Bester and Hansen [23]. 
Their second proposal is the “determinant-based” correction that exploits the log 
determinants of . ̂Iαi

and . V̂ αi
. 

A similar approach has been put forward by Bartolucci et al. [19] where the 
authors propose to derive the bias-reduced estimator by maximizing an adjusted 
profile likelihood function. In this work, the objective function is the Modified 
Profile Likelihood (MPL), the logarithm of which is given by 

.	M,i(α̂i(θ), θ) = 	i(α̂i(θ), θ) + Mi(α̂i(θ), θ) ,
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where .Mi(·) denotes the adjustment function of the profile log-likelihood. In 
particular, the correction exploits the modification proposed by Severini [66] which 
is given by 

. Mi(α̂i(θ), θ) = 1

2
log | − sαiαi

(α̂i(θ), θ)| − log |Iαiαi
(α̂i , θ̂; α̂i (θ), θ)| ,

where .sαiαi
denotes the second derivative of the concentrated log-likelihood w.r.t. 

the parameter . αi and 

. Iαiαi
(α̂i , θ̂; α̂i (θ), θ) = E[sαi

(α̂i , θ̂)sαi
(α̂i(θ), θ)] ,

where, by analogous notation, . sαi
denotes the .∂	i(α̂i(θ), θ)/∂αi . 

The above framework is general and, specifically for the dynamic binary choice 
model, the first term of the adjustment can be derived analytically as 

. − sαiαi
(θ , α̂i(θ)) =

∑

t

{
f (μ̃it )

2

F(μ̃it )[1 − F(μ̃it )] − C(μ̃it )

}
,

where 

. C(μ̃it ) = [
yit − F(μ̃it )

]
{

f (μ̃it )

F (μ̃it )[1 − F(μ̃it )] − f (μ̃it )
2
[
1 − 2F(μ̃it )

]

F(μ̃it )2[1 − F(μ̃it )]2
}

.

In this formulation, .f (·) denotes the density derived from the distribution function 
.F(·) and .μ̃it = α̂i (θ) + x′

itβ + yi,t−1γ is the linear predictor we obtain considering 
.αi = α̂i (θ). 

Unfortunately, for the term .Iαiαi
(α̂i , θ̂; α̂i (θ), θ) we do not have a closed-form 

expression. Bartolucci et al. [19] propose two different ways to obtain it. The first 
exploits all the possible configurations of the vector .(yi1, . . . , yiT )′, weighting the 
product of the scores over the probability assigned to each vector configuration. 
However, this technique is convenient only when the time dimension of the data set 
is moderate. The second proposal consists in using a Monte Carlo approximation 
relying on simulations from the model and has a moderate computational cost. 

9.6 Conditional Inference 

The conditional inference approach is based on conditioning the joint probability of 
the response configuration on sufficient statistics for the individual effects. Doing 
so eliminates the unobserved heterogeneity and thus overcomes the incidental 
parameter problem. For binary choice models, consider the joint probability for 
the individual outcome configuration .yi = (yi1, . . . , yiT )′, denoted by .p(yi |αi,Xi ),
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where .Xi = (xi1, . . . , xiT ) is the matrix collecting the related set of covariates. Con-
sider now a statistic . hi with probability distribution .p(hi |αi,Xi ). If conditioning the 
joint probability of . yi on . hi leads to a conditional probability that is independent of 
. αi , then . hi is said to be a sufficient statistic for the incidental parameters: 

.p(yi |Xi , hi) = p(yi , hi |αi,Xi )

p(hi |αi,Xi )
. (9.12) 

Andersen [3] shows that the maximand of the log-likelihood function based on 
the conditional probability in Eq. (9.12) is a consistent estimator for the parameters 
of interest. Although this idea looks simple and intuitive, it may happen that a 
sufficient statistic for . αi does not exist or it is not trivial to identify for general 
binary choice models [52]. 

A specification admitting a sufficient statistic is the logit model [28, 52]. The 
probability function for the logit model can be written as 

. p(yit |αi, xit ) = exp
[
yit (αi + x′

itβ)
]

1 + exp(αi + x′
itβ)

,

and the joint probability for . yi is 

.p(yi |αi,Xi ) =
T∏

t=1

p(yit |αi, xit ) =
exp

[
αiyi+ +

(∑T
t=1 yitxit

)′
β

]

∏T
t=1

[
1 + exp(αi + x′

itβ)
] , (9.13) 

where the sum (or total) score .yi+ = ∑T
t=1 yit is the sufficient statistic for the 

incidental parameter . αi [30]. This can be proven in a simple way, following [28]. 
The conditional probability of the configuration . yi given . αi , . Xi , and .yi+ can be 
expressed as 

. p(yi |αi,Xi , yi+) = p(yi+|αi,Xi , yi )p(yi |αi,Xi )

p(yi+|αi,Xi )
.

Since the sum score . yi+ is the sum of the elements in . yi , then . p(yi+|αi,Xi , yi ) = 1
by definition. Therefore, it is possible to write 

.p(yi |αi,Xi , yi+) = p(yi |αi,Xi )

p(yi+|αi,Xi )
. (9.14) 

The numerator in Eq. (9.14) is given by Eq. (9.13), whereas the denominator is given 
by the sum of the probabilities of observing each possible vector configuration of 
binary responses .z = (z1, . . . , zT )′ such that .z+ = yi+, where .z+ = ∑T

t=1 zt ,
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obtaining 

. p(yi+|αi,Xi ) =

∑

z:z+=yi+
exp(αiz+) exp

⎡

⎣
(

T∑

t=1

ztxit

)′
β

⎤

⎦

∏T
t=1

[
1 + exp(αi + x′

itβ)
] .

Finally, it is possible to compute the conditional probability .p(yi |Xi , yi+), indepen-
dently of the parameter . αi , as follows 

. p(yi |αi,Xi , yi+) = p(yi |αi,Xi )

p(yi+|αi,Xi )
=

=
exp

[(∑T
t=1 yitxit

)′
β

]

∑
z:z+=yi+ exp

[(∑T
t=1 ztxit

)′
β

] = p(yi |xi , yi+) . (9.15) 

Equation (9.15) defines the conditional logit model shown in [58] and [30]. Then, 
we express the conditional log-likelihood function, as the sum of the logarithm of 
the individual conditional probabilities: 

.	(β) =
∑

i

1{0 < yi+ < T } logp(yi |Xi , yi+) . (9.16) 

Note that we exclude individuals characterized by a sum score of 0 or T , because 
their conditional log-probability is equal to 0 by construction. The function in 
Eq. (9.16) can be maximized with respect to . β by the Newton-Raphson algorithm, 
obtaining the Conditional ML (CML) estimator .β̂CML. 

Differently from the static case, conditional inference for dynamic models is 
more difficult because a useful sufficient statistic for . αi is not always available. 
Different approaches have been implemented in order to overcome this problem. 
Consider the model defined by Eq. (9.2) where . εit is logistically distributed, 
corresponding to the Dynamic Logit (DL) model [see 52, Chapter 7], implying that 

.p(yit |αi, xit , yi0, . . . , yi,t−1) = exp
[
yit (αi + x′

itβ + yi,t−1γ )
]

1 + exp(αi + x′
itβ + yi,t−1γ )

, (9.17) 

and . yi0 is assumed to be known. In this case, the probability for the response 
configuration . yi is 

.p(yi |αi,Xi , yi0) =
exp

[
yi+αi +

(∑T
t=1 yitxit

)′
β + yi∗γ

]

∏T
t=1

[
1 + exp(αi + x′

itβ + yi,t−1γ )
] , (9.18)
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where .yi∗ = ∑T
t=1 yi,t−1yi,t . It can be proven that the sum score .yi+ is no longer a 

sufficient statistic for the incidental parameters as in the static specification [31]. 
A first feasible, even though quite restrictive, solution for the DL model is given 

by Chamberlain [31]. Consider the model given in Eq. (9.17) where the exogenous 
variables . xit are excluded and .T ≥ 3. Under this setup, consider the example with 
.T = 3, where the probability for the observations .(yi0, . . . , yi3) is independent of . αi

conditional on .yi1+yi2 = 1. By maximizing the resulting conditional log-likelihood 
function 

. 

n∑

i=1

1{yi1 + yi2 = 1}(yi1[(yi0 − yi3)γ ] − log{1 + exp[(yi0 − yi3)γ ]}) ,

it is possible to obtain a .
√

n consistent estimator of . γ . For additional details, we 
refer the reader to the proof in Section 7.5.3 of [52]. 

Chamberlain [31]’s approach has been extended by Honoré and Kyriazidou [51] 
allowing for the presence of exogenous explanatory variables. The authors show 
how to identify and estimate . β and . γ regardless of the parameters . αi . Given  . T =
3, this can be done by maximizing a weighted conditional log-likelihood function 
given by 

. 

n∑

i=1

1{yi1 + yi2 = 1}K
(
xi2 − xi3

σn

)
logp(yi |αi,Xi , yi0, yi1 + yi2 = 1, yi3) ,

where .K(·) is a kernel density function, to be carefully chosen, used in order 
to weigh observations. In particular, weights are inversely proportional to the 
magnitude of the difference .(xi2 − xi3), . σn is a fixed bandwidth that depends on 
n, and 

. p(yi |αi,Xi , yi0, yi1 + yi2 = 1, yi3) = exp
{
yi1[(xi1 − xi2)

′β + (yi0 − yi3)γ ]}
1 + exp [(xi1 − xi2)′β + (yi0 − yi3)γ ]

.

Although the proposed estimator is proven to be consistent and asymptotically 
normal, it shows some drawbacks. The convergence rate, due to the presence of 
the kernel density function, is slower than . 

√
n. Moreover, the conditions exploited 

for identification, namely that .yi1 + yi2 = 1, and the weight given by the kernel, 
limit the number of statistic units that actually contribute to the likelihood, affecting 
the efficiency of the estimator. These conditions are also tightened by the presence 
of discrete covariates which are required, at individual level, to assume the same 
value in periods 2 and 3 [see 51, Section 2]. Moreover, the condition imposed on the 
covariates rules out time dummies. [51] also provide identification for .T ≥ 3 and 
more than one lag of the dependent variable. 

As shown above, conditional inference for the DL model leads to restrictive 
conditions on the covariates for the identification. In order to overcome this 
shortcoming, [14] proposed an approximation based on the Quadratic Exponential
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(QE) model, which derives from the multivariate binary data distribution introduced 
by Cox [32]. A similar approach was proposed by Bartolucci and Pennoni [16] for  
the two-parameter logistic model. 

The QE model is particularly useful as it closely resembles the DL model. In 
general, the QE model describes the joint distribution of binary variables, which 
are here represented by the responses in the T time occasions. In the QE models, 
probabilities depend on both the main effects, which are the parameters associated 
with the regressors in the panel data case, and the so-called bivariate interaction 
effects [34], where interactions are between two of the binary responses. In our 
case, the parameter associated with the interaction term captures the true state 
dependence. We refer the reader to [32] and [14] for a detailed derivation of the 
model and its specification to account for subject-specific unobserved heterogeneity, 
which is beyond the scope of this work. 

The QE directly defines the conditional probability for the vector . yi as 

. p(yi |δi,Xi , yi0) =
exp

[
yi+δi +

(∑T
t=1 yitxit

)′
η1 + yiT (φ + x′

iT η2) + yi∗ψ
]

∑
z exp

[
z+δi +

(∑T
t=1 ztxit

)′
η1 + zT (φ + x′

iT η2) + zi∗ψ
] ,

(9.19) 

where the notation for the parameters is different in order to distinguish them 
from the DL model, so that . δi is the individual parameter for the unobserved 
heterogeneity, . η1 is a vector of parameters related to the set of the strictly exogenous 
regressors, . φ and . η2 are nuisance parameters, and . ψ measures the state dependence. 
The denominator is given by the sum of all possible binary response vectors 
.z = (z1, . . . , zT )′, where .z+ = ∑T

t=1 zt and .zi∗ = yi0z1 + ∑T
t=2 zt−1zt . 

The QE and the DL models share many properties. First of all, the parameter 
. ψ can be interpreted as the log-odds ratio between pairs of consecutive response 
variables .(yi,t−1, yt ) for every i and t . The same definition holds for the state 
dependence parameter . γ in the DL model. Moreover, the DL and the QE models 
coincide when .γ = ψ = 0. 

Further to the above similarities, the most important feature of the QE model 
is that it admits a sufficient statistic for the incidental parameters, namely the sum 
score . yi+. Conditioning the probability in Eq. (9.19) on the sum score leads to 

. p(yi |δi,Xi , yi0, yi+) =

exp

[(∑T
t=1 yitxit

)′
η1 + yiT (φ + x′

iT η2) + yi∗ψ
]

∑
z:z+=yi+ exp

[(∑T
t=1 ztxit

)′
η1 + zT (φ + x′

iT η2) + zi∗ψ
] , (9.20) 

which does not depend on the incidental parameters . δi .
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Consistent estimators of parameters .(η′
1, η

′
2, φ, ψ)′ can be obtained via the 

maximization of a conditional likelihood function built summing the individual 
probabilities in Eq. (9.20). Moreover, the estimator has a rate of convergence of 
.
√

n and is asymptotically normally distributed. The model specification is also 
more flexible than those provided by previous contributions, since it allows for time 
dummies and it is valid for .T ≥ 2 beyond the initial observation. 

An interesting feature of the QE model is given by the fact that it can be exploited 
as an approximation in order to estimate the parameter of a DL model, as argued by 
Bartolucci and Nigro [15], who derive a Pseudo Conditional ML (PCML) estimator. 
The starting point is the log-probability of the DL in Eq. (9.18) given by 

. logp(yi |αi,Xi , yi0) =

yi+αi +
(

T∑

t=1

yitxit

)′
β + yi∗γ −

T∑

t=1

log
[
1 + exp(αi + x′

itβ + yi,t−1γ )
]

.

(9.21) 

The non-linear component in Eq. (9.21) is approximated by a first-order Taylor’s 
expansion around .αi = ᾱi , .β = β̄, and .γ = 0 as 

. 

T∑

t=1

log
[
1 + exp(αi + x′

itβ + yi,t−1γ )
] ≈

T∑

t=1

{
log

[
1 + exp(ᾱi + x′

it β̄)
]

+q̄i1
[
αi − ᾱi + x′

it (β − β̄)
] } + q̄i1yi0γ +

∑

t>1

q̄it yi,t−1γ ,

where . ᾱi and . β̄ are fixed values for . αi and . β and 

. q̄it = exp(ᾱi + x′
it β̄)

1 + exp(ᾱi + x′
it β̄)

.

The last expression corresponds to a static logit formulation for .p(yit = 1|αi, xit ) at 
the fixed value of the parameters. Therefore, replacing the non-linear term with its 
expansion in Eq. (9.21) and restoring the exponential form leads to the approximated 
probability given by 

.p∗(yi |αi,Xi , yi0)

=
exp

[
yi+αi +

(∑T
t=1 yitxit

)′
β + yi∗γ − ∑T

t=1 q̄it yi,t−1γ

]

∑
z exp

[
z+αi +

(∑T
t=1 ztxit

)′
β + zi∗γ − ∑T

t=1 q̄it zi,t−1γ

] .
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The last equation corresponds to a modified version of the QE model, which can be 
exploited for the estimation of the parameters of the DL model. As shown above, the 
QE model admits the sum score as a sufficient statistic for parameters . αi (denoted 
by . δi in the QE parametrization). Hence, by conditioning . yi also on the sufficient 
statistic . yi+, we obtain 

. p∗(yi |Xi , yi0, yi+)

=
exp

[(∑T
t=1 yitxit

)′
β + yi∗γ − ∑T

t=1 q̄it yi,t−1γ

]

∑
z:z+=yi+ exp

[(∑T
t=1 ztxit

)′
β + zi∗γ − ∑T

t=1 q̄it zi,t−1γ

] , (9.22) 

which is independent of . αi . Finally, the probability in Eq. (9.22) enters the likelihood 
function and the estimation procedure involves two steps: 

1. A preliminary estimate of . β̄, . β̃, is obtained by CML estimation of the static logit 
model [30]. The probabilities . q̄it are evaluated at .β̄ = β̃ and at . ̄αi equal to the 
ML estimate of . αi under the static logit model, where the concentrated likelihood 
is a function of . β̃. 

2. The conditional log-likelihood for (9.22), given the preliminary estimates, is 
maximized w.r.t. the set of parameters . θ and is 

. 	∗(θ |β̃) =
n∑

i=1

1{0 < yi+ < T } log[p∗
θ |β̃(yi |Xi , yi0, yi+)] ,

and the subscript .θ |β̃ denotes the dependence on . β̃ through the probabilities . q̄it . 

Asymptotic properties of the PCML estimator exhibit some peculiarities dis-
cussed in [15]. The proposed estimator is proven to be consistent for the parameters 
. θ when the true value of the state dependence parameter is .γ0 = 0. Moreover, the 
PCML estimator is biased for the DL parameters and its bias is proportional to the 
magnitude of the state dependence parameter . γ . However, simulation results suggest 
that the PCML estimator provides a good approximation of the DL parameters. 
Moreover, a modified version of the QE model has been derived by Bartolucci et al. 
[20] to build a statistical test procedure for the null hypothesis of absence of state 
dependence .H0 : γ = 0. The proposed test outperforms the classical t-test, based 
on the basic QE or the PCML estimator, in terms of size and power. 

9.7 Simulation Study 

This section describes the Monte Carlo study aimed at comparing the finite sample 
performance of a set of the most recent estimators designed to overcome the
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incidental parameter problem. The study is focused on the DL model with fixed 
effects, for which the conditional inference approach is a viable alternative to bias 
correction techniques. 

9.7.1 Simulation Design 

The data are generated from a DL model formulated as 

.yi0 = 1{αi + xi0β + εi0 > 0} , . (9.23) 

yit = 1{αi + xitβ + yi,t−1γ + εit > 0}, t  = 1, . . . , T  , (9.24) 

for .i = 1, . . . , n. The variable . xit is an exogenous regressor generated from a Gaus-
sian distribution with zero mean and variance .π2/3, and . εit is a random variable 
following a logistic distribution. The parameter . β is equal to 1 and . γ takes values 
in .{0, 0.25, 0.5, 1, 2}, in order to evaluate different degrees of state dependence. 
Individual intercepts . αi are generated as in [51], that is, .αi = (1/4)

∑3
t=0 xit . 

Although fixed-effects estimators do not require any assumption concerning the 
unobserved heterogeneity, the adopted design for . αi allows intercepts and the 
covariate to be correlated, which is one of the main advantages of the fixed-
effects approach. Finally, the sample sizes and the time lengths considered are 
.n = 250, 500, 1000 and .T = 3, 4, 6, 8, 12. The number of Monte Carlo replications 
is 1000. 

We consider the following estimators based on both the target-adjusted and 
the conditional approaches: (i) the MPL put forward by Bartolucci et al. [19] 
and illustrated in Sect. 9.5.2; (ii) the SPJ bias-correction proposed by Dhaene and 
Jochmans [38] and defined in Eq. (9.10); (iii) the estimator proposed by Honoré 
and Kyriazidou [51], denoted HK (see Sect. 9.6), where the bandwidth parameter is 
set to .σn = 8 · n−1/5; and (iv) the PCML estimator by Bartolucci and Nigro [15] 
presented and defined in Eq. (9.22). Moreover, these four approaches are compared 
with the ML estimator and with the Infeasible ML estimator (INF). The latter is 
based on including the true values of the individual intercepts in the model as an 
additional regressor and the slope parameter is estimated by ML. It is therefore 
not affected by the incidental parameter problem and serves as a benchmark. [38] 
propose a simulation study with the same design, where they compare a wide set 
of target-corrected estimators, including those proposed by Carro [29] and [40]. 
For this reason, here we only focus on the comparison between conditional and 
recent bias reduction techniques, referring the reader to the comprehensive study by 
Dhaene and Jochmans [38] for a comparison with earlier approaches.
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9.7.2 Simulation Results 

This section describes the main results of the simulation study. As in the original 
contribution of [51], the true value of the state dependence parameter is set to 
.γ = 0.5 for the benchmark design. Tables 9.1 and 9.2 show the statistics of the 
six estimators considered for the parameters . β and . γ , respectively. 

For each sample size, the mean bias, the median bias, the Root Mean Square 
Error (RMSE) and the Median Absolute Error (MAE) are reported in the tables, 
where 

. RMSE =
√∑1000

j=1 (ξ̂j − ξ0)2

1000
; MAE = medianj=1,...,1000(|ξ̂j − ξ0|) ,

and where . ξ0 denotes the true value of the parameter in turn evaluated and . ̂ξj denotes 
the value of the related estimators in replication j . The full set of additional results 
is reported in Tables 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11 and 9.12 of the Appendix. 

First of all, we confirm that the incidental parameter problem severely affects the 
ML estimator, as can be evinced from the comparison with the INF estimator. As 
expected, the bias is considerable regardless of the sample size and it decreases only 
slightly with the time series length. Moreover, the bias appears to be larger for the 
estimator of the state dependence parameter, . γ̂ . Note that, as we could expect, the 
INF estimator performs well and its finite sample bias is always negligible for the 
whole set of parameters. 

The behavior of the other estimators considered is not homogeneous across 
designs. As the theory would suggest, the finite sample performance of target-
corrected estimators is sensitive to T as the larger the number of time occasions, 
the smaller the magnitude of the bias. In fact, for a given n, the biases of MPL and 
SPJ estimators, which can only be computed for .T ≥ 6, shrink as the time series 
grows, even though the latter requires .T ≥ 8 to produce a sizable bias reduction. 

As for the CML approaches, results show that the bias of the HK estimator is 
small for both parameters. The bias of . β̂ tends to reduce as both n and T increase, 
while the bias of . γ̂ is stable for each configuration, even though the MAE decreases 
when the sample size increases. The PCML estimator shows the best finite sample 
performance across almost all configurations. In fact, mean and median bias are 
not only the smallest but these quantities are negligible for the estimator of the 
regression parameter . β and the state dependence parameter . γ . In addition, the 
RMSE and MAE decrease as n and T increase. 

In order to better understand these phenomena, we report some of the results 
shown in Tables 9.1 and 9.2 by means of graphical illustrations. Figures 9.1 and 9.2 
report, in boxplots, the bias of the six estimators of . β and . γ , respectively, in four 
of the scenarios considered, namely .n = 500, 1000 and .T = 6, 12. From the  two  
figures, it is evident that an increase in n is not able to shift the distribution of the bias 
of the ML and target-corrected estimators toward zero, meaning that the magnitude 
of the bias is not affected by the number of individuals, as theory suggests. On the



9 MLE for Fixed-Effects Binary Panel Data Models 297

Table 9.1 Simulation results under Benchmark design based on Eqs. (9.23) and (9.24) with 
parameters .β = 1, . γ = 0.5

Results for . β̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.007 0.817 0.002 – 0.149 0.027 0.087 0.865 0.179 – 0.375 0.145 

4 0.010 0.572 0.013 – 0.057 0.015 0.074 0.600 0.080 – 0.165 0.102 

6 0.008 0.327 0.027 −0.152 0.029 0.009 0.057 0.343 0.070 0.209 0.102 0.069 

8 0.008 0.224 0.021 −0.121 0.017 0.007 0.048 0.237 0.061 0.153 0.071 0.059 

12 0.004 0.134 0.010 −0.057 0.010 0.004 0.041 0.144 0.046 0.077 0.052 0.045 

500 3 0.002 0.777−0.059 – 0.069 0.006 0.064 0.800 0.106 – 0.200 0.095 

4 0.004 0.552 0.007 – 0.031 0.005 0.051 0.566 0.055 – 0.110 0.069 

6 0.001 0.316 0.020 −0.140 0.015 0.002 0.041 0.324 0.050 0.172 0.068 0.048 

8 0.001 0.216 0.015 −0.117 0.010 0.002 0.033 0.222 0.040 0.131 0.049 0.038 

12 0.003 0.131 0.008 −0.057 0.006 0.002 0.026 0.135 0.030 0.067 0.035 0.029 

1000 3 0.002 0.764−0.019 – 0.046 0.002 0.044 0.776 0.095 – 0.138 0.066 

4 0.002 0.546 0.005 – 0.024 0.002 0.035 0.553 0.038 – 0.082 0.048 

6 0.001 0.314 0.019 −0.135 0.011 0.001 0.029 0.319 0.038 0.151 0.050 0.035 

8 0.002 0.215 0.014 −0.112 0.008 0.001 0.024 0.218 0.031 0.120 0.037 0.028 

12 0.000 0.129 0.007 −0.054 0.005 0.001 0.019 0.132 0.022 0.059 0.025 0.020 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.006 0.782−0.039 – 0.078 0.009 0.061 0.782 0.072 – 0.168 0.090 

4 0.003 0.560 0.010 – 0.044 0.007 0.047 0.560 0.051 – 0.101 0.065 

6 0.005 0.319 0.023 −0.145 0.021 0.006 0.035 0.319 0.049 0.148 0.062 0.045 

8 0.006 0.217 0.021 −0.119 0.019 0.006 0.037 0.217 0.043 0.120 0.048 0.039 

12 0.006 0.134 0.011 −0.058 0.011 0.005 0.029 0.134 0.031 0.060 0.036 0.030 

500 3 0.000 0.759−0.055 – 0.041 0.001 0.041 0.759 0.063 – 0.115 0.060 

4 0.003 0.545 0.006 – 0.025 0.002 0.034 0.545 0.037 – 0.071 0.045 

6 0.001 0.314 0.020 −0.139 0.013 0.001 0.027 0.314 0.034 0.140 0.044 0.032 

8−0.000 0.214 0.014 −0.116 0.008 0.000 0.021 0.214 0.027 0.116 0.033 0.026 

12 0.003 0.131 0.009 −0.058 0.004 0.003 0.017 0.131 0.021 0.058 0.023 0.020 

1000 3−0.001 0.750−0.043 – 0.028 −0.003 0.030 0.750 0.054 – 0.079 0.043 

4 0.003 0.539 0.003 – 0.022 −0.000 0.024 0.539 0.025 – 0.052 0.032 

6 0.001 0.312 0.018 −0.133 0.009 −0.000 0.020 0.312 0.025 0.133 0.032 0.022 

8 0.001 0.214 0.015 −0.112 0.006 0.001 0.017 0.214 0.021 0.112 0.024 0.019 

12 0.000 0.130 0.007 −0.054 0.005 0.001 0.013 0.130 0.014 0.054 0.017 0.014 

INF: Infeasible Likelihood Estimator, ML: Maximum Likelihood Estimator, MPL: Modified Profile 
Likelihood [19], SPJ: Split-panel Jackknife [38], HK: DL estimator [51], PCML: Pseudo Conditional 
Maximum Likelihood Estimator [15] 

contrary, when T moves from 6 to 12, we observe that the bias distribution is not 
only centered in values closer to 0, but also shrinks denoting a sizable reduction in 
the variability of the estimators.
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Table 9.2 Simulation results under Benchmark design based on Eqs. (9.23) and (9.24) with 
parameters .β = 1, . γ = 0.5

Results for . γ̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 −0.007 −2.617 −0.202 – −0.053 −0.000 0.149 2.690 0.370 – 0.690 0.438 

4 −0.000 −1.576 −0.208 – −0.036 0.017 0.126 1.615 0.302 – 0.355 0.280 

6 −0.003 −0.907 −0.110 0.770 −0.058 0.003 0.103 0.933 0.210 0.845 0.232 0.190 

8 −0.001 −0.649 −0.074 0.286 −0.080 −0.012 0.094 0.669 0.165 0.357 0.182 0.150 

12 −0.002 −0.397 −0.028 0.098 −0.057 −0.003 0.071 0.415 0.115 0.162 0.130 0.112 

500 3 −0.000 −2.588 −0.229 – −0.058 0.003 0.107 2.621 0.293 – 0.397 0.288 

4 −0.002 −1.580 −0.214 – −0.051 0.009 0.089 1.600 0.263 – 0.257 0.199 

6 −0.001 −0.909 −0.114 0.743 −0.050 0.001 0.070 0.921 0.168 0.782 0.166 0.133 

8 −0.000 −0.630 −0.059 0.298 −0.041 0.006 0.058 0.640 0.116 0.330 0.126 0.104 

12 0.004 −0.387 −0.019 0.104 −0.052 0.006 0.049 0.395 0.078 0.140 0.097 0.077 

1000 3 0.002 −2.548 −0.233 – −0.031 0.021 0.075 2.563 0.286 – 0.273 0.197 

4 −0.001 −1.577 −0.217 – −0.052 0.009 0.065 1.587 0.245 – 0.193 0.142 

6 −0.002 −0.901 −0.109 0.740 −0.043 0.007 0.051 0.907 0.138 0.758 0.113 0.090 

8 0.002 −0.628 −0.058 0.288 −0.038 0.006 0.041 0.634 0.092 0.305 0.093 0.074 

12 −0.001 −0.397 −0.030 0.091 −0.046 −0.004 0.034 0.402 0.064 0.111 0.079 0.058 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 −0.010 −2.563 −0.197 – −0.050 0.015 0.108 2.563 0.233 – 0.394 0.300 

4 −0.000 −1.570 −0.211 – −0.061 −0.000 0.082 1.570 0.228 – 0.253 0.189 

6 −0.007 −0.921 −0.121 0.760 −0.058 −0.012 0.072 0.921 0.157 0.760 0.154 0.130 

8 −0.001 −0.650 −0.079 0.287 −0.088 −0.006 0.071 0.650 0.102 0.287 0.128 0.109 

12 −0.002 −0.400 −0.030 0.097 −0.054 −0.004 0.048 0.400 0.079 0.112 0.089 0.078 

500 3 −0.000 −2.586 −0.225 – −0.054 0.000 0.073 2.586 0.227 – 0.259 0.199 

4 −0.000 −1.575 −0.215 – −0.054 0.011 0.058 1.575 0.219 – 0.177 0.131 

6 0.000 −0.906 −0.111 0.732 −0.058 0.005 0.046 0.906 0.118 0.732 0.114 0.097 

8 −0.001 −0.629 −0.059 0.293 −0.041 0.007 0.038 0.629 0.081 0.293 0.087 0.071 

12 0.007 −0.392 −0.028 0.102 −0.060 −0.002 0.028 0.392 0.054 0.104 0.075 0.048 

1000 3 0.001 −2.530 −0.227 – −0.033 0.022 0.050 2.530 0.228 – 0.180 0.130 

4 0.001 −1.571 −0.215 – −0.051 0.012 0.042 1.571 0.215 – 0.132 0.094 

6 −0.003 −0.899 −0.105 0.734 −0.044 0.008 0.035 0.899 0.108 0.734 0.078 0.062 

8 0.002 −0.630 −0.058 0.286 −0.040 0.005 0.028 0.630 0.066 0.286 0.062 0.051 

12 0.001 −0.400 −0.031 0.088 −0.050 −0.006 0.022 0.400 0.045 0.089 0.058 0.039 

See notes in Table 9.1 

It is interesting to note that the conditional approach has better finite sample 
performance than target-adjusted estimators when .T ≤ 8, despite the drawbacks 
that should be expected from the theoretical results. In particular, the HK estimator 
is consistent with a rate of convergence that is slower than . 

√
n, while the PCML
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Fig. 9.1 Distribution of the bias: estimators of . β. Notes: INF: Infeasible Likelihood Estimator, 
ML: Maximum Likelihood Estimator, MPL: Modified Profile Likelihood [19], SPJ: Split-panel 
Jackknife [38], HK: DL estimator [51], PCML: Pseudo Conditional Maximum Likelihood 
Estimator [15] 

estimator is consistent only for .γ = 0. Nevertheless, the second has the smallest 
bias across all the scenarios with .γ = 0.5. 

The finite sample behavior of the PCML estimator is depicted by the simulation 
results based on the designs with different values of . γ . Because the PCML estimator 
is not consistent with .γ �= 0, a way to evaluate its performance is to quantify the 
relative improvement in terms of bias over the ML estimator. This can be achieved 
by computing the . Δ index proposed by Bartolucci et al. [19], that is, 

.Δ(·) = |MB(ML)| − |MB(·)|
|MB(ML)| − |MB(INF)| ,
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Fig. 9.2 Distribution of the bias: estimators of . γ . Note: see Fig. 9.1 

where .|MB(·)| is the absolute value of the median bias of the estimators considered 
in the simulation study. This index can be seen as a measure of the relative 
performance of an estimator with respect to the INF and where the ML estimator 
represents the benchmark. Table 9.3 reports the results for the estimators considered 
and for the set of values of . γ . 

The effect of a variation in the true value of the state dependence parameter is 
different for . β̂ and . γ̂ . In fact, the . Δ index is stable for all the four estimators of . β
as the true value of . γ grows. Moreover, the relative bias among the estimators is in 
line with the previous results. On the contrary, the behavior of . γ̂ varies according 
to the approach considered. In fact, target-adjusted estimators are more sensitive to 
the degree of state dependence than CML estimators. Specifically, the performance 
of the MPL method worsens as . γ increases, while the SPJ estimator stably exhibits 
a larger bias across all values of . γ .
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Table 9.3 Simulation results under the Benchmark design. Relative Performance (. Δ), . n = 500

.β̂ . γ̂

.γ T MPL SPJ HK PCML MPL SPJ HK PCML 

0 3 0.915 – 0.993 0.994 1.004 – 0.986 1.003 

6 0.959 0.568 1.002 1.005 0.912 0.195 1.001 0.999 

12 0.974 0.621 1.022 1.014 0.996 0.686 1.016 0.992 

.0.25 3 0.919 – 0.903 0.998 0.972 – 0.970 0.998 

6 0.954 0.504 0.980 1.003 0.893 0.212 0.959 0.999 

12 0.949 0.581 0.965 0.995 0.941 0.746 0.911 1.000 

.0.5 3 0.928 – 0.947 1.000 0.913 – 0.979 1.000 

6 0.938 0.557 0.961 1.000 0.878 0.192 0.936 0.995 

12 0.953 0.571 0.996 1.001 0.946 0.753 0.862 1.012 

1 3 0.954 – 0.890 1.005 0.819 – 0.961 0.985 

6 0.953 0.629 0.957 1.023 0.840 0.219 0.898 1.004 

12 0.952 0.596 0.961 1.002 0.914 0.821 0.737 0.997 

2 3 0.975 – 0.829 1.006 0.614 – 0.939 0.915 

6 0.924 0.649 0.930 0.993 0.700 0.207 0.782 0.991 

12 0.935 0.662 0.982 0.978 0.858 0.889 0.492 0.977 

See notes in Table 9.1 

As for the CML estimators, the . Δ index for the HK approach is always close to 
1 but it shrinks when T and . γ are both large. Surprisingly, the PCML estimator is 
also the best for a strong state dependence, since its . Δ index is not only stable across 
the different designs but it often outperforms the INF approach. This result is in line 
with the findings of [15], where the bias of the PCML estimator is reported for a set 
of simulations with different levels of state dependence. 

9.8 Empirical Application 

In this section, we compare the performance of the estimators presented in Sect. 9.7 
by empirically investigating the relationship between the presence of children in the 
household, accounting also for their age, and female labor force participation using 
a sample drawn from the Panel Study of Income Dynamics (PSID); see [22]. The 
dataset consists of .n = 1908 married women between 19 and 59 years old in 1980, 
followed for .T = 6 time occasions, ranging from 1979 to 1985. Similar applications 
of dynamic binary choice models have been proposed by Hyslop [53], Carro [29], 
Fernández-Val [40], and Dhaene and Jochmans [38]. 

The evaluation of the impact of fertility on female labor supply requires taking 
into account state dependence and unobserved heterogeneity. In particular, it is 
reasonable to assume that the occupation status at time t is strongly influenced by 
whether the woman was in the workforce at time .t − 1, other things being equal, 
and that there might be unobservable factors, such as some degree of labor market
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attachment and career preferences, which can likely affect both decisions about 
having children and labor supply. 

For the data at issue, we specify a DL model as in (9.17), where the response 
variable is equal to 1 if a woman in a given year is in the labor force and 0 otherwise. 
The set of explanatory variables is similar to that of the seminal contribution of [53]. 
Along with the lagged dependent variable, we include a set of covariates containing 
the woman’s age, its square, the husband’s income, and three variables that report 
whether there are children aged between .0− 2, .3 − 5, and .6− 17 in the household, 
which will be denoted by k2, k5, and k17, respectively. 

Table 9.4 reports the estimation results (coefficients with standard errors in 
parentheses) for the DL model obtained by the following estimators: ML, MPL 
proposed by Bartolucci et al. [19],  SPJ  shown in [38], HK proposed by Honoré 
and Kyriazidou [51], and PCML by Bartolucci and Nigro [15]. In this sample, 244 
women do not participate in the labor market at all, 950 always participate, and 714 
change their occupational status at least once. 

Results show that the parameter estimates differ depending on the approach 
adopted, as also emerges from the simulation results in Sect. 9.7. In fact, the ML 
estimates of the parameter . γ are between 25 and .50% smaller than those obtained 
with the alternative estimators and, in general, the whole set of estimated coefficients 
shows marked differences with respect to the others, due to the bias generated by the 
incidental parameter problem. As concerns the other estimators considered, results 
are coherent with those in the empirical literature on fertility and the female labor 
supply. In particular, there is a strong state dependence in the woman labor force 
participation, whereas there is a negative and statistically significant effect of the 
presence of children in the household on labor supply, albeit decreasing as the 
children’s age increases. 

Table 9.4 Empirical application: labor force participation 

.γ Age .Age2 Income k2 k5 k17 

ML 0.577 0.189 −0.002 −0.012 −1.272 −0.886 −0.272 

(0.082) (0.126) (0.002) (0.006) (0.141) (0.149) (0.136) 
MPL 1.350 0.171 −0.002 −0.010 −0.933 −0.576 −0.198 

(0.081) (0.093) (0.001) (0.004) (0.114) (0.113) (0.101) 
SPJ 2.200 −0.015 −0.002 −0.006 −1.083 −0.713 −0.136 

(0.173) (0.497) (0.007) (0.013) (0.420) (0.452) (0.440) 
HK 1.081 −1.332 0.018 −0.031 −1.010 −0.895 −0.411 

(0.208) (0.723) (0.011) (0.015) (0.367) (0.408) (0.498) 
PCML 1.713 0.151 −0.002 −0.009 −0.909 −0.555 −0.173 

(0.103) (0.083) (0.001) (0.004) (0.099) (0.102) (0.094) 
In this sample, 244 women do not participate in the labor market at all, 950 always participate, 
and 714 change their occupational status at least once 
ML: Maximum Likelihood Estimator, MPL: Modified Profile Likelihood [19], SPJ: Split-panel 
Jackknife [38], HK: DL estimator [51], PCML: Pseudo Conditional Maximum Likelihood 
Estimator [15]
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It is worth noting that the PCML and MPL estimators provide similar results 
in terms of coefficients and standard errors. With respect to the ML estimates, 
the state dependence coefficients are approximately three times larger and the 
coefficients relative to the number of the children aged in the three different ranges 
are smaller. In this setup, the PCML and MPL estimators are the most reliable, 
as the HK and SPJ approaches have some drawbacks. Other than a slow rate of 
convergence, the HK estimator is here based on a reduced sample size because of the 
presence of discrete predictors. Moreover, the covariates Age and .Age2 do not meet 
the regularity conditions for the identification of continuous explanatory variables 
proposed in the original work of [51]. Finally, the SPJ estimator may here exhibit 
some bias due to the limited number of time occasions of the dataset, which is . T = 6
further to the initial observation. 

9.9 Software 

This section briefly recalls the main software components available for the esti-
mation of binary choice models with fixed-effects. What follows is far from being 
exhaustive and will be mainly focused on packages available in R [64] and Stata. 

For what concerns R, ML estimation can be easily performed by the command 
glm() provided by the stats package. However, when the number of subjects, 
and therefore that of the individual intercepts, is large, computation of the ML 
estimator can be efficiently dealt with by the glmmML package [26], which also 
provides routines for the estimation of random-effects models. 

Many packages provide the different target-corrected estimators described in 
Sect. 9.5. In  R, analytical bias-corrected estimators of [47] and [40] are provided 
by package bife [68]. Moreover, the MPL estimator [19] is provided by the 
package panelMPL, available at https://ruggerobellio.weebly.com/uploads/5/1/5/ 
0/51505127/panelmpl_0.23.tar.gz. In  Stata, package XTSPJ [70] performs the 
split-panel jackknife estimators proposed by Dhaene and Jochmans [38], while 
packages LOGITFE and PROBITFE [35, 36] provide a wide range of techniques 
such as analytical and jackknife corrections for models with individual and time 
fixed-effects [41]. 

Moving toward the conditional inference approach, different R routines provide 
the CML estimator [30] for the static logit model, such as function clogit() in 
package survival [71] and function cquad_basic() in package cquad [17]. 
Furthermore, cquad provides the estimators for the QE models [14, 20] and the 
PCML estimators for the dynamic logit model [15]. 

In Stata, the CML estimator can be performed by the commands xtlogit 
and clogit. Finally, module CQUADR [21] allows users to exploit the cquad 
package in Stata. 

The R code for the replication of the simulations in Sect. 9.7 and the application 
in Sect. 9.8 is available at https://github.com/fravale/replication_fe_dyn_logit.

https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://ruggerobellio.weebly.com/uploads/5/1/5/0/51505127/panelmpl_0.23.tar.gz
https://github.com/fravale/replication_fe_dyn_logit
https://github.com/fravale/replication_fe_dyn_logit
https://github.com/fravale/replication_fe_dyn_logit
https://github.com/fravale/replication_fe_dyn_logit
https://github.com/fravale/replication_fe_dyn_logit
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https://github.com/fravale/replication_fe_dyn_logit
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9.10 Conclusions 

We reviewed recent fixed-effects approaches to the formulation and estimation of 
binary, static, and dynamic, panel data models. Fixed-effects models are popular 
in many applied fields, as they avoid distributional assumptions on the unobserved 
individual effects and allow them to be correlated with the model covariates. This 
chapter offers a unified perspective about the two main streams of literature focused 
on the inconsistency of the ML estimator arising from the incidental parameter 
problem, namely the target-adjusted estimators and the conditional inference, also 
by means of an extensive simulation study and an empirical application on female 
labor supply. 

The main advantage of applying conditional inference is that CML estimators are 
fixed-T consistent, whereas target-corrected estimators are biased of order . O(T −2)

and require T to grow faster than .n1/3 for confidence intervals of the ML estimator 
to be centered at their probability limit. This makes the CML a viable approach, 
especially for applications based on surveys collected with a rotating sampling 
scheme, such as most national household and workforce surveys. There are also 
some drawbacks when dynamic formulations are considered, as both the HK and 
PCML estimators do not share the same asymptotic properties as the CML estimator 
for static models. Nevertheless, our simulation study shows that they outperform 
target-corrected estimators, especially when T is small. 

It is, however, worth recalling that the conditional inference approach is model 
specific, even though the approaches reviewed here can be easily extended for 
certain models for ordered and multinomial responses. In particular, the estimation 
of an ordered fixed-effects logit model with c response categories can be reduced to 
that of a fixed-effects binary logit model once the ordered response is dichotomized 
to generate .c − 1 binary response variables [12, 30]. Moreover, the CML approach 
does not provide estimates of the individual intercepts. These are necessary to 
compute predictions and partial effects of explanatory variables on the response 
probability, which are often the object of interest in causal inference. In this respect, 
one solution is to adopt a mixed approach that exploits a bias-corrected estimator of 
the individual intercepts. This is proposed by Bartolucci and Pigini [18] and requires 
further investigation. 

Acknowledgments F. Bartolucci acknowledges the financial support from the grant “Partial 
effects in econometric models for binary longitudinal data based on quadratic exponential 
distributions” of the University of Perugia (RICBASE2018). 

Appendix 

This appendix reports the additional results concerning the Monte Carlo simulation 
experiment described in Sect. 9.7 (Tables 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11 and 9.12).
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Table 9.5 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ = 0

Results for . β̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.009 0.806 −0.025 – 0.100 0.023 0.088 0.848 0.150 – 0.275 0.133 

4 0.017 0.578 0.003 – 0.031 0.016 0.076 0.600 0.071 – 0.136 0.091 

6 0.007 0.330 0.023 −0.167 0.010 0.010 0.057 0.346 0.069 0.222 0.088 0.069 

8 −0.000 0.215 0.012 −0.126 0.005 0.002 0.048 0.227 0.055 0.151 0.065 0.054 

12 0.001 0.128 0.005 −0.062 0.002 0.000 0.038 0.137 0.042 0.078 0.048 0.042 

500 3 0.004 0.771 −0.083 – 0.041 0.004 0.065 0.789 0.108 – 0.173 0.084 

4 0.001 0.548 −0.013 – 0.007 −0.000 0.051 0.562 0.083 – 0.098 0.069 

6 0.005 0.324 0.020 −0.142 0.008 0.006 0.040 0.331 0.049 0.174 0.061 0.047 

8 0.002 0.216 0.013 −0.124 0.004 0.002 0.034 0.222 0.041 0.137 0.050 0.039 

12 0.006 0.135 0.011 −0.055 0.006 0.006 0.030 0.141 0.035 0.065 0.038 0.034 

1000 3 0.011 0.799 −0.021 – 0.033 0.020 0.043 0.810 0.100 – 0.117 0.065 

4 0.001 0.556 −0.004 – 0.010 0.005 0.035 0.562 0.037 – 0.072 0.047 

6 0.000 0.315 0.014 −0.143 0.003 0.000 0.029 0.319 0.036 0.157 0.046 0.034 

8 0.000 0.214 0.011 −0.121 0.003 0.000 0.024 0.217 0.030 0.127 0.035 0.028 

12 0.001 0.128 0.005 −0.059 0.001 0.001 0.020 0.130 0.021 0.064 0.025 0.021 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML HK PCML MPL SPJ 

250 3 0.009 0.780 −0.052 – 0.077 0.014 0.056 0.780 0.076 – 0.160 0.090 

4 0.011 0.570 0.001 – 0.021 0.007 0.051 0.570 0.042 – 0.077 0.051 

6 0.006 0.327 0.024 −0.161 0.009 0.008 0.038 0.327 0.046 0.164 0.054 0.047 

8 −0.002 0.213 0.010 −0.126 0.000 0.001 0.032 0.213 0.038 0.126 0.048 0.038 

12 −0.002 0.126 0.004 −0.064 0.000 −0.001 0.025 0.126 0.029 0.064 0.033 0.029 

500 3 0.006 0.791 −0.072 – 0.011 0.010 0.044 0.791 0.072 – 0.111 0.066 

4 0.001 0.544 −0.007 – 0.001 −0.001 0.034 0.544 0.035 – 0.065 0.044 

6 0.006 0.321 0.019 −0.142 0.005 0.004 0.026 0.321 0.032 0.142 0.040 0.031 

8 0.002 0.215 0.012 −0.126 0.002 0.001 0.024 0.215 0.027 0.126 0.035 0.026 

12 0.008 0.134 0.011 −0.056 0.005 0.006 0.020 0.134 0.022 0.056 0.024 0.021 

1000 3 0.014 0.804 −0.042 – 0.027 0.017 0.026 0.804 0.060 – 0.063 0.042 

4 0.001 0.554 −0.004 – 0.012 0.004 0.024 0.554 0.025 – 0.046 0.031 

6 0.001 0.315 0.014 −0.142 0.001 0.000 0.019 0.315 0.023 0.142 0.030 0.021 

8 0.000 0.214 0.012 −0.121 0.002 0.000 0.016 0.214 0.020 0.121 0.024 0.019 

12 0.000 0.128 0.006 −0.059 0.001 0.001 0.014 0.128 0.014 0.059 0.018 0.014 

See notes in Table 9.1
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Table 9.6 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ = 0

Results for . γ̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.008 −2.729 0.055 – 0.000 0.039 0.160 2.796 0.350 – 0.539 0.407 

4 0.009 −1.695 −0.088 – 0.018 0.035 0.115 1.733 0.220 – 0.321 0.263 

6 −0.005 −0.974 −0.087 0.837 0.007 −0.001 0.104 0.996 0.185 0.908 0.202 0.172 

8 −0.005 −0.679 −0.056 0.345 −0.001 −0.006 0.090 0.700 0.158 0.404 0.158 0.150 

12 −0.001 −0.415 −0.022 0.122 −0.001 −0.000 0.068 0.431 0.111 0.179 0.113 0.110 

500 3 −0.005 −2.759 0.003 – −0.016 −0.012 0.101 2.794 0.173 – 0.378 0.287 

4 0.001 −1.695 −0.109 – 0.005 0.014 0.092 1.716 0.188 – 0.240 0.199 

6 −0.002 −0.975 −0.088 0.794 −0.000 −0.002 0.074 0.987 0.153 0.831 0.152 0.132 

8 0.001 −0.672 −0.050 0.341 0.001 0.001 0.063 0.681 0.111 0.369 0.112 0.102 

12 0.009 −0.401 −0.008 0.132 0.000 0.012 0.054 0.411 0.083 0.159 0.081 0.084 

1000 3 −0.006 −2.748 −0.037 – −0.018 −0.007 0.080 2.764 0.190 – 0.260 0.183 

4 0.001 −1.722 −0.130 – −0.012 −0.009 0.064 1.732 0.177 – 0.168 0.141 

6 0.003 −0.970 −0.086 0.783 0.001 0.001 0.048 0.976 0.121 0.802 0.103 0.089 

8 −0.002 −0.674 −0.052 0.337 −0.001 −0.002 0.043 0.679 0.088 0.352 0.082 0.072 

12 −0.001 −0.415 −0.022 0.120 0.001 −0.001 0.035 0.419 0.058 0.135 0.058 0.054 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 −0.008 −2.703 0.017 – 0.009 0.061 0.123 2.703 0.184 – 0.367 0.263 

4 0.001 −1.680 −0.082 – 0.042 0.051 0.079 1.680 0.149 – 0.207 0.173 

6 −0.010 −0.976 −0.084 0.824 0.013 0.009 0.073 0.976 0.118 0.824 0.140 0.115 

8 −0.008 −0.669 −0.045 0.344 0.018 −0.000 0.058 0.669 0.105 0.344 0.107 0.105 

12 −0.002 −0.416 −0.021 0.114 −0.006 −0.000 0.046 0.416 0.071 0.124 0.075 0.072 

500 3 −0.011 −2.759 0.000 – −0.050 −0.003 0.074 2.759 0.097 – 0.241 0.209 

4 0.001 −1.683 −0.107 – 0.006 0.022 0.064 1.683 0.125 – 0.176 0.146 

6 −0.003 −0.978 −0.088 0.788 −0.002 −0.004 0.050 0.978 0.113 0.788 0.104 0.089 

8 0.001 −0.668 −0.046 0.336 0.003 0.003 0.040 0.668 0.076 0.336 0.078 0.068 

12 0.007 −0.402 −0.009 0.131 −0.001 0.010 0.041 0.402 0.049 0.131 0.051 0.050 

1000 3 −0.002 −2.706 −0.000 – 0.004 0.001 0.059 2.706 0.075 – 0.193 0.139 

4 0.001 −1.716 −0.126 – −0.012 −0.005 0.046 1.716 0.131 – 0.118 0.098 

6 0.001 −0.969 −0.086 0.778 0.001 −0.001 0.033 0.969 0.090 0.778 0.069 0.061 

8 −0.003 −0.669 −0.049 0.338 −0.000 0.001 0.029 0.669 0.059 0.338 0.056 0.048 

12 −0.001 −0.416 −0.022 0.120 −0.002 −0.001 0.023 0.416 0.040 0.120 0.040 0.033 

See notes in Table 9.1
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Table 9.7 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ =
0.25

Results for . β̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.010 0.802 −0.025 – 0.116 0.017 0.089 0.844 0.159 – 0.318 0.127 

4 0.010 0.598 0.016 – 0.056 0.028 0.077 0.626 0.080 – 0.171 0.106 

6 0.004 0.314 0.016 −0.168 0.007 −0.000 0.052 0.327 0.062 0.226 0.082 0.062 

8 0.001 0.215 0.014 −0.124 0.006 0.002 0.047 0.226 0.053 0.149 0.064 0.051 

12 0.001 0.129 0.007 −0.061 0.004 0.001 0.040 0.139 0.045 0.079 0.052 0.044 

500 3 0.009 0.789 −0.063 – 0.096 0.012 0.054 0.808 0.100 – 0.199 0.087 

4 0.005 0.561 0.006 – 0.030 0.009 0.049 0.573 0.052 – 0.108 0.066 

6 0.004 0.320 0.020 −0.155 0.014 0.004 0.041 0.328 0.049 0.187 0.063 0.047 

8 0.002 0.216 0.014 −0.120 0.008 0.003 0.034 0.222 0.040 0.134 0.049 0.038 

12 0.003 0.132 0.009 −0.053 0.008 0.004 0.027 0.137 0.030 0.063 0.037 0.029 

1000 3 0.001 0.775 −0.031 – 0.033 0.006 0.044 0.787 0.092 – 0.122 0.068 

4 −0.001 0.542 −0.003 – 0.010 −0.002 0.036 0.548 0.037 – 0.074 0.047 

6 0.000 0.313 0.016 −0.143 0.006 −0.000 0.028 0.317 0.037 0.161 0.045 0.035 

8 0.001 0.214 0.013 −0.11 0.005 0.001 0.024 0.217 0.029 0.123 0.035 0.026 

12 0.000 0.128 0.006 −0.057 0.002 0.000 0.019 0.130 0.021 0.062 0.025 0.020 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.008 0.773 −0.051 – 0.058 0.004 0.056 0.773 0.073 – 0.145 0.080 

4 0.004 0.590 0.014 – 0.039 0.023 0.055 0.590 0.058 – 0.094 0.075 

6 −0.001 0.302 0.007 −0.167 0.008 −0.007 0.033 0.302 0.041 0.168 0.054 0.044 

8 0.002 0.211 0.011 −0.126 0.001 −0.001 0.031 0.211 0.034 0.127 0.040 0.033 

12 0.001 0.129 0.007 −0.060 0.004 0.001 0.026 0.129 0.028 0.061 0.034 0.027 

500 3 0.003 0.773 −0.066 – 0.078 0.005 0.037 0.773 0.071 – 0.118 0.056 

4 0.003 0.556 0.005 – 0.024 0.008 0.033 0.556 0.035 – 0.069 0.044 

6 0.002 0.316 0.016 −0.158 0.008 −0.001 0.028 0.316 0.031 0.159 0.044 0.029 

8 0.003 0.217 0.016 −0.120 0.007 0.004 0.024 0.217 0.028 0.120 0.032 0.026 

12 −0.000 0.128 0.007 −0.054 0.005 0.001 0.017 0.128 0.019 0.054 0.025 0.019 

1000 3 −0.002 0.771 −0.045 – 0.029 0.001 0.033 0.771 0.055 – 0.076 0.045 

4 −0.002 0.537 −0.004 – 0.005 −0.003 0.024 0.537 0.025 – 0.047 0.031 

6 −0.001 0.311 0.015 −0.145 0.005 −0.002 0.020 0.311 0.025 0.145 0.035 0.021 

8 −0.000 0.213 0.012 −0.117 0.003 0.000 0.016 0.213 0.020 0.117 0.024 0.018 

12 −0.000 0.128 0.006 −0.058 0.003 0.000 0.013 0.128 0.014 0.058 0.017 0.014 

See notes in Table 9.1
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Table 9.8 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ =
0.25

Results for . γ̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.011 −2.675 −0.085 – 0.008 0.061 0.151 2.760 0.317 – 0.599 0.468 

4 0.006 −1.686 −0.182 – −0.069 −0.018 0.132 1.722 0.275 – 0.350 0.272 

6 −0.007 −0.931 −0.093 0.790 −0.020 0.008 0.098 0.954 0.190 0.869 0.212 0.176 

8 0.003 −0.648 −0.051 0.329 −0.022 0.005 0.084 0.665 0.141 0.379 0.155 0.135 

12 −0.002 −0.404 −0.024 0.107 −0.025 −0.001 0.068 0.420 0.110 0.161 0.115 0.108 

500 3 −0.017 −2.659 −0.118 – −0.104 0.002 0.120 2.694 0.219 – 0.453 0.282 

4 0.002 −1.639 −0.165 – −0.014 0.010 0.088 1.659 0.225 – 0.239 0.192 

6 −0.008 −0.941 −0.101 0.766 −0.033 −0.002 0.074 0.954 0.162 0.805 0.151 0.133 

8 0.001 −0.650 −0.054 0.316 −0.023 0.002 0.062 0.660 0.114 0.348 0.119 0.103 

12 −0.000 −0.406 −0.026 0.107 −0.034 −0.003 0.049 0.414 0.084 0.138 0.090 0.080 

1000 3 0.001 −2.642 −0.128 – −0.007 0.010 0.069 2.657 0.211 – 0.270 0.196 

4 −0.001 −1.647 −0.177 – −0.035 −0.005 0.065 1.656 0.209 – 0.177 0.138 

6 −0.006 −0.937 −0.098 0.761 −0.024 0.003 0.047 0.943 0.132 0.781 0.109 0.095 

8 0.002 −0.647 −0.052 0.312 −0.020 0.005 0.043 0.652 0.088 0.327 0.084 0.072 

12 −0.001 −0.405 −0.025 0.107 −0.023 −0.001 0.034 0.409 0.059 0.123 0.064 0.054 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.010 −2.643 −0.095 – 0.002 0.056 0.107 2.643 0.197 – 0.356 0.296 

4 0.013 −1.671 −0.177 – −0.091 −0.025 0.091 1.671 0.195 – 0.250 0.175 

6 −0.007 −0.946 −0.096 0.751 −0.019 0.001 0.074 0.946 0.134 0.751 0.145 0.118 

8 0.002 −0.643 −0.052 0.333 −0.024 0.006 0.061 0.643 0.094 0.333 0.106 0.094 

12 −0.001 −0.401 −0.022 0.112 −0.025 −0.000 0.046 0.401 0.075 0.124 0.078 0.075 

500 3 −0.018 −2.679 −0.091 – −0.098 0.024 0.079 2.679 0.120 – 0.315 0.179 

4 0.000 −1.631 −0.166 – −0.016 0.014 0.059 1.631 0.171 – 0.159 0.130 

6 −0.007 −0.952 −0.108 0.751 −0.046 −0.008 0.048 0.952 0.125 0.751 0.112 0.088 

8 0.001 −0.650 −0.052 0.316 −0.023 0.004 0.042 0.650 0.079 0.316 0.082 0.066 

12 0.002 −0.404 −0.026 0.104 −0.038 −0.002 0.031 0.404 0.056 0.106 0.065 0.053 

1000 3 0.002 −2.633 −0.110 – −0.003 0.021 0.046 2.633 0.117 – 0.179 0.139 

4 −0.000 −1.649 −0.180 – −0.039 −0.008 0.040 1.649 0.180 – 0.112 0.093 

6 −0.008 −0.926 −0.094 0.758 −0.022 0.007 0.032 0.926 0.097 0.758 0.072 0.064 

8 0.003 −0.645 −0.050 0.313 −0.025 0.005 0.028 0.645 0.058 0.313 0.059 0.049 

12 −0.000 −0.404 −0.025 0.106 −0.026 −0.001 0.022 0.404 0.038 0.106 0.044 0.036 

See notes in Table 9.1
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Table 9.9 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ = 1

Results for . β̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.008 0.788 −0.005 – 0.188 0.020 0.098 0.837 0.153 – 0.521 0.150 

4 0.001 0.554 0.013 – 0.052 0.009 0.081 0.588 0.085 – 0.192 0.112 

6 0.011 0.341 0.036 −0.174 0.052 0.018 0.074 0.359 0.078 0.244 0.101 0.075 

8 0.004 0.220 0.019 −0.113 0.017 0.003 0.049 0.233 0.059 0.144 0.073 0.057 

12 0.004 0.136 0.012 −0.054 0.010 0.005 0.040 0.145 0.043 0.075 0.049 0.043 

500 3 0.007 0.781 −0.040 – 0.114 0.011 0.064 0.805 0.103 – 0.249 0.100 

4 0.000 0.540 0.008 – 0.045 0.000 0.053 0.555 0.057 – 0.128 0.073 

6 0.006 0.320 0.026 −0.121 0.021 0.005 0.039 0.329 0.055 0.158 0.074 0.051 

8 0.007 0.232 0.027 −0.092 0.020 0.013 0.041 0.239 0.052 0.113 0.060 0.047 

12 0.001 0.133 0.009 −0.052 0.008 0.002 0.028 0.137 0.031 0.063 0.037 0.030 

1000 3 0.001 0.762 −0.019 – 0.081 0.001 0.050 0.776 0.083 – 0.185 0.080 

4 −0.002 0.531 0.005 – 0.031 −0.005 0.038 0.539 0.040 – 0.091 0.051 

6 0.003 0.319 0.025 −0.124 0.022 0.004 0.029 0.323 0.041 0.145 0.055 0.035 

8 0.002 0.217 0.017 −0.103 0.011 0.002 0.026 0.221 0.034 0.112 0.040 0.029 

12 −0.002 0.128 0.005 −0.053 0.002 −0.002 0.020 0.131 0.022 0.059 0.027 0.022 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.005 0.763 −0.043 – 0.087 0.008 0.063 0.763 0.076 – 0.206 0.091 

4 −0.007 0.529 0.007 – 0.030 −0.005 0.060 0.529 0.055 – 0.107 0.075 

6 0.006 0.339 0.028 −0.171 0.058 0.018 0.049 0.339 0.056 0.174 0.079 0.048 

8 0.003 0.217 0.014 −0.113 0.012 −0.002 0.031 0.217 0.037 0.114 0.044 0.034 

12 −0.000 0.131 0.008 −0.061 0.008 0.003 0.026 0.131 0.030 0.061 0.034 0.031 

500 3 0.006 0.762 −0.041 – 0.090 0.003 0.043 0.762 0.060 – 0.141 0.069 

4 −0.001 0.535 0.006 – 0.041 −0.004 0.036 0.535 0.040 – 0.080 0.051 

6 0.007 0.319 0.022 −0.123 0.021 0.000 0.025 0.319 0.036 0.128 0.048 0.033 

8 0.003 0.229 0.025 −0.088 0.022 0.010 0.028 0.229 0.034 0.088 0.042 0.032 

12 0.002 0.131 0.008 −0.054 0.007 0.001 0.020 0.131 0.022 0.054 0.025 0.021 

1000 3 0.002 0.751 −0.033 – 0.060 −0.007 0.036 0.751 0.052 – 0.102 0.049 

4 −0.004 0.530 0.004 – 0.025 −0.008 0.025 0.530 0.029 – 0.057 0.036 

6 0.001 0.319 0.025 −0.123 0.017 0.004 0.019 0.319 0.028 0.123 0.035 0.024 

8 0.002 0.217 0.018 −0.104 0.010 0.001 0.019 0.217 0.023 0.104 0.025 0.019 

12 −0.001 0.128 0.006 −0.053 0.003 −0.002 0.014 0.128 0.015 0.053 0.019 0.015 

See notes in Table 9.1
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Table 9.10 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ = 1

Results for . γ̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 −0.003 −2.389 −0.406 – 0.066 0.091 0.153 2.450 0.488 – 0.768 0.469 

4 0.010 −1.449 −0.301 – −0.089 0.043 0.133 1.489 0.373 – 0.375 0.302 

6 0.013 −0.850 −0.137 0.800 −0.105 0.008 0.137 0.888 0.252 0.895 0.290 0.233 

8 0.005 −0.605 −0.077 0.227 −0.103 0.001 0.083 0.626 0.164 0.295 0.196 0.150 

12 −0.001 −0.361 −0.014 0.102 −0.085 0.018 0.069 0.379 0.111 0.169 0.149 0.112 

500 3 0.000 −2.395 −0.438 – −0.077 0.048 0.115 2.430 0.496 – 0.465 0.328 

4 0.003 −1.451 −0.303 – −0.079 0.029 0.091 1.471 0.342 – 0.285 0.213 

6 0.010 −0.857 −0.147 0.677 −0.092 0.004 0.076 0.872 0.198 0.724 0.182 0.146 

8 0.006 −0.606 −0.079 0.243 −0.097 0.002 0.059 0.615 0.122 0.270 0.149 0.095 

12 −0.004 −0.387 −0.039 0.070 −0.102 −0.008 0.049 0.397 0.091 0.117 0.133 0.083 

1000 3 −0.004 −2.378 −0.458 – −0.084 0.031 0.076 2.393 0.494 – 0.331 0.218 

4 −0.002 −1.459 −0.311 – −0.076 0.018 0.067 1.470 0.332 – 0.213 0.155 

6 0.003 −0.846 −0.139 0.695 −0.075 0.012 0.049 0.852 0.163 0.715 0.139 0.095 

8 0.001 −0.601 −0.075 0.240 −0.082 0.005 0.044 0.607 0.107 0.261 0.121 0.080 

12 0.002 −0.378 −0.030 0.075 −0.083 0.001 0.034 0.383 0.065 0.100 0.107 0.058 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.011 −2.376 −0.412 – 0.021 0.037 0.103 2.376 0.413 – 0.381 0.307 

4 0.005 −1.434 −0.299 – −0.101 0.015 0.091 1.434 0.300 – 0.246 0.206 

6 0.014 −0.848 −0.131 0.838 −0.127 0.015 0.081 0.848 0.181 0.838 0.209 0.185 

8 0.006 −0.618 −0.092 0.214 −0.098 −0.009 0.052 0.618 0.123 0.218 0.133 0.106 

12 −0.005 −0.369 −0.022 0.110 −0.082 0.009 0.042 0.369 0.079 0.121 0.105 0.074 

500 3 0.002 −2.388 −0.434 – −0.096 0.039 0.077 2.388 0.434 – 0.300 0.205 

4 0.002 −1.446 −0.301 – −0.097 0.026 0.062 1.446 0.301 – 0.196 0.142 

6 0.007 −0.861 −0.144 0.674 −0.094 −0.004 0.049 0.861 0.150 0.674 0.130 0.108 

8 0.008 −0.598 −0.075 0.240 −0.102 0.001 0.038 0.598 0.080 0.240 0.106 0.057 

12 −0.004 −0.385 −0.037 0.072 −0.104 −0.005 0.033 0.385 0.062 0.087 0.105 0.058 

1000 3 0.001 −2.370 −0.436 – −0.087 0.050 0.052 2.370 0.436 – 0.201 0.158 

4 −0.002 −1.458 −0.308 – −0.080 0.013 0.047 1.458 0.308 – 0.138 0.105 

6 0.002 −0.844 −0.136 0.694 −0.071 0.012 0.035 0.844 0.137 0.694 0.095 0.068 

8 0.000 −0.604 −0.076 0.236 −0.085 0.003 0.029 0.604 0.082 0.236 0.091 0.054 

12 −0.001 −0.379 −0.030 0.078 −0.085 −0.001 0.022 0.379 0.044 0.078 0.086 0.038 

See notes in Table 9.1
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Table 9.11 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, . γ = 2

Results for . β̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.014 0.812 −0.006 – 0.351 0.038 0.105 0.875 0.130 – 0.698 0.188 

4 0.008 0.548 0.008 – 0.088 0.007 0.082 0.583 0.089 – 0.209 0.116 

6 0.004 0.334 0.030 −0.135 0.035 0.011 0.065 0.355 0.079 0.223 0.117 0.085 

8 0.025 0.266 0.051 −0.035 0.052 0.043 0.054 0.273 0.067 0.086 0.078 0.067 

12 0.000 0.141 0.011 −0.047 −0.002 −0.001 0.042 0.152 0.048 0.074 0.058 0.046 

500 3 0.012 0.780 −0.011 – 0.190 0.022 0.074 0.813 0.122 – 0.370 0.133 

4 0.003 0.540 0.004 – 0.064 0.001 0.057 0.558 0.060 – 0.168 0.084 

6 0.002 0.325 0.025 −0.115 0.027 0.004 0.044 0.334 0.055 0.162 0.083 0.056 

8 0.002 0.230 0.024 −0.085 0.012 0.004 0.036 0.237 0.048 0.110 0.063 0.045 

12 0.001 0.141 0.012 −0.044 −0.002 −0.001 0.030 0.146 0.035 0.059 0.041 0.033 

1000 3 −0.003 0.739 −0.036 – 0.116 −0.003 0.048 0.753 0.061 – 0.217 0.081 

4 0.000 0.528 0.001 – 0.047 −0.005 0.038 0.536 0.039 – 0.107 0.054 

6 −0.000 0.321 0.022 −0.097 0.016 −0.000 0.032 0.326 0.044 0.126 0.063 0.042 

8 0.004 0.231 0.024 −0.078 0.011 0.004 0.028 0.235 0.040 0.093 0.045 0.033 

12 0.001 0.143 0.014 −0.040 0.001 0.001 0.022 0.146 0.028 0.050 0.030 0.025 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 31 0.006 0.778 −0.022 – 0.206 0.013 0.065 0.778 0.078 – 0.255 0.115 

4 0.002 0.523 0.004 – 0.070 −0.004 0.055 0.523 0.062 – 0.134 0.077 

6 0.005 0.330 0.029 −0.118 0.029 0.008 0.044 0.330 0.053 0.146 0.070 0.055 

8 0.023 0.268 0.053 −0.034 0.064 0.042 0.036 0.268 0.053 0.061 0.064 0.042 

12 −0.000 0.139 0.010 −0.045 −0.003 −0.003 0.029 0.139 0.032 0.050 0.039 0.031 

500 3 0.012 0.753 −0.031 – 0.139 −0.008 0.052 0.753 0.056 – 0.190 0.083 

4 −0.001 0.524 0.001 – 0.041 −0.007 0.037 0.524 0.041 – 0.095 0.056 

6 0.000 0.323 0.025 −0.113 0.023 0.002 0.031 0.323 0.035 0.119 0.053 0.037 

8 0.004 0.229 0.021 −0.084 0.014 0.004 0.023 0.229 0.031 0.086 0.042 0.030 

12 0.000 0.137 0.009 −0.047 −0.003 −0.003 0.020 0.137 0.021 0.048 0.028 0.022 

1000 3 −0.003 0.741 −0.036 – 0.108 −0.003 0.035 0.741 0.043 – 0.128 0.057 

4 −0.002 0.527 0.002 – 0.045 −0.005 0.026 0.527 0.025 – 0.066 0.035 

6 −0.001 0.316 0.021 −0.096 0.014 −0.003 0.022 0.316 0.028 0.099 0.043 0.026 

8 0.004 0.231 0.024 −0.078 0.010 0.004 0.018 0.231 0.027 0.078 0.028 0.021 

12 0.001 0.142 0.013 −0.042 0.000 0.001 0.015 0.142 0.019 0.042 0.020 0.017 

See notes in Table 9.1
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Table 9.12 Simulation results under the design based on Eqs. (9.23) and (9.24) with .β = 1, 
. γ = 2

Results for . γ̂

Mean Bias RMSE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.016 −2.012 −0.836 – 0.162 0.213 0.196 2.099 0.903 – 1.198 0.639 

4 0.018 −1.241 −0.504 – −0.093 0.081 0.166 1.307 0.570 – 0.530 0.390 

6 0.003 −0.759 −0.227 0.610 −0.174 0.020 0.124 0.799 0.299 0.723 0.350 0.232 

8 0.065 −0.514 −0.080 0.296 −0.098 0.091 0.145 0.553 0.189 0.408 0.197 0.230 

12 0.002 −0.372 −0.054 0.043 −0.205 −0.006 0.091 0.399 0.148 0.166 0.261 0.141 

500 3 0.004 −1.995 −0.778 – 0.007 0.209 0.154 2.047 0.821 – 0.742 0.507 

4 0.010 −1.255 −0.512 – −0.151 0.062 0.115 1.286 0.545 – 0.375 0.282 

6 −0.000 −0.766 −0.234 0.610 −0.160 0.016 0.087 0.785 0.272 0.664 0.261 0.161 

8 0.000 −0.562 −0.127 0.166 −0.176 0.004 0.072 0.577 0.173 0.228 0.236 0.128 

12 0.001 −0.369 −0.052 0.039 −0.184 −0.007 0.058 0.381 0.105 0.116 0.214 0.093 

1000 3 0.005 −2.050 −0.878 – −0.108 0.139 0.093 2.071 0.912 – 0.441 0.301 

4 0.008 −1.261 −0.519 – −0.143 0.048 0.080 1.273 0.535 – 0.291 0.179 

6 0.001 −0.763 −0.231 0.616 −0.165 0.011 0.061 0.773 0.252 0.642 0.219 0.120 

8 0.005 −0.554 −0.120 0.183 −0.159 0.008 0.054 0.562 0.146 0.216 0.198 0.091 

12 0.002 −0.366 −0.050 0.042 −0.158 −0.005 0.042 0.373 0.081 0.085 0.176 0.065 

Median Bias MAE 

n T INF ML MPL SPJ HK PCML INF ML MPL SPJ HK PCML 

250 3 0.002 −2.019 −0.838 – −0.084 0.145 0.135 2.019 0.838 – 0.640 0.388 

4 0.008 −1.254 −0.506 – −0.147 0.062 0.119 1.254 0.506 – 0.389 0.276 

6 0.006 −0.756 −0.224 0.603 −0.190 0.031 0.084 0.756 0.226 0.604 0.264 0.156 

8 0.061 −0.576 −0.119 0.276 −0.088 0.056 0.069 0.576 0.132 0.276 0.113 0.131 

12 0.002 −0.375 −0.055 0.037 −0.223 −0.015 0.060 0.375 0.099 0.111 0.227 0.089 

500 3 −0.017 −1.995 −0.780 – −0.137 0.185 0.089 1.995 0.780 – 0.492 0.362 

4 0.011 −1.260 −0.515 – −0.161 0.057 0.080 1.260 0.515 – 0.262 0.192 

6 −0.003 −0.768 −0.232 0.609 −0.170 0.010 0.058 0.768 0.232 0.609 0.197 0.107 

8 −0.002 −0.562 −0.126 0.168 −0.176 0.003 0.050 0.562 0.129 0.175 0.183 0.089 

12 0.001 −0.369 −0.053 0.042 −0.188 −0.010 0.038 0.369 0.074 0.082 0.189 0.064 

1000 3 −0.004 −2.024 −0.850 – −0.131 0.129 0.064 2.024 0.850 – 0.312 0.205 

4 0.008 −1.256 −0.516 – −0.148 0.055 0.053 1.256 0.516 – 0.200 0.108 

6 0.003 −0.766 −0.233 0.616 −0.163 0.012 0.041 0.766 0.233 0.616 0.167 0.077 

8 0.004 −0.552 −0.118 0.183 −0.164 0.004 0.037 0.552 0.118 0.183 0.165 0.063 

12 0.002 −0.363 −0.046 0.041 −0.157 −0.002 0.028 0.363 0.055 0.056 0.157 0.046 

See notes in Table 9.1
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