
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04919-y
Commun. Math. Phys.          (2024) 405:17 Communications in

Mathematical
Physics

Where Charged Sectors are Localizable: A Viewpoint
from Covariant Cohomology

Fabio Ciolli1, Giuseppe Ruzzi2 , Ezio Vasselli2

1 Dipartimento di Matematica e Informatica, Università della Calabria, Via Pietro Bucci, Cubo 30B, 87036
Rende, Italy. E-mail: fabio.ciolli@unical.it

2 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome,
Italy. E-mail: ruzzi@mat.uniroma2.it; ezio.vasselli@gmail.com

Received: 21 June 2023 / Accepted: 29 November 2023
© The Author(s) 2024

Dedicated to Roberto Longo on the occasion of his 70th birthday

Abstract: Given a Haag–Kastler net on a globally hyperbolic spacetime, one can con-
sider a family of regions where quantum charges are supposed to be localized. Assuming
that the net fulfils certain minimal properties (factoriality of the global observable algebra
and relative Haag duality), we give a geometric criterion that the given family must fulfil
to have a superselection structure with charges localized on its regions. Our criterion is
fulfilled by all the families used in the theory of sectors (double cones, spacelike cones,
diamonds, hypercones). In order to take account of eventual spacetime symmetries, our
superselection structures are constructed in terms of covariant charge transporters, a
novel cohomological approach generalizing that introduced by J. E. Roberts. In the case
of hypercones, with the forward light cone as an ambient spacetime, we obtain a superse-
lection structure with Bose–Fermi parastatistics and particle-antiparticle conjugation. It
could constitute a candidate for a different description of the charged sectors introduced
by Buchholz and Roberts for theories including massless particles.

1. Introduction

The analysis of superselection sectors has been a topic of interest since the early days of
algebraic quantum field theory, in particular in the celebrated DHR analysis [17–20,22].
There, superselection sectors are intrinsically characterized in terms of endomorphisms
of the observable C*-algebra A, realized on the vacuum Hilbert space H. The endo-
morphisms of interest, say ρ ∈ endA, are localized in double cones O ⊂ R

4, in the
sense that ρ equals the identity on any subalgebra of A generated by observables lo-
calized in regions causally disjoint from O (DHR endomorphisms). The relation with
superselection sectors in the sense of Wigner, Wick and Wightman, that define Hilbert
space representations of the type π : A → B(Hπ ), is that there is a unitary equivalence
π � ρ having regarded ρ as a representation ρ : A → A ⊂ B(H). This yields the DHR
criterion to select the endomorphisms of interest: the physical interpretation is that there
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is a quantum charge localized in O that induces a superselection sector disjoint from the
vacuum.

An alternative way to look at DHR superselection sectors was proposed by J. E.
Roberts. Guided by the concept of parallel transport, Roberts introduced a families of
unitary operators Xb ∈ A, where b are triples of double cones ∂0b, ∂1b ⊆ |b| ⊂ R

4,
[30,31]. These unitaries satisfy a cocycle relation and realize an equivalence between
the DHR endomorphisms ρ(∂1b) and ρ(∂0b) localized in ∂1b and ∂0b respectively, as

Xb ρ(∂1b)(A) = ρ(∂0b)(A) Xb, A ∈ A. (1.1)

Hence, the physical idea is that a quantum charge, localized in ∂1b, is transported to ∂0b
along a curve b : [0, 1] → R

4 with b([0, 1]) ⊂ |b|, b(0) ∈ ∂1b, b(1) ∈ ∂0b. The DHR
endomorphisms appearing in (1.1) are constructed by adjoint action of Xb, by letting
∂0b go to spacelike infinity.

In Minkowski space the Roberts approach is equivalent to the classical DHR formu-
lation. Yet in curved spacetimes it turned out that charge transporters are unavoidable,
because the DHR endomorphisms alone do not carry all the necessary physical infor-
mations [1,33]. Successive work has shown that the analogy with parallel transport is
fully justified by the fact that, when A is the observable net of the free Dirac field ψ , for
any charge transporter X there is a closed 1–form A on M, such that

Xb = ψ∗
∂0b ei

∫
b A ψ∂1b, ρ(∂k b) = adψ∂k b, k = 0, 1. (1.2)

Here, ψ∂0b, ψ∂1b are charged unitaries obtained by smeared field operators by using
the III-type factor property of the local algebras, inducing the DHR endomorphisms by
adjoint action. They carry opposite charges, coherently with the ideas of [8,27]. The
physical interpretation is that A is an external potential interacting with ψ , inducing
observable effects in spacetimes with non-trivial fundamental group (Aharonov–Bohm
effect) and vanishing in simply connected spacetimes. Expressions analogous to (1.2)
can be obtained for a non-Abelian gauge group, with A a flat connection with values in
the corresponding Lie algebra [17,35,36].1

A different superselection structure was proposed by Buchholz and Fredenhagen,
which introduced a criterion based on positivity of the energy and arrived to a charge lo-
calization in spacelike cones [8]. This type of localization reflects the idea that a spacelike
cone is able to host two opposite charges, one of which is free to go to (or to come from)
spacelike infinity, behind the moon following Haag and Kastler [27]. This introduces
a further level for the regions of interest: we have bounded regions (double cones) in
which the observables are localized, and unbounded regions (spacelike cones) encoding
the localization of charges. This suggests to define by additivity a new observable net,
say AK , indexed by the charge localization regions instead of the usual family of dou-
ble cones. As spacelike cones are not upward directed under inclusion, the so-obtained
sectors are now described by net morphisms ρ : AK → B(H) (BF-morphisms) that in
general do not match to form endomorphisms of the global C*-algebra. In spite of this
difficulty, they form a mathematical structure analogous to the one obtained by DHR
sectors, namely a symmetric tensor category with conjugates encoding a permutation
symmetry with Bose–Fermi parastatistics and particle-antiparticle correspondence.

In lower dimensions, because of topological obstructions different properties manifest
themselves at the level of statistics. The braid group appears instead of the permutation

1 Charge transporters in the universal C*-algebra of the quantum electromagnetic field [3,4] similar to
(1.2) have been constructed in [5–7]. We quote also [15,16] where connection operators defined on paths are
associated with representations for the quantum electromagnetic field.
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group when the exchange of charges is performed, and exotic statistics appear. Such
sectors have been studied in [23,24]. In the present paper we focus on four spacetimes
dimensions, so that we will always deal with Bose–Fermi (para)statistics.

All the previous approaches share an assumption, namely the absence of massless
particles. This of course excludes QED, which presents peculiarities that create serious
problems for the identification of superselection sectors. Notably, the electric charge
cannot be localized (not even in a spacelike cone), and charged fields cannot be local to
the electromagnetic field in positive (and hence physical) gauges. Both the problems have
their root in the Gauss law [34, §7.2]. The search for a superselection structure describing
the electric charge was approached in several papers [2,10,11,25], culminating in the
analysis by Buchholz and Roberts [9]. There, a crucial point is that the ambient spacetime
is restricted to the future light cone V+, in such a way to rule out the infrared clouds giving
rise to the overabundance of sectors with the same electric charge. The restriction on V+
has also consequences as the loss (then amended) of the full group of Poincaré symmetry,
which is restricted to an action by the semigroup stabilizing V+, and the eventuality that
A(V+) (now generated by observables localized in V+) is not irreducible. This has an
impact on Haag duality, that now must be referred to the von Neumann algebra A(V+)′′
that is not necessarily B(H) but more generally a III1 factor. The result is a family of
approximately inner morphisms σ : A(V+) → A(V+)′′, localized on hypercones and
giving rise to the desired superselection structure (BR-sectors) even if some questions
remain open for parastatistics.

The present paper has two main objectives.
First, identify the essential features that define a class of regions within a globally

hyperbolic spacetime which can serve as localization regions for charged superselection
sectors. To emphasize this point, we describe these properties using a partially ordered
set (poset), and consider the observable net defined on it.

Secondly, develop a novel approach to superselection sectors in terms of covariant 1-
cocycles: charge transporters that maintain covariance with respect to a global symmetry
of the spacetime. This concept extends the cohomology introduced by Roberts and
addresses a gap in this approach, as the covariant properties of superselection sectors
have previously only been discussed in terms of localized and transportable morphisms.
This aspect holds significance because it allows, in principle, for the examination of
covariant superselection sectors on spacetimes with nontrivial topology. In such cases,
in fact, the conventional approach relying on localized and transportable morphisms may
prove inadequate [1].

We demonstrate that our superselection structure possesses permutation symmetry
with Bose–Fermi (para)statistics, and a conjugation that encodes the particle-antiparticle
correspondence. This machinery applies to the known situations described in the pre-
vious lines. Yet, whilst for double cones and spacelike cones we easily get the DHR
and BF superselection structures respectively, in the case of hypercones it remains an
open question whether our superselection structure agrees with the one constructed by
Buchholz and Roberts. We postpone this discussion to future works, with the remark
that, due to the generality of our approach, we did not take into account the energetic
aspects that come into play when the transport of a charge towards the boundary of the
light cone is performed 2.

In the following lines we give a sketch of the content of the next sections.
In §2 we fix a poset modelled on a family of regions of a spacetime M encoding the

charge localization and the geometry of the spacetime. Namely, we consider a possibly

2 The authors are indebted with Detlev Buchholz for discussions on this point.
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curved spacetime denoted as M, foliated along time and equipped with a symmetry
action given by spacetime transformations. In general, only symmetries that preserve
the charge localization regions are of interest, and in all the mentioned examples they
form a group (even in the case of charges of electromagnetic type, despite the stabilizer
of the forward light cone is a semigroup of Poincaré transformations, the symmetries
that stabilize the hypercones are given by the Lorentz group).

Hence, we consider an abstract poset K endowed with a causal disjointness relation
⊥ and acted upon by a symmetryP , and determine two properties that the elements of K
must fulfill to play the role of localization regions in a superselection structure expressed
in terms of charge transporters. The two properties are that the causal complement of
any o ∈ K must be pathwise connected, and that for any pair o1, o2, if o1 ⊥ o2 then
there is a ⊥ o1, o2, otherwise there are õ1, ã such that õ1 ⊂ o1 and ã ⊥ õ1, o2. The
former property ensure that we can freely transport charges along paths in the causal
complement of o, whilst the latter allows to add further charges without interfering with
a previously given set of mutually casually disjoint charges.

We then consider in §2.2 local von Neumann algebras A(o) for any element of o
of K defined in a reference Hilbert space H.3 The correspondence AK : o 
→ A(o)

gives a net of von Neumann algebras over K on which we require minimal assumptions
derived from the existing theory of superselection sectors: the symmetry action of P on
AK is unitarily implemented; the C∗-algebra A(K ) generated by A(o) as o varies in K
is factorial, A(K )′ ∩ A(K )′′ = C 1H; relative Haag duality holds [12],

A(o⊥)′ ∩ A(K )′′ = A(o), o ∈ K , (1.3)

where A(o⊥) is the von Neumann algebra associated with the causal complement o⊥ of
o.

In §3, starting from AK we introduce the notion of covariant cocycle. It simultane-
ously yields a cocycle (charge transporter) in the sense of Roberts and a cocycle over
P . Covariant cocycles are designed to encode in a concise way P-covariant supers-
election sectors. Considering for simplicity only simply connected spacetimes (hence
simply connected posets) in order to rule out the above mentioned Aharonov–Bohm vec-
tor potentials, we prove that covariant cocycles form a C*-category Z1

c (AK ). A further
analysis shows that Z1

c (AK ) has permutation symmetry with Bose–Fermi (para)statistics
and conjugates, and hence is endowed with the properties characterising a charged su-
perselection structure.

M being simply connected, Z1
c (AK ) can be described in terms of morphisms from

AK into A(K ) in the sense of [32]; these morphisms are localized on regions o ∈ K
§3.3, and in good cases (e.g. when K is the set of double cones), they form actual
endomorphisms of A(K ). For various choices of M and K , we get DHR sectors (when
M = R

4 and K is given by double cones), BF sectors (M = R
4, K given by spacelike

cones), and sectors in curved spacetimes (M a globally hyperbolic spacetime, K the
family of diamonds). When M is the light cone and K is formed by hypercones, we get
a superselection structure describing hypercone localized charges as explained in the
previous lines.

In the final §4 we expose some conclusions and discuss future developments of our
work.

3 In the examples mentioned above, spacelike cones for instance, A(o) is generated by the von Neumann
algebras of observables localized in double cones contained in o and defined in the vacuum Hilbert space.
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2. The Observable Net

The investigation of charged superselection sectors within a given spacetime requires
to consider observables in regions where the charges are localized, on the ground of a
physical criterion. This leads to a correspondence assigning to such charge localization
regions the algebras of observables measurable within them. As usual, such algebras are
obtained by additivity, starting from Haag–Kastler nets. In the following we shall refer
to the set of charge localization regions as the set of indices.

2.1. The set of indices. In the present section we discuss the essential properties defining
a set of indices for due purposes. For convenience we regard it as an abstract partially
ordered set (poset) whose properties are modelled on a suitable family of open regions,
ordered under inclusion, of a connected and simply connected 4-dimensional globally
hyperbolic spacetime M having non-compact Cauchy surfaces, and endowed with an
action by spacetime symmetries when present. As illustrated in the introduction, the
hypothesis of M being simply connected is motivated by the wish of simplifying the
exposition, excluding Aharonov–Bohm type effects. Anyway we remark that, even if
M is simply connected, K may be not directed.

Let K denote a non-empty partially ordered set with order relation ⊆. Elements of
K are denoted by Latin letters o, a.... In the following lines we give the list of properties
that we assume for K : with the exception of K4 and K6 that are the crucial ones, they
are natural requirements dictated by the idea that K is the abstraction of a family of
causally complete regions in a 4-dimensional spacetime, stable under the action of a
group P that is either the full group of spacetime symmetries or a subgroup thereof.

K1 for any o ∈ K there are ô, õ ∈ K with ô ⊂ o ⊂ õ.

In the previous line, the symbol ⊂ stands for any relation implying o ⊆ õ and o �= õ,
and shall be defined concretely when we will consider examples of K . The poset K
is endowed with a causal disjointness relation i.e. a symmetric, non-reflexive binary
relation ⊥, compatible with the order relation in the sense that

K2 o ⊥ a , ô ⊆ o ⇒ ô ⊥ a

The causal complement of o is the subset o⊥ of K defined as o⊥ := {a ∈ K | a ⊥ o}.
We assume that all the elements of K are causally complete in the sense that

K3 o⊥⊥ = {õ ∈ K | õ ⊥ a , ∀a ∈ o⊥} = {a ∈ K | a ⊆ o}
Note that this implies that o⊥ �= ∅. A key property is the following

K4 for any pair o, a ∈ K , if o ⊥ a then o⊥ ∩ a⊥ �= ∅ otherwise there is õ ⊂ o s.t.
õ⊥ ∩ a⊥ �= ∅

We assume that K is acted upon by a group P , the symmetry, and that this action is
compatible with the order and causal disjointness relations

K5 a ⊂ o ⇒ λa ⊂ λo and a ⊥ o ⇒ λa ⊥ λo

Before to proceed with our list, for the reader’s convenience we introduce some properties
of K having a topological flavour, expressed in terms of the set of singular n-simplices
�n(K ) (see [33] for details). A 0-simplex is just an element of K , that we usually write
a, o. A 1-simplex is given by a triple b of 0-simplices ∂0b, ∂1b ⊆ |b|; we call |b| the
support and ∂0b, ∂1b the faces. Given the 1-simplex b, the reverse b is the 1-simplex
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having the same support as b and such that ∂0b = ∂1b, ∂1b = ∂0b. A 1-simplex b is
said to be degenerate whenever ∂1b = ∂0b. In particular, we denote the degenerate 1-
simplex whose faces and support equal o ∈ �0(K ) by σ0(o). Inductively, for n ≥ 1, an
n-simplex x is formed by n + 1, (n −1)-simplices ∂0x, . . . , ∂n x and by an element of the
poset |x |, the support of x , such that |∂i x | ⊆ |x | for i = 0, . . . , n; on the other hand, any
(n−1)-simplex x can be regarded as a degenerate n-simplex σi (x) obtained by repeating
its i vertex. The symbols ∂i and σi define face and degeneracy maps respectively. To be
concise, we write the compositions ∂i j

.= ∂i∂ j , σi j
.= σiσ j . It can be proved that

∂i j = ∂ j (i+1), i ≥ j

A path p : a → o is a finite ordered set of 1-simplices bn ∗ · · · ∗ b1 satisfying the
relations ∂0bi−1 = ∂1bi for i = 2, . . . , n and ∂1b1 = a, ∂0bn = o. The support |p| of a
path p is the collection of the supports of the 1-simplices by which it is composed. The
reverse of p is the path p : o → a defined by p

.= b1 ∗ · · · ∗ bn . If q is a path from o
to ô, then we can define, in an obvious way, the composition q ∗ p : a → ô. A subset
S ⊆ K is said to be pathwise connected whenever for any pair a,ã of 0-simplices in S
there is a path from a to ã. We are now ready to give our last properties.

K6 We assume that the K is pathwise connected and that the causal complement o⊥ of
any element o ∈ K is pathwise connected.

An elementary deformation of a path p = bn ∗ · · · ∗ b1 consists in replacing a 1-simplex
∂1c of the path by the pair ∂0c ∗ ∂2c, where c ∈ �2(K ), or conversely in replacing a
consecutive pair ∂0c ∗ ∂2c by a single 1-simplex ∂1c. Two paths with the same endpoints
are homotopic if they can be obtained from one another by a finite sequence of elementary
deformations. Homotopy defines an equivalence relation ∼ on the set of paths with the
same endpoints and, K being pathwise connected, this naturally leads to the notion of
the fundamental group π1(K ) of K . In all the cases of interest in the present paper, it
turns out π1(M) � π1(K ) [33]. The following hypothesis is formulated to simplify the
discussion of the next section:

K7 We assume that K is simply connected, i.e. π1(K ) = 1.

We finally observe that the action of the symmetry P on K extends to simplices by
taking λx as the n-simplex whose faces are λ∂i x and whose support is |λx | = λ|x |. This
induces an action on paths, which preserves the homotopy equivalence relation, defined
by

λp := λbn ∗ · · · ∗ λb1, p = bn ∗ · · · ∗ b1.

Note that if p : a → o then λp : λa → λo.

2.2. Observable net and reference representation. We now add the further ingredients
given by the observable net and its reference representation. Since we are not assuming
that K is upward directed, we have to take into account the notions of morphism and
representation of a net, as in [32].

Let H be a Hilbert space. An observable net over K is given by a correspondence

AK : K � o 
→ A(o) ⊆ B(H),

assigning to o ∈ K the von Neumann algebra A(o). We denote the C∗-algebra generated
by ∪o∈KA(o) by A(K ), and assume the standard properties of isotony, causality, and
P-covariance under a representation U : P → U(H). Finally we assume
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• factoriality,

A(K )′ ∩ A(K )′′ = C1H;
• the Borchers property: for any o ⊂ a and for any projection E ∈ A(o) there is an

isometry V ∈ A(a) such that V V ∗ = E ;
• relative Haag duality,

A(o) = A(K )′′ ∩ A(o⊥)′, o ∈ K ,

where, in our abstract setting, we may take as a definition A(o⊥)′ = ⋂
a⊥o A(a)′. Note

that factoriality is a weaker assumption with respect to the irreducibility property usually
required. It is dictated by the hypothesis made by Buchholz and Roberts for their net
defined on the light cone [9]. In this connection, note that when the net is irreducible
relative Haag duality becomes the usual Haag duality.

2.3. Meaningful examples. We now give some concrete examples where a set of indices
K and observables net over K satisfying the properties introduced above arise. The
general context is that of a connected and simply connected 4-dimensional globally
hyperbolic spacetime M, with non-compact Cauchy surfaces and, possibly, symmetries
(i.e. global isometries). K can be any suitable family of open subsets of M, ordered
under inclusion and with the causal disjointness relation induced by the causal structure
of M. To be precise:

• the proper inclusion o ⊂ a amounts to the inclusion of the closure cl(o) of o in a;
• the causal disjontness relation o ⊥ a amounts to J (cl(o)) ∩ cl(a) = ∅ where

J (cl(o)) denotes the causal set of cl(o);
• the action λo of a symmetry λ on a region o is nothing but the image λ(o);
• finally, the symmetry P is the subgroup of symmetries of M that leave invariant K .

The defining properties of K and the assumptions we made on AK are verified in the
following cases.

1. The DHR sectors [20,21]. Here M is the 4-dimensional Minkowski space, P the
Poincaré group, K the set of double cones and AK is the observable net defined in
the vacuum representation.

2. The DHR sectors in curved spacetimes [1,26,33]. HereM is an arbitrary 4-dimensional
globally hyperbolic spacetime with non-compact Cauchy surfaces, K is the set of
diamonds and AK is the observable net in a representation satisfying the microlocal
spectrum condition.

3. The BF sectors [8]. Here M the 4-dimensional Minkowski spacetime, K the set of
spacelike cones, P the Poincaré group, and AK is defined in the vacuum representa-
tion. It is worth observing that being spacelike cones unbounded regions of M, one
first consider the observable net over double cones defined in the vacuum represen-
tation. Then the von Neumann algebra associated with a spacelike cone o is defined
as the von Neumann algebra generated by the algebras A(O) associated with double
cones O such that O ⊂ o.

4. The BR charge classes (charges of electromagnetic type) [9]. Here M is the forward
light cone in the 4-dimensional Minkowski space and K is the set of hypercones in
M. Although M has a semigroup of symmetries given by the semidirect product
of non-negative time translations and the Lorentz group, K is not stable under non-
negative time translations. As a consequence P corresponds to the Lorentz group.
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AK is defined by the observable net in the vacuum representation: since hypercones
are unbounded, elements of AK are generated, similarly to the BF sectors, by the
algebras of double cones that are located within each hypercone.

We conclude by noting that violations of the properties K1-7, to the authors’ knowl-
edge, occur in low-dimensional spaces. For example, in 2-dimensional Minkowski space
the causal complement of double cones is not connected, see [23]. In 3-dimensional
Minkowski space, spacelike cones have connected complement but form a poset with
non-trivial homotopy group, isomorphic to Z, ref. [28,29]. These violations and other
topological restrictions like for instance that in these posets there are pairs of causally
disjoint elements whose causal complements have non-connected intersection are the
reasons for the appearance of anyonic sectors.

3. Covariant Cohomology and Charged Representations of the Observable Net

In the present section we introduce covariant 1-cocycles and, following the DHR anal-
ysis, we show that they define a symmetric tensor C∗-category with conjugates, closed
under direct sums and subobjects. This implies that charged quantum numbers are as-
sociated with the equivalence class of any irreducible covariant 1-cocycle. Using the
hypothesis that M is simply connected, we construct morphisms of the observable net
AK into the global C*-algebra, describing charges localized in regions of K . Finally,
we illustrate how covariant 1-cocycles shift the localization regions of our localized
morphisms, confirming their interpretation as charge transporters.

3.1. Covariant 1-cocycles of the observable net. We define and start to analyze the
covariant cohomology of a given observable net AK fulfilling the hypothesis of §2.1 and
§2.2. The focus is on the relation between our covariant cohomology and that introduced
by J. E. Roberts, which provides an equivalent description of DHR superselection sectors
as mentioned in the Introduction.

Definition 3.1. A covariant 1-cocycle X is a field

P × �1(K ) � (λ, b) 
→ Xb(λ) ∈ A(|b|)
of unitary operators fulfilling the relation

X∂1c(σλ) = α−1
λ (Xλ∂0c(σ ))X∂2c(λ), c ∈ �2(K ), σ, λ ∈ P, (3.1)

where αλ := adU (λ).

The equality (3.1) is a covariant extension of the 1-cocycle equation introduced by J. E.
Roberts in [30,31]. For, if e ∈ P is the identity and Xb := Xb(e), b ∈ �1(K ), then

X∂0c X∂2c = X∂1c, c ∈ �2(K ), (3.2)

recovering the defining property of a Roberts 1-cocycle.
Now, it is worth recalling a key property of Roberts 1-cocycles and its consequences.

Any Roberts 1-cocycle extends from 1-simplices to paths p = bn ∗ · · · ∗ b1, by setting
X p := Xbn · · · Xb1 , and (3.2) implies that any Roberts 1-cocycle is homotopy invariant,
that is, X p = Xq for p homotopic to q. Since K is simply connected, by K7 we find

X p = Xq , ∀p, q : a → o,

and denoting an arbitrary path from o to a by po,a we conclude that:
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• Xb = 1H for any degenerate 1-simplex b i.e. ∂1b = ∂0b.
• Xb∗b̄ = Xb Xb̄ = 1H and X∗

b = Xb̄, for any 1-simplex b, where b̄ is the reverse of
b.

• λpo,a � pλo,λa and Xλpo,a = X pλo,λa for any λ ∈ P .

As a consequence of the above properties, for any o ∈ �0(K ) we can define

Xo(λ) := Xb(λ), ∂0b = o = ∂1b, λ ∈ P. (3.3)

In fact, if b and b̃ are degenerate 1-simplices s.t. ∂0b = ∂1b = ∂0b̃ = ∂1b̃ and |b| ⊆ |b̃|,
then we can define a degenerate 2-simplex c as ∂1c = ∂2c = b̃, ∂1c = b and |c| = |b̃|;
by (3.1) and (3.2) we have

Xb(λ)Xb̃ = X∂0c(λ)X∂2c = X∂1c = Xb̃(λ),

thus Xb(λ) is independent of the support of the degenerate 1-simplex and (3.3) is well-
defined. We conclude this section by showing an identity that will be extensively used
in the sequel.

Lemma 3.2. Given a covariant 1-cocycle X, for any path p : o → õ and for any λ ∈ P
we have

Xλp U (λ) Xo(λ) = U (λ) Xõ(λ) X p.

Proof. First assume that p is a 1-simplex b. Consider the 2-simplex c defined by

∂0c = b, ∂0c = (∂1b, ∂1b; |b|), ∂1c = b, |c| = |b|.

Then by (3.1) we have

XλbU (λ)X∂1b(λ) = Xλ∂0cU (λ)X∂2c(λ) = U (λ)α−1
λ (Xλ∂0c)X∂2c(λ) = U (λ)X∂1c(λ)

= U (λ)Xb(λ)

Considering the 2-simplex c̃ defined by

∂1c̃ = b, ∂0c̃ = (∂0b, ∂0b; ∂0b), ∂2c̃ = b, |c̃| = |b|

and applying again (3.1) to the previous identity we get

XλbU (λ)X∂1b(λ) = U (λ) Xb(λ) = U (λ) X∂1c̃(λ) = U (λ) X∂0 c̃(λ) X∂2 c̃

= U (λ) X∂0b(λ) Xb .

Thus if p : o → õ then the proof follows by iterating the same reasoning to all the
1-simplices of the path. ��



   17 Page 10 of 26 F. Ciolli, G. Ruzzi, E. Vasselli

3.2. The category of covariant 1-cocycles. Our final aim is to prove that covariant 1-
cocycles are nothing but covariant charge transporters of the observable net. To this
end we must exhibit, analogously to the DHR analysis, a charge structure encoded by a
symmetric tensor C∗-category with conjugates, associated with the analogues of DHR
and BF endomorphisms. In the present section we make a first step towards this direction
by showing that covariant 1-cocycles form a C∗-category closed under direct sums and
subobjects.

Definition 3.3. Given covariant 1-cocycles X and Y , an intertwiner from X to Y is a
field t : �0(K ) � a → ta ∈ A(a) satisfying the relation

α−1
λ (tλ∂0b) Xb(λ) = Yb(λ) t∂1b b ∈ �1(K ). (3.4)

We denote the set of the intertwiners from X to Y by (X, Y ).

The category of covariant 1-cocycles Z1
c (AK ) is the category with objects covariant

1-cocycles and arrow the above-defined intertwiners, equipped with the composition
law (X, Y ) × (Z , X) � t, s 
→ (t · s) ∈ (Z , Y ),

(t · s)a := ta sa a ∈ �0(K ) .

The identity arrow of a covariant 1-cocycle X is defined by (1X )a := 1H for any
0-simplex a. The norm and the involution of B(H) endow Z1

c (AK ) of a structure of
C∗-category. In particular, the adjoint of t ∈ (X, Y ) is defined by

(t∗)a := t∗a a ∈ �0(K ) .

To check that t∗ ∈ (Y, X), we observe that by (3.1) we have

α−1
λ (Xλb̄)Xb(λ) = X∂1b(λ) ⇐⇒ X∗

b(λ) = X∗
∂1b(λ)α−1

λ (Xλb̄),

where b̄ is the reverse of b. So, using this identity we have
(
α−1

λ (t∗λ∂0b)Yb(λ)
)∗ = Y ∗

b (λ)α−1
λ (tλ∂0b) = Y ∗

∂1b(λ)α−1
λ (Yλb̄)α

−1
λ (tλ∂0b)

= Y ∗
∂1b(λ)α−1

λ

(
Yλb̄tλ∂0b

) = Y ∗
∂1b(λ)α−1

λ

(
tλ∂1b Xλb̄

)

= Y ∗
∂1b(λ)α−1

λ

(
tλ∂1b

)
α−1

λ

(
Xλb̄

) = tλ∂1b X∗
∂1b(λ) α−1

λ

(
Xλb̄

)

= tλ∂1b X∗
b(λ) .

Passing to the involution, we get α−1
λ (t∗λ∂0b)Yb(λ) = Xb(λ)tλ∂1b, showing that t∗ ∈

(Y, X).

We recall some notions on C∗-categories. A projection is an arrow e ∈ (X, X) such
that e∗ ·e = e; an isometry is an arrow v ∈ (X, Y ) such that v∗ ·v = 1X , and if v ·v∗ = 1Y
then v is called a unitary. Two objects X, Y are said to be equivalent whenever there is a
unitary arrow u ∈ (X, Y ). Finally, an object X is said to be irreducible if (X, X) = C·1X .
A C∗-category is closed under subobjects if for any projection e ∈ (X, X) there are an
object Y and an isometry v ∈ (X, Y ) s.t. w ·w∗ = e, and closed under (finite) direct sums
if for any pair of objects X, Y exists an object Z and a pair of isometries w ∈ (X, Z)

and v ∈ (Y, Z) s.t. w · w∗ + v · v∗ = 1Z .

An obvious example of irreducible object of Z1
c (AK ) is the identity I defined by

Ib(λ)b := 1H for any 1-simplex b. If t ∈ (I, I ) then t∂0b = t∂0b Ib = Ibt∂1b = t∂1b for
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any 1-simplex b. Since K is pathwise connected, this implies that a 
→ ta is a constant
field, ta = τ for any 0-simplex a, and causality implies τ ∈ A(K ) ∩ A(K )′′ = C1H.
Clearly, any covariant 1-cocycle X equivalent to I is irreducible. We conclude this
section with the following

Proposition 3.4. Z1
c (AK ) is a C∗-category closed under direct sums and subobjects.

Proof. We have already seen that Z1
c (AK ) is a C∗-category. Let us prove that Z1

c (AK )

is closed under subobjects. We adapt to the case of covariant 1-cocycles the proof given
by Roberts in [30] for 1-cocycles. Let e ∈ (X, X) be a projection. For any 0-simplex a
we choose a 0-simplex k(a) such that k(a) ⊂ a. By the Borchers property there is an
isometry va ∈ A(a) any vav∗

a = ek(a). Now, let b(a) be a 1-simplex with ∂1b(a) = k(a)

and ∂0b(a) = |b(a)| = a. Define

wa := Xb(a)va, a ∈ �0(K ),

and

Yb(λ) := α−1
λ (w∗

λ∂0b)Xb(λ)w∂1b, b ∈ �1(K ).

Observe that wa is an isometry of A(a). In fact w∗
awa = v∗

a X∗
b(a) Xb(a)va = v∗

ava = 1
and

waw∗
a = Xb(a)vav∗

a X∗
b(a) = Xb(a)ek(a) X∗

b(a)

(3.4)= ea Xb(a) X∗
b(a) = ea .

Finally

α−1
λ (Yλ∂0c(σ ))Y∂2c(λ) = α−1

λ (α−1
σ (w∗

σλ∂00c) Xλ∂0c(σ )wλ∂10c)α
−1
λ (w∗

λ∂02c)X∂2c(λ)w∂12c

= α−1
λ (α−1

σ (w∗
σλ∂00c) Xλ∂0c(σ )wλ∂10c)α

−1
λ (w∗

λ∂10c)X∂2c(λ)w∂11c

= α−1
σλ (w∗

σλ∂00c) α−1
λ (Xλ∂0c(σ )eλ∂10c)X∂2c(λ)w∂11c

(3.4)= α−1
σλ (w∗

σλ∂00c) α−1
λ (α−1

σ (eσλ∂00c )Xλ∂0c(σ ))X∂2c(λ)w∂11c

= α−1
σλ (w∗

σλ∂00c) X∂1c(σλ)w∂11c = α−1
σλ (w∗

σλ∂01c) X∂1c(σλ)w∂11c

= Y∂1c(σλ) .

So Y is a covariant 1-cocycle as well and it is a subobject of X because w ∈ (X, Y ) is
an isometry s.t. w ·w∗ = e. In a similar way one can prove that Z1

c (AK ) is closed under
direct sums. ��

3.3. Covariant, localized and transportable endomorphisms. In this section we show
that Z1

c (AK ) is equivalent to a category of morphisms of AK with values in the global
C*-algebra A(K ) ⊆ B(H). The term morphism is intended in the sense of [32], that is,
we have a family � of *-morphisms

�a : A(a) → A(K ) such that �a′ � A(a) = �a, ∀a ⊆ a′. (3.5)

Our morphisms, that we shall construct starting from Z1
c (AK ), result to be localized,

transportable and covariant. Moreover, in Minkowski spacetime they reduce to the DHR
endomorphisms and to the BF morphisms, picking as sets of indices the ones of double
cones and spacelike cones respectively. Thus we interpret our morphisms as quantum
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charges, that result to be transported by covariant cocycles. From a mathematical point
of view, these morphisms prove to be the key to introducing the tensor product on the
category of covariant cocycles (see next section).

Let X be a covariant 1-cocycle. Given o ∈ K . For any a ∈ K we take ã ⊥ a and
define

ρ(o)a(A) := X po,ã AX pã,o ∈ A(K ), A ∈ A(a). (3.6)

This definition is well posed. For, if â another element of K which is causally disjoint
from a, since the causal complement of a is pathwise connected, there is a path pâ,ã
contained in the causal complement of a. So

X po,ã AX pã,o = X po,â X pâ,ã AX pã,â X pâ,ã = X po,â AX pâ,ã

where we used homotopy invariance and the fact that X pâ,ã commutes withA(a) because
pâ,ã is in the causal complement of a. Moreover, picking a′ ⊇ a and ã ⊥ a′ we have
ã ⊥ a, implying ρ(o)a′(A) = ρ(o)a(A), A ∈ A(a). Thus the family ρ(o) := {ρ(o)a}a∈K
fulfils (3.5), and defines a morphism

ρ(o) : AK → A(K ) . (3.7)

We note that ρ(o) can be extended to the algebra generated by a finite number of regions
a1, . . . , an provided that there exists ã ⊥ a1, a2, . . . , an :

ρ(o)a1(A1) · · · ρ(o)an (An) = X po,ã A1 X pã,o · · · X po,ã An X pã,o = X po,ã A1 · · · An X pã,o .

In this case we shall use the notation

ρ(o)a1,a2,...,an (A1 · · · An) := X po,ã A1 · · · An X pã,o , ã ⊥ a1, a2, . . . , an . (3.8)

Our aim is now to prove that (3.7) generalize DHR endomorphisms, in the sense that
they are localized, transportable and, moreover, covariant.

Lemma 3.5. The following assertions hold:

(i) if a ⊥ o then ρ(o)a(A) = A for any A ∈ A(a).
(ii) ρ(o)õ(A(õ)) ⊆ A(õ) for any o ⊆ õ.

(iii) X pô,oρ(o) = ρ(ô)X pô,o for any ô.

(iv) adXb(λ) ◦ ρ(∂1b)a = α−1
λ ◦ ρ(λ∂0b)λa ◦ αλ.

Proof. (i) If a ⊥ o because of K4, there is ã ⊥ a, o. Since the causal complement of a
is pathwise connected, we may take a path po,ã laying in the causal complement of a.
So ρ(o)a(A) = X po,ã AX pã,o = A for any A ∈ A(a).

(i i) Let a ⊥ õ and A ∈ A(a). By (i) we have ρ(o)a(A) = A. Now, by taking ã ⊥ õ, a
(here we are using again property K4 of the poset K ) we have that

ρ(o)õ(B)A = ρ(o)õ(B)ρ(o)a(A) = X po,ã B X pã,o X po,ã AX pã,o

= X po,ã B AX pã,o = X po,ã AX pã,o X po,ã B X pã,o = ρ(o)a(A)ρ(o)õ(B)

= Aρ(o)õ(B)

Since this holds for any a ⊥ õ, the proof follows by relative Haag duality.
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(i i i) Given A ∈ A(a), by homotopy invariance

X pô,oρ(o)a(A) = X pô,o X po,ã AX pã,o = X pô,ã AX pã,ô X pô,o = ρ(o)a(A)X pô,o .

(iv) Take A ∈ A(a) and ã ⊥ a. Then

Xb(λ)ρ(∂1b)a(A) = Xb(λ)X p∂1b,ã AX pã,∂1b

= U−1(λ)XλbU (λ)X∂1b(λ)X p∂1b,ã AX pã,∂1b

(3.2)= U−1(λ)Xλb X pλ∂1b,λã U (λ)Xã(λ)AX pã,∂1b

= U−1(λ)X pλ∂0b,λã U (λ)AXã(λ)X pã,∂1b

= U−1(λ)
(
ρ(λ∂0b)λa

(
U (λ)AU−1(λ)

))
U (λ) Xb(λ) ,

because Xã ∈ A(ã) and commutes with A. ��

Remark 3.1. In particular, the previous point (i i i) shows that the unitaries X pô,o inter-
twine ρ(o) and ρ(ô). This is interpreted as the fact that X transports along the path pô,o
the charge defined by ρ.

What remains to be proved is that ρ := {ρ(o)} is covariant. To this end we define

Uρ
o (λ) := X po,λoU (λ)Xo(λ), o ∈ K , λ ∈ P. (3.9)

We have the following

Lemma 3.6. Let X be a covariant 1-cocycle, and ρ, Uρ be defined as above. Then the
following assertions hold:

(i) Uρ
o is a unitary representation of P for any o ∈ K ;

(ii) Uρ
o (λ)ρ(o)a(A) = ρ(o)λa(αλ(A))Uρ

o (λ) for any A ∈ A(a) and λ ∈ P .

Proof. (i)

Uρ
o (λ)Uρ

o (σ ) = X po,λoU (λ)Xo(λ)X po,σoU (σ )Xo(σ )

Lem. 3.2= X po,λo Xλpo,σoU (λ)Xσo(λ)U (σ )Xo(σ )

(3.1)= X po,λo X pλo,λσoU (λ)U (σ )Xo(λσ) = X po,λσoU (λσ)Xo(λσ)

= Uρ
o (λσ) .

(i i) Given A ∈ A(a), take â ⊥ a and by a direct computation we have that

Uρ
o (λ)ρ(o)a(A) = X po,λoU (λ)Xo(λ)X po,â AX∗

po,â

= X po,λo Xλpo,â Xλpâ,oU (λ)Xo(λ)X po,â AX∗
po,â

Lem. 3.2= X po,λo Xλpo,â U (λ)Xâ(λ)X pâ,o X po,â AX∗
po,â

= X po,λo Xλpo,â U (λ)AXâ(λ)X∗
po,â

= X po,λo X pλo,λâ αλ(A)U (λ) Xâ(λ)X∗
po,â

= X po,λâ αλ(A)U (λ) Xâ(λ)X∗
po,â

= ρ(o)λa(αλ(A))Uρ
o (λ)

completing the proof. ��
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The above result motivates the following definition.

Definition 3.7. A localized and transportable morphism ρ of AK is given by a col-
lection ρ(o) : AK → A(K ), o ∈ K , of morphisms such that

• ρ(o)a = idAa for any a ⊥ o;

and for any pair o, õ ∈ K there are unitaries v
ρ

o,ô ∈ A such that

• v
ρ

o,ôρ(ô) = ρ(o) v
ρ

o,ô and v
ρ

õ,ov
ρ

o,ô = v
ρ

õ,ô.

A localized and transportable morphism ρ is covariant whenever for any o ∈ K there
is a unitary representation Uρ

o of P such that

• adUρ
o (λ) ◦ ρ(o)a = ρ(o)λa ◦ αλ, for any λ ∈ P .

Note that the unitaries {vρ

o,õ} are nothing but Roberts 1-cocycles. By the localization

of morphisms and relative Haag duality it follows that v
ρ

o,õ ∈ A(a) for any a with
o, õ ⊆ a. Hence, Lemmas 3.5 and 3.6 say that any covariant 1-cocycle defines a localized,
transportable and covariant morphism.

Remark 3.2. Localizable and transportable morphisms ρ(o) : AK → A(K ) ⊆ B(H)

are representations of AK on H in the sense of [32]. When the set of indices is upward
directed, ρ(o) defines a *-endomorphism of the global observable algebraA(K ), see [30,
31]. This holds in particular in Minkowski spacetime, for K given by double cones (so
that we recover DHR endomorphisms). We also note that we recover the BF-morphisms
in the case of spacelike cones.

We now extend at the level of C∗-categories the correspondence between covariant
1-cocycles and localized, transportable and covariant morphisms.

Definition 3.8. The set of the intertwiners t ∈ (ρ, γ ) between two localized, trans-
portable and covariant morphisms ρ and γ is the set of fields t : K � o → to ∈ A(o)

such that

• toρ(o)a = γ (o)ato for any o and a;
• toUρ

o (λ) = U γ
o (λ)to for any o and λ ∈ P .

Taking localized, transportable and covariant morphisms of AK as objects and the corre-
sponding set of intertwiners, we get a category denoted by c(AK ). The involution and
the norm of B(H) endow this category of a structure of a C∗-category. We call c(AK )

the category of localized, transportable and covariant morphisms of AK .
Next step is to prove that we have a covariant functor from Z1

c (AK ) to c(AK ).
The equations (3.6) and (3.9) defines the functor on the objects. To define our functor
on the arrows, for any pair X, Y of covariant 1-cocycles we consider the corresponding
morphisms ρ, γ ∈ c(AK ) and t ∈ (X, Y ). Then, for any o ∈ K , by definition (3.6)
we have

to ρ(o)a(A) = to X po,ã A X pã,o = Ypo,ã tã A X pã,o = Ypo,ã A tã X pã,o

= Ypo,ã A X pã,o to = γ (o)a(A) to

and

toUρ
o (λ) = to X po,λo U (λ) Xo(λ) = Ypo,λo tλo U (λ) Xo(λ)

= Ypo,λo U (λ) α−1
λ (tλo) Xo(λ) = U γ

o (λ) to .

So t ∈ (ρ, γ ), and we have a covariant functor from Z1
c (AK ) to c(AK ).
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Proposition 3.9. The C∗-categories Z1
c (AK ) and c(AK ) are equivalent.

Proof. We define the functor from c(AK ) to Z1
c (AK ). Let ρ ∈ c(AK ) and denote the

corresponding transporting unitaries and representation of P by v and U , respectively
(we omit the sup-script ρ to simplify the notation). Fix an element a ∈ K , the pole, and
define

Xb(λ) := U−1(λ)v∗
pλ∂0b,a

Ua(λ)vpa,∂1b

Clearly while the definition depends on the pole a it is independent of the choice of the
paths joining the pole a because va,o are Roberts 1-cocycles. We prove that Xb(λ) ∈
A(|b|): for any o ⊥ |b| and A ∈ A(o) we have

Xb(λ)A = U−1
a (λ)v∗

pλ∂0b,a
U (λ)vpa,∂1bρ(∂1b)o(A)

= U−1(λ)v∗
pλ∂0b,a

Ua(λ)ρ(a)o(A)vpa,∂1b

= U−1(λ)v∗
pλ∂0b,a

ρ(a)λo(αλ(A))Ua(λ)vpa,∂1b

= U−1(λ)ρ(λ∂0b)λo(αλ(A))v∗
pλ∂0b,a

Ua(λ)vpa,∂1b

= U−1(λ)αλ(A)v∗
pλ∂0b,a

Ua(λ)vpa,∂1b

= AXb(λ)

and the proof follows by relative Haag duality. For any 2-simplex c we have

α−1
λ (Xλ∂0c(σ )) X∂2c(λ) = U−1(λ)U−1(σ )v∗

pσλ∂00c,a
Ua(σ )vpa,λ∂10cv

∗
pλ∂02,a

Ua(λ)vpa,∂12c

= U−1(σλ)v∗
pσλ∂01c,a

Ua(σ )vpa,λ∂02cv
∗
pλ∂02,a

Ua(λ)vpa,∂11c

= U−1(σλ)v∗
pσλ∂01c,a

Ua(σ )Ua(λ)vpa,∂11c

= U−1(σλ)v∗
pσλ∂01c,a

Ua(σλ)vpa,∂11c = X∂1c(σλ) ,

and this proves that X is a covariant 1-cocycle. Let now t ∈ (ρ, γ ) be an intertwiner. We
define φ(t)o := v

ρ
oa ta v

γ
ao. Note that φ(t)o ∈ A(o) since for any ã ⊥ o and A ∈ A(ã)

we have

φ(t)o A = vρ
oa ta v

γ
ao γ (o)ã(A) = vρ

oa ta γ (a)ã(A) v
γ
ao = vρ

oa ρ(a)ã(A) ta v
γ
ao = A φ(t)o

and relative Haag duality makes the rest of the proof. Then

α−1
λ (φ(t)λ∂0b)Xρ

b (λ) = α−1
λ (φ(t)λ∂0b)U

−1(λ)v
ρ
λ∂0b,aUρ

a (λ)v
ρ
a,∂1b

= U−1(λ)φ(t)λ∂0bv
ρ
λ∂0b,aUρ

a (λ)vρ
pa,∂1b

= U−1(λ)v
ρ
λ∂0b,ata Uρ

a (λ)v
ρ
a,∂1b

= U−1(λ)v
γ

λ∂0b,aU γ
a (λ)tav

ρ
a,∂1b

= U−1(λ)v
γ

λ∂0b,aU γ
a (λ)v

γ

a,∂1bφ(t)∂1b

= Xγ

b (λ)φ(t)∂1b .

It is easy to see that this defines a covariant functor. We get an equivalence because by
choosing a different pole â we get equivalent objects. ��

It is worth observing that the above equivalence maps irreducible covariant 1-cocycles
into irreducible covariant morphisms. Here, irreducibility is intended in the sense of C∗-
categories (whilst the global C*-algebra is assumed to be only factorial).
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3.4. Tensor structure. We now focus on Z1
c (AK ), and prove that it is a tensor C∗-

category. To this end, given two covariant 1-cocycles X and Y we define

(X ⊗ Y )b(λ) := Xb(λ)ρ(∂1b)|b|(Yb(λ)), b ∈ �1(K ), λ ∈ P, (3.10)

and for any t ∈ (X, Y ) and s ∈ (Z , L) we set

(t ⊗ s)a := taρ(a)a(sa), a ∈ �0(K ), (3.11)

where ρ is the morphism defined by X .

Proposition 3.10. The category Z1
c (AK ), with the tensor product defined by (3.10),

(3.11), is a tensor C∗-category.

Proof. We use the same notation as definitions (3.10) and (3.11). We note that X ⊗ Y is
covariant 1-cocycle

(X ⊗ Y )∂1c(σλ)

= X∂1c(σλ)ρ(∂11c)|∂1c|(Y∂1c(σλ)) = X∂1c(σλ)ρ(∂12c)|c|(Y∂1c(σλ))

= α−1
λ

(
Xλ∂0c(σ )

)
X∂2c(λ) ρ(∂12c)|c|

(
α−1

λ

(
Yλ∂0c(σ )

)
Y∂2c(λ)

)

= α−1
λ

(
Xλ∂0c(σ )

)
X∂2c(λ) ρ(∂12c)|c|

(
α−1

λ

(
Yλ∂0c(σ )

))
ρ(∂12c)|c|

(
Y∂2c(λ)

)

Lem. 3.5iv= α−1
λ

(
Xλ∂0c(σ )ρ(λ∂02c)λ|c|

(
Yλ∂0c(σ )

))
X∂2c(λ) ρ(∂12c)|c|

(
Y∂2c(λ)

)

= α−1
λ

(
Xλ∂0c(σ )ρ(λ∂10c)λ|c|

(
Yλ∂0c(σ )

))
X∂2c(λ) ρ(∂12c)|c|

(
Y∂2c(λ)

)

= α−1
λ

(
(X ⊗ Y )λ∂0c(σ )

)
(X ⊗ Y )∂2c(λ) .

As for intertwiners,

α−1
λ ((t ⊗ s)λ∂0b )(X ⊗ Z)(λ)b

= α−1
λ (tλ∂0b ρ(λ∂0b)|λb|(sλ∂0b)) Xb(λ) ρ(∂1b)|b|(Zb(λ))

Lem. 3.5iv= α−1
λ (tλ∂0b) Xb(λ) ρ(∂1b)|b|

(
α−1

λ (sλ∂0b)
)
ρ(∂1b)|b|

(
Zb(λ)

)

= α−1
λ (tλ∂0b) Xb(λ) ρ(∂1b)|b|

(
α−1

λ (sλ∂0b)Zb(λ)
)

= Zb(λ) t∂1b ρ(∂1b)|b|
(
Lb(λ)s∂1b

)

= Zb(λ)γ (∂1b)|b|(Lb(λ)) t∂1bρ(∂1b)|b|(s∂1b))

= (Z ⊗ L)b(λ)) (t ⊗ s)∂1b

where γ is the localized and transportable morphism associated with Z . This proves that
t ⊗ s ∈ (X ⊗ Z , Y ⊗ L). We omit the proof of the rest of the properties of tensor product
because follows by standard calculations. ��
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3.5. Permutation symmetry. We now prove that the category of covariant 1-cocycles is
a symmetric tensor C∗-category, in other words we prove the existence of a permutation
symmetry. To this end, the first step is to extend the tensor product. Given two 1-simplex
b1 and b2 we define

(X × Y )b1,b2(λ) := Xb1(λ)ρ(∂1b1)|b2|(Yb2(λ)) . (3.12)

This definition, in the case of Roberts cocycles, admits an extension to pairs of paths.
Given p, q having the same length, p = bn ∗ · · · ∗ b1 and q = dn ∗ · · · ∗ d1 we define

(X × Y )p,q := (X × Y )bn ,dn · · · (X × Y )b1,d1 . (3.13)

We observe that if the paths had different length we may modify the shorter one by
inserting degenerate 1-simplices. Since a Roberts cocycle equals the identity on degen-
erate 1-simplices one can easily prove that the above definition is independent of where
these degenerate 1-simplices are inserted. So we can always assume that in the above
definition the paths have the same length. We now prove three lemmas necessary to the
proof of the existence of the permutation symmetry.

Lemma 3.11. Given two covariant 1-cocycles X and Y and two paths p and q. For any
pair of paths p̃, q̃ homotopy equivalent to p and q respectively, the following relation
holds

(X × Y )p,q = (X × Y ) p̃,q̃ .

Proof. As homotopy equivalent paths are obtained one each other by a finite number
of elementary deformations (see Section 2.1), it is enough to prove the assertion for an
elementary deformation. Let p = b and q = ∂1c is the 1-face of a 2-simplex c. So
∂1c = q ∼ ∂0c ∗ ∂2c. Then

(X × Y )p,q = Xbρ(∂1b)|c|(Y∂1c)

= Xbρ(∂1b)|c|(Y∂0cY∂2c) = Xbρ(∂1b)|c|(Y∂0c) ρ(∂1b)|c|(Y∂2c)

= Xbρ(∂1b)|c|(Y∂0c) Xσ0(∂1c)ρ(∂1b)|c|(Y∂2c)

= (X × Y )b,∂0c (X × Y )σ0(∂1b),∂2c

= (X × Y )b∗σ(∂1b),∂0c∗∂2c = (X × Y )b,∂0c∗∂2c

where we used the fact that Xσ0(∂1c) = 1. ��
Lemma 3.12. Let p, q be two paths such that ∂1 p ⊥ ∂1q and ∂0 p ⊥ ∂0q. Then

(X × Y )p,q = (Y × X)q,p

Proof. First of all we prove that we can find to paths p̃ = bn ∗· · ·∗b1 and q̃ = dn ∗· · ·∗d1
such that

∂i p̃ = ∂i p ∂i q̃ = ∂i q f or i = 0, 1 and bk ⊥ dk k = 1, . . . , n.

In fact by K4, there is o ⊂ ∂1 p and a ∈ K such that a ⊥ o, ∂0 p. Then we define
b1 := (o, ∂1 p; ∂1 p) and as d1 the degenerate 1-simplex σ0(∂1q). Since |b1| = ∂1 p ⊥
∂1q = |d1| and the causal complement of the elements of K is pathwise connected K6
the proof, from this point, is the same as the proof [30][Lemma 23.6] given by Roberts.
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As p̃ ∼ p and q̃ ∼ q, by K7, we have

(X × Y )p,q
Lem. 3.11= (X × Y ) p̃,q̃ = (X × Y )bn ,dn · · · (X × Y )b1,d1

= Xbn ρ(∂1bn)|dn |(Ydn ) · · · Xb1ρ(∂1b1)|d1|(Yd1)

= Xbn Ydn · · · Xb1 Yd1 = Ydn Xbn · · · Yd1 Xb1

= Ydn γ (∂1dn)|bn |(Xbn ) · · · Yd1γ (∂1d1)|b1|(Xb1)

= (Y × X)q̃, p̃
Lem. 3.11= (Y × X)q,p

where γ denotes the morphism associated with Y . ��
Lemma 3.13. Given b, b̃ and b1, b2 with ∂0b = ∂1b1 and ∂0b̃ = ∂1b2, then

α−1
λ

(
Xλb1 × Yλb2

)
(Xb(λ) × Yb̃(λ)) = (Xb1(λ) × Yb2(λ)) (Xb × Yb̃) .

Proof.

α−1
λ

(
Xλb1 × Yλb2

)
(Xb(λ) × Yb̃(λ))

= α−1
λ

(
Xλb1ρ(λ∂1b1)|λb2|(Yλb2)

)
Xb(λ) ρ(∂1b)|b̃|(Yb̃(λ))

= α−1
λ

(
Xλb1

)
α−1

λ

(
ρ(λ∂1b1)|λb2|(Yλb2)

)
Xb(λ) ρ(∂1b)|b̃|(Yb̃(λ))

Lem. 3.5iv)= α−1
λ

(
Xλb1

)
Xb(λ) ρ(∂1b)|b2|

(
α−1

λ

(
Yλb2

))
ρ(∂1b)|b̃|(Yb̃(λ))

= α−1
λ

(
Xλb1

)
X∂0b(λ) Xb ρ(∂1b)|b2|

(
α−1

λ

(
Yλb2

))
ρ(∂1b)|b̃|(Yb̃(λ))

= Xb1(λ) Xb ρ(∂1b)|b2|
(
α−1

λ

(
Yλb2

))
ρ(∂1b)|b̃|(Yb̃(λ)) .

We now observe that Yb2(λ)Y −1
σ0(∂1b2)

(λ) = α−1
λ

(
Yλb2) and Yb̃(λ) = Y

σ(∂0b̃)
(λ) Yb̃. In-

serting these identities in the last expression gives

α−1
λ

(
Xλb1 × Yλb2

)
(Xb(λ) × Yb̃(λ)) =

= Xb1(λ) Xb ρ(∂1b)|b2|
(
Yb2(λ)Y −1

σ0(∂1b2)
(λ)

)
ρ(∂1b)|b̃|(Yσ(∂0b̃)

(λ) Yb̃)

= Xb1(λ) Xb ρ(∂1b)|b2|
(
Yb2(λ)

)
ρ(∂1b)∂1b2

(
Y −1

σ0(∂1b2)
(λ)

)

ρ(∂1b)
∂0b̃(Yσ(∂0b̃)

(λ)) ρ(∂1b)|b̃|(Yb̃)

= Xb1(λ) Xb ρ(∂1b)|b2|
(
Yb2(λ)

)
ρ(∂1b)|b̃|(Yb̃)

= Xb1(λ) ρ(∂0b)|b2|
(
Yb2(λ)

)
Xb ρ(∂1b)|b̃|(Yb̃)

= Xb1(λ) × Yb2(λ) Xb × Yb̃ .

where we used the identity

ρ(∂1b)∂1b2

(
Y −1

σ0(∂1b2)
(λ)

)
ρ(∂1b)

∂0b̃(Yσ(∂0b̃)
(λ)) = 1

which holds because ∂0b̃ = ∂1b2. ��
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Note that the above identity is equivalent to

(Xb(λ) × Yb̃(λ)) (Xb × Yb̃)
∗ = α−1

λ

(
Xλb1 × Yλb2

)∗
(Xb1(λ) × Yb2(λ)). (3.14)

We are ready to prove the existence of a permutation symmetry. Given X, Y two
covariant 1-cocycles define

ε(X, Y )a := (Y × X)∗q,p, (X × Y )p,q , a ∈ �0(K ), (3.15)

where p, q are two paths with ∂1 p = ∂1q = a and ∂0 p ⊥ ∂1q.

We first prove that this definition is independent of the choice of paths. Let p1 and
q1 be two paths satisfying the same properties as p and q. Clearly p ∼ p ∗ p1 ∗ p1 and
q ∼ q ∗ q1 ∗ q1. By Lemma 3.11 we have

(X × Y )p,q = (X × Y )p∗p1∗p1,q∗q1∗q1 = (X × Y )p∗p1,q∗q1
(X × Y )p1,q1

Since (X × Y )p∗p1,q∗q1
= (Y × X)q∗q1,p∗p1

because of Lemma 3.12, we get

(Y × X)∗q,p(X × Y )p,q = (Y × X)∗q1,p1
(X × Y )p1,q1 ,

showing the independence of the choice of paths.

Proposition 3.14. Given X, Y covariant 1-cocycles, the operators ε(X, Y ) defined by
(3.15) yield a permutation symmetry for Z1

c (AK ).

Proof. Given a 1-simplex b, according to the definition of intertwiner 3.4, and since ε

does not depend on the choice of paths, for each λ ∈ P , we take two paths of the form
λp, λq, where p, q are paths paths satisfying the properties of the definition (3.15) with
respect to ∂0b. It is evident that λp, λq satisfy the properties of the definition (3.15) with
respect to λ∂0b. Then applying the Lemma 3.13 once, we have

α−1
λ (ε(X, Y )λ∂0b)(X ⊗ Y )b(λ) = α−1

λ ((Y × X)∗λq,λp · (X × Y )λp,λq)(Xb(λ) × Yb(λ))

= α−1
λ ((Y × X)∗λq,λp) · α−1

λ ((X × Y )λp,λq)(Xb(λ) × Yb(λ))

= α−1
λ ((Y × X)∗λq,λp) · α−1

λ ((X × Y )λbn ,λdn ) · · ·
α−1

λ ((X × Y )λb1,λd1)(Xb(λ) × Yb(λ))

Lem.3.13= α−1
λ ((Y × X)∗λq,λp) · α−1

λ ((X × Y )λbn ,λdn ) · · ·
(Xb1(λ) × Yd1(λ))Xb × Yb .

Applying Lemma 3.13 iteratively, gives

α−1
λ (ε(X, Y )λ∂0b)(X ⊗ Y )b(λ)

= α−1
λ ((Y × X)∗λq,λp) · Xbn (λ) × Ydn (λ) · (Xbn−1 × Ydn−1) · · · Xb × Yb

= α−1
λ ((Y × X)∗λq,λp) · X∂0bn (λ) × Y∂0dn (λ) · (X × Y )p∗b,q∗b

= α−1
λ ((Y × X)∗λq,λp) · Y∂0dn (λ) × X∂0bn (λ) · (X × Y )p∗b,q∗b ,
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where being ∂0dn ⊥ ∂0bn we used X∂0bn (λ) × Y∂0dn (λ) = Y∂0dn (λ) × X∂0bn (λ). Now,
by iteratively applying to the left-hand product the equation (3.14), which is nothing but
the Lemma (3.13), we arrive at

α−1
λ (ε(X, Y )λ∂0b)(X ⊗ Y )b(λ) = Yb(λ) × Xb(λ) · (Y × X)∗q∗b,p∗b · (X × Y )p∗b,q∗b

= (Y ⊗ X)b(λ) ε(X, Y )∂1b ,

where

ε(X, Y )∂1b = (Y × X)∗q∗b,p∗b · (X × Y )p∗b,q∗b

because ε does not depends on the choice of paths. The proof that

ε(X̃ , Ỹ )a (t ⊗ s)a = (s ⊗ t)a ε(X, Y )a, a ∈ �0(K )

for any t ∈ (X, X̃) and s ∈ (Y, Ỹ ) follows by a similar reasoning. We omit the rest of
the properties of permutation symmetry since they follow by standard calculations. ��

3.6. Statistics and conjugation. In this section we select the subcategory of covariant
1-cocycles having finite statistics and prove that any object of this category has conju-
gates in the sense of symmetric tensor C∗-categories. In our context, the conjugate of a
covariant 1-cocycle X is a covariant 1-cocycle X̄ for which there exists a pair of arrows
r ∈ (I, X̄ ⊗ X) and r̄ ∈ (I, X ⊗ X̄) that satisfy the conjugate equations

r̄∗ ⊗ 1X · 1X ⊗ r = 1X , r∗ ⊗ 1X̄ · 1X̄ ⊗ r̄ = 1X̄ . (3.16)

The key result is that simple covariant 1-cocycles, i.e. those obeying Fermi or Bose
statistics, have conjugates. This will allows us to identify the subcategory of objects
having finite statistics and to prove the existence of conjugates.

Definition 3.15. A covariant 1-cocycle X is said to be simple whenever

ε(X, X) = χ(X) · 1X⊗X , χ(X) ∈ {1,−1}. (3.17)

We shall see at the end of this section that simple covariant 1-cocycles obey either Bose
or Fermi statistics, depending on whether the value of χ(X) is 1 or −1.

We now draw on a consequence of this relation. According to the definition of per-
mutation symmetry (3.15), for any pair o ⊥ õ we take a path po,õ : o → õ and as q the
degenerate 1-simplex σ0(o) = (o, o; o) and observe that

χ(X) = ρ(o)|bn |(X∗
bn

) · · · ρ(o)|b1|(X∗
b1

) X po,õ

⇐⇒ ρ(o)|b1|(Xb1) · · · ρ(o)|bn |(Xbn ) = χ(X) X po,õ .

Changing the role, in this relation, of o and õ and passing to the adjoint we arrive

ρ(o)|b1|(Xb1) · · · ρ(o)|bn |(Xbn ) = χ(X)X po,õ = ρ(õ)|b1|(Xb1) · · · ρ(õ)|bn |(Xbn )

(3.18)

Since by K4 there is a ⊥ o, õ, we can assume that po,õ is in the causal complement of
a. So (3.18) reduces to

ρ(o)|po,õ|(X po,õ) = χ(X)X po,õ = ρ(õ)|po,õ|(X po,õ) (3.19)
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Now our aim is to prove that any simple covariant 1-cocycle admits a conjugate covariant
1-cocycle. Here, because of the fact that morphisms associated to 1-cocycles are defined
locally, we have to follows a different route with respect to the usual one (see [20,21,33]).
We first prove that the Roberts 1-cocycle defined by a covariant cocycle has a conjugate.
Then we prove that the morphism associated with this conjugate 1-cocycle inverts the
morphism defined by the cocycle X . This, finally, will allow us to define the conjugate
of a covariant 1-cocycle.

Lemma 3.16. Let X be a simple covariant 1-cocycle. For any 1-simplex b the definition

X̄b := X pa,∂0b X p∂1b,a , a ∈ �0(K ), a ⊥ |b| (3.20)

is independent of the choice of a and defines a Roberts 1-cocycle.

Proof. So let us start by showing the independence of the choice of a. So take ã ⊥ b.
We first assume that ã ⊥ a. So we may take a path pa,ã = dm ∗ · · · ∗ d1 in the causal
complement of b and

X pa,∂0b X p∂1b,a = X pa,ã X pã,∂0b X p∂1b,ã X pã,a

(3.18)= ρ(ã)|dn |(Xdn ) · · · ρ(ã)|d1|(Xd1)X pã,∂0b X p∂1b,ã ρ(ã)|d1|(Xd̄1
) · · · ρ(ã)|dm |(Xd̄m

)

= X pã,∂0bρ(∂0b)|dm |(Xdm ) · · ·
ρ(∂0b)|d1|(Xd1) · ρ(∂1b)|d1|(Xd̄1

) · · · ρ(∂1b)|dm |(Xd̄m
)X p∂1b,ã

= X pã,∂0b Xdm · · · Xd1 · Xd̄1
· · · Xd̄m

X p∂1b,ã

= X pã,∂0b X p∂1b,ã .

Now let ã ⊥ |b| but ã �⊥ a. Since the causal complement of |b| is pathwise connected
there is a path pa,ã = bn ∗ · · · ∗ b1 : a → ã in the causal complement of |b|. Clearly
∂1b1 = a and ∂0bn = ã. Since the support of b1 is spacelike separated from the support
of b there is, by K4, o ⊥ (|b1|∪ |b|). Note in particular that o ⊥ a, ∂0b1. So applying the
above argument first with respect to o and a and then with respect to o and ∂0b1 arrive to

X pa,∂0b X p∂1b,a = X po,∂0b X p∂1b,o = X p∂0b1,∂0b X p∂1b,∂0b1

So by iterating this idea to all the 1-simplices of the path we arrive to
X pa,∂0b X p∂1b,a = X pã,∂0b X p∂1b,ã

We now prove that X̄ is a Roberts 1-cocycle. First of all observe that X̄b ∈ A|b|. In
fact for any ã ⊥ |b| we may take a ⊥ ã, |b| and the paths p∂1b,a, pa,∂0b in the causal
complement of ã; if A ∈ Aã then

X̄b A = X pa,∂0b X p∂1b,a A = AX pa,∂0b X p∂1b,a = AX̄b

and the proof follows by relative Haag duality. Secondly given a 2-symplex c take a ⊥ |c|
we have

X̄∂0c X̄∂2c = X pa,∂00c X p∂10c,a X pa,∂02c X p∂12c,a = X pa,∂01c X p∂02c,a X pa,∂02c X p∂11c,a

= X pa,∂01c X p∂11c,a = X̄∂1c

��
Since X̄ is a Roberts 1-cocycle, it defines by (3.6) a morphism ρ̄ of the net AK .

Lemma 3.17. Let X be a simple covariant 1-cocycle. Let ρ̄ be the morphism of the net
associated with X̄ by (3.6). Then
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ρ̄(o)õ ◦ ρ(o)õ = ρ(o)õ ◦ ρ̄(o)õ = idAõ
, o ⊆ õ

Proof. We need a preliminary result. Let p : o → õ be a path which lays in the causal
complement of a, then

X̄ p = X pa,õ X po,a (3.21)

In fact if p = bn ∗ · · · ∗ b1, using the independence of the choice of a proved in the
previous Lemma we have

X̄ p = X̄bn · · · X̄b1 = X pa,∂0bn
X p∂1bn ,a X pa,∂0bn−1

X p∂1bn−1,a · · · X pa,∂0b1
X p∂1b1,a

= X pa,∂0bn
X p∂1bn−1,a · · · X pa,∂0b1

X p∂1b1,a

= X pa,∂0bn
X p∂1b1,a = X pa,õ X po,a

where we used the fact that ∂1bi = ∂0bi−1 and the fact that Roberts 1-cocycle equals 1
when evaluated on loops.

Now we take õ ∈ K with o ⊆ õ and a ⊥ õ. Then we consider â ⊥ a ∪ õ and a path
pâ,a in the causal complement of õ. Then for any A ∈ Aõ, since ρ(o)õ(A(õ)) ⊆ A(õ)

(Lem. 3.5(i i)) we have

ρ̄(o)õ(ρ(o)õ)(A) = X̄ po,a (ρ(o)õ(A))X̄ pa,o

(3.21)= X pâ,o X pa,â ρ(o)õ(A)X pâ,a X po,â

= X pâ,oρ(o)õ(A)X po,â

Lem.3.5(i i i)= ρ(â)õ(A) = A

where we have used the fact that pa,â is in the causal complement of õ and ρ(o)õ(A) ∈
A(õ). Conversely

ρ(o)õ(ρ̄(o)õ(A)) = X po,a ρ̄(o)õ(A)X pa,o = X pâ,a X pa,â X po,a ρ̄(o)õ(A)X pa,o X pâ,a X pa,â

(3.21)= X pâ,a X̄ pâ,o ρ̄(o)õ(A)X̄ po,â X pa,â = X pâ,a ρ̄(â)õ(A)X pa,â

= X pâ,a AX pa,â = A

��
We now are ready to prove the existence of the conjugate of simple and covariant 1-
cocycles.

Theorem 3.18. Given a simple covariant 1-cocycle X then
X̄b(λ) := ρ̄(∂1b)|b|(X∗

b(λ)) b ∈ �1(K ), λ ∈ P, (3.22)

is the conjugate covariant 1-cocycle of X. In particular X and X̄ are irreducible.

Proof. By Lemma 3.5i i) we have that X̄b(λ) ∈ A(|b|) for any λ ∈ P . For any 2-simplex
c and any λ, σ ∈ P we have

α−1
λ

(
X̄λ∂0c(σ )

)
X̄∂2c (λ) = α−1

λ

(
ρ̄(λ∂10c)|c|(X∗

λ∂0c(σ ))
)
ρ̄(∂12c)|c|

(
X∗

∂2c
(λ)

)

Lem. 3.17= ρ̄(∂12c)|c|
{
ρ(∂12c)|c|

(
α−1

λ

(
ρ̄(λ∂10c)|c|(X∗

λ∂0c(σ )
))

X∗
∂2c

(λ)
}

= ρ̄(∂12c)|c|
{

X∂2c(λ)ρ(∂12c)|c|
(
α−1

λ

(
ρ̄(λ∂10c)|c|(Xλ∂0c(σ )

))}∗

Lem. 3.5iv)= ρ̄(∂12c)|c|
{
α−1

λ

(
ρ(λ∂02c)|c|

(
ρ̄(λ∂10c)|c|(Xλ∂0c(σ )

))
X∂2c(λ)

}∗

= ρ̄(∂12c)|c|
{

X∗
∂2c

(λ)α−1
λ

(
ρ(λ∂02c)|c|

(
ρ̄(λ∂10c)|c|(X∗

λ∂0c(σ )
))}

3.17= ρ̄(∂12c)|c|
{

X∗
∂2c

(λ)α−1
λ

(
X∗

λ∂0c(σ )
)}

= ρ̄(∂11c)|c|
{

X∗
∂1c

(λ)
}

= X̄λ∂0c(σλ).
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So X̄ is a covariant 1-cocycle. Concerning the conjugate equations, given b take a ⊥ |b|
and

(X ⊗ X̄)b(λ) = Xb(λ)ρ(∂1b)|b|(X̄b(λ)) = Xb(λ)ρ(∂1b)|b|(ρ̄(∂1b))|b|(X∗
b(λ))

= Xb(λ)X∗
b(λ) = 1H

and similarly (X̄ ⊗ X)b(λ) = 1H. So both X ⊗ X̄ and X̄ ⊗ X are equal to the identity
cocycle I and the conjugate equations (3.16) are verified by taking r̄ and r equal to
1I = 1H. Finally in order to prove that X is irreducible, let t ∈ (X, X). By (3.17)
and by the definition of tensor product we have 1X ⊗ t · ε(X, X) = ε(X, X) · t ⊗ 1X
and this implies that ρ(o)o(to) = to for any o ∈ K . So by Lemma 3.17 we also have
ρ̄(o)o(to) = (ρ̄(o)o ◦ ρ(o)o)(to) = to for any o ∈ K . Hence for any 1-simplex b we have

t∂0b = ρ̄(∂0b)∂0b(t∂0b) = (1X̄ ⊗ t)∂0b(X̄ ⊗ X)b = (X̄ ⊗ X)b(1X̄ ⊗ t)∂1b

= ρ̄(∂1b)∂1b(t∂1b) = t∂1b

because, as observed above, (X̄ ⊗ X)b = 1H for any 1-simplex b. Since K is pathwise
connected t is a constant field and causality implies that t is a multiple of the identity,
completing the proof. ��

We now introduce the notion of objects with finite statistics. To this end we recall
that a left inverse of X is a linear map φZ ,Y : (X ⊗ Z , X ⊗ Y ) → (Z , Y ) satisfying the
relations

• φZ⊗X̃ ,Y⊗X̃ (t ⊗ 1X̃ ) = φZ ,Y (t) ⊗ 1X̃ ;
• φZ ′,Y ′(1X ⊗ s · t · 1X ⊗ r) = s · φZ ,Y (t) · r ,

for any t ∈ (X ⊗ Z , X ⊗ Y ), s ∈ (Z , Z ′) and r ∈ (Y, Y ′). A left inverse of X is said to
be positive whenever, for any object Y , φY,Y sends positive elements of (X ⊗ Y, X ⊗ Y )

into positive elements of (Y, Y ); normalized whenever φI,I (1X ) = 1I where I is the
identity object of the category. A positive normalized left inverse φ of X is said to be
standard whenever (φX,X (ε(X, X)))2 = c · 1X with c > 0.

Definition 3.19. A covariant 1-cocycle X is said to have finite statistics if it admits a
standard left inverse. The full subcategory of Z1

c (AK ) of objects having finite statistics
is denoted by Z1

c,f(AK ).

We note that any simple covariant 1-cocycle X has finite statistics. Since X̄ ⊗ X =
X ⊗ X̄ = I and r = r̄ = 1I , defining

φZ ,Y (t) := 1X̄ ⊗ t t ∈ (X ⊗ Z , X ⊗ Y ),

we get a positive, normalized left inverse which is, by definition of simple objects,
standard. In particular, we note that φZ ,Y (t)a = ρ̄(a)a(ta) for any a ∈ �0(K ).

Proposition 3.20. The category Z1
c,f(AK ) is a symmetric tensor C∗-category closed

under tensor products, subobjects and direct sums. Any object of Z1
c,f(AK ) is a finite

direct sum of irreducible objects.

Proof. The proof follows from the properties of standard left inverses, see [20,30]. ��
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If X is an irreducible covariant 1-cocycle with finite statistics, following [20], and φ is
a left inverse of X , one has that

φX,X (ε(X, X)) = χ(X)

d(X)
· 1X

where χ(X) ∈ {−1, 1} and d(X) ∈ N, called, respectively, the statistical phase and
dimension are invariant of the equivalence class of X . These invariants means that X has
a para-statics of order d(X) of Bose or Fermi type depending on whether χ(X) is 1 or
−1. Note in particular that simple covariant 1-cocycle follows ordinary Bose or Fermi
statistics.

Having shown that simple covariant 1-cocycles have finite statistics and have con-
jugates Lemma 3.6, we now are ready to give the main result of the present paper.

Theorem 3.21. The category of covariant 1-cocycles with finite statistics Z1
c,f(AK ) has

conjugates.

Proof. The fact that Z1
c,f (AK ) has conjugates derives from the fact that simple objects

have conjugates (see the appendix of [33]). ��

4. Conclusions and Outlooks

In the current study, we have introduced physically motivated properties that define
appropriate families (sets of indices) of spacetime regions where quantum charges are
expected to be localized. Then, given such a set of indices and an observable net fulfilling
factoriality and relative Haag duality, we constructed a covariant superselection structure
wherein charges are localized within the aforementioned regions. This achievement
was made possible by employing a novel approach based on covariant 1-cocycles. We
emphasize that the definitions and proofs given in this paper do not rely on the symmetry
being a group, but rather on its semigroup structure. Therefore, our approach remains
valid even when the symmetry of the charge localization regions is a semigroup.

Our method allows to recover the sectors of the DHR and BF analysis and, in curved
spacetimes, the sectors of DHR type encoded by the cohomology of the observable net.
Yet, in the case where the ambient spacetime is the light cone and the set of indices is
the one of hypercones, it remains an open problem to understand the relation between
our superselection structure and the one defined by Buchholz and Roberts for charges of
electromagnetic type. We believe that this question is of interest because, were the two
superselection structures inequivalent, we would be led to conclude that picking the set
of indices does not uniquely determine the superselection structure with that localization.
In other words, besides the choice of the localization regions, a further input is needed
to discriminate the superselection structure of interest among those having the same
localization.

Another open point is relative to our hypothesis that the ambient spacetime is simply
connected. This simplified our exposition and it made possible to rule out Aharonov–
Bohm external potentials to which at the present stage we are not interested. Yet, we
wish to discuss our superselection sectors in full generality, with the final goal to arrive
to the reconstruction of the field net without limitations on the topology of the spacetime.
In this sense the localized morphisms constructed in §3.3 should play an important role,
analogous to the one played by DHR endomorphisms in Minkowski spacetime. But, in a
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spacetime with non-trivial fundamental group, one has to take into account the fact that
localized morphisms exhibit a non-trivial parallel transport, depending on the homotopy
class of the path along which they are translated.

Finally, we would like to mention that, thanks to the level of abstraction that we
adopted, our methods can be applied to low dimensional spacetimes, with the natural
modifications arising from the fact that permutation symmetry could be replaced by a
braiding in specific situations. We may therefore apply our suitably modified construction
in such scenarios. At this purpose, we note that models studied in the language adopted
in the present paper are available [13,14], thus they constitute candidates for further
examples of superselection structures that can be obtained with our method.
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