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Abstract

We characterize the permutative automorphisms of the Cuntz algebra
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cepts that may be of independent interest.
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1 Introduction

C∗-algebras where first introduced for providing a suitable environment for a
rigorous approach to quantum theories [14], and more recently have found ap-
plications in many areas of mathematics [5]. Symmetries of C∗-algebras, in the
most classical sense, are provided by (unital and ∗-preserving) automorphisms.
Despite the fact that many general results and constructions exist about au-
tomorphisms of C∗-algebras [16] and that they are used extensively, not very
much is known about the automorphisms group of most C∗-algebras. Indeed,
investigating the fine structure of the automorphism group and constructing au-
tomorphisms with specific properties are often challenging tasks [20, 21, 22, 13].
The Cuntz algebra On [10], namely the universal C∗-algebra generated by n
isometries with mutually ortogonal range projections summing up to one, is no
exception. Although this definition looks simple, somewhat (not too) unexpect-
edly, the study of automorphisms of the Cuntz algebras soon appeared quite
intriguing and revealed many interesting facets. Notably, following the deep
insight by Cuntz, in a series of papers (see e.g. [9, 8, 6, 7]) a general theory
of reduced Weyl groups for Aut(On) has been studied both from a theoreti-
cal viewpoint as well as from the perspective of constructing explicit examples.
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Later, in [3, 4], these reduced Weyl groups were further investigated from a
combinatorial point of view. This approach has proved fruitful and has yielded,
in particular, the first exact enumerative formulas for the cardinalities of certain
families of elements inside these groups. Such numbers were previously known
only in special cases through direct computer calculations. In this paper we
deepen these combinatorial investigations and focus on the explicit construction
of reduced Weyl group elements using combinatorial techniques, as foreseen by
Cuntz [11, p. 195].

More precisely, it was shown in [9] that there is a bijection between the el-
ements of the reduced Weyl group of Aut(On) [6] and certain permutations of
[n]t (t ∈ N) which are called stable [3], defined by a complicated recursive pro-
cedure. In this work we associate to any permutation of [n]t a sequence of finite
graphs, and characterize the stable permutations in terms of these graphs (The-
orem 3.13). While this is not the first time that stable permutations have been
characterized in terms of suitable graphs ([9, Corollary 4.12], [2]), our treatment
is different, and more efficient. In particular, it can be easily implemented on
a computer (see, e.g., the proof of Theorem 9.8) and allows the stability for
permutations that previously would have needed massive computer calculations
to be decided either by inspection or with a bare minimum of computations. As
applications of our characterization we prove that in the limit of large t (resp.
n) almost all permutations in [n]t are not stable (Theorems 4.6 and 4.7) thus
proving Conjecture 12.5 in [3], and obtain upper and lower bounds on the rank
([3, Def. 4.3]) of stable permutations in [n]t. As further applications we explic-
itly characterize a notable subclass of the stable r-cycles in S([n]2) in terms of
an associated subset of [r]2, and we characterize and enumerate stable 4-cycles
and stable 5-cycles in S([n]2) (Corollaries 9.3 and 9.4, Theorem 9.8, and Propo-
sitions 9.12 and 9.13). Some of these characterizations depend on combinatorial
concepts that are new, and could be of independent interest, such as trees with
angles (see Section 8) and the connectivity set of a permutation (see Theorem
8.7).

The paper is organized as follows. After collecting some background mate-
rial in the next section, in Section 3 we discuss the main results: we characterize
the stability of a permutation u ∈ S([n]t) in terms of two non-negative integers
N(u) and N#(u), and provide lower and upper bounds for the rank of u; then

we introduce the sequences of graphs Γk(u) and Γ#
k (u) and characterize the

stability of u in terms of these sequences. In Section 4 we show that almost
all permutations are not stable. In Section 5 we provide new bounds on the
rank of stable permutations in S([n]2). In Section 6 we identify certain subsets
R(u), C(u) (resp. Ro(u), Co(u)) of [n], for u ∈ S([n]t), as useful invariants and
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present some evidence for the conjecture (cf. Conjecture 6.10) that the stability
of an r-cycle u only depends on a suitable subset S(u) of [r]2; thereby we intro-
duce notions of left/right equivalence of two permutations and prove that, for
cycles, equality of the S-invariants captures both left and right equivalence. In
Section 7 we characterize when two cycles of S([n]2) are compatible (generaliz-
ing Theorem 3.1 of [4]). Section 8 is devoted to the study of a notable subclass
of stable cycles that we call strongly stable; they are defined by the existence
of a compatible cyclic factorization by stable transpositions, and can be further
characterized in several other equivalent ways (Theorem 8.7), including one in
terms of the S-invariant. In Section 9 we apply the results in the previous one
to obtain explicit characterizations of stable r-cycles u ∈ S([n]2) for r ≤ 5 and
enumerate the stable 4 and 5-cycles. The last section collects some conjectures
and a list of topics for further studies.

2 Background

For n ∈ N, n ≥ 2, u ∈ S([n]t), and v ∈ S([n]r) (where [n]t denotes the cartesian
product of t copies of [n] := {1, . . . , n}) we let the tensor product of u and v be
the permutation u⊗ v ∈ S([n]t+r) defined by

(u⊗ v)(α, β) := (u(α), v(β))

for all α ∈ [n]t and β ∈ [n]s. We denote by 1 the identity of Sn := S([n]). We
refer the reader to [3, Sec. 2] for further information about the tensor product
of permutations.

Given a permutation u ∈ S([n]t), define a sequence of permutations ψk(u) ∈
S([n]t+k), k ≥ 0 by setting ψ0(u) := u−1 and, for k ∈ N,

ψk(u) =

k∏
i=0

(1⊗ . . .⊗ 1︸ ︷︷ ︸
k−i

⊗ u−1⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
i

)

k∏
i=1

(1⊗ 1 . . .⊗ 1︸ ︷︷ ︸
i

⊗ u⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−i

) .

(1)
Then u as above is said to be stable if there exists some integer k ≥ 1 such that

ψk+h(u) = ψk−1(u)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
h+1

, h ≥ 0 , (2)

and then rk(u), the rank of u, is the least such value of k. So, for example, if
t = 1 then all permutations u ∈ S([n]) are stable of rank 1.

In the sequel, it will be convenient to write, for k ≥ 0,

Sk(u) =
k∏
i=0

(1⊗ . . .⊗ 1︸ ︷︷ ︸
k−i

⊗ u−1 ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
i

), (3)
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(so (1⊗ . . .⊗ 1︸ ︷︷ ︸
k

⊗ u−1) is the leftmost factor) and S−1(u) := 1, so that

ψk(u) = Sk(u)
(
1⊗ Sk−1(u)−1

)
, (4)

for all k ≥ 0. Then, for all k > h ≥ 0, it is not difficult to check that one has

ψk(u) =
(

1⊗ . . .⊗ 1︸ ︷︷ ︸
h+1

⊗Sk−h−1(u)
)(
ψh(u)⊗1⊗ . . .⊗ 1︸ ︷︷ ︸

k−h

)(
1⊗ . . .⊗ 1︸ ︷︷ ︸

h+1

⊗Sk−h−1(u)
)−1

(5)
For u ∈ S([n]t) we write

(u1(x1, . . . , xt), . . . , ut(x1, . . . , xt)) := u(x1, . . . , xt)

for all (x1, . . . , xt) ∈ [n]t, and let tu ∈ S([n]t) be the transposed permutation
defined by

tu(x1, . . . , xt) := (ut(xt, . . . , x1), . . . , u1(xt, . . . , x1)), (6)

for all (x1, . . . , xt) ∈ [n]t. We then let u# := t(u−1)(= (tu)−1) ∈ S([n]t).
We recall the following properties of these operations, which can be proved

in exactly the same way as Propositions 7.1 and 7.2 of [4].

Proposition 2.1. Let t, r ∈ N. Then:

i) t(uv) = tutv for all u, v ∈ S([n]r);

ii) t(u⊗ v) = tv ⊗ tu for all u ∈ S([n]t) and v ∈ S([n]r).

Proposition 2.2. Let u, v ∈ S([n]r), then:

i) (uv)# = v#u#;

ii) (u⊗ v)# = v# ⊗ u#.

It turns out that u ∈ S([n]t) is stable of rank k if and only if u# is stable of
rank k [4, Theorem 7.3].

Definition 2.3. Given u, v ∈ S([n]2) we say that u is compatible with v (or
that u is compatible with v in this order, for emphasis) if

(v ⊗ 1)(1⊗ u) = (1⊗ u)(v ⊗ 1) (7)

in S([n]3). In this case we also say that uv is a compatible product of u and v
and write u • v.

All directed graphs in this paper are without multiple edges, but can have
loops.
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3 Stability of permutations and some associated graphs

We introduce integers N(u) and N#(u) as follows.

Definition 3.1. Let u ∈ S([n]t), t > 1. Then

• N(u) is the least integer such that, for all k ≥ N(u) and all (a1, . . . , ak+t) ∈
[n]k+t, the last t− 1 elements of ψk(u)(a1, . . . , ak+t) and of (a1, . . . , ak+t)
coincide, i.e.

ψk(u)(a1, . . . , ak+t) = (b1, . . . , bk+1, ak+2, . . . , ak+t)

for some b1, . . . , bk+1 ∈ [n] (which may depend on a1, . . . , ak+t). If there
is no such integer, we set N(u) = +∞.

• N#(u) is the least integer such that, for all k ≥ N#(u) and all (b1, . . . , bk+t) ∈
[n]k+t, the first t−1 elements of Sk(u)−1(b1, . . . , bk+t) and of (Sk−1(u)−1⊗
1)(b1, . . . , bk+t) coincide. If there is no such integer, we set N#(u) = +∞.

We first note the following simple but useful property.

Lemma 3.2. Let u ∈ S([n]t), and k ≥ 0. Then

Sk(u)# = Sk(u#).

Proof. We have from our definition (3) that

Sk(u)# = [(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u−1) · · · (u−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)]#

= (u−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)# · · · (1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u−1)#

= t(u⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

) · · ·t (1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u)

= (1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗t u) · · · (tu⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)

= Sk(u#)

where we have used Propositions 2.1 and 2.2. �

Proposition 3.3. Let u ∈ S([n]t), t > 1. Then N#(u) = N(u#) in N0∪{+∞}.
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Proof. Assume first that N#(u) is finite. Let a1, . . . , at−1, dt, . . . , dt+k ∈ [n] and
k ∈ N be such that k ≥ N#(u). Let

(b1, . . . , bt+k) := (Sk−1(u)⊗ 1)(a1, . . . , at−1, dt, . . . , dt+k).

Then
(Sk−1(u)−1 ⊗ 1)(b1, . . . , bt+k) = (a1, . . . , at−1, dt, . . . , dt+k)

and hence, since k ≥ N#(u),

Sk(u)−1(b1, . . . , bt+k) = (a1, . . . , at−1, ct, . . . , ct+k)

for some ct, . . . , ct+k ∈ [n]. This means that

t(Sk−1(u)−1 ⊗ 1)(bk+t, . . . , b1) = (dt+k, . . . , dt, at−1, . . . , a1)

and
tSk(u)−1(bk+t, . . . , b1) = (ct+k, . . . , ct, at−1, . . . , a1)

and therefore, by Proposition 2.1 and Lemma 3.2, that

(1⊗ Sk−1(u#))(bk+t, . . . , b1) = (dt+k, . . . , dt, at−1, . . . , a1)

and
Sk(u#)(bk+t, . . . , b1) = (ct+k, . . . , ct, at−1, . . . , a1)

so
ψk(u

#)(dt+k, . . . , dt, at−1, . . . , a1) = (ct+k, . . . , ct, at−1, . . . , a1).

This shows that N(u#) is finite and that N(u#) ≤ N#(u).
Conversely, assume that N(u#) is finite and let b1, . . . , bt+k ∈ [n] and k ∈ N

be such that k ≥ N(u#). Let

(dt+k, . . . , dt, at−1, . . . , a1) := (1⊗ Sk−1(u#))(bk+t, . . . , b1)

and
(ct+k, . . . , ct, ft−1, . . . , f1) := Sk(u#)(bk+t, . . . , b1).

Then

ψk(u
#)(dt+k, . . . , dt, at−1, . . . , a1) = (ct+k, . . . , ct, ft−1, . . . , f1)

and so, since k ≥ N(u#), fi = ai for i = 1, . . . , t − 1. By Proposition 2.1 and
Lemma 3.2 this means that

t(Sk−1(u)−1 ⊗ 1)(bk+t, . . . , b1) = (dt+k, . . . , dt, at−1, . . . , a1)
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and
tSk(u)−1(bk+t, . . . , b1) = (ct+k, . . . , ct, at−1, . . . , a1).

Therefore

(Sk−1(u)−1 ⊗ 1)(b1, . . . , bk+t) = (a1, . . . , at−1, dt, . . . , dt+k)

and
Sk(u)−1(b1, . . . , bk+t) = (a1, . . . , at−1, ct, . . . , ct+k),

which shows that N#(u) is finite and N#(u) ≤ N(u#).
This proves that N(u#) is finite if and only if N#(u) is finite, and in this

case N#(u) = N(u#). The result follows. �

Proposition 3.4. Let u ∈ S([n]t), t > 1, be a stable permutation. Then

(i) N(u) ≤ rk(u) + t− 2;

(ii) N#(u) ≤ rk(u) + t− 2.

Proof. Let, for brevity k = rk(u). To prove (i) note that, by the definition of
rank of a stable permutation, ψk+h+t−2(u) = ψk−1(u)⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸

h+t−1

for all h ≥ 0,

and (i) follows.
To prove (ii) note first that, by Theorem 7.3 of [4], u# is also stable of rank

k. Therefore, by the definition of rank, ψh(u#) = ψk−1(u
#)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

h−k+1

for all

h ≥ k. Let, for brevity, v := ψk−1(u
#)# ∈ S([n]t+k−1). Then

(tv ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
h−k+1

)ψh(u#) = 1

so, by (4),
(tv ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

h−k+1

)Sh(u#) = 1⊗ Sh−1(u#)

which, by Proposition 2.1, is equivalent to

t(1⊗ · · · ⊗ 1︸ ︷︷ ︸
h−k+1

⊗ v)Sh(u#) = t(tSh−1(u#)⊗ 1)

and then to
(1⊗ · · · ⊗ 1︸ ︷︷ ︸

h−k+1

⊗ v) tSh(u#) = tSh−1(u#)⊗ 1
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and therefore, by Lemma 3.2, to

(1⊗ · · · ⊗ 1︸ ︷︷ ︸
h−k+1

⊗ v)Sh(u)−1 = Sh−1(u)−1 ⊗ 1.

Hence, if h ≥ k + t − 2, Sh(u)−1 and Sh−1(u)−1 ⊗ 1 agree on the first t − 1
coordinates, which proves (ii). �

Theorem 3.5. Let u ∈ S([n]t), t > 1, then u is stable if and only if both N(u)
and N#(u) are finite, and in this case

max{N(u)− t+ 2, N#(u)− t+ 2} ≤ rk(u) ≤ N(u) +N#(u) + t− 1.

Proof. We write, for simplicity, N and N# in place of N(u) and N#(u). By
the previous proposition, it is enough to show that if both N and N# are finite,
then u is stable with rank bounded by N +N# + t− 1. We will prove that, for
all h ≥ N# + t− 1,

ψN+h(u) = ψN+h−1(u)⊗ 1 ∈ S([n]N+t+h).

By formula (5) we can write

ψN+h(u) =(
1⊗ . . .⊗ 1︸ ︷︷ ︸

N+1

⊗ Sh−1(u)
)(
ψN (u)⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

h

)(
1⊗ . . .⊗ 1︸ ︷︷ ︸

N+1

⊗ Sh−1(u)
)−1

and, similarly,

ψN+h−1(u)⊗ 1 =(
1⊗ . . .⊗ 1︸ ︷︷ ︸

N+1

⊗ Sh−2(u)⊗ 1
)(
ψN (u)⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

h

)(
1⊗ . . .⊗ 1︸ ︷︷ ︸

N+1

⊗ Sh−2(u)⊗ 1
)−1

.

Let (a1, . . . , aN+1, b1, . . . , bt−1, c1, . . . , ch) ∈ [n]N+t+h. Since h−1 ≥ N# we have
from the definition of N# that there are b′1, . . . , b

′
t−1, c

′
1, . . . , c

′
h, c̃1, . . . , c̃h ∈ [n]

such that

Sh−1(u)−1(b1, . . . , bt−1, c1, . . . , ch) = (b′1, . . . , b
′
t−1, c

′
1, . . . , c

′
h)

and

(Sh−2(u)−1 ⊗ 1)(b1, . . . , bt−1, c1, . . . , ch) = (b′1, . . . , b
′
t−1, c̃1, . . . , c̃h).
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Similarly, by the definition of N we have that there are a′1, . . . , a
′
N+1 ∈ [n] such

that

ψN (u)(a1, . . . , aN+1, b
′
1, . . . , b

′
t−1) = (a′1, . . . , a

′
N+1, b

′
1, . . . , b

′
t−1).

Therefore

ψN+h(u)(a1, . . . , aN+1, b1, . . . , bt−1, c1, . . . , ch)

= (a′1, . . . , a
′
N+1, b1, . . . , bt−1, c1, . . . , ch)

and analogously

(ψN+h−1(u)⊗ 1)(a1, . . . , aN+1, b1, . . . , bt−1, c1, . . . , ch)

= (a′1, . . . , a
′
N+1, b1, . . . , bt−1, c1, . . . , ch),

as claimed. �

We introduce two sequences Γk(u),Γ#
k (u), k ≥ 0 of simple directed graphs

(we often write simply Γk instead of Γk(u) when there is no danger of confusion,
and similarly for the other quantities).

Definition 3.6. For a permutation u ∈ S([n]t), and k ≥ 0 we define simple

directed graphs Γk(u) and Γ#
k (u), as follows:

• V (Γk) = V (Γ#
k ) = [n]t−1;

• given two vertices (a1, a2, . . . , at−1), (b1, b2, . . . , bt−1) ∈ [n]t−1 there is a
directed edge (a1, a2, . . . , at−1)→ (b1, b2, . . . , bt−1) in Γk if

ψk(u)(c1, . . . , ck+1, a1, a2, . . . , at−1) = (d1, . . . , dk+1, b1, b2, . . . , bt−1)

for some (c1, . . . , ck+1), (d1, . . . , dk+1) ∈ [n]k+1;

• given two vertices (a1, a2, . . . , at−1), (b1, b2, . . . , bt−1) ∈ [n]t−1 there is a

directed edge (a1, a2, . . . , at−1) → (b1, b2, . . . , bt−1) in Γ#
k if there is x ∈

[n]t+k such that

Sk(u)−1(x) = (a1, a2, . . . , at−1, c1, . . . , ck+1)

and
(Sk−1(u)−1 ⊗ 1)(x) = (b1, b2, . . . , bt−1, d1, . . . , dk+1)

for some (c1, . . . , ck+1), (d1, . . . , dk+1) ∈ [n]k+1. Equivalently if

(Sk−1(u)−1 ⊗ 1)Sk(u)(a1, a2, . . . , at−1, c1, . . . , ck+1)

= (b1, b2, . . . , bt−1, d1, . . . , dk+1)

for some (c1, . . . , ck+1), (d1, . . . , dk+1) ∈ [n]k+1.
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Remark 3.7. All graphs have the same vertex set. Note that if a permutation u
is stable, then Γa(u) and Γ#

b (u) consist only of loops if a ≥ N(u) and b ≥ N#(u).
Actually, N(u) is the least integer such that Γk(u) consists only of loops for all
k ≥ N(u), and similarly for N#(u). We may sometimes say, for brevity, that a
graph is “empty” to mean that it has no edges between different vertices, and
denote this by “∅”.

Proposition 3.8. Given u ∈ S([n]t) and k ≥ 0. If the graph Γk(u) (resp.,

Γ#
k (u)) has a path from (a1, a2, . . . , at−1) to (b1, b2, . . . , bt−1), then Γk(u) (resp.,

Γ#
k (u)) has also a path from (b1, b2, . . . , bt−1) to (a1, a2, . . . , at−1). I.e., strongly

connected components and connected components are the same notions for Γk(u)

(resp., Γ#
k (u)).

Proof. It is enough to check that if there is an edge (a1, a2, . . . , at−1)→ (b1, b2, . . . ,
bt−1) ((a1, a2, . . . , at−1),(b1, b2, . . . , bt−1) distinct) in Γk then there is a path from
(b1, b2, . . . , bt−1) to (a1, a2, . . . , at−1). Indeed, if there are (c1, . . . , ck+1), (d1, . . . ,
dk+1) ∈ [n]k+1 such that ψk(u)(c1, . . . , ck+1, a1, a2, . . . , at−1) = (d1, . . . , dk+1, b1,
b2, . . . , bt−1) then, since ψk(u) 6= id is a permutation of a finite set, there is some
h ≥ 2 such that ψk(u)h = id. But then

(c1, . . . , ck+1, a1, a2, . . . , at−1) = ψk(u)h−1ψk(u)(c1, . . . , ck+1, a1, a2, . . . , at−1)

= ψk(u)h−1(d1, . . . , dk+1, b1, b2, . . . , bt−1)

provides such a path. The argument for Γ#
k is similar, after replacing ψk(u)

with (Sk−1(u)−1 ⊗ 1)Sk(u). �

We define two “actions” of a permutation on oriented graphs that are useful
for our purposes (Strictly speaking, these are not actions!).

Definition 3.9. Given a directed graph G on vertex set [n]t−1 and u ∈ S([n]t),
by Ru(G) and Lu(G) we mean the directed graphs with the same set of vertices
V (Ru(G)) = V (Lu(G)) = [n]t−1 and edges given by the following rules:

• there is a directed edge (x1, . . . , xt−1) → (x′1, . . . , x
′
t−1) in Ru(G) if there

are z ∈ [n] and a directed edge (y1, . . . , yt−1) → (y′1, . . . , y
′
t−1) in G

such that (w, x1, . . . , xt−1) = u(y1, . . . , yt−1, z) and (w′, x′1, . . . , x
′
t−1) =

u(y′1, . . . , y
′
t−1, z), for some w,w′ ∈ [n];

• there is a directed edge (x1, . . . , xt−1) → (x′1, . . . , x
′
t−1) in Lu(G) if there

are z ∈ [n] and a directed edge (y1, . . . , yt−1) → (y′1, . . . , y
′
t−1) in G

such that (x1, . . . , xt−1, w) = u(z, y1, . . . , yt−1) and (x′1, . . . , x
′
t−1, w

′) =
u(z, y′1, . . . , y

′
t−1) for some w,w′ ∈ [n].
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Theorem 3.10. Given u ∈ S([n]t), then

Γk+1(u) = Ru−1Γk(u) and Γ#
k+1(u) = LuΓ#

k (u) for any k ≥ 0.

Proof. Let (a1, a2, . . . , at−1), (b1, b2, . . . , bt−1) ∈ [n]t−1. Then (a1, a2, . . . , at−1)→
(b1, b2, . . . , bt−1) in Γk+1(u) if and only if there are c1, . . . , ck+1, d1, . . . , dk+1, w, v ∈
[n] such that(

1⊗ · · · ⊗ 1︸ ︷︷ ︸
k+1

⊗ u−1
)(
ψk(u)⊗ 1

)(
1⊗ · · · ⊗ 1︸ ︷︷ ︸

k+1

⊗ u
)

(c1, . . . , ck+1, w, a1, . . . , at−1)

= (d1, . . . , dk+1, v, b1, . . . , bt−1) ,

where we have used (5). This happens if and only if there are c1, . . . , ck+1, d1, . . . ,
dk+1, a

′
1, . . . , a

′
t−1, b

′
1, . . . , b

′
t−1, w, v, z ∈ [n] such that

u(w, a1, . . . , at−1) = (a′1, . . . , a
′
t−1, z)

ψk(u)(c1, . . . , ck+1, a
′
1, . . . , a

′
t−1) = (d1, . . . , dk+1, b

′
1, . . . , b

′
t−1)

and
u−1(b′1, . . . , b

′
t−1, z) = (v, b1, . . . , bt−1).

But this means that there are a′1, . . . , a
′
t−1, b

′
1, . . . , b

′
t−1, w, v, z ∈ [n] such that

there is a directed edge (a′1, . . . , a
′
t−1)→ (b′1, . . . , b

′
t−1) in Γk(u),

u−1(a′1, . . . , a
′
t−1, z) = (w, a1, . . . , at−1)

and
u−1(b′1, . . . , b

′
t−1, z) = (v, b1, . . . , bt−1)

and this exactly means that there is a directed edge

(a1, a2, . . . , at−1)→ (b1, b2, . . . , bt−1)

in Ru−1(Γk(u)).
The other statement can be proved by a similar argument, using the fact

that

(Sk(u)−1⊗1)Sk+1(u) = (u⊗1⊗ . . .⊗ 1︸ ︷︷ ︸
k+1

)(1⊗Sk−1(u)−1⊗1)(1⊗Sk(u))(u−1⊗1⊗ . . .⊗ 1︸ ︷︷ ︸
k+1

).

�
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For a directed graph G = ([n]t, A) we denote by Gr = ([n]t, Ar) the edge
reverse graph where Ar := {(b, a) : (a, b) ∈ A} and by Gτ = ([n]t, Aτ ) the vertex
reverse graph where (a1, . . . , at)→ (b1, . . . bt) in Gτ if and only if (at, . . . , a1)→
(bt, . . . b1) in G. Note that these two operations commute.

Proposition 3.11. Let G be a directed graph on vertex set [n]t−1 and u ∈
S([n]t). Then

Lu(Gτ ) = (R tu(G))τ

and
Lu(Gr) = (Lu(G))r.

Proof. Let (a1, . . . , at−1), (b1, . . . , bt−1) ∈ [n]t−1. Then (a1, . . . , at−1)→ (b1, . . . , bt−1)
in Lu(Gτ ) if and only if there are w, v, z ∈ [n] and (a′1, . . . , a

′
t−1), (b′1, . . . , b

′
t−1) ∈

[n]t−1 such that (a′1, . . . , a
′
t−1)→ (b′1, . . . , b

′
t−1) in Gτ ,

u(z, a′1, . . . , a
′
t−1) = (a1, . . . , at−1, w), (8)

and
u(z, b′1, . . . , b

′
t−1) = (b1, . . . , bt−1, v). (9)

Similarly, (at−1, . . . , a1) → (bt−1, . . . , b1) in Rtu(G) if and only if there are
w, v, z ∈ [n] and (a′t−1, . . . , a

′
1), (b

′
t−1, . . . , b

′
1) ∈ [n]t−1 such that (a′t−1, . . . , a

′
1)→

(b′t−1, . . . , b
′
1) in G,

tu(a′t−1, . . . , a
′
1, z) = (w, at−1, . . . , a1),

and
tu(b′t−1, . . . , b

′
1, z) = (v, bt−1, . . . , b1).

The first equality follows.
The second equality follows immediately from the definitions. Indeed, there

is an edge (a1, . . . , at−1) → (b1, . . . , bt−1) in Lu(Gr) if and only if there is an
edge (b1, . . . , bt−1)→ (a1, . . . , at−1) in Lu(G). �

Corollary 3.12. Let u ∈ S([n]t). Then

Γ#
k (u)r = Γk(u

#)τ

for all k ≥ 0.

Proof. We proceed by induction on k ≥ 0. Let (a1, . . . , at−1), (b1, . . . bt−1) ∈
[n]t−1. From our definitions we have that there is a directed edge (bt−1, . . . , b1)→
(at−1, . . . , a1) in Γ#

0 (u) if and only if there are c, d ∈ [n] such that u−1(bt−1, . . . , b1, d) =

13



(at−1, . . . , a1, c), and there is a directed edge (a1, . . . , at−1) → (b1, . . . , bt−1)
in Γ0(u

#) if and only if there are c, d ∈ [n] such that tu(c, a1, . . . , at−1) =

(d, b1, . . . , bt−1). Therefore Γ#
0 (u)r = Γ0(u

#)τ .
Suppose now k ≥ 1. Then we have that, by Theorem 3.10 and Proposition

3.11
Γ#
k (u)r = Lu(Γ#

k−1(u))r = Lu(Γ#
k−1(u)r)

while
Γk(u

#)τ = R tu(Γk−1(u
#))τ = Lu(Γk−1(u

#)τ )

so the result follows by induction. �

We can now prove what is probably the main result of this work.

Theorem 3.13. Given a permutation u ∈ S([n]t), then u is stable if and only

if there is M ∈ N such that RMu−1(Γ0) and LMu (Γ#
0 ) consist only of loops.

Proof. Suppose first that u is stable. Then by Theorem 3.5 we have that both
N(u) and N#(u) are finite. Therefore, by our definitions (see also Remark 3.7)

both ΓM (u) and Γ#
M (u) consist only of loops if M ≥ max{N(u), N#(u)}, so,

by Theorem 3.10, (Ru−1)M (Γ0) and (Lu)M (Γ#
0 ) both consist only of loops, as

claimed.
Conversely, assume that there is M ∈ N such that RMu−1(Γ0) and LMu (Γ#

0 )
consist only of loops. It is then easy to check from our definitions that Rku−1(Γ0)

and Lku(Γ#
0 ) consist only of loops for all k ≥M . This, by Theorem 3.10, implies

that Γk(u) and Γ#
k (u) consist only of loops for all k ≥M . By the definitions of

the graphs Γk(u) and Γ#
k (u) this means that both N(u) and N#(u) are finite

so, by Theorem 3.5, u is stable. �

This is a very good criterion for checking stability. We will discuss bounds
for M in Section 5.

Example 3.14. Let u := ((1, 3), (1, 2), (3, 4)) ∈ S([4]2) (note that, by Theorem

5.12 in [4], u is stable of rank 2). Then the vertex set of all the graphs Γk,Γ
#
k , k ≥

0 is [4].
The graph Γ0 has directed edges E0 = {(1, 1), (2, 2), (3, 3), (4, 4), (4, 2), (2, 3),

(3, 4)}. Consider the edge (2, 3) in Γ0. Then the graph Γ1 has edges (π2(u
−1(2, z)),

π2(u
−1(3, z))) for all z ∈ [4] (where π2 is the projection on the second coordi-

nate). Given that u−1(2, 1) = (2, 1), u−1(3, 1) = (3, 1), u−1(2, 2) = (2, 2),
u−1(3, 2) = (3, 2), u−1(2, 3) = (2, 3), u−1(3, 3) = (3, 3), u−1(2, 4) = (2, 4), and
u−1(3, 4) = (1, 2), we obtain that Γ1 has edges (1, 1), (2, 2), (3, 3) and (4, 2).
Similarly, for the edge (4, 2) we obtain edges, (1, 1), (2, 2), (3, 3) and (4, 4), and

14
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Figure 1: The directed graph Γ#
0 (u)

for the edge (3, 4) we obtain (1, 1), (2, 2), (3, 3) and (2, 4). Note that any loop
(z, z) only gives rise to other loops, so we don’t need to compute them explicitly.
Thus Γ1 has edge set E1 = {(1, 1), (2, 2), (3, 3), (4, 4), (2, 4), (4, 2)}. Repeating
this process on the non-loop edges of Γ1 (note that we have already performed
most of the computations) we obtain that Γ2 consists only of loops, and hence
that Γk = Γ2 = ∅ for all k ≥ 2. In particular, N(u) = 2.

The graph Γ#
0 has directed edges {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1)}. Con-

sidering the edge (1, 3) we have that Γ#
1 has directed edges (π1(u(z, 1)), π1(u(z, 3)))

for all z ∈ [4]. Since u(1, 1) = (1, 1), u(1, 3) = (1, 2), u(2, 1) = (2, 1), u(2, 3) =
(2, 3), u(3, 1) = (3, 1), u(3, 3) = (3, 3), u(4, 1) = (4, 1), and u(4, 3) = (4, 3) we

obtain that Γ#
1 has edges (1, 1), (2, 2), (3, 3) and (4, 4). Performing the same

computation for the edge (3, 1) we only obtain loops. Hence Γ#
1 consists only of

loops and therefore Γ#
k = Γ#

1 = ∅ for all k ≥ 1. In particular N#(u) = 1.

The next example shows that in Theorem 3.13 both sequences of graphs
need to be considered.

Example 3.15. Let us consider the product of three 3-cycles

u :=
(
(1, 1), (3, 1), (5, 1)

)(
(2, 3), (4, 3), (6, 3)

)(
(1, 5), (3, 5), (5, 5)

)
∈ S([6]2) .

Then one can check that Γ0 = ∅ (so that Γk = ∅, for all k ≥ 0), while Γ#
0 is

shown in Figure 1. Also, Γ#
k is the union of Γ#

0 and its reverse edge graph, for
all k ≥ 1. In particular, u is not stable.

The next example shows that the graphs Γk(u) do not necessarily stabilize
as k → +∞.
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Example 3.16. Let u :=
(
(1, 2), (1, 1), (3, 5)

)(
(5, 2), (4, 1)

)
∈ S([5]2). Then one

can check that Γ0(u) has directed edges {(1, 2), (2, 1), (2, 5), (5, 1)}, while Γ2k(u)
has directed edges {(1, 2), (2, 1), (2, 5), (5, 1), (5, 2)} and Γ2k−1(u) has directed
edges {(1, 2), (2, 1), (2, 5), (1, 5), (5, 2)} for all k ≥ 1.

We want to single out one important property, which we use in Sections 4
and 5. Recall that the transitive closure T (G) of a directed graph G is the graph
which contains an edge a→ b if and only if G has a directed path from a to b.

Lemma 3.17. Let u ∈ S([n]t), and two directed graphs G1, G2 on vertex set
[n]t−1 be such that T (G1) = T (G2). Then T (Ru−1G1) = T (Ru−1G2) and
T (LuG1) = T (LuG2).

Proof. It is clearly enough to prove the statement in the case where T (G1) =
G2. So let G be a directed graph on vertex set [n]t−1. We will show that if
(a1, . . . , at−1) → (b1, . . . , bt−1) → (c1, . . . , ct−1) is a directed path in G then
T (Ru−1G) = T (Ru−1(G ∪ {((a1, . . . , at−1) → (c1, . . . , ct−1))})) and T (LuG1) =
T ((G ∪ {((a1, . . . , at−1) → (c1, . . . , ct−1))})) and the result will follow. We will
check only Ru−1 , the second statement is similar.

Note that

Ru−1(G ∪ {((a1, . . . , at−1)→ (c1, . . . , ct−1))})
= Ru−1G ∪Ru−1{((a1, . . . , at−1)→ (c1, . . . , ct−1))}.

The second set is the set of all edges (a′1, . . . , a
′
t−1) → (c′1, . . . , c

′
t−1) such that

there are z, w, v ∈ [n] such that u−1(a1, . . . , at−1, z) = (w, a′1, . . . , a
′
t−1) and

u−1(c1, . . . , ct−1, z) = (v, c′1, . . . , c
′
t−1). Hence,

(a′1, . . . , a
′
t−1)→ (b′1, . . . , b

′
t−1)→ (c′1, . . . , c

′
t−1)

is a directed path in Ru−1G where (b′0, b
′
1, . . . , b

′
t−1) := u−1(b1, . . . , bt−1, z).

Therefore, T (Ru−1G) ⊇ T (Ru−1(G ∪ {((a1, . . . , at−1) → (c1, . . . , ct−1))}). The
opposite inclusion is clear. �

Lemma 3.18. Let u ∈ S([n]t) and G be a directed graph on vertex set [n]t−1.
If T (G) = T (Ru−1G) (resp., T (G) = T (LuG)) then T (Rmu−1G) = T (G) (resp.,
T (Lmu G) = T (G)) for any m ∈ N.

Proof. This follows by repeated application of Lemma 3.17. �

Corollary 3.19. Given u ∈ S([n]t). If T (Γk(u)) = T (Γk+1(u)) 6= ∅ or T (Γ#
k (u))

= T (Γ#
k+1(u)) 6= ∅ for some k ≥ 0, then u is not stable.
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Proof. If T (Γk(u)) = T (Γk+1(u)) then, by Theorem 3.10 and Lemma 3.18
T (Γk(u)) = T (Γm(u)) for all m ≥ k so T (Γm(u)) 6= ∅ for all m ≥ k so Γm(u) 6= ∅
for all m ≥ k and hence, by Theorem 3.13, u is not stable. The other statement
is exactly analogous. �

4 Almost all permutations are not stable

In this section, using the results in the previous one, we prove Conjecture 12.5
in [3]. Namely that, if we choose a permutation in S([n]t), t ≥ 2, uniformly at
random, the probability that this is stable goes to zero as either n or t go to
infinity.

For n, t ∈ N let X0(n, t) (resp., X1(n, t)) be the number of permutations
u ∈ S([n]t) such that Γ0(u) is disconnected (resp., Γ0(u) is connected but Γ1(u) is
disconnected). Recall that by Proposition 3.8, for any k ∈ N, Γk(u) is connected
if and only if it is strongly connected.

Proposition 4.1. Let n, t ∈ N, n, t > 1, then

X0(n, t)

(nt)!
≤
bn

t−1

2
c∑

k=1

1(
nt−nt−1

(n−1)k
) .

Proof. Let u ∈ S([n]t) be such that Γ0(u) is disconnected. Then there are
A,B ⊆ [n]t−1 such that A ∩ B = ∅, A ∪ B = [n]t−1, A,B 6= ∅ and there
are no directed edges between A and B in Γ0(u). Therefore, by definition of
Γ0(u), u([n]×A) = [n]×A, and similarly for [n]×B. Since there are (n · |A|)!
permutations of [n]×A and (n · |B|)! permutations of [n]×B, we have that

X0(n, t) ≤
bn

t−1

2
c∑

k=1

(
nt−1

k

)
(nk)!(n(nt−1 − k))! .

Hence,

X0(n, t)

(nt)!
≤
bn

t−1

2
c∑

k=1

(
nt−1

k

)
(nk)!(n(nt−1 − k))!

(nt)!
=

bn
t−1

2
c∑

k=1

(
nt−1

k

)
1(
nt

nk

)
≤
bn

t−1

2
c∑

k=1

(
nt−1

k

)
1(

nt−nt−1

(n−1)k
)(
nt−1

k

) =

bn
t−1

2
c∑

k=1

1(
nt−nt−1

(n−1)k
) .

�
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Proposition 4.2. Let n, t ∈ N, n, t > 1, then

X1(n, t)

(nt)!
≤
bn
2
c∑

k=1

1(
nt−nt−1−n

(nt−1−nt−2−1)k
) .

Proof. Let u ∈ S([n]t) be such that Γ0(u) is connected but Γ1(u) is disconnected.
Since Γ1(u) is not connected there are A,B ⊆ [n]t−1 such that A ∩ B = ∅,
A ∪ B = [n]t−1, A,B 6= ∅ and there are no directed edges between A and B in
Γ1(u). For z ∈ [n] we let

A(z) := {x ∈ [n]t−1 : u−1(x, z) ∈ [n]×A}

and
B(z) := {x ∈ [n]t−1 : u−1(x, z) ∈ [n]×B}.

Then either A(z) = ∅ or B(z) = ∅. Indeed, if A(z), B(z) are not empty, then,
as Γ0(u) is connected, there is an edge from x ∈ A(z) to y ∈ B(z) in Γ0(u) so,
by Theorem 3.10, there would be a directed edge from A to B in Γ1(u).

Let A′ := {z ∈ [n] : B(z) = ∅}. If z ∈ A′ then A(z) = [n]t−1 so u−1([n]t−1×
{z}) ⊆ [n]×A. Therefore u−1([n]t−1×A′) ⊆ [n]×A. Similarly u−1([n]t−1×B′) ⊆
[n]×B where B′ := {z ∈ [n] : A(z) = ∅} = [n]\A′. So u−1([n]t−1×A′) = [n]×A
and similarly for B′ and B. Hence nt−2|A′| = |A|, so the following bound follows

X1(n, t) ≤
bn
2
c∑

k=1

(
n

k

)(
nt−1

nt−2k

)
(nt−1k)! (nt−1(n− k))!

(if |A′| ≤ |B′|, the first binomial coefficient is an upper bound for the number
of possibilities for A′, the second binomial coefficient is an upper bound for the
number of possibilities for A, and factorials are upper bounds for the number of
bijections [n]t−1 ×A′ → [n]×A and [n]t−1 ×B′ → [n]×B, resp.). Hence,

X1(n, t)

(nt)!
≤
bn
2
c∑

k=1

(
n

k

)(
nt−1

nt−2k

)
(nt−1k)! (nt−1(n− k))!

(nt)!
=

bn
2
c∑

k=1

(
n

k

)(
nt−1

nt−2k

)
1(
nt

nt−1k

)
≤
bn
2
c∑

k=1

(
n

k

)(
nt−1

nt−2k

)
1(

nt−nt−1−n
nt−1k−nt−2k−k

)(
n
k

)(
nt−1

nt−2k

) =

bn
2
c∑

k=1

1(
nt−nt−1−n

(nt−1−nt−2−1)k
) .
�

We need the following lemma.
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Lemma 4.3 (Folklore). We have

lim
m→∞

(
1(
m
1

) +
1(
m
2

) +
1(
m
3

) + . . .+
1(
m
m−1

)) = 0.

Proof. This immediately follows from the below inequality

1(
m
1

) +
1(
m
2

) +
1(
m
3

) + . . .+
1(
m
m−1

) ≤ 2(
m
1

) +
m− 3(
m
2

) ≤ 4

m
.

�

We get two simple corollaries from Propositions 4.1,4.2, and Lemma 4.3.

Corollary 4.4. Given 1 < t ∈ N, then

lim
n→∞

X0(n, t)

(nt)!
= lim

n→∞

X1(n, t)

(nt)!
= 0.

Corollary 4.5. Given 1 < n ∈ N, then

lim
t→∞

X0(n, t)

(nt)!
= lim

t→∞

X1(n, t)

(nt)!
= 0.

We are now ready to prove Conjecture 12.5 of [3], the proofs of the two
statements are exactly the same.

Theorem 4.6. Given 1 < t ∈ N. Then almost all permutations from S([n]t), n ∈
N are not stable, i.e.,

lim
n→∞

|{u ∈ S([n]t) : u is stable}|
(nt)!

= 0.

Theorem 4.7. Given 1 < n ∈ N. Then almost all permutations from S([n]t), t ∈
N are not stable, i.e.,

lim
t→∞

|{u ∈ S([n]t) : u is stable}|
(nt)!

= 0.

Proof of Theorems 4.6 and 4.7. By Corollary 3.19 we get that |{u ∈ S([n]t) :
u is stable}| ≤ X0(n, t) +X1(n, t). Hence

lim
n→∞

|{u ∈ S([n]t) : u is stable}|
(nt)!

≤ lim
n→∞

X0(n, t)

(nt)!
+ lim
n→∞

X1(n, t)

(nt)!
= 0

and

lim
t→∞

|{u ∈ S([n]t) : u is stable}|
(nt)!

≤ lim
t→∞

X0(n, t)

(nt)!
+ lim
t→∞

X1(n, t)

(nt)!
= 0,

where the last equalities follow from Corollaries 4.4 and 4.5. �
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The previous results show that the number of stable permutations of [n]t is
a little o of the total number of permutations for either n or t going to infinity.
We now show, however, that the number of stable permutations is not so small
in absolute terms.

Recall first that if u ∈ S([n]t−1) then (u ⊗ 1)(1 ⊗ u−1) ∈ S([n]t) is a stable
permutation (these permutations correspond to the inner automorphisms ofOn).
Hence the number of stable permutations in S([n]t) is at least nt−1!. We now
show that this bound can be improved.

Let n, t ∈ N, n ≥ 3, t ≥ 2, and v ∈ S([n − 1]t−1). We define a permutation
ṽ ∈ S([n]t) by letting

ṽ(a1, . . . , at) :=

{
(n, v(a2, . . . , at)), if (a1, . . . , at) ∈ {n} × [n− 1]t−1,

(a1, . . . , at), otherwise.

Note that (ṽ)−1 = (̃v−1).

Proposition 4.8. Let n, t ∈ N, n ≥ 3, t ≥ 2, and v ∈ S([n− 1]t−1). Then

ψk(ṽ) = ṽ−1 ⊗ 1⊗ · · · ⊗ 1

for all k ≥ 0. In particular, ṽ is stable of rank 1.

Proof. Let (a1, . . . , at+k) ∈ [n]t+k and let

{i1, . . . , ir}< := {i ∈ [k + 1] : (ai, . . . , ai+t−1) ∈ {n} × [n− 1]t−1}.

Note that ij − ij−1 ≥ t for all j = 2, . . . , r. If i1 > 1 then by (1) and what was
just observed

ψk(ṽ)(a1, . . . , ak+t) = (a1, . . . , at+k) = (ṽ−1 ⊗ 1⊗ · · · ⊗ 1)(a1, . . . , at+k).

If i1 = 1 then we obtain similarly that

ψk(ṽ)(a1, . . . , ak+t) = (ṽ−1 ⊗ 1⊗ · · · ⊗ 1)(a1, . . . , at+k).

�

The previous proposition shows that there are at least (n − 1)t−1! stable
permutations of rank 1. One might wonder whether the corresponding permu-
tative automorphisms of On are outer. We now show that this is the case and
that, in fact, all these automorphisms are inequivalent under the action of inner
automorphisms.
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Proposition 4.9. Let n, t ∈ N, n ≥ 3, t ≥ 2, and v 6= w ∈ S([n− 1]t−1). Then
there is no u ∈ S([n]t−1) such that

ṽ = (u⊗ 1)w̃(1⊗ u−1).

In particular, for non-identical v ∈ S([n − 1]t−1), ṽ is an outer permutative
automorphism.

Proof. Let’s proof by contrapositive. Assume that there is such u. We proof by
induction that u does not change the last k ∈ [0, t − 1] coordinates. The base
case k = 0 is trivial.

Assume that u does not change the last (k − 1). By induction hypothesis
the last k coordinates of (u⊗ 1)w̃(1⊗ u−1)(1, c1, c2, . . . , ct−1) coincide with the
last k coordinates of

w̃(1⊗ u−1)(1, c1, c2, . . . , ct−1) = w̃(1, u−1(c1, . . . , ct−1)) = (1, u−1(c1, . . . , ct−1)).

In another hand (u ⊗ 1)w̃(1 ⊗ u−1)(1, c1, c2, . . . , ct−1) = ṽ(1, c1, c2, . . . , ct−1) =
(1, c1, c2, . . . , ct−1). Hence, u does not change the last k coordinates.

Therefore u is the identical permutation, which contradicts to v 6= w. �

Proposition 4.9 shows that there are at least (n − 1)t−1! distinct classes
of inner-equivalent automorphisms of On, and that there are at least (n −
1)t−1!nt−1! stable permutations in S([n]t).

5 Upper bound for rank

In this section, using the graphs introduced in Section 3, we obtain an explicit
upper bound for the ranks of stable permutations of S([n]2) which is at worst
linear in n.

We need to consider two more graphs

Γ(u) = Γ0(u) ∪ Γ1(u) ∪ Γ2(u) ∪ Γ3(u) ∪ . . . ;

Γ#(u) = Γ#
0 (u) ∪ Γ#

1 (u) ∪ Γ#
2 (u) ∪ Γ#

3 (u) ∪ . . .

on the vertex set [n]t−1.

Lemma 5.1. Given u ∈ S([n]t), t ∈ N. Then

Γ(u) ⊇ Ru−1Γ(u) ⊇ R2
u−1Γ(u) ⊇ R3

u−1Γ(u) ⊇ . . .

and
Γ#(u) ⊇ LuΓ#(u) ⊇ L2uΓ#(u) ⊇ L3uΓ#(u) ⊇ . . . .
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Proof. This follows immediately from Theorem 3.10 and the fact that for any
graphs G1, G2 on the vertex set [n]t−1, Ru−1(G1 ∪G2) = Ru−1(G1)∪Ru−1(G2).
�

Let supp(G) and c(G) be the number of non-isolated vertices and the number
of connected components, respectively, of the graph G. Note that, since the
number of isolated vertices of G is at most c(G), we have that |V | ≤ supp(G) +
c(G), with strict inequality if G is non-empty.

We have the following bound

Theorem 5.2. Given u ∈ S([n]t), t ∈ N, then

• N(u) ≤ max{supp(Γ(u))− 1, 0} or N(u) = +∞;

• N#(u) ≤ max{supp(Γ#(u))− 1, 0} or N#(u) = +∞.

Proof. We prove the result only for N(u), the second statement being similar
(cf. Proposition 3.3 and Corollary 3.12).

Assume that N(u) is finite, then (cf. Remark 3.7) for any m ≥ N(u),
Γm(u) = ∅ so Rmu−1Γ(u) = ∅. If supp(Γ(u)) = 0 then N(u) = 0 and the result
follows.

So assume that supp(Γ(u)) > 0. Note that we have Γ(u) ⊇ Ru−1Γ(u) ⊇
R2
u−1Γ(u) ⊇ R3

u−1Γ(u) ⊇ . . . by Lemma 5.1. Hence there is k ∈ N0 such that

c(Rk+1
u−1 Γ(u)) = c(Rku−1Γ(u)), and furthermore T (Rk+1

u−1 Γ(u)) = T (Rku−1Γ(u)).

Hence, by Lemma 3.18, we get T (Rmu−1Γ(u)) = T (Rku−1Γ(u)) for any m ≥ k.

Therefore we have Rku−1Γ(u) = ∅ (otherwise T (RN(u)+k
u−1 Γ(u)) = T (Rku−1Γ(u)) 6=

∅). So k ≥ N(u) (for if Riu−1Γ0(u) = ∅ for some i ∈ N0 then, by definition of

Ru−1 , Rj
u−1Γ0(u) = ∅ for all j ≥ i so N(u) ≤ i). So we get

nt−1 − supp(Γ(u)) + 1 ≤ c(Γ(u)) < c(Ru−1Γ(u)) <

. . . < c(RN(u)−1
u−1 Γ(u)) < c(RN(u)

u−1 Γ(u)) = nt−1.

Hence, N(u) ≤ nt−1 − (nt−1 − supp(Γ(u)) + 1) = supp(Γ(u))− 1. �

Recall (see [3, Def. 11.4]) that for u ∈ S([n]2) we let C(u) := {j ∈ [n] : ∃i ∈
[n] such that u(i, j) 6= (i, j)} and define R(u) similarly.

Corollary 5.3. Given a non-identical permutation u ∈ S([n]2), then

• N(u) < |C(u)| or N(u) = +∞;

• N#(u) < |R(u)| or N#(u) = +∞.
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In particular, if a non-identical permutation u ∈ S([n]2) is stable, then rk(u) ≤
|C(u)|+ |R(u)| − 1.

Proof. Note that [n] \ C(u) are isolated vertices of Γ(u). Hence, supp(Γ(u)) ≤
|C(u)|. Similarly, supp(Γ#(u)) ≤ |R(u)|. The conclusion follows at once from
Theorem 3.5. �

The above result implies that, if u ∈ S([n]2) is stable, then rk(u) ≤ 2n− 1.
This bound improves, for permutative automorphisms, the one of n2 which
can be obtained from a similar estimate in [9, Cor. 3.3] for general unitaries
u ∈ U(F2).

Remark 5.4. C(u) and non-isolated vertices of Γ(u) are not always the same
sets. For example, if u = ((1, 1), (2, 1))((1, 2), (2, 2)) ∈ S([2]2), then C(u) =
{1, 2}, but supp(Γ(u)) = 0.

We have the following generalization of Lemma 5.1 for t = 2.

Proposition 5.5. Let u ∈ S([n]2). Then

T (Γ(u)) = T (Γ0(u)) ⊇ T (Γ1(u)) ⊇ T (Γ2(u)) ⊇ · · ·

and
T (Γ#(u)) = T (Γ#

0 (u)) ⊇ T (Γ#
1 (u)) ⊇ T (Γ#

2 (u)) ⊇ · · · .

Proof. We first show that T (Γ1(u)) ⊆ T (Γ0(u)). Let x → y be a directed
edge in Γ1(u). By Theorem 3.10 and our definitions this means that there is a
directed edge x′ → y′ in Γ0(u) and z ∈ [n] such that u−1(x′, z) = (w, x) and
u−1(y′, z) = (v, y) for some v, w ∈ [n]. Therefore there are directed edges z → x
and z → y in Γ0(u). Hence z, x and y belong to the same connected component
of Γ0(u) and so, by Proposition 3.8, x→ y is a directed edge in T (Γ0(u)).

Suppose now that T (Γk−1) ⊇ T (Γk) for some k ≥ 1. Then T (Ru−1(T (Γk−1)))
⊇ T (Ru−1(T (Γk))). But, by Lemma 3.17 (applied to Γk and T (Γk)) we have
T (Ru−1(T (Γk))) = T (Ru−1(Γk)) = T (Γk+1) and similarly for T (Ru−1(T (Γk−1))),
so T (Γk) ⊇ T (Γk+1).

Since T (Γ0(u)) ⊇ T (Γ1(u)) ⊇ T (Γ2(u)) ⊇ · · · and Γ(u) = Γ0(u) ∪ Γ1(u) ∪
Γ2(u) ∪ Γ3(u) ∪ . . ., we have T (Γ(u)) = T (Γ0(u)).

The second chain of set inclusions follows from the first one and Corollary
3.12. �

The previous result implies that, if u ∈ S([n]2), then u is stable if and

only if Γn(u) = Γ#
n (u) = ∅. Indeed, if there is an h ∈ [0, n − 1] such that

T (Γh(u)) = T (Γh+1(u)) 6= ∅ then, by Lemma 3.17 and Theorem 3.10, Γk(u) =
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Γh(u) for all k ≥ h so u is not stable. Similarly for Γ#
k (u). Conversely, if

T (Γ0(u)) ⊃ T (Γ1(u)) ⊃ T (Γ2(u)) ⊃ · · · ⊃ T (Γn(u)) then this means that
Γk+1(u) has at least one more connected component compared to Γk(u) for all

k ∈ [0, n− 1], so Γn(u) = ∅. Similarly for Γ#
n (u).

6 What makes a cycle stable?

In this section we present evidence in favor of the conjecture that stability of an
r-cycle u in S([n]2) depends only on a certain subset S(u) of [r]2 (see equation
(16)). More precisely, for u ∈ S([n]t) we introduce invariants R(u), C(u), Ro(u),
Co(u) as suitable subsets of [n], and then use them to define some equivalence
relations on permutations (see Definition 6.1). We then show that if two cycles
u, v ∈ S([n]2) are such that S(u) = S(v) then they are (left and right) equivalent.
We also give evidence for the stronger conjecture that this equivalence relation
is stability invariant.

For a permutation u ∈ S([n]t), we define supp(u) ⊆ [n]t as the set of elements
x such that u(x) 6= x. Let R(u) ⊆ [n] (resp. C(u) ⊆ [n]) be the elements that
appear somewhere in the first (resp., last) t− 1 places in supp(u), i.e.,

R(u) := {a ∈ [n] | ∃x ∈ supp(u) and i ∈ [t− 1] s.t. xi = a},

C(u) := {a ∈ [n] | ∃x ∈ supp(u) and i ∈ [t− 1] s.t. xi+1 = a}.

Note that, for t = 2, these sets coincide with the ones defined in [3, Def. 11.4],
and denoted there by the same notation. Let C◦(u) ⊆ [n] (resp., R◦(u) ⊆ [n])
be the set of elements in [n] that appear in the last (resp., first) position, and u
can change it, i.e.,

C◦(u) := {a ∈ [n] | ∃x ∈ supp(u) s.t. xt = a and (u(x))t 6= a}
= {a ∈ [n] | ∃x ∈ [n]t s.t. xt = a and (u(x))t 6= a},

R◦(u) := {a ∈ [n] | ∃x ∈ supp(u) s.t. x1 = a and (u(x))1 6= a}
= {a ∈ [n] | ∃x ∈ [n]t s.t. x1 = a and (u(x))1 6= a}.

In particular, C◦(u) ⊆ C(u) and R◦(u) ⊆ R(u). Observe that if u 6= 1 then
C(u) 6= ∅ and R(u) 6= ∅, but this is not true for C◦(u) and R◦(u) in general.
For example, if v ∈ S([n]t−2) then C◦(1 ⊗ v ⊗ 1) = R◦(1 ⊗ v ⊗ 1) = ∅, while
C(1⊗ v ⊗ 1) = R(1⊗ v ⊗ 1) = [n] if v 6= 1.

Note that if u ∈ S([n]t) then supp(u−1) = supp(u) and hence supp(u#) =

w
(t)
0 (supp(u)) where w

(t)
0 (x1, . . . , xt) := (xt, . . . , x1) for all (x1, . . . , xt) ∈ [n]t.
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Therefore R(u#) = C(u−1) = C(u) and so C(u#) = R(u). Furthermore, note
that R◦(u#) = C◦(u−1) = C◦(u) and so also C◦(u#) = R◦(u).

Note that if u ∈ S([n]t) and Γk(u) consists only of loops for some k ∈ N then
C◦(ψk(u)) = ∅. Furthermore, if C◦(ψk(u)) = ∅ for some k ∈ N and t = 2 then
Γk(u) consists only of loops. Also, note that C◦(ψk(u)) ⊆ C◦(ψk−1(u)) ⊆ · · · ⊆
C◦(ψ1(u)) ⊆ C◦(u−1) for any k ∈ N.

Definition 6.1. For u, v ∈ S([n]t) we say that u and v are left-equivalent if
there are σ ∈ Sn and π ∈ S([n]t) such that

• u = π−1vπ;

• σ(R◦(u) ∩ C(u)) = R◦(v) ∩ C(v);

• For any x ∈ [n]t and i ∈ [t] such that xi ∈ R◦(u) ∩ C(u), (π(x))i = σ(xi).

Similarly define right-equivalence by replacing R◦(u)∩C(u) with C◦(u)∩R(u),
and the same for v.

Proposition 6.2. Left and right equivalence are equivalence relations.

Proof. This is easy to check. The only property that requires a little bit of
care is symmetry which follows from the fact that if u is left equivalent to v
and y ∈ [n]t and i ∈ [n] are such that yi ∈ R◦(v) ∩ C(v) then (π−1(y))i ∈
σ−1(R◦(v) ∩ C(v)) = R◦(u) ∩ C(u), so yi = σ((π−1(y))i). �

Proposition 6.3. Let u, v ∈ S([n]t). Then u is left (resp., right) equivalent to
v if and only if u# is right (resp., left) equivalent to v#.

Proof. It is enough to show that if u is left-equivalent to v then u# is right-
equivalent to v#, the other implication being analogous. So suppose that
(σ, π) ∈ Sn × S([n]t) is a pair satisfying the properties as in the definition
of left-equivalence for u and v. Then it is routine to check that the pair
(σ, tπ) ∈ Sn × S([n]t) satisfies the properties as in the definition of right-
equivalence for u# and v#. �

The sets R◦(u) and C◦(u) allow for a more precise understanding of what
makes a permutation stable. The next result is a refinement, and generalization,
of Proposition 5.15 in [3]. Note that, if t = 2, then [n]\R◦(u) (resp., [n]\C◦(u))
is the set of first (resp., second) coordinates that are not changed by u (so, the
indices of the rows (resp., columns) that are left invariant by u).

Proposition 6.4. Let u, v ∈ S([n]2) be such that R(u)∩C◦(v) = ∅ and R◦(u)∩
C(v) = ∅. Then u is compatible with v, that is (v ⊗ 1)(1⊗ u) = (1⊗ u)(v ⊗ 1).
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Proof. Let x, y, z ∈ [n]. We will show that

(v ⊗ 1)(1⊗ u)(x, y, z) = (1⊗ u)(v ⊗ 1)(x, y, z). (10)

If v(x, y) = (x, y) and u(y, z) = (y, z) then (10) is clear. So assume that either
v(x, y) 6= (x, y) or u(y, z) 6= (y, z). Assume first that v(x, y) 6= (x, y). Then
y ∈ C(v) so by our hypotheses y /∈ R◦(u) which means that

u1(y, w) = y (11)

for all w ∈ [n]. If v2(x, y) = y then, by (11), we have that

(v ⊗ 1)(1⊗ u)(x, y, z) = (v ⊗ 1)(x, y, u2(y, z)) = (v1(x, y), y, u2(y, z))

and

(1⊗ u)(v ⊗ 1)(x, y, z) = (1⊗ u)(v1(x, y), y, z) = (v1(x, y), y, u2(y, z)),

and (10) follows.
If v2(x, y) 6= y then y ∈ C◦(v) and hence also v2(x, y) ∈ C◦(v). By our

hypotheses, this implies that y /∈ R(u) and v2(x, y) /∈ R(u) and hence that
u(y, w) = (y, w) and u(v2(x, y), w) = (v2(x, y), w) for all w ∈ [n]. Therefore

(1⊗ u)(v ⊗ 1)(x, y, z) = (1⊗ u)(v1(x, y), v2(x, y), z) = (v1(x, y), v2(x, y), z)

and
(v ⊗ 1)(1⊗ u)(x, y, z) = (v ⊗ 1)(x, y, z) = (v1(x, y), v2(x, y), z)

and (10) again follows.
If v(x, y) = (x, y) and u(y, z) 6= (y, z) the reasoning is similar, and easier,

and we therefore omit it. �

It is easy to see that if u ∈ S([n]2) is such that C◦(u) ∩ R(u) = ∅ then the
graphs Γk(u) are empty (i.e., consist only of loops) for all k ≥ 1. The next result
examines the case that |C◦(u) ∩R(u)| = 1.

Proposition 6.5. Let u ∈ S([n]2) be such that C◦(u) ∩ R(u) = {z0} for some
z0 ∈ [n].Then Γk(u) 6= ∅ for all k ∈ N if and only if either

u−1(z0, z)2 = z0 (12)

or
u−1(z0, z0)2 = z (13)

for some z ∈ [n] \ {z0}.
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Proof. Assume first that (12) holds for some z ∈ [n] \ {z0}. Then, by our
definitions, z → z0 in Γ0(u). Therefore, since z 6= z0, z ∈ C◦(u) and hence
z /∈ R(u). Hence u−1(z, z) = (z, z) while u−1(z0, z)2 = z0 by (12), so z → z0 in
Γ1(u), and therefore z → z0 in Γk(u) for all k ∈ N.

Assume now that (13) holds for some z ∈ [n] \ {z0}. Then z0 → z in
Γ0(u), so, as above, z ∈ C◦(u) \ R(u). Hence u−1(z, z0) = (z, z0) and, by (13),
u−1(z0, z0)2 = z, so z → z0 in Γ1(u). By exactly this same reasoning, z0 → z in
Γ2(u), etc..., so again Γk(u) 6= ∅ for all k ∈ N.

Conversely, assume that Γk(u) 6= ∅ for all k ∈ N. Then there are x1, . . . , xr,
y1, . . . , yr, w1, . . . , wr ∈ [n] and h ∈ N such that

xi → yi

in Γh+i(u), xi 6= yi,
u−1(xi, wi)2 = xi+1, (14)

and
u−1(yi, wi)2 = yi+1, (15)

for all i ∈ [r] (where indices are modulo r). Since, xi 6= yi we have from our
definitions that xi, yi ∈ C◦(ψh+i(u)) and so xi, yi ∈ C◦(u). Furthermore, since
either wi 6= xi+1 or wi 6= yi+1 we have that wi ∈ C◦(u). Hence x1, . . . , xr,
y1, . . . , yr, w1, . . . , wr ∈ C◦(u). This, in turn, implies that z0 ∈ {xi, yi} for all
i ∈ [r] (for if xi 6= z0 and yi 6= z0 then xi, yi /∈ R(u) so u−1(xi, wi) = (xi, wi) and
u−1(yi, wi) = (yi, wi) which, by (14) and (15), implies that xi+1 = wi = yi+1,
which is a contradiction).

Assume now that z0 = x1 = x2. Then y1, y2 6= z0 so y1, y2 /∈ R(u). Hence,
by (15), y2 = u−1(y1, w1)2 = w1 so w1 6= z0 and therefore (12) follows from
(14). Similarly if z0 = y1 = y2. So assume that x1 = z0 = y2, and y1, x2 6= z0.
Then u−1(z0, w1)2 = x2, u

−1(y1, w1)2 = z0 and y1 ∈ C◦(u) \ R(u). Hence
u−1(y1, w1) = (y1, w1) so w1 = z0 and therefore u−1(z0, z0)2 = x2 which proves
(13). Similarly if y1 = z0 = x2, and x1, y2 6= z0. �

Remark 6.6. Note that conditions (12) and (13) imply that {z0} is not a
connected component of Γ0(u).

Remark 6.7. We note that if u, v ∈ S([n]2) are right equivalent and |C◦(u) ∩
R(u)| = 1 then u satisfies condition (12) if and only if v does, and similarly for
condition (13). Indeed, let C◦(u) ∩R(u) = {z0}, and π ∈ S([n]2), σ ∈ Sn be as
in the definition of right equivalence. Then

u = π−1vπ
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σ({z0}) = {w0}

where w0 := σ(z0), and for all x, y ∈ [n] we have that

π(z0, y)1 = σ(z0)

and
π(x, z0)2 = σ(z0).

Then the above conditions imply that there are τ, ρ ∈ Sn such that

π(z0, y) = (w0, τ(y)) and π(x, z0) = (ρ(x), w0).

In particular π(z0, z0) = (w0, τ(z0)) = (ρ(z0), w0) = (w0, w0). Since (12) holds
for u we have that u−1(z0, z) = (U, z0) for some z ∈ [n]\{z0} and U ∈ [n]. Then
we have that

v−1(w0, τ(z)) = πu−1π−1(w0, τ(z)) = πu−1(z0, z) = π(U, z0) = (ρ(U), w0)

and τ(z) 6= τ(z0) = w0, so (12) holds for v. Similarly, if (13) holds for u then
u−1(z0, z0) = (U, z) for some z ∈ [n] \ {z0} and U ∈ [n] and we have that

v−1(w0, w0) = πu−1π−1(w0, w0) = πu−1(z0, z0) = π(U, z)

so v−1(w0, w0)2 = π(U, z)2 6= w0 since π maps column z0 into column w0. So
(13) holds for v.

One can hope that by similar methods it will be possible to deal with any
cardinality κ = |C◦(u) ∩R(u)|.

We have started the investigation of the case κ = 2, so when u ∈ S([n]2) is
such that C◦(u) ∩ R(u) = {z0, z1} with z0, z1 ∈ [n] and z0 6= z1. In this case,
one can check that each of the following conditions implies that Γk(u) 6= ∅ for
all k:

i) u−1(zi, z)2 = zi for some z /∈ R(u), i ∈ {0, 1};

ii) u−1(z0, z)2 = z1, u
−1(z1, z

′)2 = z0 for some z, z′ /∈ R(u);

iii) u−1(zi, zi)2 = z for some z /∈ R(u), i ∈ {0, 1};

iv) u−1(z0, z1)2 = z, u−1(z1, z0)2 = z′ for some z, z′ /∈ R(u) ;

v) {u−1(a, b)2, u−1(b, b)2} = {a, b} for some a, b ∈ [n], a 6= b
(i.e., either u−1(a, b)2 = a, u−1(b, b)2 = b or u−1(a, b)2 = b, u−1(b, b)2 = a);
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vi) u−1(z0, w)2 = z1, u
−1(y1, w)2 = y2, u

−1(z1, z0)2 = z0, u
−1(y2, z0)2 = y1,

for some y1, y2 ∈ [n], y1 6= z0, y2 6= z1 and w ∈ C◦(u);

vii) u−1(zi, w)2 = zi+1, u
−1(zi+1, zi)2 = z for some z /∈ R(u), i ∈ {0, 1}, w 6=

zi+1;

viii) u−1(zi, w1)2 = zj , u
−1(zi+1, w1)2 = y2, u

−1(zj , zi+1)2 = zi , for some
w1 ∈ [n], y2 ∈ [n] \R(u), i, j ∈ {0, 1};

ix) u−1(zi, w1)2 = zi+1, u
−1(zi+1, w1)2 = y2, u

−1(zi+1, zi)2 6= zi for some
w1, y2 ∈ [n] \R(u), and i ∈ {0, 1} such that (zi, zi+1) is a directed edge in
either Γ0(u) or Γ1(u).

It remains to be seen whether these conditions, maybe with the addition of
a few similar ones, characterize the fact that Γk(u) 6= ∅ for all k.

We note the following simple consequence of Corollary 5.8 of [3] and Lemma 5.4
of [4].

Proposition 6.8. Let u = ((a, b1), . . . , (a, br)) ∈ S([n]2) be an r-cycle. Then u
is stable if and only if a /∈ {b1, . . . , br}.

Let (a1, b1), . . . , (ar, br) ∈ [n]2, distinct, and u := ((a1, b1), . . . , (ar, br)) ∈
S([n]2). Define

S(u) := {(i, j) ∈ [r]2 : ai = bj}. (16)

Strictly speaking, this definition of S(u) depends on the choice of an element
in the cycle. So, to be precise, we should associate to any r-cycle an r-tuple
of subsets of [r]2. However, any two of these subsets differ by an element of
the diagonal of [r]2, so for notational convenience we consider only one of them.
In particular, in all our statements, we use this simplification and write, for
example, S(u) ⊆ {(1, 2), (2, 4)} to mean that there is a choice of element in
the cycle that makes this inclusion true. Equivalently, we might also write
S(u) ⊆ {(1, 2), (2, 4)} + (i, i), for some i ∈ [r] (numbers modulo r). More in
detail, the notation S(u) = {(1, 2), (2, 4)} means that there is a j ∈ [r] such that
aj = bj+1 and aj+1 = bj+3 (indices modulo r).

Keeping in mind what was just stated, we note that

S(u#) = {(r + 1− j, r + 1− i) : (i, j) ∈ S(u)}. (17)

The next result provides some evidence that the stability of cycles u ∈ S([n]2)
might depend only on S(u). Note that, for quadratic cycles (i.e., for t = 2), by
[4, Theorem 3.1], u is stable of rank 1 if and only if S(u) = ∅, which in turn
happens if and only if R(u) ∩ C(u) = ∅. This last condition (since u is a cycle)
is equivalent to R◦(u) ∩ C(u) = ∅ and R(u) ∩ C◦(u) = ∅.
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Theorem 6.9. Let u, v ∈ S([n]2) be r-cycles such that S(u) = S(v). Then u
and v are left and right equivalent.

Proof. Say u = ((a1, b1), . . . , (ar, br)) and v = ((c1, d1), . . . , (cr, dr)). Note that
R(u) ∩ C(u) = {ai : i ∈ [r] and there is j ∈ [r] such that (i, j) ∈ S(u)} and
similarly for v. Since S(u) = S(v) we have that if ai, aj ∈ R(u) ∩ C(u) then
ci, cj ∈ R(v) ∩ C(v) and ai = aj if and only if ci = cj . Therefore there is
σ ∈ Sn such that σ(ci) = ai for any (i, j) ∈ S(v). Consider the permutation
ũ = ((a′1, b

′
1), . . . , (a

′
r, b
′
r)) = (σ−1 ⊗ σ−1)u(σ ⊗ σ), clearly ũ and u are left and

right equivalent. It remains to show that ũ and v are left and right equivalent.
Note that by construction of σ if ci = dj then ci = a′i = b′j = dj . Similarly if

a′i = b′j . In particular, R(ũ)∩C(ũ) = R(v)∩C(v), R◦(ũ)∩C(ũ) = R◦(v)∩C(v),

and R(ũ) ∩ C◦(ũ) = R(v) ∩ C◦(v). Consider any permutation π ∈ S([n]2) such
that

• π(a′i, b
′
i) = (ci, di) for i ∈ [r];

• π(x)1 = x1 for x ∈ (R(ũ) ∩ C(ũ))× [n];

• π(y)2 = y2 for y ∈ [n]× (R(ũ) ∩ C(ũ)).

Such a permutation π ∈ S([n]2) exists since if (a′i, b
′
i) ∈ (R(ũ)∩C(ũ))× [n] then

there is j ∈ [r] such that a′i = b′j and so, by what was observed above, a′i = ci,
and similarly if (a′i, b

′
i) ∈ [n] × (R(ũ) ∩ C(ũ)) then b′i = di. Hence ũ and v are

left and right equivalent (the pair of permutations are π ∈ S([n]2) and 1 ∈ Sn
for both left and right equivalences). �

The next statement is the main motivation for the approach presented in
this section.

Conjecture 6.10. Given two right and left equivalent permutations u, v ∈
S([n]2). Then u is stable if and only if v is stable.

Especially, one would like to see that if there exists some k0 ≥ 0 such that
Γk(u) (resp. Γ#

k (u)) is empty for all k ≥ k0 then there should exist some h0 ≥ 0

such that Γh(v) (resp. Γ#
h (v)) is empty for all h ≥ h0. While this looks very

difficult to prove in general, it becomes quite immediate for k0 = 0.
To see this, note first that if u ∈ S([n]2) and k ∈ N0 have the property

that all directed edges x → y in Γk(u) that are not loops are such that x, y ∈
C◦(u) \ R(u) (note that, since x 6= y, it is clear that x, y ∈ C◦(ψk(u)) and so,
by the remarks preceding Definition 6.1, x, y ∈ C◦(u−1) = C◦(u)) then, for any
z ∈ [n], u−1(x, z) = (x, z) and u−1(y, z) = (y, z) so, by Theorem 3.10, Γk+1(u)
consists only of loops.
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Assume now that Γ0(u) has only loops, then, by the definition of Γ0(u),
C◦(u) = ∅. This, since u is right equivalent to v, implies that C◦(v)∩R(v) = ∅.
Therefore, if x → y in Γ0(v) is not a loop, by what was just observed, we have
that x, y ∈ C◦(v) and so x, y ∈ C◦(v)\R(v). Hence, by the above remark, Γ1(v)
has only loops.

Similarly, assume that Γ#
0 (u) has only loops, then, by Corollary 3.12, Γ0(u

#),
has only loops, i.e. C◦(u#) = ∅. By Proposition 6.3, u# and v# are left and
right equivalent, so that C◦(v#) ∩ R(v#) = ∅ and again, as above, Γ1(v

#) has

only loops, i.e. Γ#
1 (v) has only loops.

Also, a notable special case of Conjecture 6.10 holds if u, v are r-cycles and
r ≤ 5, see Corollary 9.9. The proof requires the concept of strong stability that
will be introduced and studied in Sections 8 and 9.

Finally, it is worth to stress that the analogue of Conjecture 6.10 most likely
fails when u, v ∈ S([n]t), t ≥ 3. It would be quite instructive to examine in
detail the following situation. Pick a permutation u = 1 ⊗ u0 ⊗ 1 ∈ S([n]3),
where u0 is a nontrivial element in Sn. Then u is stable of rank one and,
moreover, R◦(u) = ∅ = C◦(u). Also, consider another permutation π ∈ S([n]3)
such that π(a, b, c) = (a, σa,c(b), c), where σa,c ∈ Sn for all a, c ∈ [n]. Now, the
permutation v := πuπ−1 ∈ S([n]3) also satisfies R◦(v) = ∅ = C◦(v) and is thus
left and right equivalent to u. In particular, it would follow from the previous
conjecture, somewhat surprisingly, that v is stable as well.

7 Quadratic cycles and compatibility

Given the importance of compatibility in the study of stable permutations (see
[3, Theorem 5.2]), in this section we study the compatibility of cycles with other
permutations. In particular we obtain an explicit characterization of pairs of
compatible cycles. This analysis is used in the next section for our study of
strongly stable cycles.

Recall from Definition 2.3 that we denote by • a compatible product. So, if
u, v, w ∈ S([n]2) we write w = u • v to mean that w = uv and (v ⊗ 1)(1⊗ u) =
(1⊗ u)(v ⊗ 1) holds.

Compatibility with 2-cycles (transpositions) is discussed in [3, Propositions
5.6 and 5.7]. We now examine compatibility with general cycles.

Proposition 7.1. Let u = ((a1, b1), . . . , (ar, br)) ∈ S([n]2) be an r-cycle and
v ∈ S([n]2). Then (v⊗1)(1⊗u) = (1⊗u)(v⊗1) if and only if there exist σ ∈ Sn
and s : [n]→ [r] such that(

v(x, aj), bj
)

=
(
σ(x), as(x)−1+j , bs(x)−1+j

)
(18)
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for all j = 1, . . . , r and all x ∈ [n] (indices modulo r).

Proof. We have that

1⊗ u =

n∏
x=1

((x, a1, b1), . . . , (x, ar, br))

and so

(v ⊗ 1)(1⊗ u)(v−1 ⊗ 1) =
n∏
x=1

((v(x, a1), b1), . . . , (v(x, ar), br)).

Therefore 1⊗u = (v⊗1)(1⊗u)(v−1⊗1) if and only if there is σ ∈ Sn such that

((σ(x), a1, b1), . . . , (σ(x), ar, br)) = ((v(x, a1), b1), . . . , (v(x, ar), br))

(as r-cycles) for all x ∈ [n]. The result follows. �

Remark 7.2. Let q = gcd(r, s(1) − 1, . . . , s(n) − 1) be the greatest common
divisor. Then, since q is a linear combination of r, s(1)−1, . . . , s(n)−1, bj+q = bj
for any j ∈ [r]. Therefore, if q < r, aj+q 6= aj for any j ∈ [r], |{b1, . . . , br}| ≤ q,
and hence |{a1, . . . , ar}| ≥ r/q.

If there exists x ∈ [n] such that s(x) 6= 1, then (q < r and) {a1, . . . , ar} ⊆
C(v) (indeed, if aj /∈ C(v) for some j ∈ [r] then v(x, aj) = (x, aj) for all
x ∈ [n] so by (18) we have that (x, aj , bj) = (σ(x), as(x)−1+j , bs(x)−1+j) for all
x which implies that s(x) = 1 for all x ∈ [n]). Suppose now that (s(x) 6= 1
for some x ∈ [n] and) v = ((c1, d1), . . . , (c`, d`)) ∈ S([n]2) is a cycle. Then,
since {a1, . . . , ar} ⊆ C(v), there is i ∈ [`] such that di = a1. Therefore, we
conclude from (18) that (v(ci, a1), b1) = (σ(ci), as(ci), bs(ci)) which implies that
σ(ci) = ci+1 and di+1 = as(ci) ∈ R(u). Continuing in this way we therefore
conclude that C(v) ⊆ R(u) and hence that R(u) = C(v). With some more
work, see also the proof of Lemma 7.4 below, one can also show that pq = r,
where p := |{a1, . . . , ar}|.

Proposition 7.3. Let u = ((a1, b1), . . . , (ar, br)) ∈ S([n]2) be an r-cycle and
v ∈ S([n]2). Then (u⊗1)(1⊗v) = (1⊗v)(u⊗1) if and only if there exist σ ∈ Sn
and s : [n]→ [r] such that(

aj , v(bj , x)
)

=
(
as(x)−1+j , bs(x)−1+j , σ(x)

)
(19)

for all j = 1, . . . , r and all x ∈ [n] (indices modulo r).

Proof. This follows from the definition of u#, Proposition 7.2 of [4], and Propo-
sition 7.1. �
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Lemma 7.4. Let u := ((a1, b1), . . . , (ar, br)) and v := ((c1, d1), . . . , (c`, d`)) be
an r-cycle and an `-cycle, such that u is compatible with v and R(u)∩C(v) 6= ∅.
Then R(u) = C(v), r = |R(u)||C(u)|, and ` = |R(v)||C(v)|. Furthermore, u acts
on the second coordinate as a cycle of length |C(u)| (i.e., b1, . . . , b|C(u)| are all
distinct and bi+|C(u)| = bi for all i, where indices are modulo r) and v acts on
the first coordinate as a cycle of length |R(v)|.

Proof. By Proposition 7.1 we have that u is compatible with v if and only if
there are σ ∈ Sn and s : [n]→ [r] such that(

v(x, aj), bj
)

=
(
σ(x), as(x)−1+j , bs(x)−1+j

)
(20)

for all j ∈ [r] and all x ∈ [n] (where indices are modulo r).
Since R(u) ∩ C(v) 6= ∅, then, arguing similarly as in Remark 7.2, one can

show that C(v) ⊆ R(u) and then that R(u) ⊆ C(v).
If there are i, j such that v(ci, aj) = (ci, aj), then (v(ci, aj), bj) = (ci, aj , bj).

Therefore, σ(ci) = ci and s(ci) = 1, i.e., v(ci, ak) = (ci, ak) for any k. We
get that di /∈ R(u), however C(v) = R(u). Therefore v(ci, aj) 6= (ci, aj) for all
i, j. The number of such pairs is |R(u)||R(v)| = |C(v)||R(v)|. We immediately
have two inequalities for `, then ` = |C(v)||R(v)|. Furthermore, we see that
(ci+1, di+1) = v(ci, di) = (σ(ci), ·), hence, v acts on the first coordinate as a
cycle of length |R(v)|. Similarly, r = |C(u)||R(u)| and u acts on the second
coordinate as a cycle of length |C(u)|. �

The previous lemma easily implies the following characterization of compat-
ible pairs of cycles u, v ∈ S([n]2) such that R(u)∩C(v) 6= ∅. By [3, Proposition
5.15] this completely characterizes the pairs of cycles in S([n]2) that are com-
patible since any permutations u, v ∈ S([n]2) such that R(u) ∩ C(v) = ∅ are
compatible in this order.

Theorem 7.5. Given an r-cycle u and an `-cycle v such that R(u)∩C(v) 6= ∅.
Then u and v are compatible in this order if and only if there are t|gcd(r, `), three
sequences (x1, x2, . . . , xt), (y1, y2, . . . , y r

t
), (z1, z2, . . . , z `

t
) of distinct elements in

[n] and two sequences of numbers (p1, p2, . . . , p `
t
) ∈ [0, r− 1]

`
t , (q1, q2, . . . , q r

t
) ∈

[0, `− 1]
r
t such that:

1. R(u) = C(v) = {x1, x2, . . . , xt}, C(u) = {y1, y2, . . . , y r
t
}, and R(v) =

{z1, z2, . . . , z `
t
};

2. u(xi, yj) = (xi+qj , yj+1) for all i ∈ [t] and j ∈ [ rt ];

3. v(zi, xj) = (zi+1, xj+pi) for all i ∈ [ `t ] and j ∈ [t].
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(where the indexes of x, y, z are taken mod t, mod r
t and mod `

t , respectively).

Remark 7.6. Note that conditions 2. and 3. in Theorem 7.5 define cycles if
and only if

gcd(p1 + p2 + . . .+ p `
t
, t) = gcd(q1 + q2 + . . .+ q r

t
, t) = 1 .

Indeed, if k := gcd(p1 + p2 + . . . + p `
t
, t) then by 3. we have that v

`
k (zi, xj) =

(zi+ `
k
, xj+ t

k
(p1+...+p `

t
)) for all i ∈ [ `t ] and j ∈ [t]. But `

k ≡ 0 (mod `
t ) and

t
k (p1 + . . . + p `

t
) ≡ 0 (mod t), so v

`
k is the identity which implies that k = 1.

Similarly for u.

Lemma 7.7. Let u be an r-cycle such that r = |R(u)||C(u)| and u acts on the
first coordinate as a cycle of length |R(u)| (on the second coordinate as a cycle
of length |C(u)|). If R(u) ∩ C(u) 6= ∅ and R(u) 6= C(u), then u is not a stable
permutation.

Proof. Let u = ((a1, b1), . . . , (ar, br)) ∈ S([n]2). Write, for brevity, Γk rather

than Γk(u), and similarly for Γ#
k . Consider first the case R(u) 6⊆ C(u). Let i be

an index such that ai ∈ C(u) and ai+1 /∈ C(u). Then u(ai, ai+1) = (ai, ai+1).
Also, since u acts as a cycle on the first coordinate, u(x, y) 6= (x, y) for all
(x, y) ∈ R(u) × C(u), and ai ∈ C(u), u(ai, ai) = (ai+1, ·). This implies that

ai+1 → ai in Γ#
0 and that, if ai → ai+1 (resp. ai+1 → ai) in G, then ai+1 → ai

(resp. ai → ai+1) in Lu(G). Hence, by Theorems 3.10 and 3.13, u is not a stable
permutation.

Suppose now that R(u) ( C(u). Since u is a cycle, the transitive closure of
Γ0, T (Γ0), is a complete graph on C(u). We claim that T (Γk) = T (Γ0) for all
k ≥ 0. We prove this claim by induction on k ≥ 0. Indeed, let x ∈ C(u) \R(u)
and i ∈ [r]. Since ai → x in T (Γk), then bi−1 → bi in Ru−1(T (Γk)) but, by
Lemma 3.17, T (Ru−1(T (Γk))) = T (Ru−1(Γk)), so by Theorem 3.10, bi−1 → bi
in T (Γk+1). Hence T (Γk+1) is a complete graph on C(u). But |C(u)| > 1 so
Γk 6= ∅ for all k ≥ 0 hence u is not stable.

The statement in parenthesis follows by applying what we have just proved
to u# and using the facts that R(u) = C(u#) and R(u#) = C(u) (see the
remarks made before Definition 6.1) and Theorem 7.3 of [4]. �

Note that, by [3, Proposition 5.15], if u, v ∈ S([n]2) are such that R(u) ∩
C(v) = ∅ then u is compatible with v. The converse is false even if u and v are
stable cycles. For example, if u = ((1, 2), (1, 3), (1, 4)) and v = ((2, 1), (3, 1), (4, 1))
then u and v are stable of rank 1 and u is compatible with v (see also [4, Theorem
3.1] and Theorem 7.5). However, the following statement holds.
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Corollary 7.8. Let u and v be a stable r-cycle and a stable `-cycle such that
gcd(r, `) = 1. Then uv is a compatible product if and only if either

1. R(u) ∩ C(v) = ∅;

2. R(u) = C(v) = {a} for some a ∈ [n];

Furthermore, u • v is a stable permutation in this case.

Proof. Let u := ((a1, b1), . . . , (ar, br)) and v := ((c1, d1), . . . , (c`, d`)). We have
already observed that if 1. holds then u is compatible with v. Assume that
2. holds. Then R(u) ∩ C(v) 6= ∅ and a1 = · · · = ar = d1 = · · · = d` so
b1, . . . , br are all distinct and c1, . . . , c` are all distinct. Therefore, taking t = 1,
p1 = · · · = p` = 1, and q1 = · · · = qr = 1 we see that all the conditions in
Theorem 7.5 are satisfied so u is compatible with v.

Conversely, suppose that u is compatible with v and that R(u) ∩ C(v) 6= ∅.
Then by Theorem 7.5 and our hypotheses we conclude that 2. holds.

The last statement follows from [3, Theorem 5.2]. �

Remark 7.9. Note that uv is not necessarily a cycle.

Some consequences of the analysis carried out so far are the following ones.

Corollary 7.10. Let u and v be a stable r-cycle and a stable `-cycle and (a, b) ∈
[n]2 be such that (a, b) 6= u(a, b), v(a, b). If uv is a compatible product then either
R(u) ∩ C(v) = ∅ or R(u) = C(u) = R(v) = C(v).

Proof. Assume that R(u) ∩ C(v) 6= ∅. Then, by Lemma 7.4, R(u) = C(v),
r = |R(u)||C(u)|, ` = |R(v)||C(v)|, u acts on the second coordinate as a cycle of
length |C(u)|, and v acts on the first coordinate as a cycle of length |R(v)|. This,
by Lemma 7.7, implies that either R(u) ∩ C(u) = ∅ or R(u) = C(u), and that
either R(v)∩C(v) = ∅ or R(v) = C(v). But, by our hypothesis, a ∈ R(u)∩R(v)
and b ∈ C(u) ∩ C(v). Since R(u) = C(v), the result follows. �

Corollary 7.11. Let u, v ∈ S([n]2) be a stable r-cycle and a stable `-cycle such
that u and v are not of rank 1 and either r = ` is not a square or r 6= `. Then
uv is a compatible product if and only if R(u) ∩ C(v) = ∅.

Proof. As observed before Corollary 7.8 we already know that if R(u)∩C(v) = ∅
then u is compatible with v. So assume that u is compatible with v and that
R(u) ∩ C(v) 6= ∅. Then, by Lemma 7.4, R(u) = C(v), r = |R(u)||C(u)|, ` =
|R(v)||C(v)|, u acts on the second coordinate as a cycle of length |C(u)|, and v
acts on the first coordinate as a cycle of length |R(v)|. Since u and v are not of
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rank 1 we have from [4, Theorem 3.1] that R(u)∩C(u) 6= ∅ and R(v)∩C(v) 6= ∅.
Therefore, by Lemma 7.7, we conclude that R(u) = C(u) and R(v) = C(v), so
r = ` = |R(u)|2 which contradicts our hypotheses. �

Corollary 7.12. Let u, v ∈ S([n]2) be a stable r-cycle and a stable `-cycle such
that exactly one of u, v has rank 1, and gcd(r, `) = 1. Then uv is a compatible
product if and only if R(u) ∩ C(v) = ∅.

Proof. The proof follows the lines of that of Corollary 7.11. Suppose that u is
compatible with v and R(u) ∩ C(v) 6= ∅. Then by Corollary 7.8 we have that
R(u) = C(v) and |R(u)| = |C(v)| = 1. Also, by Lemma 7.4, r = |R(u)||C(u)|,
` = |R(v)||C(v)|, u acts on the second coordinate as a cycle of length |C(u)|,
and v acts on the first coordinate as a cycle of length |R(v)|. If v is not of
rank 1 we have from [4, Theorem 3.1] that R(v) ∩ C(v) 6= ∅ so, by Lemma 7.7,
R(v) = C(v) so ` = 1 which is a contradiction. Similarly, if u is not of rank 1
then R(u) ∩ C(u) 6= ∅ so, by Lemma 7.7, R(u) = C(u) so r = 1. �

Corollary 7.13. Let (a1, b1), . . . , (ar, br) ∈ [n]2, be distinct pairs such that v :=
((a1, b1), . . . , (ar−1, br−1)) is stable, and consider the r-cycle w := ((a1, b1), . . . ,
(ar, br)). Then u := ((a1, b1), (ar, br)) is stable and w = uv is a compatible
product if and only if

{a1, ar} ∩ C(w) = ∅. (21)

Proof. If {a1, ar}∩C(w) = ∅ then by [3, Proposition 5.15] and [3, Theorem 8.1],
the transposition u is stable and u is compatible with v.

Conversely, assume that u is stable and u is compatible with v. Then by [3,
Theorem 8.1] we have that {a1, ar} ∩ {b1, br} = ∅ and thus {a1, ar} ∩ C(w) =
{a1, ar} ∩ C(v). If {a1, ar} ∩ C(v) 6= ∅, then, by Theorem 7.5, {a1, ar} = C(v),
so b1 ∈ {a1, ar}, which is a contradiction . �

This last result should be useful for some reduction/inductive step. Related
statements, in a slightly more specific context, are [4, Theorem 5.2] and [4,
Theorem 6.2].

The following is a quite explicit special case of Theorem 7.5.

Corollary 7.14. Let u := ((a1, b1), . . . , (ar, br)) and v := ((c1, d1), . . . , (cr, dr))
be two r-cycles, with r prime. Then u is compatible with v if and only if either:

1. R(u) ∩ C(v) = ∅;

2. a1 = · · · = ar = d1 = · · · = dr;
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3. b1 = · · · = br, c1 = · · · = cr and there are k ∈ [r] and p ∈ [r − 1] such that
di = ak+(i−1)p for all i = 1, . . . , r.

Proof. Assume first that u is compatible with v. Suppose that R(u)∩C(v) 6= ∅.
We can apply Theorem 7.5 for some t. Since t|gcd(r, r) and r is a prime, t equals
either 1 or r.
The first case: t = 1. Hence, R(u) = C(v) = {x} for some x ∈ [n]. Therefore,
a1 = · · · = ar = d1 = · · · = dr holds.
The second case: t = r. Hence, C(u) = {y}, R(v) = {z} for some y, z ∈ [n].
Therefore, b1 = · · · = br and c1 = · · · = cr hold. There is q such that
u(xi, y) = (xi+q, y), where {x1, x2, . . . , xr} is R(u). Since q and r are coprime,
we can assume without loss of generality that a1 = x1 and q = 1 in Theo-
rem 7.5. Therefore xi = ai for any i. Let j ∈ [r] be such that d1 = xj .
Then (z, d2) = v(z, d1) = v(z, xj) = (z, xj+p) so d2 = xj+p = aj+p. Similarly
(z, d3) = v(z, d2) = v(z, xj+p) = (z, xj+2p) so d3 = xj+2p = aj+2p, etc., so 3.
holds.

Conversely. If 1. holds then, as already observed before Corollary 7.8,
u is compatible with v. Assume that 2. holds. Then R(u) ∩ C(v) 6= ∅
and (b1, b2, . . . , br) and (c1, c2, . . . , cr) are distinct elements of [n] such that
R(u) = C(v) = {a1}, C(u) = {b1, b2, . . . , br}, R(v) = {c1, c2, . . . , cr}, u(a1, bj) =
(a1, bj+1) for all j ∈ [r], and v(ci, a1) = (ci+1, a1) for all i ∈ [r]. So, by Theorem
7.5 (with p1 = · · · = pr = q1 = · · · = qr = 0) u is compatible with v. Finally,
if 3. holds then (a1, a2, . . . , ar) are distinct elements in [n], and b1, c1 ∈ [n]
and p ∈ [r − 1] are such that R(u) = C(v) = {a1, a2, . . . , ar}, C(u) = {b1},
R(v) = {c1} and u(ai, b1) = (ai+1, b1) for all i ∈ [r]. Furthermore, let j ∈ [r]
then, since r is prime, there is i ∈ [r] such that j ≡ k + (i − 1)p (mod r).
Therefore v(c1, aj) = v(c1, di) = (c1, di+1) = (c1, aj+p). So, again by Theorem
7.5 (with p1 = p and q1 = 1) u is compatible with v. �

Note that, for r = 3, condition 3. in the previous result can be stated more
simply as b1 = b2 = b3, c1 = c2 = c3 and {a1, a2, a3} = {d1, d2, d3}.

8 Strongly stable quadratic cycles

In this section we define and study a notable class of stable cycles, which we call
strongly stable, whose definition relies on the concept of a cyclic factorization.
Although this concept seems to be new, it is in fact closely related to many
well studied combinatorial objects including non-crossing partitions and Fuss-
Catalan numbers. We give several explicit characterizations of strongly stable
cycles (Theorem 8.7) including in terms of the subset S(u) ⊆ [r]2 defined in (16).
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Some of these characterizations depend on new combinatorial concepts, such as
the connectivity set of a permutation, which may be of independent interest.

Let t1, . . . , tr ∈ S([n]2) be transpositions. By an ordered product of (t1, . . . , tr),
we mean a total order on the r − 1 products in the expression t1 · · · tr. We de-
note this by t1 ·

a1
t2 ·

a2
· · · ·

ar−1

tr where {a1, a2, · · · , ar−1} is a subset of Z, and

interpret this in the obvious way. So, for example, t1 ·
2
t2 ·

3
t3 ·

1
t4 means that

we multiply first t3 and t4 (in this order), then t1 and t2, and finally (t1t2) and
(t3t4). Note that this notation contains more information than a bracketing. If
u = t1 ·

a1
t2 ·

a2
· · · ·

ar−1

tr then we also say that t1 ·
a1
t2 ·

a2
· · · ·

ar−1

tr is an ordered

factorization of u. If all the involved products are compatible then we write
u = t1 •

a1
t2 •

a2
· · · •

ar−1

tr and call this a compatible ordered factorization of u.

Let u ∈ S([n]2) be an r-cycle. Let t1, . . . , tr−1 be transpositions and t1 ·
a1

t2 ·
a2
· · · ·

ar−2

tr−1 be an ordered factorization of u. We say that such an ordered

factorization is a cyclic factorization of u if, after performing the first k of these
products (1 ≤ k ≤ r−2), the resulting permutations are all cycles. For example,
the factorization (P1, P2, P3, P4, P5) = (P1, P2) ·

2
(P2, P3) ·

3
(P3, P4) ·

1
(P4, P5) is

cyclic, while the factorization (P1, P2, P3, P4, P5) = (P1, P3) ·
3

(P4, P5) ·
2

(P1, P2) ·
1

(P3, P5) is not. Note that, in a cyclic factorization of an r-cycle (P1, . . . , Pr) =
t1 ·

a1
t2 ·

a2
· · · ·

ar−2

tr−1 all transpositions ti necessarily only involve elements in

{P1, . . . , Pr}, as can be easily seen by induction on r.
For r ≥ 2 let Cr denote the number of cyclic factorizations of an r-cycle. So,

for example, C2 = 1 and C3 = 3 (corresponding to (P1, P2, P3) = (P1, P2)(P2, P3)
= (P2, P3)(P3, P1) = (P3, P1)(P1, P2)). Note that, if r ≥ 3 and u := (P1, . . . , Pr) =
t1 ·

a1
t2 ·

a2
· · · ·

ar−2

tr−1 is a cyclic factorization then the shift Pj 7→ Pj+1 for all

j ∈ [r] (indices modulo r) produces a different cyclic factorization of u since
t1, . . . , tr−1 are all transpositions and r ≥ 3. Thus r |Cr if r ≥ 3.

Although the concept of cyclic factorization seems to be new, it is in fact
closely related to many combinatorial objects that have been widely studied in
the literature, as we now show.

Consider r points on a circle, labeled clockwise from 1 to r. Let T be a
tree, embedded in the plane, having these points as vertices, and rectilinear
edges. Recall (see, e.g., [15], and the references cited there) that such a tree
is non-crossing (or, an nc-tree, for short) if its edges do not cross. Note that,
for any such tree T and any vertex x of T of degree d(x), there are d(x) angles
in the vertex x, so 2r − 2 such angles in total. Now assign a total order (i.e.,
a number in [r − 2]) to all the angles of the tree except the exterior ones (so
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(2r − 2) − r = r − 2 angles in total). We call such a decorated tree a tree with
angles.

Proposition 8.1. There is a bijection between cyclic factorizations of an r-cycle
and trees with angles on r vertices. In particular,

Cr+1 =
(r − 1)!

2r + 1

(
3r

r

)
(22)

for all r ∈ N.

Proof. We associate to any cyclic factorization of the cycle u = (P1, . . . , Pr) a
non-crossing tree with angles T , on the vertex set {P1, . . . , Pr}, embedded in the
plane so that the vertices P1, . . . , Pr appear clockwise on a circle. We make the
association inductively. If r = 2 there is only one cyclic factorization of a 2-cycle
and we associate to this the only tree with angles on 2 vertices. Suppose now that
we have a cyclic factorization of an r-cycle u. Consider the last (i.e., the (r−2)-
nd) multiplication in the factorization. By definition of cyclic factorization, the
permutations on the left and right of this last multiplication are cycles, they have
exactly one element Pi in common, and we have a cyclic factorization of each one
of them. Since the product of these two cycles is u = (P1, . . . , Pr) we conclude
that either the left one is (Pj+1, Pj+2, . . . , Pr, P1, P2, . . . , Pi−1, Pi) and the right
one is (Pi, Pi+1, . . . , Pj) for some j ∈ [i+1, r] (if P1 is in the left cycle) or the left
one is (Pj , Pj+1, . . . , Pi) and the right one is (Pi, Pi+1, . . . , Pr, P1, P2, . . . , Pj−1)
for some j ∈ [i− 1] (if P1 is in the right cycle). Now take the trees with angles
Tl and Tr associated to the left and right cyclic factorizations, respectively, glue
them together at the vertex corresponding to Pi so that the two exterior (i.e,
unnumbered) angles are joined and number with r − 2, among the two new
angles just formed in vertex Pi, the one so that Tl is on the left when entering
the angle numbered with r−2. Note that there is a canonical way to embed such
a tree with angles so that the vertices P1, . . . , Pr appear clockwise on a circle.
It is easy to see that this is a bijection: to any non-crossing tree with angles we
can associate a cyclic factorization. Therefore, Cr = (r − 2)!tr, where tr is the
number of nc-trees with r vertices. But it is well known (see, e.g., [15, Theorem
1.1], or [12]) that tr+1 =

(
3r
r

)
/(2r + 1) for all r ∈ N, so the result follows. �

We illustrate the bijection just described on a couple of examples. Consider
the cyclic factorization

(P4,P5) ·
4

(P2, P3) ·
3

(P3, P5) ·
2

(P1, P6) ·
1

(P1, P5)

= (P4, P5) ·
(

(P2, P3) ·
(

(P3, P5) ·
(
(P1, P6) · (P1, P5)

)))
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Figure 2: The tree with angles corresponding to the cyclic factorization (P4, P5) ·
4

(P2, P3) ·
3

(P3, P5) ·
2

(P1, P6) ·
1

(P1, P5).

of the 6-cycle (P1, P2, P3, P4, P5, P6). Then the corresponding tree with angles
is shown in Figure 2.

Conversely, the cyclic factorization corresponding to the tree with angles
depicted in Figure 3 is:

(P1, P2) ·
4

(P2, P3) ·
3

(P3, P8) ·
6

(P4, P5) ·
1

(P3, P5) ·
5

(P5, P6) ·
2

(P6, P7).

The sequence {tr}r=1,2,... appears often in enumerative combinatorics and
has a large number of combinatorial interpretations including in terms of trees,
lattice paths and noncrossing partitions (see, e.g., [17], sequence A001764, and
the references cited there). In particular, tr+1 is also the 2nd Fuss-Catalan
number Cat(2)(Sr) of the symmetric group Sr, so the number of 2-divisible
noncrossing partitions of Sr (see, e.g., [1, Section 3.5]). Finally it may be worth
noting that the sequence Cr satisfies the recursion Cr = r

∑r−1
i=2

(
r−3
i−2
)
CiCr−i+1

for all r ≥ 3, as can be deduced directly from the definition of these numbers,
but not easily from (22).

Given a cyclic factorization u = t1 ·
a1
t2 ·
a2
· · · ·

ar−2

tr−1 of a cycle u ∈ S([n]2) we

let u′k and u′′k be the left and right cycles, respectively, that are being multiplied
when performing the k-th product in the factorization. So, for example, for
u = (P1, P2, P3, P4, P5) = (P1, P2) ·

2
(P2, P3) ·

3
(P3, P4) ·

1
(P4, P5) we have that

u′1 = (P3, P4), u
′′
1 = (P4, P5), u

′
2 = (P1, P2), u

′′
2 = (P2, P3), u

′
3 = (P1, P2, P3),
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Figure 3: Another tree with angles

and u′′3 = (P3, P4, P5). Let u ∈ S([n]2) be an r-cycle. The following is the main
definition of this section. We say that u is a strongly stable cycle if there is a
compatible cyclic factorization u = t1 •

a1
t2 •
a2
· · · •

ar−2

tr−1 such that t1, . . . , tr−1 are

stable transpositions. Note that, in this case, u′k and u′′k are strongly stable cycles
for all k = 1, . . . , r−2. By [3, Theorem 5.2] we have that a strongly stable cycle
is stable. Conversely, by [4, Theorem 5.12], a stable 3-cycle is strongly stable.
Recall the definitions of the sets R(u) and C(u) appearing at the beginning of
Sect.6 (see also [3, Def. 11.4]).

Lemma 8.2. Let u ∈ S([n]2) be a strongly stable cycle. Then C(u) 6⊆ R(u). In
particular, R(u) 6= C(u).

Proof. Suppose u is an r-cycle. We proceed by induction on r, the result being
true by [3, Theorem 8.1] for r = 2. So assume that r ≥ 3. Let u = t1 •

a1
t2 •

a2
· · · •

ar−2

tr−1 be a compatible cyclic factorization of u where t1, . . . , tr−1 are stable

transpositions. Let, for brevity, u′ := u′r−2 and u′′ := u′′r−2. Then u = u′ • u′′
and, by induction, C(u′) 6⊆ R(u′) and C(u′′) 6⊆ R(u′′). Furthermore, since u, u′,
and u′′ are all cycles there is (a, b) ∈ [n]2 such that u′(a, b) 6= (a, b) 6= u′′(a, b).
Hence, by Corollary 7.10, R(u′) ∩C(u′′) = ∅. Therefore C(u′′) 6⊆ R(u′) ∪R(u′′)
so the result follows since C(u) = C(u′) ∪ C(u′′) and R(u) = R(u′) ∪R(u′′). �

Lemma 8.3. Let u = t1 ·
a1
t2 ·

a2
· · · ·

ar−2

tr−1 be a cyclic factorization by stable

transpositions of an r-cycle u ∈ S([n]2). Then the factorization is compatible if
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and only if R(u′k) ∩ C(u′′k) = ∅ for all 1 ≤ k ≤ r − 2.

Proof. If the factorization is compatible then the same reasoning used to prove
Lemma 8.2 shows that R(u′k) ∩ C(u′′k) = ∅ for all 1 ≤ k ≤ r − 2. Conversely,
if R(u′k) ∩ C(u′′k) = ∅ for all 1 ≤ k ≤ r − 2 then, by [3, Proposition 5.15], u′k is
compatible with u′′k, for all 1 ≤ k ≤ r − 2 so the factorization is compatible. �

Theorem 8.4. Given two r-cycles u, v ∈ S([n]2) such that S(v) ⊆ S(u). If u
is strongly stable then v is strongly stable.

Proof. Let u = ((a1, b1), . . . , (ar, br)) and u = t1 •
α1

t2 •
α2

· · · •
αr−2

tr−1 be a compat-

ible cyclic factorization with t1, . . . , tr−1 stable transpositions. Then each trans-
position ti only involves elements of {(a1, b1), . . . , (ar, br)}. Furthermore, by
Lemma 8.3, the fact that this cyclic factorization is compatible depends on cer-
tain ai’s being different from certain bj ’s, so on S(u). If v = ((c1, d1), . . . , (cr, dr))
then, since S(v) ⊆ S(u), if ai 6= bj for some i, j ∈ [r] then ci 6= dj , so substitut-
ing ai with ci and bj with dj in the cyclic factorization for u yields a compatible
cyclic factorization of v by stable transpositions. �

Note that the previous result does not hold if we replace “strongly stable”
by “stable”. For example, any 5-cycle v such that S(v) = {(4, 1), (1, 4)} is not
stable but any 5-cycle u such that S(u) = {(1, 3), (1, 4), (2, 3), (2, 4), (4, 1)} is
stable. Indeed, let v = ((a1, b1), . . . , (a5, b5)) be such that S(v) = {(1, 4), (4, 1)}.
Then Γ0(v) contains the directed edge b1 → b5. Therefore, by Theorem 3.10,
Γ1(v) contains the directed edge v−1(b1, b4)2 → v−1(b5, b4)2 namely b3 → b4.
But then Γ2(v) contains the directed edge v−1(b3, b1)2 → v−1(b4, b1)2 namely
b1 → b5. Therefore none of the graphs Γk(v) (k ∈ N) is empty so, by Theorem
3.13, v is not stable. Similarly, let u = ((a1, b1), . . . , (a5, b5)) be such that S(u) =
{(1, 3), (1, 4), (2, 3), (2, 4), (4, 1)}. Then u = ((x, y), (x, b2), (a3, x), (y, x), (a5, b5))
for some x, y, a3, a5, b2, b5 ∈ [n] where possibly a3 = a5 and b2 = b5. Then Γ0(u)
has directed edges b5 → x, x → b2, b2 → y, y → b5. So proceeding as above we
see that Γ1(u) has directed edges b5 → y, y → b5, y → b2, b2 → y, and then that
Γ2(u) is empty. Since S(u#) = S(u) we have that the computation for Γk(u

#) is

exactly the same and thus by Corollary 3.12 also Γ#
2 (u) is empty so we conclude

from Theorem 3.13 that u is stable.

Let w = ((a1, b1), . . . , (ar, br)) ∈ S([n]2) be an r-cycle. We define a directed
graph S+(w) := ([r], E) by letting E := {(i, j) | ai = bj or ai+1 = bj} (where in-
dices are modulo r). So, for example, if w = ((1, 4), (6, 2), (7, 2), (1, 3), (2, 4), (2, 5))
∈ S([7]2) then S+(w) is the directed graph shown in Figure 4. Note that a com-
ment similar to that made for S(w) must be made here. Namely, S+(w) is
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4 5 6

1 2 3

Figure 4: The directed graph S+(((1, 4), (6, 2), (7, 2), (1, 3), (2, 4), (2, 5)))

defined for a “rooted” cycle (one in which an element is distinguished). How-
ever, all the graphs obtained from a cycle w for different choices of the root
differ only by a cyclic shift of the vertex set [r]. Since the properties that we
are interested in do not change with such cyclic shifts we omit to write the de-
pendence of S+(w) from the choice of root. We say that S+(w) is acyclic if it
has no directed cycles (in particular, it has no loops and no antiparallel edges).
Note that this property does not depend on the choice of root. For an r-cycle
u ∈ S([n]2) we find it convenient to let `(u) := r.

Theorem 8.5. Given cycles u, v, w ∈ S([n]2) such that w = uv, R(u)∩C(v) =
∅, and `(w) = `(u) + `(v)− 1. Then S+(w) is acyclic if and only if both S+(u)
and S+(v) are acyclic.

Proof. Let u = ((a1, b1), . . . , (ak, bk)), v = ((ak, bk), . . . , (ar, br)), and w =
((a1, b1), . . . , (ar, br)) (1 < k < r). Note that, since R(u) ∩ C(v) = ∅, there
are no edges in S+(w) from [k−1] to [k, r] and there are no edges in S+(u) from
[k− 1] to k. Therefore, S+(w) has a cycle if and only if it has a cycle on [k− 1]
or on [k, r]. We consider both cases.

It is easy to see that (i, j), i, j ∈ [k − 1] is an edge in S+(w) if and only if
(i, j) is an edge in S+(u). Hence, S+(w) has a cycle on vertex set [k− 1] if and
only if S+(u) has a cycle (both graphs do not have edges from [k − 1] to k).

Since {a1, ak}∩{bk, . . . , br} = ∅, (i, j), i, j ∈ [k, r] is an edge in S+(w) if and
only if (i, j) is an edge in S+(v). Hence, S+(w) has a cycle on vertex set [k, r]
if and only if S+(v) has a cycle. �

Corollary 8.6. Given a cycle w ∈ S([n]2). If w is strongly stable then S+(w)
is acyclic.

Proof. This is easily proved by induction on `(w). If `(w) = 2 then, by Theorem
8.1 of [3], S+(w) is empty. If `(w) > 2 then this follows immediately by induction
from our definition of strong stability, Lemma 8.3 and Theorem 8.5. �
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For π ∈ Sr we let

CS(π) := {(i, j) ∈ [r]2 | max(π(i), π(i− 1)) < π(j)}

and
CS#(π) := {(i, j) ∈ [r]2 | π(i) > max(π(j), π(j + 1))}

(where π(0) := π(r) and π(r + 1) := π(1)).

Theorem 8.7. For an r-cycle u ∈ S([n]2) the following conditions are equiva-
lent:

(1) u is strongly stable;

(2) u is strongly stable of rank ≤ r − 1;

(3) S+(u) is acyclic;

(4) u is a compatible product of a stable transposition and a strongly stable
(r − 1)-cycle, in this order;

(5) u has a compatible cyclic factorization of the form u = tr−1 •
r−2

tr−2 •
r−3

· · · •
1
t1 (= tr−1 • (tr−2 • . . . • (t3 • (t2 • t1)) . . .)) where t1, . . . , tr−1 are stable

transpositions;

(6) there exists π ∈ Sr such that S(u) ⊆ CS(π).

(1#) u# is strongly stable;

(2#) u# is strongly stable of rank ≤ r − 1;

(3#) S+(u#) is acyclic;

(4#) u is a compatible product of a strongly stable (r − 1)-cycle and a stable
transposition, in this order;

(5#) u has a compatible cyclic factorization of the form u = t1 •
1
t2 •

2
· · · •

r−2
tr−1 (= (. . . ((t1 • t2) • t3) • . . . • tr−2) • tr−1) where t1, . . . , tr−1 are stable
transpositions;

(6#) there exists π ∈ Sr such that S(u) ⊆ CS#(π).
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Proof. From the definition of strong stability and [3, Theorem 5.2 and Theorem
8.1] we immediately get (1) ⇔ (2). By Corollary 8.6, we have (1) ⇒ (3). Also,
it is clear that (4)⇒ (1), and it is easy to see by induction on r that (4)⇔ (5).

We now prove (3) ⇒ (4). We proceed by induction on r. It is easy to
check that if r = 2 and S+(u) is acyclic then S+(u) = ∅ so, by [3, Theorem
8.1], u is a stable transposition. Let u = ((a1, b1), . . . , (ar, br)) be an r-cycle
such that S+(u) is acyclic, r ≥ 3. Then we can find a sink i0 ∈ [r], i.e.,
C(u) ∩ {ai0 , ai0+1} = ∅. Hence, by [3, Proposition 5.15],

u = ((ai0 , bi0), (ai0+1, bi0+1))•((ai0+1, bi0+1), (ai0+2, bi0+2), . . . , (ai0+r−1, bi0+r−1)).

Therefore, by Theorem 8.5, we get that S+((ai0 , bi0), (ai0+1, bi0+1)) and S+(u′)
are acyclic, where u′ := ((ai0+1, bi0+1), (ai0+2, bi0+2), . . . , (ai0+r−1, bi0+r−1)). Hence,
by the induction hypothesis, (4) holds for ((ai0 , bi0), (ai0+1, bi0+1)) and u′ so they
are both strongly stable, so u is a compatible product of a stable transposition
and a strongly stable (r − 1)-cycle, in this order.

This shows the equivalence of (1), (2), (3), (4), and (5).
We prove (5)⇔ (6) now. Let u = ((a1, b1), . . . , (ar, br)) = (P1, . . . , Pr) be an

r-cycle in S([n]2) and assume that there exist stable transpositions t1, . . . , tr−1
such that u = tr−1(. . . (t3 (t2t1)) . . .) is a compatible cyclic factorization. Define
inductively a permutation π ∈ Sr associated to this factorization by

t1 = (Pπ−1(1), Pπ−1(2)), t2 = (Pπ−1(3), Pπ−1(k2)), . . . , tr−1 = (Pπ−1(r), Pπ−1(kr−1)),

for uniquely determined ki ∈ [i], i = 2, . . . , r − 1. Of course, Pπ−1(1) and
Pπ−1(2) are only defined up to a switch. Note also that π depends on the
rooted cycle (P1, . . . , Pr) (i.e., on the writing of the cycle with P1 as the first
element). If we write the cycle in a different way (e.g., as (P2, . . . , Pr, P1))
then we obtain a different permutation π′. However, it is easy to see that then
π′ = π(r)π(1) . . . π(r− 1) in one-line notation. Setting k1 := 1 we can write the
above equations more compactly as

ti = (Pπ−1(i+1), Pπ−1(ki)) (23)

for all i ∈ [r − 1]. Since the factorization is a compatible cyclic factorization by
stable transpositions we have by [3, Theorem 8.1] that

{aπ−1(i+1), aπ−1(ki)} ∩ {bπ−1(i+1), bπ−1(ki)} = ∅

(stability of ti) for all i ∈ [r − 1] and by Lemma 8.3 that

{aπ−1(i+1), aπ−1(ki)} ∩ {bπ−1(1), . . . , bπ−1(i)} = ∅
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(compatibility of ti with ti−1(. . . t3(t2t1) . . .)) for all i ∈ [2, r − 1]. These condi-
tions can be rewritten as

{aπ−1(i+1), aπ−1(ki)} ∩ {bπ−1(1), bπ−1(2), . . . , bπ−1(i+1)} = ∅ (24)

for all i ∈ [r− 1]. We now show that (24) implies (6). Let (i, j) ∈ [r]2. Suppose
that ai = bj . Then, by (24), π(j) > π(i). It remains to show that π(j) > π(i−1)
as well. Assume first that i > 1. Let, for brevity, h := π(i − 1). If h = 1 then
π(i − 1) = 1 < π(i) < π(j). If h > 1 then, by (23), th−1 = (Pi−1, Pπ−1(kh−1)).
Since u(Pi−1) = Pi there is some s ∈ [h − 1, r − 1] such that ts contains Pi. If
ts = (Pπ−1(s+1), Pi), then i = π−1(ks). Since aπ−1(ks) = ai = bj then, by (24),
π(j) > s + 1 ≥ h = π(i − 1). If ts = (Pi, Pπ−1(ks)) then i = π−1(s + 1). Since
ai = bj then, by (24), π(j) > π(i) = s + 1 ≥ h = π(i − 1). If i = 1 then the
reasoning is exactly the same except that “i− 1” should be replaced by “r”.

Conversely, assume that (6) holds. Let

ti := (Pπ−1(i+1), Pπ−1(ki))

for i ∈ [r − 1], where

π−1(ki) := min{c ∈ [π−1(i+ 1) + 1, π−1(i+ 1) + r − 1] : π(c) < i+ 1} (25)

for i ∈ [r− 1] (where π(j) := π(j + r) for all j ∈ Z). Note that this implies that

π(c) ≥ i+ 1 (26)

for π−1(i+ 1) ≤ c < π−1(ki) and ki ∈ [i] (i ∈ [r − 1]).
We first prove that tr−1(. . . (t3(t2t1)) . . .) is a cyclic factorization of (P1, . . . , Pr).

More precisely, we claim that

tj−1(. . . (t3(t2t1)) . . .) = (P1, . . . , P̂a1 , . . . , P̂ar−j , . . . , Pr), (27)

for all 2 ≤ j ≤ r where {a1, . . . , ar−j}< := {π−1(j + 1), . . . , π−1(r)}. We prove
this claim by induction on j ≥ 2, (27) being clear if j = 2. So let 3 ≤ j ≤ r − 1
and assume that (27) holds. Let a` := π−1(j+1) (so ` ∈ [r− j]). Then, by (25),

π−1(kj) = min{c ∈ [a` + 1, a` + r − 1] : π(c) < j + 1}
= min

≺
([r] \ {a1, . . . , ar−j})

where the second minimum is taken with respect to the order a` ≺ a` + 1 ≺
· · · ≺ r ≺ 1 ≺ · · · ≺ a` − 1. Therefore,

tj(. . . (t3(t2t1)) . . .) = (Pa` , Pπ−1(kj)) (P1, . . . , P̂a1 , . . . , P̂ar−j , . . . , Pr)

= (P1, . . . , P̂a1 , . . . , P̂a`−1
, . . . , P̂a`+1

, . . . , P̂ar−j , . . . , Pr)
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which proves our claim since {a1, . . . a`−1, a`+1, . . . , ar−j}< = {π−1(j+2), . . . , π−1(r)}.
Note that up to this point we have not used our hypothesis (6) but only that
π ∈ Sr.

Now, observe that (6) is equivalent to

ai = bj ⇒ π(i) < π(j) and π(i− 1) < π(j) (28)

for all (i, j) ∈ [r]2.
Finally, we claim that (28) implies that

{aπ−1(i+1), aπ−1(ki)} ∩ {bπ−1(1), bπ−1(2), . . . , bπ−1(i+1)} = ∅

for all i ∈ [r− 1]. Indeed, if aπ−1(i+1) = bπ−1(j) for some j ∈ [i+ 1] then by (28)
we have that i+ 1 < j, which is a contradiction. Similarly, if aπ−1(ki) = bπ−1(j)

for some j ∈ [i + 1] then by (26) we have that π(π−1(ki) − 1) ≥ i + 1 while,
by (28), we conclude that π(π−1(ki)− 1) < j, also a contradiction. This, by [3,
Theorem 8.1] and Lemma 8.3, shows that (27) is a compatible factorization by
stable transpositions.

Using [4, Proposition7.2] and [3, Theorem 8.1], it is easy to see that (1) ⇒
(1#), so (1) ⇔ (1#). The statements (2# − 6#) correspond, using [4, Proposi-
tion7.2] and (17), to (2− 6) for u#, hence they are also equivalent. �

We illustrate the previous theorem and proof with some examples.

Example 8.8. Let r = 9 and consider π = 392175846. Then one can easily
compute k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 3, k6 = 5, k7 = 4 and
k8 = 2. Therefore, t1 = (P3, P4), t2 = (P1, P3), t3 = (P8, P1), t4 = (P6, P8),
t5 = (P9, P1), t6 = (P5, P6), t7 = (P7, P8) and t8 = (P2, P3), and we obtain

t8(t7(t6(t5(t4(t3(t2t1)))))) = t8(t7(t6(t5(t4(t3(P3, P4, P1))))))

= t8(t7(t6(t5(t4(P1, P3, P4, P8)))))

= t8(t7(t6(t5(P1, P3, P4, P6, P8))))

= t8(t7(t6(P1, P3, P4, P6, P8, P9)))

= t8(t7(P1, P3, P4, P5, P6, P8, P9))

= t8(P1, P3, P4, P5, P6, P7, P8, P9)

= (P1, P2, P3, P4, P5, P6, P7, P8, P9) .

Example 8.9. Let r = 6 and consider the factorization

(P1, . . . , P6) = (P4, P5)((P2, P3)((P3, P5)((P6, P1)(P1, P5)))).

It is easy to check that this is a cyclic factorization and one obtains either
π−1 = 156324 or π−1 = 516324.
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Example 8.10. If w = ((1, 4), (6, 2), (7, 2), (1, 3), (2, 4), (2, 5)) ∈ S([7]2) then
(see Figure 4) S+(w) is acyclic so, by Theorem 8.7, w is strongly stable. In
particular, w is stable.

For π ∈ Sr there are at most r!
2 sets of the form CS(π) and at most r!

2
of the form CS#(π) (because π and (1, 2)π give the same sets). Note that, if
r ≥ 4, the sets obtained (for all π ∈ Sr) in conditions (6) and (6#) are not the
same (see also below) so conditions (6) and (6#) are not identical. However, if
one considers only the maximal sets under inclusion (for π ∈ Sr) then the two
families of sets obtained in (6) and (6#) do coincide, as we now show.

Let R ⊆ [r]2. We say that R is acceptable if there is a a cyclic factorization
of the cycle (P1, . . . , Pr) = t1 ·

a1
t2 ·

a2
· · · ·

ar−2

tr−1 such that:

1. if at some point in the multiplication sequence Pi is in the left cycle and
Pj is in the right one then (i, j) /∈ R;

2. if (Pi, Pj) = tk for some k ∈ [r − 1] then (i, j), (j, i) /∈ R.

Then reasoning exactly as in the proof of Theorem 8.7 we have the following.

Lemma 8.11. Let R ⊆ [r]2. Then the following are equivalent:

1. R is acceptable;

2. there is π ∈ Sr such that R ⊆ CS(π);

3. there is π ∈ Sr such that R ⊆ CS#(π).

Proof. The proof of (1) ⇔ (2) is exactly the same as the proof of (5) ⇔ (6) in
Theorem 8.7, because we used there only properties 1. and 2. above. The proof
of (1)⇔ (3) corresponds to (1)⇔ (2) under the action of #. �

Corollary 8.12. For any r, the set of maximal sets in (6) and the set of maximal
sets in (6#) coincide.

For example, let r = 4. Then the 12 sets CS(π) are

{(j, j + 1), (j, j + 2), (j + 1, j + 2)}, (29)

{(j, j + 1), (j, j + 2), (j − 1, j + 1)}, (30)

(where j ∈ [4] and numbers are modulo 4), and

{(1, 2), (4, 2)}, {(1, 3), (2, 3)}, {(2, 4), (3, 4)}, {(3, 1), (4, 1)}
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while the 12 sets CS#(π) are the ones in (29), (30), and

{(1, 2), (1, 3)}, {(2, 3), (2, 4)}, {(3, 1), (3, 4)}, {(4, 1), (4, 2)}.

The maximal ones are, in both cases, the ones in (29) and (30).

Given its ubiquitous appearance in the previous results we feel that, given
a permutation π ∈ Sr, the set CS(π) could be worthy of further investigation.
We propose calling CS(π) the connectivity set of the permutation π. The reason
for this terminology lies in the fact that

|CS(π)| =
r∑

a=2

|{i ∈ [r] : max(π(i), π(i− 1)) < a}|

=

(
r

2

)
−

r∑
a=2

|{connected components of π−1([a− 1])}|
(31)

where the numbers from 1 to r are arranged in order around a circle, and
conncected component has the obvious meaning.

We note the following simple property of the connectivity set of a permuta-
tion that follows easily from (31). Recall that a valley of a permutation π ∈ Sr
is an index i ∈ [r] such that π(i− 1) > π(i) < π(i+ 1), where π(0) := π(r) and
π(r + 1) := π(1).

Proposition 8.13. If π ∈ Sr then

|CS(π)| ≤
(
r − 1

2

)
.

Furthermore, equality holds if and only if π has exactly one valley.

We point out an interesting consequence of Theorems 8.5 and 8.7.

Corollary 8.14. Given cycles u, v, w ∈ S([n]2) such that w = uv, R(u)∩C(v) =
∅, and `(w) = `(u) + `(v)− 1. Then w is strongly stable if and only if u and v
are both strongly stable.

9 Stable quadratic r-cycles, r ≤ 5

Using the results of the previous section and [3, 4], we are able to present a very
clear picture for the stability of r-cycles in S([n]2), up to r = 5.

As corollaries of Theorem 8.7, we get explicit characterizations of the strongly
stable 2, 3, 4, and 5-cycles. The proofs are a straightforward check.
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Corollary 9.1. A transposition u ∈ S([n]2) is strongly stable if and only if
S(u) = ∅.

Proof. This follows immediately from Theorem 8.7 since CS(π) = ∅ for all
π ∈ S2. �

Corollary 9.2. Let u ∈ S([n]2) be a 3-cycle. Then u is strongly stable if and
only if S(u) is {(1, 2)}, {(2, 3)}, {(3, 1)}, or empty.

Proof. Again, this follows immediately from Theorem 8.7 by computing CS(π)
for all (even) permutations π ∈ S3. �

The next corollary follows in the same way using the example computed
after Corollary 8.12.

Corollary 9.3. Let u ∈ S([n]2) be a 4-cycle. Then u is strongly stable if and
only if S(u) is contained in any one of the following sets for some j ∈ [4]:

(1) {(j, j + 1), (j, j + 2), (j + 1, j + 2)};

(2) {(j, j + 1), (j, j + 2), (j − 1, j + 1)};

where numbers are modulo 4.

Carrying out a similar computation (preferably with the aid of a computer)
for the (even) permutations of S5 one obtains the following characterization.

Corollary 9.4. Let u ∈ S([n]2) be a 5-cycle. Then u is strongly stable if and
only if S(u) is contained in any one of the following sets for some j ∈ [5]:

(1) {(j + 2, j + 3), (j + 2, j + 4), (j + 2, j), (j + 3, j + 4), (j + 3, j), (j + 4, j)};

(2) {(j + 3, j + 4), (j + 3, j + 1), (j + 2, j), (j + 4, j + 1), (j + 3, j), (j + 4, j)};

(3) {(j + 3, j + 1), (j + 4, j + 1), (j + 2, j), (j + 4, j + 2), (j + 3, j), (j + 4, j)};

(4) {(j + 2, j + 4), (j + 3, j + 4), (j + 2, j), (j + 3, j + 1), (j + 3, j), (j + 4, j)};

where numbers are modulo 5.

Remark 9.5. Note that these sets S(u), for u a strongly stable cycle, are
usually proper subsets. For example, there is no 4-cycle u ∈ S([n]2) such that
S(u) = {(j, j + 1), (j, j + 2), (j + 1, j + 2)} (otherwise aj+1 = bj+2 = aj = bj+1,
which implies (j + 1, j + 1) ∈ S(u)).
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So, the 20 sets in the previous corollary are the maximal ones among the 50
sets of the form CS(π) for all the (even) permutations π ∈ S5, they are also the
only ones of cardinality 6 (the other 30 all have size either 4 or 5).

Remark 9.6. One can check that the r · 2r−3 sets CS(π) corresponding to the
r·2r−3 even permutations π ∈ Sr that have exactly one valley are all distinct (and
they are all maximal). For r ≤ 5, there are no other maximal sets. However,
this is not true in general. For r ≥ 6, there are at least r · 2r−3 maximal sets of
size

(
r−1
2

)
but also maximal sets of smaller sizes.

Remark 9.7. If an r-cycle u = (P1, . . . , Pr) ∈ S([n]2), where Pi := (ai, bi) for
all i ∈ [r], is such that S(u) ⊆ CS(π) for some π ∈ Sr that has exactly one valley
then u can be written as a compatible product of two strongly stable cycles of
lengths a and r−a+1, for any 2 ≤ a ≤ r−1. In fact, since both u and π can be
rotated cyclically (see also the comments preceding equation (23) above) we may
assume that π has exactly one valley and {π(r − a + 1), . . . , π(r)} = [a]. This
implies that CS(π)∩([r−a+1]× [r−a+1, r]) = ∅. Hence, since S(u) ⊆ CS(π),
ai 6= bj if i ∈ [r − a+ 1] and j ∈ [r − a+ 1, r] and this, by [3, Proposition 5.15],
implies that (P1, . . . , Pr) = (P1, . . . , Pr−a+1)(Pr−a+1, . . . , Pr) is a compatible
product. Furthermore, the two cycles on the right of this equation are strongly
stable by Corollary 8.14. One can check that this one-valley condition holds, by
Corollaries 9.2, 9.3, and 9.4, for any strongly stable r-cycle if 3 ≤ r ≤ 5 (cf. also
Proposition 9.10 below).

Corollaries 9.1 and 9.2 show, by [3, Theorem 8.1] and [4, Theorem 5.12], that
transpositions and 3-cycles are stable if and only if they are strongly stable. This
is also true for 4-cycles, but not for 5-cycles.

Theorem 9.8. For an r-cycle u ∈ S([n]2), r ≤ 5, the following conditions are
equivalent:

(1) u is stable;

(2) u is stable of rank ≤ r − 1;

(3) u is a compatible product of r − 1 stable transpositions, in some order;

(4) u is a compatible product of r−1 stable transpositions ti (i ∈ [r−1]) of the
form u = tr−1 •

r−2
tr−2 •

r−3
· · · •

1
t1 (= tr−1 • (tr−2 • . . . • (t3 • (t2 • t1)) . . .));

(5) either u is strongly stable or

r = 5 and S(u) = {(j, j+2), (j, j+3), (j+1, j+2), (j+1, j+3), (j+3, j)}

for some j ∈ [5], where numbers are modulo 5.
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Proof. We have checked (5)⇔ (1) by a program written in C++ using Theorem
3.13 and Corollary 9.4. The main idea is based on the fact that the property of
stability of r-cycle ((a1, b1), (a2, b2), . . . , (ar, br)) depends only on the set parti-
tion of {a1, b1, a2, b2, a3 . . . , ar, br} induced by equalities, as follows immediately
from the definition of stability.

The implications (4) ⇒ (3) and (2) ⇒ (1) are obvious. The implication
(3)⇒ (2) holds by [3, Theorem 5.2].

It remains to check (5) ⇒ (4). By Theorem 8.7 we know that (5) ⇒ (4)
for all strongly stable cycles. Let u be an exceptional case from (5). Therefore
u = ((a, c), (a, d), (b, a), (c, a), (e, f)), where a, b, c, d, e, f ∈ [n] are all distinct,
except possibly b = e and d = f . Then

((b, a), (e, f)) •
(

((a, c), (a, d)) •
(
((b, a), (c, a)) • ((a, d), (e, f))

))
(32)

is a compatible product of stable transpositions, as a consequence of [3, Propo-
sitions 5.6, 5.7 and Theorem 8.1]. �

The careful reader will have noticed that the factorization in (32) is not
cyclic (see also Figure 5 for a special case). Indeed, u is not strongly stable
since it does not satisfy any of the conditions in Corollary 9.4.

As a consequence of Theorem 9.8 we can prove a special case of Conjecture
6.10 for short cycles.

Corollary 9.9. Let u, v ∈ S([n]2) be two r-cycles such that S(u) = S(v) and
r ≤ 5. Then u is stable if and only if v is stable.

Proof. By Theorem 8.4, u is strongly stable if and only if v is strongly stable.
This, in turn, by Theorem 9.8, implies that if r ≤ 5, then u is stable if and only
if v is stable. �

We have one more interesting property of short strongly stable cycles.

Proposition 9.10. Let w be an r-cycle, 3 ≤ r ≤ 5 and a ∈ [2, r − 1]. Then
w is strongly stable if and only if w is a compatible product of a strongly stable
a-cycle and a strongly stable (r + 1− a)-cycle, in this order.

Proof. One direction is immediate by definition (for any r ≥ 3). Conversely,
assume that w := ((a1, b1), . . . , (ar, br)) ∈ S([n]2) is strongly stable. By The-
orem 8.7 we know the result for a = 2 or a = r − 1. It remains the case
r = 5 and a = 3. Then, by Corollary 9.4, we have that {ak, ak+1, ak+2} ∩
{bk+2, bk+3, bk+4} = ∅ where k = j in cases (2) and (3), and k = j − 1 in cases
(1) and (4). Hence, by [3, Proposition 5.15], w is a compatible product of two
3-cycles. The conclusion now follows from Corollary 8.14. �
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Figure 5: An example of a stable, but not strongly stable, 5-cycle u ∈ S([4]2)
written as a compatible product of 4 stable transpositions, u = t1 •(t2 •(t3 •t4)).
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Remark 9.11. The previous proposition does not hold for large cycles. For ex-
ample, consider a 6k-cycle u = (P1, . . . , P6k) such that S(u) = {(k, 4k), (3k, 6k),
(5k, 2k)}. It is easy to see that, for k ≥ 2, S+(u) is acyclic, so u is strongly sta-
ble by Theorem 8.7. Suppose now that u = v • w where v = (Pi−3k+1, . . . , Pi),
w = (Pi, . . . , Pi+3k), v and w are strongly stable, and the product is com-
patible (i ∈ [6k], and the indices are modulo 6k). Then, by Corollary 7.8,
R(v)∩C(w) = ∅, which implies that Pk, P3k, and P5k must be in the right cycle
w, which contradicts the fact that w is a (3k + 1)-cycle.

It is known that the number of stable transpositions in S([n]2) is 1
2(n)2(n−

1)(n− 2) and the number of stable 3-cycles is 1
3(n)3(n

3 − 3n2 − 2n+ 9) see [3,
Corollary 8.3] and [4, Corollary 5.13]. Theorem 9.8 gives a method to count the
number of stable cycles of length 4 and 5.

Proposition 9.12. The number of stable 4-cycles in S([n]2) is

1

4
(n)4 (n4 − 2n3 − 13n2 + 40n− 18).

Proof. By [4, Proposition 4.5], the number of stable 4-cycles of rank one is

3!

4∑
i=1

(
n

i

) ∑
(a1,...,ai)∈Ci(4)

i∏
j=1

(
n− i
aj

)

= 3!
{(n

1

)(
n− 1

4

)
+ 2

(
n

2

)(
n− 2

1

)(
n− 2

3

)
+

(
n

2

)(
n− 2

2

)2

+ 3

(
n

3

)(
n− 3

1

)2(n− 3

2

)
+

(
n

4

)(
n− 4

1

)4}
= n(n− 1)(n− 2)(n− 3)× [(n− 4)/4 + (n− 2)(n− 4) + 3(n− 2)(n− 3)/4

+ 3(n− 3)2(n− 4)/2 + (n− 4)4/4],

where Ci(4) denotes the set of all compositions of 4 in i parts. Also, by [4,
Theorems 3.1 and 6.2, and Proposition 6.3], the number of stable 4-cycles of
rank at least 2, which are compatible products of a stable transposition and a
stable 3-cycle, in this order, is 2(n)4(n

3 − 7n2 + 17n − 13). By Theorems 8.7
and 9.8 (see also Proposition 9.10), the number of stable 4-cycles is the sum of
these two figures. �

So, for example, the number of stable 4-cycles in S([n]2), for 4 ≤ n ≤ 7, is
372, 6960, 55620, and 281400, respectively.
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It is easy to see that the number of exceptional 5-cycles in S([n]2) described
in Theorem 9.8 is given by

(n)6 + 2(n)5 + (n)4 = (n)4 [n2 − 7n+ 13] .

Using Corollary 9.4 one can count the number of strongly stable 5-cycles in
S([n]2), and thus obtain the number of stable 5-cycles in S([n]2). This com-
putation, however, involves a considerably higher number of sets, and hence is
quite long. We therefore proceed in a different way with the help of a computer.

Proposition 9.13. The number of stable 5-cycles in S([n]2) is

29(n)4 + 318(n)5 +
(

595 +
2

5

)
(n)6 + 354(n)7 + 80(n)8 + 7(n)9 +

1

5
(n)10.

Proof. The idea is to split the stable cycles ((a1, b1), . . . , (a5, b5)) ∈ S([n]2) ac-
cording to the cardinality of {a1, . . . , a5, b1, . . . , b5} and then reduce the compu-
tation to a finite number of cases. For any k ∈ [10], the number of stable 5-cycles
in S([n]2) such that |{a1, . . . , a5, b1, . . . , b5}| = k is given by Ck

(
n
k

)
where Ck is

the number of stable 5-cycles in S([n]2) such that {a1, . . . , a5, b1, . . . , b5} = [k].
By Theorem 7.8 of [3] Ck equals the number of stable 5-cycles in S([k]2) such
that {a1, . . . , a5, b1, . . . , b5} = [k], i.e., Ck does not depend on n (this also follows
from Theorem 3.5). So the total number of stable 5-cycles in S([n]2) is

C1

(
n

1

)
+ . . .+ C9

(
n

9

)
+ C10

(
n

10

)
=
C1

1!
(n)1 + . . .+

C9

9!
(n)9 +

C10

10!
(n)10.

The result then follows by a brute force C++ calculation using Theorem 3.13. �

Remark 9.14. Note that, for all k 6= 6, 10, Ck is divisible by k!. On the other
hand, 2

5(n)6 corresponds to permutations of the following two types

((a, b1), (a, b2), (a, b3), (a, b4), (a, b5)) ∈ S([n]2), where |{a, b1, b2, b3, b4, b5}| = 6

and

((a1, b), (a2, b), (a3, b), (a4, b), (a5, b)) ∈ S([n]2), where |{a1, a2, a3, a4, a5, b}| = 6;

and 1
5(n)10 corresponds to permutations of the following type

((a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5)) ∈ S([n]2),

where |{a1, a2, a3, a4, a5, b1, b2, b3, b4, b5}| = 10.
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We close this section by recording the following simple albeit interesting
observation.

Corollary 9.15. For all integers t and a1, . . . , ak (k ∈ N) larger than 1, the
number of stable permutations u ∈ S([n]t) with cycle-type (a1, . . . , ak, 1, . . . , 1︸ ︷︷ ︸

nt−
∑
ai

)

is a polynomial in n.

The proof follows the same lines as that of Proposition 9.13, mutatis mutan-
dis.

10 What’s next and conjectures

In this section we discuss some conjectures arising from this work and some
possible directions of further research.

We know that the rank of any stable r-cycle in S([n]2) is bounded from
above by 2r − 1, see Corollary 5.3. We think that the sharp bound should be
twice smaller.

Conjecture 10.1. The rank of any stable r-cycle in S([n]2) is bounded from
above by r − 1.

By definition a strongly stable cycle in S([n]2) has a cyclic compatible fac-
torization in stable transpositions. While this is not true for stable cycles (see
Theorem 9.8) we do feel that the following holds.

Conjecture 10.2. Every stable r-cycle in S([n]2) is a compatible product of
r − 1 stable transpositions in some order.

By [3, Theorem 5.2], a proof of the second conjecture would settle the first
one as well. By Theorem 9.8 these conjectures hold for r ≤ 5.

There are a number of natural possible directions for further work on the
problems addressed in this paper. Among these, we mention

• Continue the investigation of stable r-cycles for r ≥ 6.

• Decide Conjecture 6.10 and/or whether the stability of a cycle u ∈ S([n]2)
depends only on S(u).

• Examine the stability of cycles in S([n]t) for t > 2.

• Examine the stability of permutations that are not cycles. The first cases
to consider could be the product of two disjoint transpositions and the
product of a transposition with a 3-cycle.
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• Examine the case of stable involutions.
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