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A B S T R A C T

Temporal analysis of project networks has been widely studied in the literature; basically, it consists of
determining the starting and finishing times of activities respecting a set of precedence constraints among
them. The main output of the temporal analysis is twofold: on the one hand, it provides information on
the minimum completion time of the project and, on the other hand, it determines which activity may be
considered critical. Defining and determining activity criticalities on its own is a problem that has attracted
the attention of many researchers over the last decades. In this paper, in an attempt to further pursue these
studies, we focus on project scheduling with generalized precedence relationships where durations are not fixed
in advance, but are variable within given ranges and have to be determined to minimize the makespan of the
project. Analyzing activity criticalities for the same problem where activity durations are fixed has been tackled
within the literature; what happens when durations are assumed variables, to the best of our knowledge, has
not been investigated. We show that, in this scenario, the current knowledge on activity criticalities is no longer
valid and we give new definitions of criticality together with the rules for its identification. An extensive
experimental campaign on benchmark instances is presented to show that our findings are meaningful for
quantitative project management.
1. Introduction

Temporal analysis of project networks has been one of the most
studied topics in the project management and scheduling area. From
the early studies of Kelley (1963) and Malcolm, Roseboom, Clark,
and Fazar (1959) on the Critical Path Method in the Sixties, many
researchers addressed the problem of modeling project activities and
constraints to minimize the project completion time (makespan). Spe-
cial attention has been deserved on the relation between the minimum
makespan of the project and the longest path of the project network in
the quest of defining the so-called ‘‘critical’’ activities, i.e., those activ-
ities responsible for the increase of the project completion time when
delayed from their earliest start (or finish) time and/or a variation of
their durations happen.

Indeed, when activity durations are fixed and given, the temporal
analysis consists of executing a forward and a backward recursion to
calculate the earliest and latest start times of the activities as well as
their earliest and latest finish times. In particular, for each activity,
the difference between the latest and earliest start times equals the
difference between the latest and earliest finish times. The common

∗ Corresponding author.
E-mail addresses: bianco@dii.uniroma2.it (L. Bianco), caramia@dii.uniroma2.it (M. Caramia), stefano.giordani@uniroma2.it (S. Giordani),

alessio.salvatore@uniroma2.it (A. Salvatore).

value of these two differences is the activity total float, and an activity
is critical if and only if its total float is equal to zero.

Identifying critical activities is a crucial task in project management.
Indeed, they represent the bottleneck of the project in terms of its per-
formance and require special attention in the resource assignment task.
In the literature, several authors have addressed the concept of criti-
cality of an activity, providing different definitions based on the type
of temporal relationships (classical Finish-to-Start precedences, general-
ized precedence relationships, feeding precedences) of the project (see,
e.g., Bianco, Caramia, & Giordani, 2022; Bianco, Caramia, Giordani, &
Salvatore, 2023; Chen & Huang, 2007; Elmaghraby & Kamburowski,
1992; Floyd, Barker, Rocco, & Whitman, 2017; Jaber, Marle, Vidal,
& Didiez, 2018; Quintanilla, Perez, Lino, & Valls, 2012 and Valls &
Lino, 2001). In particular, in Bianco et al. (2022), the authors study
project scheduling with generalized precedence relations proposing a
new method to analyze criticalities and flexibilities. The latter paper
extends previous works Elmaghraby and Kamburowski (1992), Quin-
tanilla et al. (2012), and Valls and Lino (2001) under the same problem
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setting. In the aforementioned works, differently from the contribution
given in this paper, durations are given and fixed.

In Bianco et al. (2023), an analysis of how to find the critical path
in a project network with feeding precedence relations is presented
using a specific forward recursion algorithm. In Bowers (1995), the
author presents a revised method of calculating resource-constrained
float and its application in project management. Precedence relations
are classical Finish-to-Start and durations are fixed. Several measures
of an activity’s importance in a network are described and compared in
an application to an aircraft development. A quantitative comparison
of these measures is presented through simulation.

In Nguyen and Chua (2014), the authors present a systematic
method to classify and identify the criticality of schedule constraints
for schedule management from the constraint perspective. In terms of
criticality, it is shown how schedule constraints can be grouped into
four types: project-critical, activity-critical, sequence-critical, and non-
critical. The method proposed is illustrated in a case example based on
the construction of the main entrance of a nursing house. Also in this
case precedence relationships are not generalized and activity durations
are fixed. In Tavares, Ferreira, and Coelho (2004), starting from the
notion of critical activity developed for deterministic project networks,
the authors show the inadequacy of the concept of critical activity for
stochastic project networks and define a new surrogate indicator of
criticality using a regression model applied to a large set of generated
project networks. Differently from our study, in the latter paper, the
environment is stochastic which is also what happens in Floyd et al.
(2017).

Criticalities have also been discussed in several papers debating
the effectiveness of Critical chain scheduling/Buffer management, that
is, the direct application of the theory of constraints to project man-
agement. Indeed, as reported in Herroelen, Leus, and Demeulemeester
(2002), there is a controversy over the merits and pitfalls of this
methodology.

Notwithstanding, a shared definition brings together these contri-
butions, that is, an activity is critical if and only if it lies on a longest
path (critical path) of the project network.

In this paper, we further study activity criticalities in project
scheduling with Generalized Precedence Relationships (GPRs), when
activity durations are not fixed but vary in given ranges and are to be
determined to minimize the project makespan. We note that durations
are deterministic (decision) variables; therefore, our problem does not
lie within stochastic project scheduling. To interpret and explain the
rationale behind the role of variable activity durations in our problem,
we may see the latter, from a modeling viewpoint, as a way to represent
a continuous multimodal scheduling scenario where each activity is ex-
ecutable with infinite combinations of resources each one producing a
different duration, from a minimum to a maximum value. For example,
this happens when considering activity variable execution intensities
(speeds) (Kis, 2005). In this case, the amount of work per time unit
devoted to each activity and, consequently, also its duration are not
fixed but are decision variables to be determined. Specifically, feasible
durations range between minimum and maximum values, related to the
lowest and highest intensities of activity execution, respectively. The
presented problem setting has been considered in the literature in a few
other papers and, in particular, to minimize the total adjustment cost
in Bianco, Caramia, and Giordani (2017) and with the more general
feeding precedences under the minimum project length (makespan)
objective in Bianco et al. (2023).

The setting of the studied problem is as follows. Given are 𝑛 non-
preemptable activities; each activity 𝑖 has a variable duration 𝑑𝑖 ∈
[𝑑min

𝑖 , 𝑑max
𝑖 ], which constitutes a deterministic variable to be deter-

mined to minimize the project makespan. Generalized Precedence Re-
lationships (GPRs), including Start-to-Start (SS), Start-to-Finish (SF ),
Finish-to-Start (FS), and Finish-to-Finish (FF ) relationships, are as-
2

signed between pairs of activities. Only minimum time lags are taken
into account, and it is assumed that the resulting project network is
acyclic.

As we will show, in this scenario the traditional concept of critical
activity is no longer valid in the presence of GPRs, differently from the
case with only Finish-to-Start relations among activities. Therefore, a
more general characterization of criticality is required. Specifically, we
pose the following Research Questions (RQs):

1. Are the activity (total) floats, calculated respectively on the start
and finish times, still equal when activity durations are variable?

2. If the floats are different, is it however necessary that they
should be both equal to zero to identify a critical activity?

3. Since activity durations are variable and, therefore, the optimal
duration of an activity evaluated with the forward and backward
recursions could be different, are these durations equal when the
activity is critical?

4. Is an activity belonging to both the longest path obtained with
the forward recursion and the longest path obtained with the
backward recursions critical?

To the best of our knowledge, the above RQs have not been ad-
dressed in the literature and, in our opinion, deserve an answer which
will be given in the next sections. It is also important to note that
though Elmaghraby and Kamburowski (1992) introduced project ac-
tivities with variable durations in the Time-Cost Trade-Off studied
problem, their criticality analysis was conducted only assuming fixed
durations.

The organization of the manuscript is as follows. In Sections 2 and
3, we define new forward and backward recursion algorithms and
networks, respectively. In Section 4, we present theoretical results,
answering to the RQs we posed and generalizing the concept of critical
activity. Section 5 presents an extensive experimental campaign on
benchmark instances to show that our findings are meaningful also for
quantitative project management. Finally, in Section 6, we draw some
conclusions and present future work.

2. Forward and backward recursions

Since the project network is assumed to be acyclic, in the following
we consider the activities 𝑖 = 1,… , 𝑛 topologically indexed. Moreover,
for ease of presentation of the results, but without loss of generalities,
we assume zero time lags.

Given any feasible duration 𝑑𝑖 ∈ [𝑑min
𝑖 , 𝑑max

𝑖 ], for each activity 𝑖, let
us denote with 𝑁(𝑑) the GPRs project network related to a given vector
𝑑 of (feasible) activity durations.

It is well known (see, e.g., Bartusch, Möhring, & Radermacher,
1988) that a GPRs project network can be equivalently represented
by the so-called standardized network where only one type of GPRs
precedence relations is considered (e.g., SS or FF ). In particular, the
S-standardized network represents precedence relations referred to the
ctivity starting times. Therefore, we consider the additional dummy
ctivities 0 (initial) and 𝑛 + 1 (final), and additional precedences (0, 𝑖)
f type SS and (𝑖, 𝑛 + 1) of type FS, for 𝑖 = 1,… , 𝑛, to force activity

𝑖, if necessary, to start (finish) not earlier (later) than the project
start (completion). Let 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 ) be the length of arc (𝑖, 𝑗) equal to the

inimum difference between the starting times of activities 𝑗 and 𝑖,
ccording to precedence relation (𝑖, 𝑗): 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 ) = 𝑡+𝑖𝑗 (𝑑𝑖) − 𝑡−𝑖𝑗 (𝑑𝑗 ), with
+
𝑖𝑗 (𝑑𝑖) being equal to 𝑑𝑖 if precedence relation (𝑖, 𝑗) is of type FS or FF,
nd equal to 0 otherwise, and 𝑡−𝑖𝑗 (𝑑𝑗 ) being equal to 𝑑𝑗 if precedence
elation (𝑖, 𝑗) is of type SF or FF, and equal to 0 otherwise. Let us
enote with 𝓁𝑁(𝑑)

ℎ→𝑘 the length of the longest path from node ℎ to node
, with ℎ < 𝑘, in the SS-standardized network of project network
(𝑑), if such a path exists. Similarly, the FF -standardized network

epresents precedence relations w.r.t. activity finish times. Analogously,
e consider the additional dummy activities 0 (initial) and 𝑛+1 (final),
nd additional precedences (0, 𝑖) of type SF and (𝑖, 𝑛 + 1) of type FF,
or 𝑖 = 1,… , 𝑛, to force activity 𝑖, if necessary, to start (finish) not
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Fig. 1. Project network, with minimum and maximum activity durations, of Example 1.
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earlier (later) than the project start (completion). In this representation,
the length 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 ) of arc (𝑖, 𝑗) is the minimum difference between the
finish times of activities 𝑗 and 𝑖, according to precedence relation (𝑖, 𝑗):
�̂�𝑗 (𝑑𝑖, 𝑑𝑗 ) = 𝑡+𝑖𝑗 (𝑑𝑗 ) − 𝑡−𝑖𝑗 (𝑑𝑖), with 𝑡+𝑖𝑗 (𝑑𝑗 ) being equal to 𝑑𝑗 if precedence

relation (𝑖, 𝑗) is of type SS or FS, and equal to 0 otherwise, and 𝑡−𝑖𝑗 (𝑑𝑖)
eing equal to 𝑑𝑖 if precedence relation (𝑖, 𝑗) is of type SS or SF, and
qual to 0 otherwise. Let us denote with 𝓁𝑁(𝑑)

ℎ→𝑘 the length of the longest
ath from node ℎ to node 𝑘, with ℎ < 𝑘, in the FF -standardized network
f project network 𝑁(𝑑), if such a path exists. While in general 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 )
ay be different from 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 ), it is easy to show that the lengths of

he paths from node 0 to node 𝑛 + 1 do not depend on the type of
etwork standardization. Therefore 𝓁𝑁(𝑑)

0→𝑖 + 𝓁𝑁(𝑑)
𝑖→𝑛+1 = 𝓁𝑁(𝑑)

0→𝑖 + 𝓁𝑁(𝑑)
𝑖→𝑛+1,

or any given (real) activity 𝑖, and 𝓁𝑁(𝑑)
0→𝑛+1 = 𝓁𝑁(𝑑)

0→𝑛+1 = 𝐶𝑑
max, where

𝑑
max is the minimum project length with the given activity duration
𝑖 ∈ [𝑑min

𝑖 , 𝑑max
𝑖 ], for each activity 𝑖. In the following, unless otherwise

tated, we refer to the SS-standardized network representation.
Note that in a GPRs network, setting 𝑑𝑖 = 𝑑min

𝑖 , for each activ-
ty 𝑖, does not necessarily conduct to the minimum project length
makespan) 𝐶∗

max, even with minimum time lags only, because in-
reasing an activity duration could decrease the project length (see,
.g., Bianco et al., 2022; Demeulemeester & Herroelen, 2002 and
lmaghraby & Kamburowski, 1992).

An optimal duration of activity 𝑖, denoted with 𝑑𝐹𝑊
𝑖 , is the mini-

um value in the range [𝑑min
𝑖 , 𝑑max

𝑖 ] that allows 𝑖 to start at its earliest
start time 𝐸𝑆𝑖, assuming 𝐸𝑆0 = 0. We can compute 𝑑𝐹𝑊

𝑖 by the
following forward (FW ) recursion. Since increasing 𝑑𝑖 will not increase
length 𝑡ℎ𝑖(𝑑ℎ, 𝑑𝑖) of arc (ℎ, 𝑖), for the calculation of 𝐸𝑆𝑖 we can initially
consider 𝑑𝑖 = 𝑑max

𝑖 and calculate 𝐸𝑆𝑖 = max(ℎ,𝑖)∈𝛤−(𝑖) {𝐸𝑆ℎ+ 𝑡ℎ𝑖}, where
𝛤−(𝑖) is the set of incoming arcs (ℎ, 𝑖) of 𝑖 and 𝑡ℎ𝑖 = 𝑡ℎ𝑖(𝑑𝐹𝑊

ℎ , 𝑑max
𝑖 ).

Conversely, decreasing 𝑑𝑖 will not increase 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 ), for any outgoing
arcs (𝑖, 𝑗) of 𝑖. Therefore, we determine 𝑑𝐹𝑊

𝑖 as the minimum feasible
value of 𝑑𝑖 that still allows 𝑖 to start at 𝐸𝑆𝑖: this can be done by
looking only at the set 𝛤−(𝑖) of incoming arcs of 𝑖. The earliest finish
time of 𝑖 is 𝐸𝐹𝑖 = 𝐸𝑆𝑖 + 𝑑𝐹𝑊

𝑖 , and the minimum project makespan
𝐶∗
max = 𝐸𝑆𝑛+1 = max𝑖{𝐸𝐹𝑖}.

Analogously, another optimal duration of 𝑖, denoted with 𝑑𝐵𝑊𝑖 , is
the maximum value in the range [𝑑min

𝑖 , 𝑑max
𝑖 ] that allows 𝑖 to start at its

latest time 𝐿𝑆𝑖, assuming 𝐿𝑆𝑛+1 = 𝐸𝑆𝑛+1 = 𝐶∗
max. We compute 𝑑𝐵𝑊𝑖 by

the following backward (BW ) recursion. Since decreasing 𝑑𝑖 will not
increase length 𝑡𝑖𝑗 (𝑑𝑖, 𝑑𝑗 ) of arc (𝑖, 𝑗), we can initially assume 𝑑𝑖 = 𝑑min

𝑖
and calculate 𝐿𝑆𝑖, i.e., 𝐿𝑆𝑖 = min(𝑖,𝑗)∈𝛤+(𝑖){𝐿𝑆𝑗 − 𝑡𝑖𝑗}, where 𝛤+(𝑖) is
the set of outgoing arcs (𝑖, 𝑗) of 𝑖 and 𝑡𝑖𝑗 = 𝑡𝑖𝑗 (𝑑min

𝑖 , 𝑑𝐵𝑊𝑗 ). Conversely,
increasing 𝑑𝑖 will not increase 𝑡ℎ𝑖(𝑑ℎ, 𝑑𝑖), for any incoming arcs (ℎ, 𝑖) of 𝑖.
Therefore, we determine 𝑑𝐵𝑊𝑖 as the maximum feasible value of 𝑑𝑖 that
still allows 𝑖 to start at 𝐿𝑆𝑖: this can be done by looking only at the set
𝛤+(𝑖) of outgoing arcs of 𝑖. The latest finish time of 𝑖 is 𝐿𝐹𝑖 = 𝐿𝑆𝑖+𝑑𝐵𝑊𝑖 .

Therefore, in linear time w.r.t. the cardinality of the network prece-
dence relations, we can compute 𝐸𝑆𝑖 (𝐿𝑆𝑖) and the related optimal
durations 𝑑𝐹𝑊

𝑖 (𝑑𝐵𝑊𝑖 ) of activities 𝑖 = 1,… , 𝑛.
After having introduced the above preliminary concepts, let us start

to analyze the Research Questions (RQs) of Section 1 by considering
the following example.

Example 1. Let us consider the project network with 𝑛 = 4 activities
3

and minimum and maximum activity durations depicted in Fig. 1. p
Table 1
FW and BW durations, and earliest/latest start/finish times of Example 1.

Activity 𝑖 1 2 3 4

𝑑𝐹𝑊
𝑖 , 𝑑𝐵𝑊

𝑖 2, 2 2, 4 6, 6 4, 4
𝐸𝑆𝑖 , 𝐿𝑆𝑖 0, 2 0, 0 0, 0 0, 2
𝐸𝐹𝑖 , 𝐿𝐹𝑖 2, 4 2, 4 6, 6 4, 6

Table 1 lists, for each activity 𝑖, the activity forward and backward
optimal durations (𝑑𝐹𝑊

𝑖 , 𝑑𝐵𝑊𝑖 ), and its earliest/latest start/finish times
(𝐸𝑆𝑖, 𝐿𝑆𝑖, 𝐸𝐹𝑖, 𝐿𝐹𝑖), calculated by applying the forward and backward
ecursions. The minimum project makespan 𝐶∗

max is equal to 6 and
𝐹𝑊
𝑖 = 𝑑𝐵𝑊𝑖 , for all activities 𝑖 but 2; in particular, 𝑑𝐹𝑊

2 < 𝑑𝐵𝑊2 .
Looking at activity 2, we note that 𝐿𝑆2 − 𝐸𝑆2 = 0 and 𝐿𝐹2 −

𝐹2 = 2. Therefore, differently from the case with known and fixed
ctivity durations where the values of these two differences are always
qual and we simply refer to them as activity float, when activity
urations are variable, in the sense that their values can be chosen
ithin given ranges, these two floats could be different. Hence, we
eed to differentiate between them: let us call (total) start float (𝐹𝑆

𝑖 )
f activity 𝑖 the difference between its latest and earliest start times,
.e., 𝐹𝑆

𝑖 = 𝐿𝑆𝑖 − 𝐸𝑆𝑖, and (total) finish float (𝐹 𝐹
𝑖 ) of 𝑖 the difference

etween its latest and earliest finish times, i.e., 𝐹 𝐹
𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖.

Since, according to the traditional concept of criticality, an activity
s considered as critical if it has a non-positive float, activity 3 would
e therefore classified as critical. However, we would have difficulty
o characterize the criticality of activity 2, since one of its floats (the
ne evaluated referred to the finish time) is positive. Therefore, the
bove example shows the need to redefine and generalize the concept
f critical activity and its relation with activity floats.

. Forward and backward networks

When activity durations are given and fixed, it is known that start
nd finish activity floats are equal. Moreover, we have a project network
ith fixed activity durations, and then it is possible to characterize
ctivity floats and criticalities directly on this network. On the con-
rary, looking at Example 1, we note that the forward and backward
urations, as well as the start and finish floats, of activity 2 are different.

Therefore, when activity durations are not given and fixed but are
ariable and have to be chosen within given ranges, if one aims to
haracterize its criticality and/or its floats from the network, it may not
ppear clear which network (along with activity durations) has to be
aken into account. Since with the forward and backward recursions,
e can calculate the forward and backward activity durations, let us

tart to consider the associated networks. Let us call forward network
FW -network) the project network 𝑁(𝑑𝐹𝑊 ) with activity durations
𝐹𝑊
𝑖 , 𝑖 = 1,… , 𝑛, with 𝑑min

𝑖 ≤ 𝑑𝐹𝑊
𝑖 ≤ 𝑑max

𝑖 , resulting from the forward
ecursion. Analogously, let us call backward network (BW -network) the
roject network 𝑁(𝑑𝐵𝑊 ) with activity durations 𝑑𝐵𝑊𝑖 , 𝑖 = 1,… , 𝑛, with
min
𝑖 ≤ 𝑑𝐵𝑊𝑖 ≤ 𝑑max

𝑖 , resulting from the backward recursion. Since the
orward and backward activity durations could be different, the related
W -network and BW -network could be different too, w.r.t. the activity
urations, as well as the related SS-standardized networks, where the
engths of an arc (𝑖, 𝑗), therefore, could be different in the two networks.
f course, the same happens to the related FF -standardized networks.

Let 𝓁𝐹𝑊
0→𝑖 and 𝓁𝐹𝑊

𝑖→𝑛+1 (𝓁𝐵𝑊
0→𝑖 and 𝓁𝐵𝑊

𝑖→𝑛+1) be the lengths of the longest

aths from 0 to 𝑖 and from 𝑖 to 𝑛+1, respectively, of the SS-standardized
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Fig. 2. The SS-standardized network of the FW -network of Example 1.
Fig. 3. The SS-standardized network of the BW -network of Example 1.
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network of the FW -network (BW -network). It clearly results 𝐸𝑆𝑖 =
𝓁𝐹𝑊
0→𝑖 ≤ 𝓁𝐵𝑊

0→𝑖 , and 𝐶∗
max−𝐿𝑆𝑖 = 𝓁𝐵𝑊

𝑖→𝑛+1 ≤ 𝓁𝐹𝑊
𝑖→𝑛+1, where 𝐶∗

max = 𝓁𝐹𝑊
0→𝑛+1 =

𝓁𝐵𝑊
0→𝑛+1. In general, for any activity 𝑖, it results 𝓁𝐹𝑊

0→𝑖 + 𝓁𝐹𝑊
𝑖→𝑛+1 ≤ 𝐶∗

max,
and 𝓁𝐵𝑊

0→𝑖 + 𝓁𝐵𝑊
𝑖→𝑛+1 ≤ 𝐶∗

max, since 𝓁𝐹𝑊
0→𝑖 + 𝓁𝐹𝑊

𝑖→𝑛+1 and 𝓁𝐵𝑊
0→𝑖 + 𝓁𝐵𝑊

𝑖→𝑛+1 are
the lengths of the longest path from 0 to 𝑛+ 1 traversing node 𝑖 on the
SS-standardized networks of the FW -network and of the BW -network,
respectively.

Let 𝛿𝐹𝑊
𝑖 = 𝐶∗

max − (𝓁𝐹𝑊
0→𝑖 + 𝓁𝐹𝑊

𝑖→𝑛+1) ≥ 0 be the FW-gap of activity
𝑖, i.e., the difference between 𝐶∗

max and the length of the longest path
from 0 to 𝑛 + 1 traversing node 𝑖 in the FW -network, and let 𝛿𝐵𝑊𝑖 =
𝐶∗
max − (𝓁𝐵𝑊

0→𝑖 + 𝓁𝐵𝑊
𝑖→𝑛+1) ≥ 0 be the BW-gap of activity 𝑖 (w.r.t. the

BW -network).
According to the traditional definition of critical activity, we would

say that activity 𝑖 is critical if and only if 𝛿𝐹𝑊
𝑖 = 0 and 𝛿𝐵𝑊𝑖 = 0, i.e., if

and only if it belongs to a critical (longest) path on both the FW - and
BW - networks (let us denote such activity as FW&BW -critical activity).

Figs. 2 and 3 represent the SS-standardized networks of the FW -
network and of the BW -network of Example 1, respectively; the values
associated with nodes and arcs represent activity durations and arc
lengths, respectively. In particular, in the figures only the arcs belong-
ing to a longest path from node 0 to node 𝑛 + 1 traversing an activity
node are shown: among them, dashed arcs do not belong to a critical
path (i.e., a longest path from 0 to 𝑛 + 1 with length 𝐶∗

max = 6).
First of all, from Figs. 2 and 3 we note that the FW -network and the

BW -network could be different, at least for the arc lengths. Moreover,
it is difficult to relate the criticality of an activity with its belonging to
a critical path in these networks. Let us consider activities 2 and 3 that
result to be both FW&BW -critical. From the earliest/latest start/finish
times listed in Table 1, we note that while activity 3 has both the
start and finish floats equal to zero, as one could expect, this is not
the case for activity 2 that has only the start float equal to zero. In
addition, activity 1 belongs to a critical path of the FW -network, but
not to a critical path of the BW -network, despite both its start and finish
floats are greater than zero (note that it could also happen the opposite,
i.e., an activity could belong to a critical path of the BW -network but
not to a critical path of the FW -network). Finally, we note that activity
4 also has both positive floats but, on the contrary, it does not belong
to any critical path of the two networks.

The above analysis for Example 1 does not show all the possible
issues. In fact, from the definitions of FW -gap and BW -gap of activity
𝑖, it follows that 𝛿𝐹𝑊

𝑖 ≤ 𝐿𝑆𝑖 − 𝐸𝑆𝑖, because 𝓁𝐹𝑊
𝑖→𝑛+1 ≥ 𝓁𝐵𝑊

𝑖→𝑛+1, and,
analogously, 𝛿𝐵𝑊𝑖 ≤ 𝐿𝑆𝑖 − 𝐸𝑆𝑖, because 𝓁𝐵𝑊

0→𝑖 ≥ 𝓁𝐹𝑊
0→𝑖 . Hence, we have

max{𝛿𝐹𝑊
𝑖 , 𝛿𝐵𝑊𝑖 } ≤ 𝐿𝑆𝑖 − 𝐸𝑆𝑖. Analogously, using the FF -standardized

network representation, it can be shown that 𝛿𝐹𝑊
𝑖 ≤ 𝐿𝐹𝑖 − 𝐸𝐹𝑖 and

𝛿𝐵𝑊𝑖 ≤ 𝐿𝐹𝑖 − 𝐸𝐹𝑖. Therefore, we have

max{𝛿𝐹𝑊
𝑖 , 𝛿𝐵𝑊𝑖 } ≤ min{𝐿𝑆𝑖 − 𝐸𝑆𝑖, 𝐿𝐹𝑖 − 𝐸𝐹𝑖}, (1)

and it could happen that a FW&BW -critical activity 𝑖 (i.e., with max
𝐹𝑊 𝐵𝑊
4

{𝛿𝑖 , 𝛿𝑖 } = 0) has both start and finish floats greater than 0. Hence, m
Table 2
FW and BW durations, and earliest/latest start/finish times of Example 2.

Activity 𝑖 1 2 3 4 5 6 7 8

𝑑𝐹𝑊
𝑖 , 𝑑𝐵𝑊

𝑖 8, 8 5, 5 10, 9 1, 1 4, 5 4, 4 9, 9 7, 7
𝐸𝑆𝑖 , 𝐿𝑆𝑖 0, 0 8, 8 3, 4 3, 4 0, 0 0, 0 4, 4 4, 6
𝐸𝐹𝑖 , 𝐿𝐹𝑖 8, 8 13, 13 13, 13 4, 5 4, 5 4, 4 13, 13 11, 13

an activity could have both positive start and finish floats, despite
belonging to a critical path in both the FW - and BW - networks. We
will discuss this occurrence in the following additional example.

Example 2. Let us consider the project network, with minimum and
maximum activity durations, shown in Fig. 4.

Table 2 lists, for each activity 𝑖, the activity forward and backward
optimal durations (𝑑𝐹𝑊

𝑖 , 𝑑𝐵𝑊𝑖 ) and its earliest/latest start/finish times
(𝐸𝑆𝑖, 𝐿𝑆𝑖, 𝐸𝐹𝑖, 𝐿𝐹𝑖), calculated by applying the forward and backward
ecursions. The minimum project makespan 𝐶∗

max = 13, and 𝑑𝐹𝑊
𝑖 =

𝐵𝑊
𝑖 , for all activities 𝑖 but 3 and 5; in particular, 𝑑𝐹𝑊

3 > 𝑑𝐵𝑊3 , while
𝐹𝑊
5 < 𝑑𝐵𝑊5 . As for activity floats, all the activities but 3, 4, and 5,
ave both start and finish floats equal to zero. However, activity 3 has
positive start float, contrarily to its finish float, while the opposite

ccurs to activity 5, and finally, activity 4 has both positive start and
inish floats.

Figs. 5 and 6 represent the SS-standardized networks of the FW -
etwork and of the BW -network of Example 2, respectively. In both
etworks, critical paths have length 𝐶∗

max = 13; dashed arcs do not
elong to a critical path. Therefore, all the activities, except activity
, belong to a critical path and, hence, they are FW&BW -critical.

However, looking at Table 2, it results that 𝐸𝑆4 = 3, 𝐸𝐹4 = 4, and
𝑆4 = 4, 𝐿𝐹4 = 5, and, hence, both the start float 𝐿𝑆4 − 𝐸𝑆4 and the

inish float 𝐿𝐹4 − 𝐸𝐹4 of activity 4 are strictly greater than 0, despite
his activity results to be FW&BW -critical.

Therefore, considering the well-known concept of critical activity
recalled in Section 2) and in the light of the analysis just performed
n the given examples, we cannot establish if an activity is critical
ust by analyzing if it belongs to a critical path on both the FW - and
W - networks, because even a FW&BW -critical activity can have both
he start and finish floats greater than zero (see, e.g., activity 4 of
xample 2).

In conclusion, from the above analysis, two questions arise: (i) Since
tart and finish floats could be different, what are the conditions on the
ctivity floats that allow one to characterize if an activity is critical?
ii) Is there a specific network related to a particular set of optimal
urations (possibly distinct from the FW - and BW - networks) useful for
nalyzing the floats of an activity 𝑖 and for determining its criticality if
he activity lies on a critical path of this network?

In the next sections, we show that such a network (that we will call
𝑒𝑠𝑡(𝑖)-network) exists, for each activity 𝑖, and we provide a new and
ore general definition of critical activity.
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Fig. 4. Project network, with minimum and maximum activity durations, of Example 2.
Fig. 5. The SS-standardized network of the FW -network of Example 2.
Fig. 6. The SS-standardized network of the BW -network of Example 2.
(
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4. Theoretical results - Generalizing the concept of critical activity

Inequality (1) can be clearly generalized for any project network
𝑁(𝑑) related to given activity durations 𝑑𝑘 ∈ [𝑑min

𝑘 , 𝑑max
𝑘 ], with 𝑘 =

1,… , 𝑛, minimizing the project length (equal to 𝐶∗
max). That is,

𝑁(𝑑)
𝑖 ≤ min{𝐿𝑆𝑖 − 𝐸𝑆𝑖, 𝐿𝐹𝑖 − 𝐸𝐹𝑖}, (2)

here 𝛿𝑁(𝑑)
𝑖 = 𝐶∗

max − (𝓁𝑁(𝑑)
0→𝑖 + 𝓁𝑁(𝑑)

𝑖→𝑛+1) ≥ 0 is the gap between 𝐶∗
max

nd the length of the longest path from 0 to 𝑛 + 1 traversing 𝑖 in
etwork 𝑁(𝑑). In fact 𝛿𝑁(𝑑)

𝑖 ≤ 𝐿𝑆𝑖 − 𝐸𝑆𝑖, since in the SS-standardized
etwork representation we have 𝓁𝑁(𝑑)

0→𝑖 ≥ 𝐸𝑆𝑖 and 𝓁𝑁(𝑑)
𝑖→𝑛+1 ≥ 𝐶∗

max − 𝐿𝑆𝑖.
nalogously, considering the FF -standardized network representation,

t can be shown that 𝛿𝑁(𝑑)
𝑖 = 𝐶∗

max − (𝓁𝑁(𝑑)
0→𝑖 + 𝓁𝑁(𝑑)

𝑖→𝑛+1) ≤ 𝐿𝐹𝑖 − 𝐸𝐹𝑖. In
act, since 𝓁𝑁(𝑑)

0→𝑖 +𝓁𝑁(𝑑)
𝑖→𝑛+1 = 𝓁𝑁(𝑑)

0→𝑖 +𝓁𝑁(𝑑)
𝑖→𝑛+1, we remark that the gap 𝛿𝑁(𝑑)

𝑖
oes not depend on the adopted network standardization.

Let 𝑑(𝑖)𝑘 ∈ [𝑑min
𝑘 , 𝑑max

𝑘 ] be the activity durations, with 𝑘 = 1… 𝑛,
minimizing the project length, and maximizing the gap between the
minimum project length 𝐶∗

max and the longest path from 0 to 𝑛 + 1
traversing activity 𝑖. Let us denote with 𝛿max

𝑖 the maximum value of
this gap. In particular, we show that the above (best) activity durations
can be derived from the forward and backward durations, as follows:
𝑑(𝑖)ℎ = 𝑑𝐹𝑊

ℎ , for ℎ = 1,… , 𝑖− 1, 𝑑(𝑖)𝑗 = 𝑑𝐵𝑊𝑗 , for 𝑗 = 𝑖+ 1,… , 𝑛, and 𝑑(𝑖)𝑖 =
min{𝑑𝐹𝑊

𝑖 , 𝑑𝐵𝑊𝑖 }. Accordingly, let us call 𝑏𝑒𝑠𝑡(𝑖)-network the project
network 𝑁(𝑑(𝑖)) with the above (fixed) activity durations 𝑑(𝑖)𝑘 , 𝑘 = 1… 𝑛.
Moreover, we show that 𝛿max

𝑖 = min{𝐿𝑆𝑖 −𝐸𝑆𝑖, 𝐿𝐹𝑖 −𝐸𝐹𝑖}, and, hence,
the 𝑏𝑒𝑠𝑡(𝑖)-network is the network for which Inequality (2) is fulfilled
at the equality.

Lemma 1. The lengths of the longest paths in the SS and in the FF
standardized networks of 𝑏𝑒𝑠𝑡(𝑖)-network from node 0 to node 𝑛+1, without
traversing node 𝑖, are not greater than 𝐶∗

max.

Proof. Given the SS-standardized network of 𝑏𝑒𝑠𝑡(𝑖)-network, it is clear
that length 𝓁𝑏𝑒𝑠𝑡(𝑖)

0→ℎ , with 0 < ℎ < 𝑖 < 𝑛+1, is minimum, because 𝓁𝑏𝑒𝑠𝑡(𝑖)
0→ℎ =

𝓁𝐹𝑊
0→ℎ = 𝐸𝑆ℎ. Analogously, the length 𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑗→𝑛+1, with 0 < 𝑖 < 𝑗 < 𝑛 + 1, is
minimum, because 𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑗→𝑛+1 = 𝓁𝐵𝑊
𝑗→𝑛+1 = 𝐶∗

max−𝐿𝑆𝑗 . Moreover, the length
𝐹𝑊 𝐵𝑊 + 𝐹𝑊
5

𝑡ℎ𝑗 of arc (ℎ, 𝑗), if it exists, is equal to 𝑡ℎ𝑗 (𝑑ℎ , 𝑑𝑗 ) = 𝑡ℎ𝑗 (𝑑ℎ ) −
𝑡−ℎ𝑗 (𝑑
𝐵𝑊
𝑗 ) ≤ 𝐿𝑆𝑗 − 𝐸𝑆ℎ, because 𝐸𝑆ℎ + 𝑡+ℎ𝑖(𝑑

𝐹𝑊
ℎ ) and −𝑡−ℎ𝑗 (𝑑

𝐵𝑊
𝑗 ) +

(𝐶∗
max −𝐿𝑆𝑗 ) are both minima, according to the forward and backward

recursions, respectively, and then their sum 𝐸𝑆ℎ+𝑡+ℎ𝑖(𝑑
𝐹𝑊
ℎ )−𝑡−ℎ𝑗 (𝑑

𝐵𝑊
𝑗 )+

𝐶∗
max −𝐿𝑆𝑗 ) being equal to the length 𝓁𝑏𝑒𝑠𝑡(𝑖)

0→ℎ + 𝑡ℎ𝑗 (𝑑𝐹𝑊
ℎ , 𝑑𝐵𝑊𝑗 ) + 𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑗→𝑛+1
of the longest path (0,… , ℎ, 𝑗,… , 𝑛 + 1) is minimum and, therefore, it
cannot be greater than 𝐶∗

max. Therefore, the length of the longest path
in the SS-standardized network of 𝑏𝑒𝑠𝑡(𝑖)-network from node 0 to node
𝑛+1 without traversing node 𝑖 is equal to max(ℎ,𝑗)∈𝐴∶ℎ<𝑖<𝑗{𝓁

𝑏𝑒𝑠𝑡(𝑖)
0→ℎ + 𝑡ℎ𝑗 +

𝓁𝑏𝑒𝑠𝑡(𝑖)
𝑗→𝑛+1} ≤ 𝐶∗

max, where 𝐴 is the arc set of the network.
The same result occurs on the 𝐹𝐹 -standardized network since the

length of any path from node 0 to node 𝑛 + 1 in the 𝑆𝑆-standardized
network is equal to the length of the same path in the 𝐹𝐹 -standardized
network. □

Theorem 1. If 𝑑𝐹𝑊
𝑖 ≤ 𝑑𝐵𝑊𝑖 , the critical path length of 𝑏𝑒𝑠𝑡(𝑖)-network is

qual to 𝐶∗
max and 𝛿max

𝑖 = 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐿𝑆𝑖 − 𝐸𝑆𝑖.

Proof. Let us consider the SS-standardized network of the 𝑏𝑒𝑠𝑡(𝑖)
-network. If 𝑑𝐹𝑊

𝑖 ≤ 𝑑𝐵𝑊𝑖 , then 𝑑(𝑖)𝑖 = 𝑑𝐹𝑊
𝑖 , and, hence, 𝓁𝑏𝑒𝑠𝑡(𝑖)

0→𝑖 = 𝓁𝐹𝑊
0→𝑖 =

𝐸𝑆𝑖. Moreover, the lengths of the outgoing arcs of node 𝑖 in the SS-
standardized network of 𝑏𝑒𝑠𝑡(𝑖)-network are not greater than those in
the SS-standardized network of the 𝐵𝑊 -network, since 𝑑𝐹𝑊

𝑖 ≤ 𝑑𝐵𝑊𝑖 .
Therefore, we have that 𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑖→𝑛+1 ≤ 𝓁𝐵𝑊
𝑖→𝑛+1. However, since 𝓁𝐵𝑊

𝑖→𝑛+1 is
minimum and equal to 𝐶∗

max − 𝐿𝑆𝑖, we have that 𝓁𝑏𝑒𝑠𝑡(𝑖)
𝑖→𝑛+1 = 𝓁𝐵𝑊

𝑖→𝑛+1 =
𝐶∗
max−𝐿𝑆𝑖 and minimum too. Therefore, 𝓁𝑏𝑒𝑠𝑡(𝑖)

0→𝑖 +𝓁𝑏𝑒𝑠𝑡(𝑖)
𝑖→𝑛+1 = 𝐸𝑆𝑖+𝐶∗

max−
𝐿𝑆𝑖 ≤ 𝐶∗

max is the length of the longest path from 0 to 𝑛 + 1 traversing
activity 𝑖. Since, by Lemma 1, also all the other paths from 0 to 𝑛 + 1
and not traversing 𝑖 are not greater than 𝐶∗

max, with the given activity
durations, defining the 𝑏𝑒𝑠𝑡(𝑖)-network, the project length is still equal
to the minimum value 𝐶∗

max.
In addition, 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐶∗

max − (𝓁𝑏𝑒𝑠𝑡(𝑖)
0→𝑖 + 𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑖→𝑛+1) = 𝐶∗
max − (𝐸𝑆𝑖 +𝐶∗

max −
𝐿𝑆𝑖). Hence, 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐿𝑆𝑖 − 𝐸𝑆𝑖; therefore, the 𝑏𝑒𝑠𝑡(𝑖)-network is the
network for which Inequality (2) is fulfilled at the equality and, hence,
𝛿max
𝑖 = 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐿𝑆𝑖 − 𝐸𝑆𝑖. □

Fig. 7 shows the SS-standardized network of the 𝑏𝑒𝑠𝑡(4)-network of
Example 2, i.e., of the project network with activity durations 𝑑ℎ =
(4) 𝐹𝑊 (4) 𝐹𝑊 𝐹𝑊 𝐵𝑊
𝑑ℎ = 𝑑ℎ , for ℎ = 1, 2, 3, 𝑑4 = 𝑑4 = 𝑑4 = min{𝑑4 , 𝑑4 }, and
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Fig. 7. The SS-standardized network of the 𝑏𝑒𝑠𝑡(4)-network of Example 2.
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𝑗 = 𝑑(4)𝑗 = 𝑑𝐵𝑊𝑗 , for 𝑗 = 5, 6, 7, 8. We can easily note that activity 4
oes not belong to a critical path of this network and that the length of
he longest path from 0 to 𝑛+1 traversing activity 4 is equal to 12 (since
𝓁𝑏𝑒𝑠𝑡(4)
0→4 = 3 and 𝓁𝑏𝑒𝑠𝑡(4)

4→9 = 9), while critical paths have length equal to
𝐶∗
max = 13.

Therefore, 𝛿max
4 = 𝛿𝑏𝑒𝑠𝑡(4)4 = 𝐿𝑆4 − 𝐸𝑆4 = 1. The earliest/latest start

values of activity 4 listed in Table 2 confirm the value of the start
float of this activity, derived from the 𝑏𝑒𝑠𝑡(4)-network, according to
Theorem 1. In addition, from the table, we note that the start and finish
float are equal. Therefore, we also have 𝛿max

4 = 𝛿𝑏𝑒𝑠𝑡(4)4 = 𝐿𝐹4 −𝐸𝐹4 = 1.
In fact, for this activity, both Theorems 1 and (next) 2 apply, since
𝑑𝐹𝑊
4 = 𝑑𝐵𝑊4 .

Theorem 2. If 𝑑𝐹𝑊
𝑖 ≥ 𝑑𝐵𝑊𝑖 , the critical path length of 𝑏𝑒𝑠𝑡(𝑖)-network is

equal to 𝐶∗
max and 𝛿max

𝑖 = 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖.

Proof. For easy of proof, let us consider the FF -standardized network of
𝑏𝑒𝑠𝑡(𝑖)-network. If 𝑑𝐹𝑊

𝑖 ≥ 𝑑𝐵𝑊𝑖 , then 𝑑(𝑖)𝑖 = 𝑑𝐵𝑊𝑖 , and, hence, 𝓁𝑏𝑒𝑠𝑡(𝑖)
𝑖→𝑛+1 =

𝓁𝐵𝑊
𝑖→𝑛+1 = 𝐶∗

max − 𝐿𝐹𝑖. Moreover, the lengths of the incoming arcs of
node 𝑖 in the FF -standardized network of 𝑏𝑒𝑠𝑡(𝑖)-network are not greater
than those in the FF -standardized network of the 𝐹𝑊 -network, since
𝑑𝐹𝑊
𝑖 ≥ 𝑑𝐵𝑊𝑖 . Therefore, we have that 𝓁𝑏𝑒𝑠𝑡(𝑖)

0→𝑖 ≤ 𝓁𝐹𝑊
0→𝑖 . However, since

𝓁𝐹𝑊
0→𝑖 is minimum and equal to 𝐸𝐹𝑖, we have that 𝓁𝑏𝑒𝑠𝑡(𝑖)

0→𝑖 = 𝓁𝐹𝑊
0→𝑖 = 𝐸𝐹𝑖

and minimum too. Therefore, 𝓁𝑏𝑒𝑠𝑡(𝑖)
0→𝑖 +𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑖→𝑛+1 = 𝐸𝐹𝑖+𝐶∗
max−𝐿𝐹𝑖 ≤ 𝐶∗

max is
the length of the longest path from 0 to 𝑛+1 traversing activity 𝑖. Since,
by Lemma 1, also all the other paths from 0 to 𝑛+1 and not traversing 𝑖
are not greater than 𝐶∗

max, with the given activity durations, defining the
𝑏𝑒𝑠𝑡(𝑖)-network, the project length is still equal to the minimum value
𝐶∗
max.

Since the lengths of the paths between 0 and 𝑛+1 do not depend on
the type of network standardization, we have 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐶∗

max − (𝓁𝑏𝑒𝑠𝑡(𝑖)
0→𝑖 +

𝓁𝑏𝑒𝑠𝑡(𝑖)
𝑖→𝑛+1) = 𝐶∗

max − (𝓁𝑏𝑒𝑠𝑡(𝑖)
0→𝑖 + 𝓁𝑏𝑒𝑠𝑡(𝑖)

𝑖→𝑛+1) = 𝐶∗
max − (𝐸𝐹𝑖 + 𝐶∗

max − 𝐿𝐹𝑖). Hence,
𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖; therefore, the 𝑏𝑒𝑠𝑡(𝑖)-network is the network for
which Inequality (2) is fulfilled at the equality and, hence, 𝛿max

𝑖 =
𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖. □

In conclusion, according to Theorems 1 and 2, Inequality (2) is valid
at equality that is:

Corollary 1. For the 𝑏𝑒𝑠𝑡(𝑖)-network 𝑁(𝑑(𝑖)) related to activity 𝑖, it results

𝛿max
𝑖 = 𝛿𝑁(𝑑(𝑖))

𝑖 = 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = min{𝐿𝑆𝑖 − 𝐸𝑆𝑖, 𝐿𝐹𝑖 − 𝐸𝐹𝑖}.

Moreover,

Corollary 2. For any activity 𝑖, it results 𝐿𝑆𝑖 − 𝐸𝑆𝑖 = max{0, (𝑑𝐹𝑊
𝑖 −

𝑑𝐵𝑊𝑖 )} + 𝛿max
𝑖 , and 𝐿𝐹𝑖 − 𝐸𝐹𝑖 = max{0, (𝑑𝐵𝑊𝑖 − 𝑑𝐹𝑊

𝑖 )} + 𝛿max
𝑖 .

As an example, let us consider activity 3 of Example 2. Since 𝑑𝐹𝑊
3 >

𝑑𝐵𝑊3 , we have that the duration of activity 3 in the 𝑏𝑒𝑠𝑡(3)-network is
equal to 𝑑𝐵𝑊3 = 9, while the durations of activities ℎ = 1, 2 are equal
to 𝑑𝐹𝑊

ℎ , and the durations of activities 𝑗 = 4,… , 8 are equal 𝑑𝐵𝑊𝑗 .
Since, in this example, we have that 𝑑𝐹𝑊

ℎ = 𝑑𝐵𝑊ℎ , with ℎ = 1, 2, in
the resulting 𝑏𝑒𝑠𝑡(3)-network for any activity 𝑖 we have 𝑑(3)𝑖 = 𝑑𝐵𝑊𝑖 ,
and then the 𝑏𝑒𝑠𝑡(3)-network is equivalent to the BW -network, whose
SS-standardized network is shown in Fig. 6. We can easily note that
activity 3 belongs to a critical path of this network and that the length
6

w

of the longest path from 0 to 𝑛+1 traversing activity 3 is equal to 𝐶∗
max =

13 (since 𝓁𝑏𝑒𝑠𝑡(3)
0→3 = 4 and 𝓁𝑏𝑒𝑠𝑡(3)

3→9 = 9). Therefore, 𝛿max
3 = 𝛿𝑏𝑒𝑠𝑡(3)3 = 0,

which is equal to 𝐿𝐹3−𝐸𝐹3 = 0, while 𝐿𝑆3−𝐸𝑆3 = (𝑑𝐹𝑊
3 −𝑑𝐵𝑊3 )+𝛿max

3 =
1, since 𝑑𝐹𝑊

3 = 10 and 𝑑𝐵𝑊3 = 9.
From the above examples, we note that in general 𝛿𝐹𝑊

𝑖 ≤ 𝛿max
𝑖 =

𝑏𝑒𝑠𝑡(𝑖)
𝑖 = min{𝐿𝑆𝑖−𝐸𝑆𝑖, 𝐿𝐹𝑖−𝐸𝐹𝑖} and 𝛿𝐵𝑊𝑖 ≤ 𝛿max

𝑖 = 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 = min{𝐿𝑆𝑖−
𝑆𝑖, 𝐿𝐹𝑖 − 𝐸𝐹𝑖} and these inequalities could be strict. In particular, it

could happen that 𝛿𝐹𝑊
𝑖 = 𝛿𝐵𝑊𝑖 = 0 despite min{𝐿𝑆𝑖−𝐸𝑆𝑖, 𝐿𝐹𝑖−𝐸𝐹𝑖} >

, that is, a FW&BW -critical activity could have positive floats w.r.t.
tart and finish times (see, e.g., activity 4 of Example 2).

Therefore, these results call for a new and more general definition
f critical activity.

efinition 1. An activity 𝑖 is critical if min{𝐿𝑆𝑖 −𝐸𝑆𝑖, 𝐿𝐹𝑖 −𝐸𝐹𝑖} = 0
nd strongly critical if both the start and the finish floats are equal to
.

From Definition 1 and Theorems 1 and 2, it follows that activity
is critical if and only if 𝛿max

𝑖 = 0 (i.e., it belongs to a critical path
f the 𝑏𝑒𝑠𝑡(𝑖)-network), and it is strongly critical if, in addition, it has
𝐹𝑊
𝑖 = 𝑑𝐵𝑊𝑖 .

Going back to our Research Questions (RQs) listed in Section 1, we
an therefore conclude that on GPRs project networks with variable
ctivity durations:

1. The start and finish floats of an activity can be different.
2. It is not required that both the start and finish floats must be

equal to zero for a critical activity, but it is required for at least
one of them.

3. The activity durations evaluated with the forward and backward
recursion are not necessarily equal, even when the activity is
critical.

4. An activity that belongs to the longest path both when the
activity durations are evaluated with the forward recursion, and
when they are evaluated with the backward recursions, is not
necessarily critical.

We close this section, providing a complete analysis of 𝐹𝑊 and 𝐵𝑊
ctivity durations, activity floats, path length gaps, and criticality for
ll the activities of Examples 1 and 2. The results are summarized in
ables 3 and 4, respectively. As for Example 1, from the FW and BW
ctivity durations, 𝑏𝑒𝑠𝑡(𝑖)-network 𝑁(𝑑(𝑖)) is equal to the BW -network
or activity 𝑖 = 1 (see Fig. 3), while it is equal to the FW -network (see

Fig. 2) for the remaining activities (i.e. 𝑖 = 2, 3, 4). In particular, looking
at the 𝑏𝑒𝑠𝑡(1)-network, we note that activity 1 does not belong to any
critical path, and 𝛿max

1 = 𝛿𝑏𝑒𝑠𝑡(1)1 = 2 which is equal to both its start
and finish floats (𝐹𝑆

1 = 𝐿𝑆1 − 𝐸𝑆1 = 2 and 𝐹 𝐹
1 = 𝐿𝐹1 − 𝐸𝐹1 = 2),

ince 𝑑𝐹𝑊
1 = 𝑑𝐵𝑊1 , and then the activity is not critical. For activity 2,

e note that it belongs to a critical path of the 𝑏𝑒𝑠𝑡(2)-network, then
max
2 = 𝛿𝑏𝑒𝑠𝑡(2)2 = 0. Therefore, it is critical, and in fact 𝐹𝑆

2 = 𝐿𝑆2−𝐸𝑆2 =
; however, 𝐹 𝐹

2 = 𝐿𝐹2 − 𝐸𝐹2 = 2, since 𝑑𝐵𝑊2 = 𝑑𝐹𝑊
2 + 2. Activity 3

ies on a critical path of 𝑏𝑒𝑠𝑡(3)-network and 𝑑𝐹𝑊
3 = 𝑑𝐵𝑊3 ; therefore,

max
3 = 𝛿𝑏𝑒𝑠𝑡(3)3 = 𝐿𝑆3−𝐸𝑆3 = 𝐿𝐹3−𝐸𝐹3 = 0. Finally, activity 4 does not
elong to any critical path of the 𝑏𝑒𝑠𝑡(4)-network and 𝛿max

4 = 𝛿𝑏𝑒𝑠𝑡(4)4 = 2.
ince 𝑑𝐹𝑊

4 = 𝑑𝐵𝑊4 , we have 𝛿𝑏𝑒𝑠𝑡(4)4 = 𝐿𝑆4−𝐸𝑆4 = 𝐿𝐹4−𝐸𝐹4 = 2. Based
n these results, summarized in Table 3, and according to Definition 1,

e have that activities 1 and 4 are not critical, since they have both
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Table 3
Results for Example 1.

Activity 𝑖 1 2 3 4

𝑑𝐹𝑊
𝑖 , 𝑑𝐵𝑊

𝑖 2, 2 2, 4 6, 6 4, 4
𝐹 𝑆
𝑖 2 0 0 2

𝐹 𝐹
𝑖 2 2 0 2

𝛿𝐹𝑊
𝑖 0 0 0 2
𝛿𝐵𝑊𝑖 2 0 0 2
𝛿max
𝑖 2 0 0 2

Critical No Yes Yes No

Table 4
Results for Example 2.

Activity 𝑖 1 2 3 4 5 6 7 8

𝑑𝐹𝑊
𝑖 , 𝑑𝐵𝑊

𝑖 8, 8 5, 5 10, 9 1, 1 4, 5 4, 4 9, 9 7, 7
𝐹 𝑆
𝑖 0 0 1 1 0 0 0 2

𝐹 𝐹
𝑖 0 0 0 1 1 0 0 2

𝛿𝐹𝑊
𝑖 0 0 0 0 0 0 0 2
𝛿𝐵𝑊𝑖 0 0 0 0 0 0 0 2
𝛿max
𝑖 0 0 0 1 0 0 0 2

Critical Yes Yes Yes No Yes Yes Yes No

positive start and finish floats, activity 2 is critical because its start float
is zero (even if its finish float is positive), while activity 3 is critical,
with both its start and finish floats are equal to zero, meaning that it is
strongly critical.

As for Example 2, with the results summarized in Table 4, for
activity 4 we already showed that 𝛿max

4 = 1 and 𝑑𝐹𝑊
4 = 𝑑𝐵𝑊4 , with the

consequence that 𝐹𝑆
𝑖 = 𝐿𝑆4−𝐸𝑆4 = 𝐿𝐹4−𝐸𝐹4 = 𝐹 𝐹

𝑖 = 1. Consequently,
despite this activity belongs to a critical path on both the FW - and BW -
networks (i.e., 𝛿𝐹𝑊

4 = 𝛿𝐵𝑊4 = 0), it is not critical since it does not
belong to any critical path in the 𝑏𝑒𝑠𝑡(4)-network (see Fig. 7), because
𝛿max
4 = 𝛿𝑏𝑒𝑠𝑡(4)4 = 1; we can note that for activity 4 the 𝑏𝑒𝑠𝑡(4)-network

network is different from both the FW - and BW - networks. As for the
other activities, the 𝑏𝑒𝑠𝑡(𝑖)-network is equal to the BW -network, for
activities 𝑖 = 1, 2, 3, while it is equal to the FW -network for activities
𝑖 = 5,… , 8. Using these networks, analog evaluations can be done on
the path length gaps 𝛿max

𝑖 , ending up that all the activities are critical,
but activities 4 and 8.

We conclude the analysis by showing that, for the case with only
Finish-to-Start precedences, the traditional concepts of activity float
and criticality are again found by applying the more general concepts
provided in this work. In fact, in that case, it is easy to see that 𝑑𝐹𝑊

𝑖 =
𝑑𝐵𝑊𝑖 = 𝑑min

𝑖 , for each activity 𝑖 = 1,… , 𝑛. Therefore, the FW - and BW -
etworks are the same and equal to the 𝑏𝑒𝑠𝑡(𝑖)-network, because also

𝑑(𝑖)𝑖 = 𝑑min
𝑖 , for all activity 𝑖 = 1,… , 𝑛. Hence, according to Corollary 2,

we have 𝐿𝑆𝑖 − 𝐸𝑆𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖 = 𝛿max
𝑖 = 𝛿𝑏𝑒𝑠𝑡(𝑖)𝑖 for any activity 𝑖;

herefore, start and finish floats 𝐹𝑆
𝑖 , 𝐹 𝐹

𝑖 are equal, and we simply refer
o them as activity float. Finally, an activity float is equal to zero if
nd only if 𝛿max

𝑖 = 0, meaning that the activity is critical if and only
f it belongs to a critical path of the project network, as stated by the
raditional concept of activity criticality.

. Computational results

To further highlight the importance of addressing the Research
uestions outlined in the previous sections, we conducted an extensive
xperimental campaign. As previously discussed, variable activity du-
ations can be conceptualized as a multi-modal scheduling scenario. In
uch a scenario, each activity 𝑖 is executable with infinite combinations
f resources, resulting in varying durations ranging from a minimum
𝑑min
𝑖 ) to a maximum (𝑑max

𝑖 ) value, even if in our specific scenario
esources are considered unconstrained. Consequently, to perform our
7

nalysis, we generated a new set of test instances, by adapting to our t
cenario some known benchmark instances available in the PSPLib
epository (PSPLib, 0000). In particular, we consider the multi-mode
esource-constrained project scheduling instance sets ‘‘J𝑛.mm’’, with
= 10, 12, 14, 16, 18, 20, 30 activities. Moreover, since these multi-mode

instances are with at most 30 activities, we also adapted the single-
mode resource-constrained project scheduling instance sets ‘‘J𝑛.sm’’,
with 𝑛 = 60, 90, 120 activities, for generating additional larger instances.

All the benchmark instances that we adapted to our scenario as-
sume that the precedences are of type 𝐹𝑆. To generate instances with
GPRs (named ‘‘J𝑛.gpr’’), as considered in our case, from each given
benchmark instance, we generated 5 instances preserving the network
structure and randomly assigning the type of precedence from the sets
{𝑆𝑆, 𝑆𝐹 , 𝐹𝑆, 𝐹𝐹 }.

As for the values of the minimum and maximum activity durations
𝑑min
𝑖 ≤ 𝑑max

𝑖 , for the (smaller) instances derived from the multi-mode
test cases ‘‘J𝑛.mm’’, we preserve their values which are integers ranging
in [1, 10]. In particular, for the smaller instances, Table 5 reports the
average distribution (in percentage) of the values of the range widths
𝛥𝑖 = 𝑑max

𝑖 −𝑑min
𝑖 of the activity durations, with 𝛥𝑖 = 0, 1,… , 9 (according

to the possible values of 𝑑min
𝑖 and 𝑑max

𝑖 ).
For the other larger instances, derived from the single-mode test

cases ‘‘J𝑛.sm’’, for which the values of 𝑑min
𝑖 and 𝑑max

𝑖 cannot be directly
derived from, we randomly generated their values as integers in the
range [1, 10], assuring (on average) the same distribution for the activity
duration range widths 𝛥𝑖 = 𝑑max

𝑖 − 𝑑min
𝑖 evaluated on the smaller

instances (last row of Table 5). Table 6 reports the distribution of the
values of 𝛥𝑖 = 𝑑max

𝑖 − 𝑑min
𝑖 on the larger instances.

The overall analyzed dataset consists of 27,450 generated instances.
These instances are categorized into two groups: 19,650 smaller in-
stances and 7800 larger instances, derived from multi-mode and single-
mode benchmark test cases, respectively. Collectively, these instances
encompass a total of 1,063,270 activities. Among them, 343,270 stem
from multi-mode benchmark instances, while 720,000 activities are
from single-mode benchmark instances.

After describing the generated instances, we will analyze the results
obtained, following the theoretical exploration of the Research Ques-
tions (RQs) presented in the previous section. Specifically, we will focus
on the following evaluations:

1. How often does a critical activity have only the start (finish) float
equal to zero, and how often does it have both the two floats
equal to zero?

2. How often are the durations 𝑑𝐹𝑊
𝑖 and 𝑑𝐵𝑊𝑖 (computed by the

forward and backward recursions, respectively) of an activity 𝑖
different? Additionally, which is the frequency in which 𝑑𝐹𝑊

𝑖
(𝑑𝐵𝑊𝑖 ) is equal to 𝑑min

𝑖 or 𝑑max
𝑖 or in between them?

3. How often does a non-critical activity belong to a critical path
of networks 𝑁(𝑑𝐹𝑊 ) and/or 𝑁(𝑑𝐵𝑊 )?

Starting with the analysis of the critical activities, the second and
third columns of Table 7 show the total number of critical activities
for each set of instances and the related percentage compared to the
total number of activities. The last three columns of Table 7 provide
details on the average percentage of critical activities having only zero
start float (i.e., 𝐹𝑆

𝑖 = 0 & 𝐹 𝐹
𝑖 > 0), only zero finish float (i.e., 𝐹 𝐹

𝑖 =
& 𝐹𝑆

𝑖 > 0), and both these floats equal to zero (i.e., 𝐹𝑆
𝑖 = 𝐹 𝐹

𝑖 =
), respectively. We note, as could be expected, that the percentage
f critical activities decreases as the size of the instances increases.
owever, the percentage of critical activities with only one zero float

ncreases (while the percentage of critical activities having both zero
loats decreases) by increasing the size of the instances. This is because
y increasing the number of activities, the frequency with which 𝑑𝐹𝑊

𝑖 ≠
𝐵𝑊
𝑖 (and, then, by Corollary 2, 𝐹𝑆

𝑖 ≠ 𝐹 𝐹
𝑖 ) increases. This trend could

e justified by the heightened flexibility of the activity durations that
re, in general, less constrained with the increase in the number of
roject activities. In addition, comparing the values of the third last and

he second last columns of Table 7, we note that the average percentage
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Table 5
Characteristics of small/medium size instances.

Inst. set # inst. # act. avg. distribution (%)

𝛥𝑖 = 0 𝛥𝑖 = 1 𝛥𝑖 = 2 𝛥𝑖 = 3 𝛥𝑖 = 4 𝛥𝑖 = 5 𝛥𝑖 = 6 𝛥𝑖 = 7 𝛥𝑖 = 8 𝛥𝑖 = 9

J10.gpr 2680 26,800 1.03 5.35 10.32 12.39 14.40 15.21 15.26 11.96 8.45 5.63
J12.gpr 2735 32,820 0.98 5.10 10.31 12.42 13.89 15.05 13.56 13.33 9.98 5.38
J14.gpr 2755 38,570 0.99 5.38 9.66 12.65 13.77 15.63 13.84 12.69 9.92 5.47
J16.gpr 2750 44,000 0.94 5.77 9.40 12.56 14.23 14.58 14.41 13.35 9.56 5.20
J18.gpr 2760 49,680 0.97 5.52 9.59 12.64 14.59 15.06 14.81 12.31 9.47 5.04
J20.gpr 2770 55,400 1.05 5.56 10.05 12.97 14.31 14.90 14.03 12.64 9.33 5.16
J30.gpr 3200 96,000 0.90 5.11 9.54 12.13 14.60 15.66 14.68 12.43 9.74 5.22

tot./avg. 19,650 343,270 0.98 5.40 9.84 12.54 14.26 15.15 14.37 12.67 9.49 5.30

Note: # inst. = total number of instances, # act. = total number of activities, 𝛥𝑖 = 𝑑max
𝑖 − 𝑑min

𝑖 .
Table 6
Characteristics of large size instances.

Inst. set # inst. # act. avg. distribution (%)

𝛥𝑖 = 0 𝛥𝑖 = 1 𝛥𝑖 = 2 𝛥𝑖 = 3 𝛥𝑖 = 4 𝛥𝑖 = 5 𝛥𝑖 = 6 𝛥𝑖 = 7 𝛥𝑖 = 8 𝛥𝑖 = 9

J60.gpr 2400 144,000 0.95 5.43 9.97 12.41 14.25 15.18 14.31 12.62 9.62 5.26
J90.gpr 2400 216,000 0.99 5.39 9.90 12.36 14.27 15.19 14.40 12.67 9.50 5.33
J120.gpr 3000 360,000 0.97 5.44 9.83 12.62 14.26 15.20 14.31 12.62 9.43 5.31

tot./avg. 7800 720,000 0.97 5.42 9.90 12.47 14.26 15.19 14.34 12.64 9.51 5.30

Note: Note: # inst. = total number of instances, # act. = total number of activities, 𝛥𝑖 = 𝑑max
𝑖 − 𝑑min

𝑖 .
Table 7
Critical activities and floats statistics.

Inst. set # c.a. % c.a. %(𝐹 𝑆
𝑖 = 0 & 𝐹 𝐹

𝑖 > 0) %(𝐹 𝐹
𝑖 = 0 & 𝐹 𝑆

𝑖 > 0) %(𝐹 𝑆
𝑖 = 𝐹 𝐹

𝑖 = 0)

J10.gpr 8438 31.49 10.41 10.44 79.15
J12.gpr 10,237 31.19 10.50 10.56 78.94
J14.gpr 11,335 29.39 11.87 11.54 76.59
J16.gpr 12,179 27.68 12.48 12.48 75.04
J18.gpr 12,969 26.11 12.56 12.61 74.82
J20.gpr 13,727 24.78 12.92 13.23 73.85
J30.gpr 19,271 20.07 14.79 14.13 71.08
J60.gpr 18,820 13.07 15.67 15.67 68.66
J90.gpr 22,057 10.21 16.54 16.38 67.08
J120.gpr 30,177 8.38 17.32 16.30 66.38

Note: #, % c.a. = total number and percentage of critical activities, 𝐹 𝑆
𝑖 = 𝐿𝑆𝑖 − 𝐸𝑆𝑖, 𝐹 𝐹

𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖.
a
c
o

d
c
s
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h
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of critical activities having only zero start float is almost equal to that
of those having only zero finish float, for each the instance set. In
particular, the (average) percentage of critical activities having only
the start (finish) float equal to zero is in the range [10.41%; 17.32%]
([10.44%; 16.30%]), and, hence, it is not negligible in all the test cases.

The results just described are consistent with those reported in
Table 8, which shows the comparison between the values of activity
durations 𝑑𝐹𝑊

𝑖 and 𝑑𝐵𝑊𝑖 , computed by the forward and backward
recursions, respectively, for all the activities 𝑖 having 𝑑min

𝑖 < 𝑑max
𝑖 .

Again, the percentage of activities with different 𝐹𝑊 and 𝐵𝑊 dura-
tions increases with increasing the number of activities, for the reason
we have already mentioned. In particular, the occurrences 𝑑𝐹𝑊

𝑖 < 𝑑𝐵𝑊𝑖
range from 12.08% to 23.31% while the occurrences 𝑑𝐹𝑊

𝑖 > 𝑑𝐵𝑊𝑖
range from 12.01% to 21.41%. Accordingly, the cases with 𝑑𝐹𝑊

𝑖 = 𝑑𝐵𝑊𝑖
decrease from 74.89% to 54.31%, and, in all the cases, the fraction of
activities having different 𝐹𝑊 and 𝐵𝑊 durations is not negligible.

Table 9 illustrates the average distribution of 𝐹𝑊 and 𝐵𝑊 activity
durations for the activities having 𝑑min

𝑖 < 𝑑max
𝑖 . The last two columns

of the table show the relative positioning of 𝑑𝐹𝑊
𝑖 and 𝑑𝐵𝑊𝑖 within the

activity duration range [𝑑min
𝑖 , 𝑑max

𝑖 ]. For this purpose, we introduce and
evaluate the following two indicators 𝛼𝐹𝑊

𝑖 =
𝑑𝐹𝑊
𝑖 −𝑑min

𝑖
𝑑max
𝑖 −𝑑min

𝑖
and 𝛼𝐵𝑊𝑖 =

𝑑𝐵𝑊𝑖 −𝑑min
𝑖

𝑑max
𝑖 −𝑑min

𝑖
, ranging between 0 and 1: the closer 𝛼𝐹𝑊

𝑖 (𝛼𝐵𝑊𝑖 ) is to 0, the
loser duration 𝑑𝐹𝑊

𝑖 (𝑑𝐵𝑊𝑖 ) is to 𝑑min
𝑖 ; vice-versa, the closer they are

o 1, the closer that durations are to 𝑑max
𝑖 . From the results listed in

he table, it appears that both indicators 𝛼𝐹𝑊
𝑖 and 𝛼𝐵𝑊𝑖 on average are

ery close to 0: durations 𝑑𝐹𝑊
𝑖 and 𝑑𝐵𝑊𝑖 are very close to 𝑑min

𝑖 , with
𝐹𝑊 min 𝐵𝑊
8

𝑑𝑖 being slightly closer to 𝑑𝑖 than 𝑑𝑖 . In addition, on average, c
we record a small increase of both 𝛼𝐹𝑊
𝑖 and 𝛼𝐵𝑊𝑖 by increasing the

number of the project activities, meaning that accordingly both 𝑑𝐹𝑊
𝑖

nd 𝑑𝐵𝑊𝑖 tend on average to align less closely to 𝑑min
𝑖 . Again, this trend

ould be justified by the heightened flexibility of the activity durations
n projects with larger sets of activities.

Moreover, looking at columns 2, 3, 4 of the table, it appears that
urations 𝑑𝐹𝑊

𝑖 are often equal to 𝑑min
𝑖 (with decreasing average per-

entages going from 87.04% to 73.38% by increasing the project sizes),
ometimes are in between 𝑑min

𝑖 and 𝑑max
𝑖 (with average percentages

anging from 9.87% to 13.70%), and only a few times equal to 𝑑max
𝑖

with average percentages ranging from 3.10% to 12.92%). The same
appens for durations 𝑑𝐵𝑊𝑖 (see columns 5, 6, and 7 of the table), even
f on average they are slightly larger than 𝑑𝐹𝑊

𝑖 , as it appears also from
he last two columns of the table. These results can be justified because,
esides the aim of minimizing the project makespan, on the one hand,
e also wish to finish the activities as earliest as possible (obtained with

he forward recursion), and, on the other hand, we wish to start the
ctivities as latest as possible (obtained with the backward recursion),
nd of course, in general, all this is obtained by selecting the activity
xecution modality with sufficiently small duration.

Finally, Table 10 lists the statistics on non-critical activities (i.e., ac-
ivities having both start and finish floats greater than 0). Columns

and 3 report the total number of non-critical activities and their
ercentage compared to the number of all activities, for each instance
et: we may note that the number of non-critical activities increases
y increasing the number of project activities from 68.51% to 91.62%.
he last 5 columns of the table report the statistics on the subset of non-
ritical activities that belongs to a critical path in the 𝐹𝑊 and/or 𝐵𝑊
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Table 8
Comparison between 𝐹𝑊 and 𝐵𝑊 activities durations (𝑑𝐹𝑊

𝑖 , 𝑑𝐵𝑊
𝑖 ) when 𝑑min

𝑖 < 𝑑max
𝑖 .

Inst. set #(𝑑𝐹𝑊
𝑖 < 𝑑𝐵𝑊

𝑖 ) %(𝑑𝐹𝑊
𝑖 < 𝑑𝐵𝑊

𝑖 ) #(𝑑𝐹𝑊
𝑖 = 𝑑𝐵𝑊

𝑖 ) %(𝑑𝐹𝑊
𝑖 = 𝑑𝐵𝑊

𝑖 ) #(𝑑𝐹𝑊
𝑖 > 𝑑𝐵𝑊

𝑖 ) %(𝑑𝐹𝑊
𝑖 > 𝑑𝐵𝑊

𝑖 )

J10.gpr 3237 12.08 20 070 74.89 3218 12.01
J12.gpr 4905 14.95 22 838 69.59 4757 14.49
J14.gpr 6092 15.79 26 152 67.80 5946 15.42
J16.gpr 7237 16.45 29 117 66.18 7231 16.43
J18.gpr 8373 16.85 32 657 65.73 8170 16.45
J20.gpr 9687 17.49 35 880 64.77 9253 16.70
J30.gpr 18 582 19.36 58 801 61.25 17 752 18.49
J60.gpr 30 703 21.32 83 047 57.67 28 881 20.06
J90.gpr 48 832 22.61 119 919 55.52 45 103 20.88
J120.gpr 83 925 23.31 195 529 54.31 77 060 21.41

Note: #,%(⋅) = number and percentage of activities for which condition (⋅) is true.
Table 9
Avg. distribution of 𝐹𝑊 and 𝐵𝑊 activities durations (𝑑𝐹𝑊

𝑖 , 𝑑𝐵𝑊
𝑖 ) when 𝑑min

𝑖 < 𝑑max
𝑖 .

Inst. set avg. occurrences (%) avg.

𝑑𝐹𝑊
𝑖 = 𝑑min

𝑖 𝑑min
𝑖 < 𝑑𝐹𝑊

𝑖 < 𝑑min
𝑖 𝑑𝐹𝑊

𝑖 = 𝑑max
𝑖 𝑑𝐵𝑊

𝑖 = 𝑑min
𝑖 𝑑min

𝑖 < 𝑑𝐵𝑊
𝑖 < 𝑑max

𝑖 𝑑𝐵𝑊
𝑖 = 𝑑max

𝑖 𝛼𝐹𝑊
𝑖 𝛼𝐵𝑊

𝑖

J10.gpr 87.04 9.87 3.10 87.00 9.68 3.32 0.07 0.07
J12.gpr 84.04 11.68 4.28 83.72 11.82 4.46 0.09 0.10
J14.gpr 82.77 12.23 5.00 82.52 12.19 5.28 0.10 0.11
J16.gpr 81.65 12.50 5.85 81.61 12.45 5.94 0.11 0.11
J18.gpr 81.40 12.44 6.16 81.03 12.78 6.19 0.12 0.12
J20.gpr 80.92 12.62 6.46 80.20 12.74 7.06 0.12 0.13
J30.gpr 78.51 13.53 7.96 77.65 13.72 8.63 0.14 0.15
J60.gpr 75.89 13.48 10.63 74.69 13.89 11.41 0.17 0.18
J90.gpr 74.38 13.69 11.93 72.82 14.03 13.15 0.18 0.20
J120.gpr 73.38 13.70 12.92 71.71 13.82 14.48 0.19 0.21

Note: 𝛼𝐹𝑊
𝑖 = 𝑑𝐹𝑊

𝑖 −𝑑min
𝑖

𝑑max
𝑖 −𝑑min

𝑖
, 𝛼𝐵𝑊

𝑖 = 𝑑𝐵𝑊
𝑖 −𝑑min

𝑖

𝑑max
𝑖 −𝑑min

𝑖
.

Table 10
Non-critical activities statistics.

Inst. set # n.-c.a. % n.-c.a. Hidden non-critical activities

# h. % h. ∈ 𝑁𝑐 (𝑑𝐹𝑊 ) ∈ 𝑁𝑐 (𝑑𝐵𝑊 ) ∈ 𝑁𝑐 (𝑑𝐹𝑊 )
∉ 𝑁𝑐 (𝑑𝐵𝑊 ) ∉ 𝑁𝑐 (𝑑𝐹𝑊 ) ∈ 𝑁𝑐 (𝑑𝐵𝑊 )

J10.gpr 18,362 68.51 686 3.74 50.73% 49.13% 0.15%
J12.gpr 22,583 68.81 1312 5.81 49.77% 49.47% 0.76%
J14.gpr 27,235 70.61 1561 5.73 49.58% 49.39% 1.02%
J16.gpr 31,821 72.32 1812 5.69 52.48% 46.47% 1.05%
J18.gpr 36,711 73.89 1913 5.21 48.41% 50.65% 0.94%
J20.gpr 41,673 75.22 2072 4.97 52.36% 46.04% 1.59%
J30.gpr 76,729 79.93 3466 4.52 50.43% 47.75% 1.82%
J60.gpr 125,180 86.93 4055 3.24 50.38% 47.57% 2.05%
J90.gpr 193,943 89.79 5217 2.69 49.17% 48.07% 2.76%
J120.gpr 329,823 91.62 7204 2.18 48.89% 49.50% 1.61%

Note: #, % n.-c.a. = total number and percentage of non-critical activities, #, % h. = total number and percentage (respect to # n.-c.a) of
hidden non-critical activities, 𝑁𝑐 (⋅) = critical subnetwork of 𝑁(⋅).
etworks, i.e., which belong to critical subnetwork 𝑁𝑐 (𝑑𝐹𝑊 ) of network
(𝑑𝐹𝑊 ) and/or to critical subnetwork 𝑁𝑐 (𝑑𝐵𝑊 ) of network 𝑁(𝑑𝐵𝑊 ).

ince these non-critical activities would (on the contrary) appear as
ritical to at least one of these two networks, we refer to them as hidden
on-critical activities. By column 5 of the table, the hidden non-critical
ctivities exist and are between 2.18% and 3.74% of the non-critical
ctivities, i.e. and their number is not negligible because on average
hey turn out to be 3, 31% of the total project activities. The last three
olumns of the table show that among the hidden non-critical activities
bout, half are on a critical path of network 𝑁(𝑑𝐹𝑊 ) and about the

other half are on a critical path of network 𝑁(𝑑𝐵𝑊 ), while only very
few (0.05% of the total activities) belong to a critical path on both the
two networks (e.g., as activity 4 in Example 2).

In conclusion, from the experimental analysis, the cases in which
activity start and finish floats are different are on average 36.23%; in
particular, this occurs in 26.84% of the critical activities. In addition,
3.31% of the activities are non-critical even if they belong to a critical
path of the 𝐹𝑊 or 𝐵𝑊 networks. This shows that our findings are
not simply theoretical but also important from the application point of
view.
9

6. Conclusions

We have shown that in the presence of variable activity durations,
that is when the duration of each activity can be chosen within a range
of values (e.g., in the context of multi-modal activity execution), the
traditional conditions to identify criticalities on a GPRs project network
appear to be no longer valid. In this paper, we proposed a new (and
more general) definition of critical activity and gave the corresponding
rules for its identification. An extensive experimental analysis has been
carried out, demonstrating that our findings are important from a
theoretical point of view and meaningful for quantitative project man-
agement. We believe that this may open new perspectives on related
project scheduling problems; in fact, the circumstance under which
a critical activity may have a variable duration and one of its floats
different from zero introduces flexibility in the resource assignment.
Therefore, future work will be devoted to analyzing how to exploit the
results contained in this paper when resource constraints are considered
explicitly.
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