2406.06764v3 [cs.SE] 1 Jul 2024

arXiv

Classi|Q): Towards a Translation Framework to Bridge the
Classical-Quantum Programming Gap

Matteo Esposito
University of Rome Tor Vergata
Rome, Italy

Maryam Tavassoli Sabzevari
University of Oulu
Oulu, Finland

Boshuai Ye
Aalto University
Espoo, Finland

m.esposito@ing.uniroma2.it maryam.tavassolisabzevari@oulu.fi boshuai.ye@aalto.fi
Davide Falessi Arif Ali Khan Davide Taibi

University of Rome Tor Vergata University of Oulu University of Oulu
Rome, Italy Ouluy, Finland Oulu, Finland

d.falessi@gmail.com arif khan@oulu.fi davide.taibi@oulu.fi

ABSTRACT

Quantum computing, albeit readily available as hardware or em-
ulated on the cloud, is still far from being available in general
regarding complex programming paradigms and learning curves.
This vision paper introduces Classi|Q), a translation framework
idea to bridge Classical and Quantum Computing by translating
high-level programming languages, e.g., Python or C++, into a
low-level language, e.g., Quantum Assembly. Our idea paper serves
as a blueprint for ongoing efforts in quantum software engineer-
ing, offering a roadmap for further Classi|Q) development to meet
the diverse needs of researchers and practitioners. Classi|Q) is de-
signed to empower researchers and practitioners with no prior
quantum experience to harness the potential of hybrid quantum
computation. We also discuss future enhancements to Classi|Q),
including support for additional quantum languages, improved
optimization strategies, and integration with emerging quantum
computing platforms.

CCS CONCEPTS

« Theory of computation — Design and analysis of algo-
rithms; Tree languages; - Hardware — Quantum technolo-
gies; Quantum computation; Emerging technologies.

KEYWORDS

Quantum Computing, Programming Languages, Quantum Program-
ming Language, Translation, Python, QASM

ACM Reference Format:

Matteo Esposito, Maryam Tavassoli Sabzevari, Boshuai Ye, Davide Falessi,
Arif Ali Khan, and Davide Taibi. 2024. Classi|Q): Towards a Translation
Framework to Bridge the Classical-Quantum Programming Gap. In Proceed-
ings of the 1st ACM International Workshop on Quantum Software Engineering:
The Next Evolution (QSE-NE °24), July 16, 2024, Porto de Galinhas, Brazil.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3663531.3664752

QSE-NE °24, July 16, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
1st ACM International Workshop on Quantum Software Engineering: The Next Evolution
(QSE-NE °24), July 16, 2024, Porto de Galinhas, Brazil, https://doi.org/10.1145/3663531.
3664752.

1 INTRODUCTION

In 1938, Alan Turing introduced his theory on computable num-
bers and the design of the universal machine to the world, paving
the way for the computing age [30]. Computing has rapidly and
profoundly evolved and each passing decades marked a significant
milestone in our technological journey. The advent of electronic
computers led to the making of the Electronic Numerical Integrator
and Computer, i.e., ENIAC, in the 1940s, which represented a mon-
umental leap forward in processing power and computation speed
[21]. The subsequent development of transistors and integrated cir-
cuits in the 1950s and 1960s paved the way for the miniaturisation
of computers, making them more accessible and practical [22]. The
birth of personal computing in the 1970s and the introduction of the
first commercially successful microprocessor, the Intel 4004, rev-
olutionised how individuals interacted with technology [15]. The
internet era ushered in during the late 20th century, further trans-
forming the landscape by connecting computers globally, enabling
unprecedented communication and information exchange [3]. Now,
on the cusp of a new frontier, quantum computing (QC) emerges
as a paradigm shift, promising to redefine the limits of computa-
tion and unravel new possibilities in the quest for computational
supremacy [9, 16, 26].

Since Quantum Computing has reached the so-called quantum
supremacy [20], the race to “quantumize the algorithm” is hastened
by industry and research in every field [1, 2, 23, 25, 28, 31-33].

As QC is widespread and becoming more accessible [29], re-
searchers and practitioners (R&Ps) can leverage simulated and real
quantum hardware for complex computational tasks [6, 7, 34].

In the 2023 IEEE Spectrum Top Programming Languages re-
port !, Python emerged as the foremost choice among researchers
and practitioners, closely trailed by Java. Python widespread adop-
tion is attributable to its simplicity, readability, and rich library
ecosystem catering to general-purpose programming and scientific
computation. Conversely, QC is still in its early stages, necessitating
specialised languages like QASM or Q#.

QASM is a low-level programming language used for specifying
quantum circuits, operations, and algorithms. Similar to classical
assembly languages, QASM provides a human-readable represen-
tation of quantum instructions that can be directly executed on
quantum computers or simulated on classical computers. QASM

!https://spectrum.ieee.org/the-top-programming-languages-2023

https://orcid.org/0000-0002-8451-3668
https://orcid.org/0009-0004-8879-0285
https://orcid.org/0009-0000-3480-1234
https://orcid.org/0000-0002-6340-0058
https://orcid.org/0000-0002-8479-1481
https://orcid.org/0000-0002-3210-3990
https://doi.org/10.1145/3663531.3664752
https://doi.org/10.1145/3663531.3664752
https://doi.org/10.1145/3663531.3664752
https://spectrum.ieee.org/the-top-programming-languages-2023

QSE-NE 24, July 16, 2024, Porto de Galinhas, Brazil

allows programmers to define quantum gates, quantum measure-
ments, and control flow operations, enabling the construction of
complex quantum algorithms and experiments. It serves as an in-
termediary between higher-level quantum programming languages
and the hardware or simulators that execute quantum computations.
Q# is a specialized programming language tailored for quantum
algorithms within the Microsoft Quantum Development Kit. Inte-
grated with libraries and simulators, it facilitates the development
of quantum applications. By leveraging a syntax akin to C#, Q#
enables developers to simulate and execute quantum programs on
classical computers. However, it lacks the capability to directly
translate classical C#-like code into pure quantum code. In this
context, allowing R&Ps proficient with high-level languages like
Python or C++ (in short, PyC) to harness QC power seamlessly is
essential.

Our contributions are as follows: (1) We introduce Classi|Q), our
translation framework idea designed to bridge the gap between the
classical and QC realms. Classi|Q) leverages Abstract Syntax Trees
(ASTs) as an intermediate language for source-to-source transla-
tion. (2) We introduced the newly concept of Quantum Program-
ming Language Patterns (QPLPs). (3) Therefore, we plan to enable
Classi|Q) to provide block-level translation leveraging newly to
replace entire blocks of PyC source code with optimised quantum
code leveraging our QPLPs. Classi|Q) aims at seamlessly translating
PyC-based algorithms to Quantum Assembly Language (QASM),
more specifically OpenQASM 3.0 [8]. Therefore, our contribution
is twofold: we provide the first PyC to QASM translator,Classi|Q),
design and introduce the QPLP concept.

The remainder of the paper is structured as follows. We present
our idea’s background and motivations in Section 2. We show the
design principles in Section 3. We discuss our Roadmap in Section
4, and address limitations in Section 5. Finally, we draw conclusions
and future research direction in Section 6.

2 BACKGROUND & MOTIVATION

QC current challenges. Classical Computing (CC) represents in-
formation with bits that can take 0 or 1 as a state; on the contrary,
QCs employ quantum bits, or qubits that leverage the principles of
quantum superposition and entanglement, allowing them to exist
in a combination of both states simultaneously, represented by a
quantum state vector. Quantum properties enable qubits to sup-
port parallel computations; the qubit will work out all possibilities
simultaneously. This Makes a huge difference in computational
power. Qubits are extremely sensitive to their environment and
cause decoherence, which is one of the major problems in retaining
the integrity of quantum information over time. Special quantum
gates are also required, quite different from the classical logic gates
used with bits. Overall, qubits extend the computation capabili-
ties from the classical bits to offer exponentially faster processing
and the solution of problems intractable for classical computers,
thus empowering quantum computers to accomplish specific tasks
beyond the capabilities of a classical computer.[27]. De Stefano
et al. [9], investigated the ad of quantum programming, recogniz-
ing its evolution from a scientific interest to an industrially available
technology that challenges the limits of CC. The findings revealed
limited current adoption of quantum programming.

Matteo Esposito, Maryam Tavassoli Sabzevari, Boshuai Ye, Davide Falessi, Arif Ali Khan, and Davide Taibi

Classi|Q) enabling factors. Researchers in non-computer sci-
ence fields, such as physicists, mathematicians, data scientists, biol-
ogists, and many others, cannot write cumbersome and complex
code such as QASM for leveraging QC powers.

ASTs and OpenQASM 3.0 are the key technologies that make
Classi|Q) development possible. ASTs are a hierarchical tree struc-
ture representing the syntactic structure of source code in a pro-
gramming language. It is an abstraction of the code’s syntax that
disregards specific details such as formatting and focuses on the
essential structure. ASTs are a valuable tool in compiler design
and programming language processing. They capture the relation-
ships between code elements, such as expressions, statements, and
declarations. By abstracting the essential components of a program-
ming language, an AST enables tools and compilers to analyse and
manipulate code in a language-agnostic manner. Therefore, our
framework can potentially convert every language to QASM.

Similarly, OpenQASM is a specialized language crafted for quan-
tum computer programming. It acts as a user-friendly interface,
enabling the expression of quantum circuits and algorithms in a
format executable by quantum processors. OpenQASM offers a
structured and easily understandable method for specifying quan-
tum gates, operations, and measurements, facilitating the creation
of quantum programs for diverse quantum devices. The recent
release of OpenQASM'’s third major version marked a significant
milestone by introducing classical control flow, instructions, and
data types. As the OpenQASM specification outlines, this addition
allows for defining circuits involving real-time computations on
classical data, paving the way for genuinely hybrid solutions
and serving as a driving force of Classi|Q), motivating and
empowering it. Therefore, Classi|Q) serves as the pivotal tool for
multidisciplinary collaboration. Our framework seamlessly trans-
lates PyC-based algorithms into QASM, enabling quantum-hybrid
computation. The translator accelerates research and innovation by
overcoming language barriers and CC knowledge, allowing teams
to explore novel applications while accommodating subteams’ pre-
ferred languages.

Different backgrounds and terminologies used in quantum tech-
nologies are a major problem highlighted by, e.g. Felderer et al. [16].
The complexity of quantum algorithms makes them inaccessible for
most of current classical developers. In this respect, Felderer et al.
[16] have pointed out that bridging knowledge gaps among disci-
plines will address these problems. Therefore, technical expertise,
interdisciplinary collaboration, as well as knowledge integration,
play crucial roles in both QC as well as software engineering. Our
work stems from these challenges, presenting a possible bridge
for R&P to harness QC power more efficiently. The programming
languages and resource power limitations of state-of-the-art QC
providers have led to a preference for hybrid approaches surpass-
ing classical computational power [1]. Despite prevailing research
trends, Classi|Q) seeks to bridge the gap between proficient clas-
sical practitioners and the QC potentials, presenting a seamless
transition path.

Classi|Q) is tailored to a diverse team; to our knowledge, such
a framework was never developed. Leveraging Python’s simplic-
ity, the code is easily understood by researchers with low coding
proficiency yet robust enough to optimize recurrent computational
patterns when translating to QASM.

This version is a pre-print. For the definitive Version of Record, please refer to the ACM Digital Library.

Classi|Q): Towards a Translation Framework to Bridge the Classical-Quantum Programming Gap

{
e

AST QASM QPLP
Manipulator Handler Toolkit

Figure 1: Overview of the Classi|Q) Framework

3 DESIGN

In this section, we introduce the concept of QPLPs and the design
of Classi|Q) .

3.1 Quantum Programming Language Patterns

Recent studies, introduced patterns in QC realm [5, 18, 24]. For
instance, Leymann [24] propose patterns for handling essential
operations within the QC realm, such as state preparation, entan-
glement and unentanglement, phase shift, and many others. In the
same vein, Georg et al. [18] presents patterns focused on the execu-
tion stage while Biihler et al. [5] showcased development-pattern
such as: Quantum Module, Quantum Module Template, and Quan-
tum Circuit Translator, a pattern for translating a circuit among
different QC vendors. R&P can find the previous patterns in the
quantum computing patterns online library?.

Gamma et al. [17] pioneered the concept of patterns in software
engineering. The motivation behind their book was to leverage
the power of object-oriented programming and provide reusable
elements that would make software more flexible, modular, and
reusable. We want to define the QPLPs as elements of reusable QC
algorithm. We envision collecting or developing patterns that allow
R&P to replace entire blocks of classical computation, such as the
computation of the discrete algorithm [10] or a mean [4], the search
for an element in an array [19], with black-quantum boxes that
leverage the full power of the underlying quantum hardware. The
optimization module will then leverage our collection of QPLPs
and replace CC blocks with QC-powered blocks. To our knowledge,
none of the existing patterns consider programming language pat-
terns. We can trace this research gap to two root causes: 1) each QC
vendor proposes its implementation and design of a language that
leads to 2) scarce interoperability among vendors. In this scenario,
the most promising QC language is QASM [8, 24], and it can have
the impact that Java had when first released.

3.2 Classi|Q)

Figure 1 shows the building block of Classi|Q) . The framework
comprises two main blocks: the Translator and the Optimizer.
The translator module (TM) handles the translation of CP via its
AST representation. Within TM, the AST manipulator sub-module
handles AST operations like tree traversal and source code state-
ment interpretation. The QASM Handler sub-module leverages a

Zhttps://quantumcomputingpatterns.org/

QSE-NE 24, July 16, 2024, Porto de Galinhas, Brazil

Statement
Translation
- J

Mapping

Translator
Optimization E H
]
g
—

=
Block
Translation

Quantum Programming
Language Patterns

Figure 2: Workflow Overview

custom grammar, i.e., mapping file, to interpret and translate the
abstract representation of the code into the corresponding Open-
QASM equivalent.

The optimizer module (OM) optimizes entire code blocks. We
design OM to analyze multiple statements, i.e., blocks, of code
and leverage QPLPs to replace the entire block with a predefined
quantum subroutine.

More specifically, Figure 2 presents the overview of the trans-
lation workflow. Classi|Q) will enable R&P to translate CP with
our without optimizations. In the "mapping translation” scenario,
Classi|Q) transverses the AST, analyzes its content, and translates
each statement in the corresponding OpenQASM classical repre-
sentation. On the other hand, block translation aims to translate
entire source code blocks, replacing their content with an improved
quantum algorithm. This block replacement stems from our defini-
tion of QPLPs. Hence, it will read the source code, understand what
kind of computation the R&P envisioned or requested via custom
notation, and provide one or more possible alternatives to compute
the same output with the improved QC algorithm version.

4 ROADMAP

This section briefly presents the roadmap we will pursue to bring
Classi|Q) to fruition. We are developing the TM and the OM func-
tionalities in parallel. Specifically, we target Python as the first
proof of concept (POC). We believe to be able to release the first
beta of the TM by the end of summer 2024. The translation mod-
ule is the core of Classi|Q) basic functionalities; hence, it is our
main focus. We finished the development of the AST transversal for
Python and are currently implementing the statement translation
leveraging the grammar provided by OpenQASM. We are currently
exploring the literature and experimental implementations in detail
to identify QPLPs suitable for classical sub-problems within the
quantum algorithm. Once promising patterns are identified, the
focus will shifts to seamlessly incorporating them into the existing
translation workflow in the QPLP toolkit sub-module.

5 LIMITATIONS & FUTURE DIRECTIONS

This section acknowledges limitations to our idea and possible
future directions.

Classi|Q) is designed to support PyC grammars and syntaxes
comprehensively. However, it is essential to note that object trans-
lation remains unavailable at present. This limitation stems from

This version is a pre-print. For the definitive Version of Record, please refer to the ACM Digital Library.

https://quantumcomputingpatterns.org/

QSE-NE 24, July 16, 2024, Porto de Galinhas, Brazil

the intrinsic nature of QASM as a "low-level" language, lacking sup-
port for high-level constructs such as objects. Nevertheless, we will
support all built-in functions, enabling the translation of complex
calculations by composing programs exclusively with built-in func-
tions. Future works should address this limitation through smart
recursive translation or expanding the QASM capabilities, which is
essential for enhancing the hybrid approach.

While the current focus of translation is on Python and C++, it
is noteworthy that Classi|Q) will ultimately evolve into a source-
language-agnostic tool. Consequently, with customized grammar, it
can translate other source languages, such as Q# or Java, to QASM.

Finally, since our vision emphasizes translating code from classi-
cal programming languages, future research should focus on investi-
gating potential issues that may inadvertently arise in the quantum
domain from this translation, such as defects and vulnerabilities
[12, 13]. For example, there are currently no definitions of quan-
tum vulnerabilities in terms of Common Weakness Enumeration
(CWE) [14], nor is there an accepted definition of quantum vulner-
ability severity. Therefore, future research efforts should focus on
developing static analyzers to detect these new types of defects and
vulnerabilities, and to assess their severity[11].

6 CONLUSIONS

In this work, we have introduced Classi|Q), the design of the ideal
PyC to QASM translator, bridging the classical and quantum realms.
To illustrate the practical relevance of Classi|Q), we outline three
hypothetical scenarios grounded in real-world contexts. Moreover,
we detail the design, key decisions, and the introduction of QPLPs.
The ultimate goal of Classi|Q) is to empower researchers and prac-
titioners to exploit the capabilities of quantum computing without
requiring specific training.

REFERENCES

[1] Akshay Ajagekar, Travis Humble, and Fenggi You. 2020. Quantum computing
based hybrid solution strategies for large-scale discrete-continuous optimization
problems. Computers and Chemical Engineering 132 (2020), 106630. https:
//doi.org/10.1016/j.compchemeng.2019.106630

[2] Akshay Ajagekar and Fenggqi You. 2019. Quantum computing for energy systems
optimization: Challenges and opportunities. Energy 179 (2019), 76-89.

[3] Tim Berners-Lee, Robert Cailliau, Jean-Frangois Groff, et al. 1992. World-Wide
Web: the information universe. Internet Research 2, 1 (1992), 52-58.

[4] Sergey Bravyi, David Gosset, and Ramis Movassagh. 2019. Classical algorithms
for quantum mean values. CoRR abs/1909.11485 (2019).

[5] Fabian Biihler, Johanna Barzen, Martin Beisel, et al. 2023. Patterns for Quantum
Software Development. In Proceedings of the 15th International Conference on
Pervasive Patterns and Applications (PATTERNS 2023). Xpert Publishing Services
(XPS), 30-39.

[6] Marco Cerezo, Guillaume Verdon, Hsin-Yuan Huang, et al. 2023. Challenges

and Opportunities in Quantum Machine Learning. CoRR abs/2303.09491 (2023).

https://doi.org/10.48550/ARXIV.2303.09491 arXiv:2303.09491

Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, et al. 2018.

Quantum machine learning: a classical perspective. Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences

474, 2209 (2018), 20170551. https://doi.org/10.1098/rspa.2017.0551

arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0551

Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, et al. 2022. OpenQASM

3: A Broader and Deeper Quantum Assembly Language. ACM Transactions on

Quantum Computing 3, 3 (Sept. 2022), 1-50. https://doi.org/10.1145/3505636

Manuel De Stefano, Fabiano Pecorelli, Dario Di Nucci, et al. 2022. Software

engineering for quantum programming: How far are we? Journal of Systems and

Software 190 (2022), 111326. https://doi.org/10.1016/j.js5.2022.111326

Martin Ekera. 2021. Quantum algorithms for computing general discrete loga-

rithms and orders with tradeoffs. J. Math. Cryptol. 15, 1 (2021), 359-407.

Matteo Esposito, Valentina Falaschi, and Davide Falessi. 2024. An Extensive

Comparison of Static Application Security Testing Tools. In Proceedings of the 28th

[7

[

8

=

=

[10

[11

[12

[13

(14

=
&

[16

(17

[18

(19]

[21

[22

[23

[24

[25

[26

[27

[28

(30]

[31

[32

@
&

[34

Matteo Esposito, Maryam Tavassoli Sabzevari, Boshuai Ye, Davide Falessi, Arif Ali Khan, and Davide Taibi

International Conference on Evaluation and Assessment in Software Engineering.
ACM, 69-78.

Matteo Esposito and Davide Falessi. 2023. Uncovering the Hidden Risks: The
Importance of Predicting Bugginess in Untouched Methods. In 2023 IEEE 23rd
International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 277-282.

Matteo Esposito and Davide Falessi. 2024. VALIDATE: A deep dive into vulnera-
bility prediction datasets. Information and Software Technology (2024), 107448.
Matteo Esposito, Sergio Moreschini, Valentina Lenarduzzi, et al. 2023. Can
We Trust the Default Vulnerabilities Severity?. In 2023 IEEE 23rd International
Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
265-270.

Federico Faggin. 2009. The Making of the First Microprocessor. IEEE Solid-State
Circuits Magazine 1, 1 (2009), 8-21. https://doi.org/10.1109/MSSC.2008.930938
Michael Felderer, Davide Taibi, Fabio Palomba, et al. 2023. Software Engineering
Challenges for Quantum Computing: Report from the First Working Seminar on
Quantum Software Engineering (WSQSE 22). SIGSOFT Softw. Eng. Notes 48, 2 (04
2023), 29-32. https://doi.org/10.1145/3587062.3587071

Erich Gamma, Richard Helm, Ralph Johnson, et al. 1995. Design patterns: elements
of reusable object-oriented software. Pearson Deutschland GmbH.

Daniel Georg, Johanna Barzen, Martin Beisel, et al. 2023. Execution Patterns
for Quantum Applications. In Proceedings of the 18th International Conference on
Software Technologies - ICSOFT. SciTePress, 258-268. https://doi.org/10.5220/
0012057700003538

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
In STOC. ACM, 212-219.

Jingzhe Guo and Mingsheng Ying. 2023. Software Pipelining for Quantum Loop
Programs. IEEE Trans. Software Eng. 49, 4 (2023), 2815-2828. https://doi.org/10.
1109/TSE.2022.3232623

Douglas Rayner Hartree. 1946. The ENIAC, an electronic computing machine.
Nature 158, 4015 (1946), 500-506.

J.S. Kilby. 2007. Miniaturized electronic circuits [US Patent No. 3,138, 743]. IEEE
Solid-State Circuits Society Newsletter 12, 2 (2007), 44-54. https://doi.org/10.1109/
N-SSC.2007.4785580

Yunseok Kwak, Won Joon Yun, Jae Pyoung Kim, et al. 2023. Quantum distributed
deep learning architectures: Models, discussions, and applications. ICT Express 9,
3(2023), 486-491. https://doi.org/10.1016/].icte.2022.08.004

Frank Leymann. 2017. Towards a Pattern Language for Quantum Algorithms. In
Quantum Technology and Optimization Problems - First International Workshop,
QTOP@NetSys 2019, Munich, Germany, March 18, 2019, Proceedings (Lecture Notes
in Computer Science, Vol. 11413), Sebastian Feld and Claudia Linnhoff-Popien
(Eds.). Springer, 218-230. https://doi.org/10.1007/978-3-030-14082-3_19
Dennis Michael Nenno and Adrian Caspari. 2023. Dynamic Optimization on
Quantum Hardware: Feasibility for a Process Industry Use Case. arXiv preprint
arXiv:2311.07310 (2023).

Michael A Nielsen and Isaac L Chuang. 2010. Quantum computation and quantum
information. Cambridge university press.

Mario Piattini, Manuel Serrano, Ricardo Perez-Castillo, et al. 2021. Toward a
Quantum Software Engineering. IT Professional 23, 1 (2021), 62-66. https:
//doi.org/10.1109/MITP.2020.3019522

Quantum Technology and Application Consortium — QUTAC, Bayerstadler, An-
dreas, et al. 2021. Industry quantum computing applications. EPJ Quantum
Technol. 8, 1 (2021), 25. https://doi.org/10.1140/epjqt/s40507-021-00114-x
Maryam Tavassoli Sabzevari, Matteo Esposito, Davide Taibi, et al. 2024. QCSHQD:
Quantum Computing as a Service for Hybrid Classical-Quantum Software Devel-
opment: A Vision. In Proceedings of the 1st ACM International Workshop on Quan-
tum Software Engineering: The Next Evolution (QSE-NE °24) (Porto de Galinhas,
Brazil). ACM, New York, NY, USA, 5. https://doi.org/10.1145/3663531.3664751
A. M. Turing. 1937. On Computable Numbers, with an Application
to the Entscheidungsproblem. Proceedings of the London Mathemati-
cal Society s2-42, 1 (1937), 230-265. https://doi.org/10.1112/plms/s2-42.1.
230 arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-
42.1.230

Sheir Yarkoni, Elena Raponi, Thomas Béck, et al. 2022. Quantum annealing for
industry applications: Introduction and review. Reports on Progress in Physics
(2022).

Hasan Yetis and Mehmet Karakése. 2020. Optimization of mass customization
process using quantum-inspired evolutionary algorithm in industry 4.0. In 2020
IEEE International Symposium on Systems Engineering (ISSE). IEEE, 1-5.

Yao Zhang and Qiang Ni. 2020. Recent advances in quantum machine learning.
Quantum Eng. 2, 1 (2020). https://doi.org/10.1002/QUE2.34

Zhikuan Zhao, Alejandro Pozas-Kerstjens, Patrick Rebentrost, et al. 2019.
Bayesian deep learning on a quantum computer. Quantum Mach. Intell. 1, 1-2
(2019), 41-51. https://doi.org/10.1007/S42484-019-00004-7

Received 2024-04-25; accepted 2024-05-06

This version is a pre-print. For the definitive Version of Record, please refer to the ACM Digital Library.

https://doi.org/10.1016/j.compchemeng.2019.106630
https://doi.org/10.1016/j.compchemeng.2019.106630
https://doi.org/10.48550/ARXIV.2303.09491
https://arxiv.org/abs/2303.09491
https://doi.org/10.1098/rspa.2017.0551
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0551
https://doi.org/10.1145/3505636
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1109/MSSC.2008.930938
https://doi.org/10.1145/3587062.3587071
https://doi.org/10.5220/0012057700003538
https://doi.org/10.5220/0012057700003538
https://doi.org/10.1109/TSE.2022.3232623
https://doi.org/10.1109/TSE.2022.3232623
https://doi.org/10.1109/N-SSC.2007.4785580
https://doi.org/10.1109/N-SSC.2007.4785580
https://doi.org/10.1016/j.icte.2022.08.004
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1145/3663531.3664751
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://doi.org/10.1002/QUE2.34
https://doi.org/10.1007/S42484-019-00004-7

	Abstract
	1 Introduction
	2 Background & Motivation
	3 Design
	3.1 Quantum Programming Language Patterns
	3.2 Classi|Q

	4 Roadmap
	5 Limitations & Future Directions
	6 Conlusions
	References

