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A balanced diet is critical for human health, and edible plants play an important

role in providing essential micronutrients as well as specific microRNAs

(miRNAs) that can regulate human gene expression. Here we present the

effects of Moringa oleifera (MO) miRNAs (mol-miRs) on lipid metabolism.

Through in silico studies we identified the potential genes involved in lipid

metabolism targeted by mol-miRs. To this end, we tested the efficacy of an

aqueous extract of MO seeds (MOES), as suggested in traditional African

ethnomedicine, or its purified miRNAs. The biological properties of MO

preparations were investigated using a human derived hepatoma cell line

(HepG2) as a model. MOES treatment decreased intracellular lipid

accumulation and induced apoptosis in HepG2. In the same cell line,

transfection with mol-miRs showed similar effects to MOES. Moreover, the

effect of the mol-miR pool was investigated in a pre-obese mouse model, in

which treatment with mol-miRs was able to prevent dysregulation of lipid

metabolism.
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1 Introduction

Given the importance of nutrition to human health, ensuring access to good food

for all and ensuring its quality and safety, is one of the most important challenges facing

the international community (FAO, IFAD et al., 2021). Malnutrition has a major impact

on human health, and one of the most common forms of malnutrition worldwide is

obesity. This pathology, characterized by excessive fat accumulation, is associated with
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an increased risk of morbidity and mortality (Lettieri Barbato

and Aquilano, 2016; World Health Organisation, 2020). In

addition, obesity has been linked to meta-inflammation

(Rosen and MacDougald, 2006; McGregor and Choi, 2011;

Hotamisligil, 2017) which triggers necrosis of adipocytes and

releases fatty acids in the blood stream, leading to fat

accumulation in other organs, such as the liver (Lumeng and

Saltiel, 2011). Lipid accumulation in hepatocytes plays an

important role in the onset of various diseases such as non-

alcoholic hepatic steatosis (NAFLD), steatohepatitis (NASH),

and hepatocellular carcinoma (HCC) (Canbay et al., 2007;

Fabbrini et al., 2010; Sun and Karin, 2012; Saitta et al.,

2019). Foods contain genetic material that appears to have

an epigenetic regulatory activity (Zhang et al., 2012; Baier et al.,

2014; Liang et al., 2015; Wagner et al., 2015; Teng et al., 2018;

Munir et al., 2020; del Pozo-Acebo et al., 2021). Zhang and

collaborators first described the presence of rice miRNAs in sera

from humans and animals fed on this cereal (Zhang et al.,

2012). In recent years, several studies have suggested that

exogenous miRNAs may regulate gene expression between

different species (Jiang et al., 2012; Chin et al., 2016; Hou

et al., 2018; Zhang et al., 2019). The molecular mechanism

underlying this cross-kingdom interaction may explain how

diet strongly influences human health and disease development

(Cui et al., 2017; Mohammadi et al., 2017; Quintanilha et al.,

2017; Li et al., 2021). Several studies suggest that humans ingest

exogenous miRNAs through diet and that, once absorbed, they

can affect gene expression (Jiang et al., 2012; Zhang et al., 2012;

Baier et al., 2014; Liang et al., 2014, 2015; Philip et al., 2015;

Title et al., 2015; Zempleni et al., 2015; Zhou et al., 2015;

Benmoussa et al., 2016; Quintanilha et al., 2017). There are

important examples in the literature of such cross-kingdom

interactions. For example, plant miR159a reduced breast cancer

growth by inhibiting TCF7 expression in a tumor xenograft

model (Chin et al., 2016), and promoted apoptosis in Caco-2

cells (Liu et al., 2020). Two conserved plant miRNAs, miR156,

and miR167e-5p, appear to regulate Wnt/β-catenin signaling

and maintain homeostasis of the intestinal epithelium,

preventing colitis in mice (Li et al., 2019b; 2019a). In

addition, strawberry miR168 inhibited T cell proliferation

and reduced cytokine release by binding to TLR3 in

dendritic cells (Cavalieri et al., 2016). Recently, our group

has shown that miRNAs present in dried nuts have an anti-

inflammatory effect in mammals by targeting Tumor Necrosis

Factor Receptor 1 (TNFR1) in adipose tissue (Aquilano et al.,

2019). Moreover, we showed that the introduction of synthetic

and natural miRNAs from the drupe Olea europaea, restored

the function of hsa-miR34a, which was deficient in tumor cells

(Minutolo et al., 2018). Similarly, natural and synthetic

miRNAs from MO were able to modulate the immune

system response and to reduce HIV replication (Minutolo

et al., 2021). Mankind has always used plants and herbs to

treat various diseases. Traditional medicine is still a common

remedy in many countries (Wachtel-Galor and Benzie, 2011;

Kasilo and Trapsida, 2013), although extreme caution should be

exercised as herbal preparations can be harmful to humans in

some cases due to the presence of toxic molecules (Shaw et al.,

2012; Syed et al., 2015; Mensah et al., 2019). MO is a common

plant grown as a food source and has been used in African

traditional medicine for centuries (Vergara-Jimenez et al., 2017;

Bancessi et al., 2020). MO is considered a famine food because

of its high nutrient content and resistance to drought, and every

part of the tree is used (Saini et al., 2016; Bao et al., 2020;

Mabrouki et al., 2020; Jain et al., 2021). There is increasing

interest in the role of non-coding miRNAs in post-

transcriptional regulation (Chin et al., 2016; Cui et al., 2017;

Lundstrom, 2017; Morales et al., 2017; Hou et al., 2018; Yao

et al., 2019). Attention is focused on the cross-kingdom concept

which suggests that plant miRNAs may play a key role in

regulating the expression of human proteins involved in

important cellular processes. Cross-kingdom regulation

seems to bring new importance to herbal medicine, as plant

miRNAs have shown the ability to regulate perturbed signaling

pathways in various pathologies (Sala-Cirtog et al., 2015). With

this pilot study, we aim to demonstrate the effect ofmol-miRs in

combating dyslipidemia.

2 Materials and methods

2.1 Moringa oleifera preparations

2.1.1 MO seed aqueous extract preparation
MO mature seeds were harvested in the Dschang District,

West Cameroon (Africa) by the Cooperative of Medical Plant

Producers SOCOPOMO. The seeds were sun-dried and stored

until use. In our laboratory, the seeds were hulled and ground in a

mortar to a fine powder, according to the traditional preparation.

MO powder was then boiled in distilled water for 15 min. After

cooling, the mixture was subjected to several centrifugations to

remove solid residue. The MOES was then syringe filtered

(0.45 µm, Minisart®) and stored at −20°C until use (Potestà

et al., 2019).

2.1.2 MO miRNAs extraction
MO miRNAs (mol-miRs) were extracted from MOES using

the NucleoSpin® miRNA kit (MACHEREY-NAGEL, Germany).

mol-miRs were quantified using a NanoDropTM Light

Spectrophotometer (Thermo Fisher Scientific, United States).

The presence of the main miRNAs (miR-156a, miR-159a,

miR-159c, miR-160h, miR-162a, miR-166i, miR-167-5p, miR-

171a, miR-393, miR-395a, miR-396c, miR-397, miR-398, miR-

482b, miR-858a, miR-858b, miR-2118a) in themol-miR pool was

confirmed by quantitative RT-PCR (qRT-PCR) as previously

reported (Gismondi et al., 2017; Minutolo et al., 2018; Potestà

et al., 2019, 2020).
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2.2 Cell culture

The human HepG2 hepatoma cell line was grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% foetal bovine serum, 100 U/ml penicillin, 100 mg/ml

streptomycin and 2 mM L-glutamine (Lonza, United States). For

maintenance, cells were harvested with a mixture of 170,000 U

Trypsin/L and 200 mg/L Versene (EDTA) (Lonza,

BioWhittaker™) and reseeded in fresh medium as a function

of cell density.

2.3 MOES treatment

0.5 × 105 HepG2 cells/mL were treated for 72 h withMOES at

different concentrations (2.5 mg/ml, 5 mg/ml and 10 mg/ml).

Cells were washed with PBS, collected, centrifuged and the

pellets stored at −20°C for subsequent analyses.

2.4 mol-miR pool transfection

HepG2 cells were transfected with the mol-miR pool at a

concentration of 5 μg/ml using lipofectamine (Hi-Fect, Qiagen,

HF). Control HepG2 cells were treated with lipofectamine alone.

2.5 Cell viability and apoptosis

Cell viability was assessed using the Trypan Blue (Euroclone

S.P.A. ITA) exclusion test. Viable and dead cells were counted using

the Neubauer chamber. Apoptosis was assessed by flow cytometry

analysis of isolated nuclei stained with Propidium Iodide (Sigma)

using aCytoFLEXflow cytometer (BeckmanCoulter, United States).

Data acquisition and analysis were performed using CytExpert 2.2

(Beckman Coulter, United States). At least 150,000 events were

counted for each sample.

2.6 Lipids and TNF-alpha intracellular
staining

BODIPY (BPI) (Thermo Scientific) was used to evaluate the

accumulation of lipid droplets in HepG2 cells, as previously

described (Minutolo et al., 2018). The analysis was performed

using a CytoFLEX flow cytometer. The gating strategy is shown

in Supplementary Figure S2. TNF-alpha expression was

evaluated by flow cytometry analysis. Transfected HepG2 cells

stained with FITC Mouse Anti-Human TNF (BD Biosciences,

Franklin Lakes, NJ, United States) were analyzed using a

CytoFLEX flow cytometer (Beckman Coulter, United States)

and CytExpert 2.2 software. 10,000 events were counted in

live cells gate.

2.7 Computational prediction of miRNA-
mRNA interactions

The prediction tool used in this work is a support vector

machine (SVM)-based classifier, trained on an experimentally

validated set of miRNA-mRNA interactions. This classifier

discriminates potential miRNA-mRNA interactions by

combining the output of nine different RNA-RNA prediction

algorithms (Minutolo et al., 2021). We developed a code to

automatically run the programs and generate an energy-based

probability score (ES) and a probability-based score (PS) as

output. The final ES score was obtained by reformulating the

Fermi-Dirac Eq. (1):

ES � ∑
N

i

1
1 + e(Ei)/RT (1)

where Ei represents the interaction energy of the miRNA-mRNA

pair and RT is the universal gas constant. The probability scores

are simply summed using Eq. (2).

PS � ∑
N

i

SCOREi (2)

The prediction codes and scoring functions were applied to a

training set and a test set consisting of experimentally validated

miRNA-mRNA interactions and used to build a classifier

through the sklearn. svm. SVC function of the Python scikit-

learn package (Pedregosa et al., 2011). The full description of the

SVM classifier implementation is reported in our previous work

(Minutolo et al., 2021).

2.8 In vivo mice experiments

In vivo experiments performed in accordance with accepted

standards for the care and use of laboratory animals after the

approval by the University Ethics Committee for Animal

Experimentation (Institutional Animal Care and Use

Committee—IACUC, Tor Vergata University) and national

committees (Ministry of Health) with authorization n°378/

2017-PR. A total of 12 young, 2 month-old male C57BL/6J

mice (purchased from Harlan Laboratories S.r.l., 91 Urbino,

Italy) were randomly divided into two groups (6 mice/group):

mice fed a normal calorie diet (ND) (3.85 kcal/g among which

10% kcal from fat, 20% from protein and 70% from

carbohydrate) and mice fed a high fat diet (HFD: 5.24 kcal/g

among which 60% kcal from fat, 20% from protein, and 20%

from carbohydrate). Each group (ND + mol-miR and HFD +

mol-miR) was administered 3 µg of the mol-miR pool

resuspended in RNA-free water orally by gavage every 2 days.

The dose required for the in vivo study was chosen considering

previous toxicological in vitro studies performed in murine cell

lines (data not shown) and the average mouse blood volume
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(about 3 ml): 3 µg/mice/3 times per weekmol-miR pool. The

total dietary treatment was maintained for 5 weeks. The body

weight of mice was measured every week from the start of the

treatment (T0), and the weight change was assessed as delta

between two consecutive time points (TX-T0). At the end of the

treatments (5 weeks), mice have been sacrificed by cervical

dislocation, organs harvested, weighed, and tissues were

prepared for subsequent analysis.

2.9 Biochemical parameters

For serum protein electrophoresis, blood samples were

collected in SST microtainers (Serum Separator Tube;

Dickinson Company, Boston, United States) and centrifuged

at 13,000 g for 7 min. For the measurement of blood glucose,

mice were fasted overnight before blood sampling. Glucose and

total cholesterol were measured using the automatic analyzer

Keylab (BPC BioSed S.r.l., Rome, Italy) according to the

manufacturer’s instructions.

2.10 Histological analysis

For histological analysis mouse livers were fixed in 10X

formalin and embedded in paraffin. Hematoxylin and Eosin

(H&E) staining was performed to evaluate the inflammatory

state of liver tissues.

2.11 RNA extraction

Total RNA was extracted from mouse livers and HepG2 cells

using TRIzol extraction, according to the manufacturer’s

instructions (Invitrogen, CA). RNA was quantitated using a

NanoDropTM Light Spectrophotometer (Thermo Fisher

Scientific, United States) and stored at −20°C until use.

2.12 Reverse transcription

cDNA synthesis was performed using a high-capacity cDNA

Reverse Transcription Kit (Applied Biosystem by Life

Technologies NY, United States Invitrogen, CA) according to

the manufacturer’s instructions. The cDNA was stored at 4°C

until use.

2.13 Adipogenesis RT2 profiler PCR array

The expression of 84 metabolic genes involved lipid

metabolism was analyzed in HepG2 cells treated with MOES

2.5 mg/ml, and mouse liver tissues exposed to mol-miR pool for

5 weeks. Analysis was performed on the cDNA obtained from

total RNA using Human Adipogenesis RT2 Profiler PCR Array

(PAHS-049Z; Qiagen) and Mouse Adipogenesis RT2 Profiler

PCR Array (PAMM-049Z; Qiagen), respectively. A 7500 Fast

Real-Time kit (Applied Biosystems) with SYBR Green detection

(Hydra SYBR qPCRMasterMix, BIOLAB) was used according to

the manufacturer’s instructions. Data elaboration was performed

using the RT2 Profiler PCR Array Data Analysis software.

Transcriptional levels were shown as fold change (HFD vs.

ND; HFD + mol-miR pool vs. ND; HFD group vs. HFD +

mol-miR pool). Values > 1.50 units or <0.5 units were considered
significant. All dataset was submitted to Geo Repository http://

www.ncbi.nlm.nih.gov/geo. Accession number: GSE125344

(human), GSE125346 (mouse).

2.14 MO miRNAs purification

mol-miRs were purified from mice liver total RNA using the

NucleoSpin® miRNA kit (MACHEREY-NAGEL, Germany).

mol-miRs were quantified using a NanoDropTM Light

Spectrophotometer (Thermo Fisher Scientific, United States).

The mol-miR pool was characterized by quantitative RT-PCR

(qRT-PCR). The presence and concentration of the most

conserved miRNAs were validated and measured as previously

reported (Gismondi et al., 2017; Minutolo et al., 2018; Potestà

et al., 2019, 2020). A Bio-Rad thermal cycler (IQ5) was used and

amplification parameters were set according to the instructions

of EXIQON pre-designed primers, as previously reported

(Potestà et al., 2019, 2020). Relative expression of miRNAs

was quantified using the 2−ΔΔCt method, using 5S RNA as

internal control.

2.15 Statistical analysis

Data are presented as mean ± standard deviation (SD). All

experiments were repeated at least in triplicate (biologically

independent measurements). To compare the means of two

different groups, the unpaired Student’s t-test was used. For

comparison of means of more than two groups, the

nonparametric one-way ANOVA with the Kruskal-Wallis test

was used. Pre-hoc statical analysis was performed to determine

the sample size, we considered a power analysis of 0.8 and

assumed an effect size of 4.0, based on the 30% difference in

blood glucose levels between mice fed with ND and HFD

(Aquilano et al., 2019). A sample size of n = 3 mice in each

group (α error = 0.05 and β = 0.2) was estimated to reject the null

hypothesis of no difference (http://www.statisticalsolutions.net/

pss_calc.php). A nonparametric one-way post-hoc ANOVA

corrected by Kruskal-Wallis test, was used for the statistical

analysis of animal experiments. p-value < 0.05 (*), p < 0.01

(**) or p < 0.001 (***) were considered significant.
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3 Results

3.1 Effect of MOES in HepG2 cells

To investigate the effects of MOES on the hepatocellular

carcinoma HepG2 cell line, we first determined an appropriate

dosage for treatment. Cells were treated with three concentrations of

MOES: 2.5, 5, and 10 mg/ml for 72 h, as previously reported in a

toxicology study (Potestà et al., 2019). After 72 h, MOES

significantly decreases the number of viable cells (Figure 1A) and

increased the number of apoptotic cells as evidenced by a dose-

dependent increase of hypodiploid nuclei percentage (Figure 1B). At

a MOES concentration of 2.5 mg/ml, a significant decrease in cell

viability (about 20%) and an increase in hypodiploid nuclei were

observed compared with controls (Table 1). At higher

concentrations, treatment leads to a progressive decrease in cell

number. Based on these results and previous results obtained with

other cell lines (Potestà et al., 2019, 2020), 2.5 mg/ml MOES was

used for further investigations. To determine whether MOES affects

hepatic lipid accumulation, a typical feature of HCC and hepatic

steatosis (Liu et al., 2010; Gu et al., 2016), HepG2 cells were stained

with BPI and analyzed by flow cytometry. A significant decrease in

Mean Fluorescence Intensity (MFI) and percentage of BPI positive

cells was observed in treated cells comparedwith controls (Figure 2A

and Table 1), indicating an ability of MOES to reduce intracellular

lipid accumulation. Using a Human Adipogenesis RT2 Profiler PCR

Array we found thatMOES canmodulate the expression of 84 genes

linked to lipid metabolism. Comparing control and treated cells, 6%

of the genes examined were upregulated, whereas 67% were

downregulated (Figures 2B–D). Among the downregulated genes

we found members of various metabolic pathways involved in

tumorigenic and inflammatory processes (Supplementary Table S1).

3.2 Computational prediction ofmol-miRs
putative genes target in human

Based on our previous work, the modulatory activity of

MOES was associated with the presence of mol-miRs in this

extract (Potestà et al., 2020; Minutolo et al., 2021). Therefore, a

bioinformatic analysis has been carried out searching for

potential interactions between mol-miRs and genes involved

in lipid metabolism. The prediction pipeline was based on an

SVM classifier, trained on an experimentally validated set of

miRNA-mRNA interactions, combining the output of several

miRNA-mRNA interaction prediction algorithms implemented

in our previous work (Minutolo et al., 2021). For the analyses, we

selected the same gene panel that was used for the Adipogenesis

FIGURE 1
Dose-response effect of MOES on the HepG2 cell line. The effect at increasing concentrations (0, 2.5, 5, 10 mg/ml) of MOES on HepG2 cell
viability and apoptosis. (A) The number of viable cells analysed by Trypan Blue assay after 72 h of treatment. (B) Percentage of apoptotic cells after
72 h of treatment, evaluated by propidium iodide staining and flow cytometry analysis. All results derived from, at least, three independent biological
experiments (sample size n = 9). Histograms report the mean ± SD (**p < 0.01). Unpaired Student’s t-test was used.

TABLE 1 Effect of MOES on HepG2 cells.

In vitro model CTR MOES 2.5 MOES 5 MOES 10

HepG2 Viability Trypan Blue assay Fold Change Treated vs. Untreated 0.63 ± 0.01 0.35 ± 0.02 0.25 ± 0.015 0.23 ± 0.032

Apoptosis Propidium Iodide % Hypodiploid nuclei 13.95 ± 2.31 27.89 ± 3.54 48.04 ± 5.45 55.75 ± 6.56

Mean ± SD of three independent measurement.
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RT2 Profiler PCR Array. Interestingly, the prediction pipeline

identified several mol-miRs in the MOES with a high probability

of interacingt with the genes modulated by treatment in HepG2.

As shown in Supplementary Table S1, this analysis indicated that

of the 61 genes modulated by MOES, 22 were potential targets of

mol-miRs in humans (with a greater than 60% probability of

being assigned to the correct class).

3.3 Effects of mol-miR pool on viability,
apoptosis, and lipid accumulation in
HepG2 cells

We tested whether the mol-miR pool present in MOES

could be the mediator of the biological effects observed in

HepG2 cells. The effects of the mol-miR pool on cell viability

FIGURE 2
Effect of MOES on lipidmetabolism in the HepG2 cells. (A)MFI (black column) and percentage (red line) of BPI positive HepG2 cells treated with
MOES. All results derived from at least three independent biological experiments. The histogram reports the mean ± SD (**p < 0.01). Unpaired
Student’s t-test was used. (B) The scatter plot array profile of genes involved in lipid metabolism in HepG2 cells. Elaboration by RT2 Profiler PCR Array
Data Analysis software. Values > 1.50 or <0.5 were considered significantly upregulated (red dots) and downregulated (green dots), respectively.
(C) The relative Heat Map shows the expression of upregulated (red) and downregulated (green) genes in HepG2 treated with MOES. (D) The number
of genes and their percentage values, regulated by MOES, represented as Pie Chart.
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and apoptosis were evaluated and compared with those

induced by MOES. The mol-miR pool significantly reduced

cell viability and increased apoptosis in HepG2 cells

(Figure 3A). In addition, mol-miRs cause a significant

decrease in both the percentage of BPI positive cells

(Figure 3B) and MFI together with a decrease in

intracellular lipid levels, compared to controls (Figures

3C,D). These results suggest that the mol-miR pool, like the

MOES, is able to reduce cell proliferation and increase

apoptosis by interfering with accumulation of lipids in

HepG2 cells (Table 2). These processes are associated with

inflammation, and TNF-alpha plays a key role as a pleiotropic

FIGURE 3
Characterization of mol-miR pool effect on HepG2 viability, apoptosis, and lipid accumulation. (A) Effect of mol-miR pool transfection on
apoptosis and viability in HepG2 cells. (B) Percentage of BPI positive HepG2 cells treated with mol-miR pool. (C) MFI of BPI positive HepG2 cells
treated with mol-miR pool. (D) Representative overlay histogram of lipid content in HepG2 cells treated with mol-miR pool. (E) MFI (black column)
and percentage (red line) of TNF-alpha positive cells. (F) Representative overlay histogram of TNF-alpha in HepG2 cells treated with mol-miR
pool. All results derived from at least three independent biological experiments (sample size n = 9). Histograms report the mean ± SD (**p < 0.01).
Unpaired Student’s t-test was used.
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pro-inflammatory cytokine (Jing et al., 2018; Sethi and

Hotamisligil, 2021) We have recently shown that two

conserved plant miRNAs, miR159a and miR156c, can

impair TNF-alpha signaling by reducing inflammation

(Aquilano et al., 2019). This finding was also confirmed in

the present model, as we found that treatment with mol-miR

TABLE 2 Effect of mol-miRs on HepG2 cells.

In vitro model CTR mol-miRs

HepG2 Viability Trypan Blue assay Fold Change Treated vs. Untreated 2.46 ± 0.11 0.35 ± 0.01

Apoptosis Propidium Iodide Fold Change Treated vs. Untreated 1 2.25 ± 0.08

Lipid Accumulation BODIPYTM Mean intensity of fluorescence 1,424 ± 965 592 ± 58

% Positive cells 32 ± 9 14.24 ± 3.4

Inflammation TNF-alpha Mean intensity of fluorescence 15,658 ± 932 9,568 ± 641

% Positive cells 27 ± 9 13 ± 5

Mean ± SD of three independent measurement.

TABLE 3 List of the nineteen mol-miRs target genes in common between Homo sapiens and Mus musculus, with relative mol-miRs and binding
energy shown as score.

Genes Description Pathway mol-miRs predicted for human genes mol-miRs predicted for
murine genes

AGT Angiotensinogen Hormones miR160h (0.65), miR395d (0.96), miR482b (0.97) miR160h (0.90), miR159c (0.90),
miR167f-3p (0.96), miR397a (0.68)

CDKN1A Cyclin-dependent kinase
inhibitor 1A

Tumorigenesis miR395d (0.93), miR160h (0.96), miR166 (0.97) miR160h (0.96)

CFD Complement factor D Adipokines miR160h (0.95) miR160h (0.97)

DIO2 Deiodinase, iodothyronine,
type II

Pro-Brown Adipose
Tissue

miR166 (0.96), miR396a (0.99) miR159c (0.94), miR156e (0.94),
miR166 (0.87)

EGR2 Early growth response 2 Pro-White Adipose
Tissue

miR166 (0.60), miR159c (0.82) miR167f-3p (0.95), miR159c (0.94)

INSR Insulin receptor Pro-Brown Adipose
Tissue

miR396a (0.85), miR482b (0.98) miR395d (0.90)

KLF2 Kruppel-like factor 2 Anti-White Adipose
Tissue

miR2118a (0.87), miR482b (0.96), miR166 (0.97) miR166 (0.97), miR160h (0.88)

LEP Leptin Adipokines miR159c (0.95), miR482b (0.96), miR160h (0.96),
miR166 (0.98)

miR395d (0.95), miR159c (0.91),
miR160h (0.92)

LPL Lipoprotein lipase Enzymes miR160h (0.61) miR167f-3p (0.65)

MAPK14 Mitogen-activated protein
kinase 14

Pro-Brown Adipose
Tissue

miR393a (0.92), miR396a (0.98) miR159c (0.93)

NRF1 Nuclear respiratory factor 1 Pro-Brown Adipose
Tissue

miR160h (0.94), miR396a (0.97), miR482b (0.98) miR167f-3p (0.85)

PPARA Peroxisome proliferator
receptor alpha

Beta-Oxidation miR393a (0.75), miR160h (0.96), miR166 (0.96) miR397a (0.96), miR482b (0.94),
miR160h (0.87)

RB1 Retinoblastoma 1 Anti-Brown Adipose
Tissue

miR160h (0.86) miR159c (0.61)

RXRA Retinoid X receptor alpha Cholesterol Metabolism
& Transport

miR160h (0.97), miR166 (0.98) miR160h (0.93), miR159c (0.93),
miR398a-5p (061), miR166 (0.61)

SFRP1 Secreted frizzled-related
protein 1

Pro-Adipogenesis miR160h (0.84), miR166 (0.84), miR482b (0.97) miR160h (0.92), miR166 (0.92)

SHH Sonic hedgehog Tumorigenesis miR159c (0.95), miR482b (0.98) miR858b (0.96), miR167f-3p (0.72)

VDR Vitamin D receptor Tumorigenesis miR160h (0.71), miR166 (0.97) miR160h (0.91), miR398a-5p (0.91),
miR166 (0.63)

WNT3A Wingless-related MMTV
integration site 3A

Tumorigenesis miR171b (0.87), miR166 (0.92), miR482b (0.94),
miR2118a (0.96), miR160h (0.98)

miR159c (0.93), miR395d (0.85)

WNT10B Wingless related MMTV
integration site 10b

Tumorigenesis miR166 (0.62), miR167f-3p (0.88), miR395d (0.96),
miR482b (0.96), miR2118a (0.96), miR160h (0.98)

miR858b (0.96), miR167f-3p (0.94),
miR160h (0.91)
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pool, containing miR159a and miR156c, significantly reduces

MFI and the percentage of TNF-alpha positive HepG2 cells

(Figures 3E,F and Table 2).

3.4 Computational prediction ofmol-miRs
putative target genes in mice

Before examining the effects of mol-miRs in the mouse

model, we applied the prediction pipeline to search for their

putative mRNA targets in Mus musculus. The analysis

considered the same set of genes used for the analyses in

Homo sapiens. The SVM classifier identified 41 genes as

potential targets of mol-miRs (with a greater than 60%

probability of being assigned to the correct class), 19 of

which were consistent with Homo sapiens, as shown in

Table 3. Of these 19 target genes, 17 were downregulated

and 2 were upregulated by MOES treatment containing mol-

miRs (Supplementary Table S2).

3.5 Effect ofmol-miR pool onmechanisms
associated with lipid accumulation in a
pre-obese mice model

Hence, an in vivo study on C57BL/6J mice was conducted to

elucidate the possible anti-inflammatory effect of the mol-miR

pool and its ability to modulate lipid accumulation. Mice were

fed HFD for 5 weeks to induce a pre-obese state and the effects

of mol-miRs pool treatment on lipid metabolism were

evaluated. HFD feeding led to an increase in body weight

compared with mice fed ND. The HFD + mol-miR pool

group exhibited similar body weight gain as the ND group

(Figure 4A and Table 4). Furthermore, the HFD + mol-miR

pool group had lower glucose levels than the HFD group and

this level was comparable to that of the ND group. Although no

significant difference in cholesterol levels was found between

the HFD + mol-miRs and HFD groups, of the plasma

cholesterol concentration in the HFD + mol-miRs group

decreased compared with that in HFD mice; moreover, the

cholesterol level in the HFD + mol-miRs group was similar to

that in the ND group (Figure 4B and Table 4). In pre-obese and

obese subjects, lipids gradually accumulate in various organs,

with the liver being the first organ affected by excessive lipid

accumulation (Ahmed et al., 2014; De Mello et al., 2018). As

shown in Figures 4C,D and reported in Table 4, the weight of

the livers of HFD mice were significantly higher than that of the

livers of the HFD + mol-miR pool group (**p < 0.01). In

addition, H&E staining of liver sections revealed marked

lipid accumulation in HFD mice (Figure 4E), reflecting the

lipid accumulation typical of overweight conditions. Lipid

accumulation was not observed in HFD + mol-miR pool and

in control groups.

3.6 Lipid metabolism gene profile of mice
livers

Because prolonged HFD leads to alterations in liver

morphology and function, the expression of genes related to

lipid metabolism was examined using microarray RT-PCR

analysis (Figure 5). The livers of HFD mouse showed an

upregulation of genes involved in the control of lipid

metabolism compared to those of ND mice (Figure 5A). Of

the 84 genes comprising the array, 45 (53.6%) were significantly

upregulated in HFD mice and only 7 (8.3%) were downregulated

(Figures 5A,D). The HFD + mol-miRs group showed an altered

pattern compared with the ND group with 16 (19.1%) genes were

significantly upregulated, and 3 (3.6%) genes were

downregulated (Figures 5B,E). Finally, the HFD + mol-miR

pool group showed significant downregulation of gene

expression compared with the HFD group. Thirty-nine genes

(46.4%) were downregulated (i.e. Leptin, Resistin, Gata2, Gata3,

Klf2, Ppra, Pprd, Wnt3a, Wnt5a, Wnt10b) and eight (5.5%) were

upregulated (Figures 5C,F and Supplementary Table S3). These

data suggest that the mol-miRs can reduce HFD-induced lipid

dysmetabolism by regulating gene expression.

3.7 Detection of mol-miRs in mouse livers

To exert their regulatory effect, mol-miRs must reach the

target tissue after they are supplied with food. To confirm the

presence of mol-miRs in mouse livers, RT-qPCR analysis was

performed. Twenty mol-miRs, which are among the most

conserved plant miRNA families were analyzed, and seven of

them were identified in significant amounts in the livers of both

ND and HFD mice treated with mol-miRs. Significantly lower

amounts of mol-miRs (Table 5) were detected in the livers of the

HFD + mol-miR pool group compared with the ND + mol-miR

pool group, most likely due to their regulatory activity

counteracting the effect of HFD and leading to degradation of

the mRNA to which they are bound.

4 Discussion

Functional foods are defined as products rich in molecules

that provide health benefits and, when included in a balanced

diet, have preventive health benefits such as improving immune

response, reducing the risk of disease and comorbidities, and

may play an important role in weight control (Hodas et al.,

2021). Many functional foods and nutraceuticals are derived

from traditional medicine in various countries, and M. oleifera

Lam. is one example. In this work, a model of lipid

dysmetabolism and its treatment with a plant-based remedy

based on an African ethnomedicine was evaluated. The lipid

modulatory properties of MO are widely recognized
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(Barbagallo et al., 2016; Almatrafi et al., 2017; Oyeleye et al.,

2019; Ezzat et al., 2020). In our studies, we focused on the use of

miRNAs present in the MOES (Cui et al., 2017; Mohammadi

et al., 2017; Quintanilha et al., 2017; Potestà et al., 2020;

Minutolo et al., 2021) and their biological effects. First, the

modulatory property of MOwas investigated in HepG2 cells, an

in vitromodel of liver tissue. Treatment withmol-miRs was able

to decrease lipid accumulation and induce apoptosis in this cell

line. Furthermore, bioinformatic analysis assessed the ability of

mol-miRs to interact with human and mouse genes involved in

FIGURE 4
Effect ofmol-miR pool in mice after High Fat Diet (HFD). (A)Delta of mouse body weight (grams). The mouse body weight was measured every
week from the start of the treatment (T0). (B) Biochemical parameters in mice blood measured after 5 weeks. (C) An overview picture of mice livers.
(D) Livers weights (grams). Histograms report the mean ± SD (n = 3 each group, **p < 0.01). Nonparametric one-way ANOVA corrected by the
Kruskal-Wallis test was used. (E) Pictures of H&E staining of liver sections of ND or HFD mice supplemented and not with mol-miR pool. The
black arrows in the HFD panel, indicate the lipid droplets accumulated in the hepatocytes.
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lipid metabolism and tumorigenesis. It is important to note that

plant derived miRs share functional homology rather than

sequence homology with mammalian miRs (Minutolo et al.,

2018). The analysis evaluated the probability of interaction and

binding energy between the mol-miRs and the mRNA of the

genes analyzed. Interestingly, bioinformatic analysis confirmed

the ability of mol-miRs to modulate gene expression in both

humans and mice. In view of these results, a pilot study was

performed in C57BL/6J mice. A pre-obese state was induced in

the mice by HFD feeding, and interestingly, we found that

supplementation with the mol-miR pool reduced weight gain.

Consistent with this finding, genes that were upregulated by

HFD diet were downregulated by mol-miR pool

supplementation, suggesting a modulatory effect of plant

TABLE 4 Effect of mol-miRs on mice.

In vivo model ND ND + mol-miRs HFD HFD + mol-miRs Range value

C57BL/6J Body weight gr 3,26 ± 4.27 1,30 ± 1.17 11,6 ± 4.41 2,53 ± 0.66

Liver weight gr 1.4 ± 0.59 1.52 ± 0.32 1.75 ± 0.07 1.54 ± 0.07

Glucose mg/dL 140.66 ± 3.05 165 ± 36 215 ± 19,97 134 ± 16 60–130

Cholesterol mg/dL 90.66 ± 9.07 36 ± 4.24 116.33± 99 ± 18.92 50–120

Mean ± SD of three independent measurement.

FIGURE 5
Lipid metabolism gene expression profile in livers of mice fed for 5 weeks with HFD and HFD + mol-miR pool. (A–C) Liver scatter plot array
profile. Transcriptional levels of specific genes are shown as fold change. Values > 1.50 or <0.5 were considered significantly upregulated (red dots)
and downregulated (green dots), respectively. Values between 1.5 and 0.5 were considered not regulated. (D–F) The relative Heat Map shows the
expression of upregulated (red) and downregulated (green) genes in livers of mice subjected to (D) HFD vs.ND group, (E) HFD +mol-miR pool
vs. ND group, (F) and HDF + mol-miR pool vs. HFD group.
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miRNAs. The liver plays key role in the regulation of lipid

homeostasis, and obesity is strongly associated with liver

abnormalities (Fabbrini et al., 2010; Sun and Karin, 2012;

Saitta et al., 2019). HFD mice exhibit lipid accumulation in

the liver that was not observed in HFD + mol-miR pool mice.

The miRNAs present in the mol-miR pool were also detected in

the liver tissue of mice not treated with mol-miRs (Table 5).

This apparent inconsistency is due to the diet of the mice that is

predominantly plant-based and therefore contains such

miRNAs. Importantly, supplementation with mol-miRs

significantly increased the presence of plant miRNAs in

mouse livers, confirming that they entered this tissue. There

was a significant increase in these miRNAs in ND + mol-miR

pool mouse livers, although to a lesser extent that in HFD +

mol-miR pool livers. Presumably the mol-miRs bound to the

mRNAs and exerted their regulatory effect. The lowest amount

of mol-miRs detected in the liver of HFD mice (Table 5) also

suggests that the higher degradation ofmol-miRs may be due to

a longer delay in gastric emptying because of the high-fat

content of the diet (Cunningham et al., 1991; Lettieri

Barbato et al., 2014). The expression of important genes

involved in both lipid metabolism and tumorigenesis was

studied in mouse livers. Array analysis showed that genes

generally upregulated in obesity were also upregulated in

HFD mouse livers. Interestingly the HFD + mol-miR pool

group shows a gene expression pattern analogous to the ND

group (Supplementary Table S3 and Figure 5), demonstrating

the regulatory activity of the mol-miR pool. Adipose tissue is a

complex endocrine organ that contributes to the regulation of

whole-body homeostasis (Gregor and Hotamisligil, 2011;

Coelho et al., 2013; Leal and Mafra, 2013). The tissue

actively secretes adipokines that act locally and systemically

(Kershaw and Flier, 2004; Booth et al., 2016). Excessive

adiposity leads to dysregulation of these cytokines, resulting

in metabolic inflammation (Lettieri Barbato et al., 2014). The

inflammation triggered by obesity is a peculiarity that manifests

itself in a low-grade activation of innate immune responses that,

over time, affect steady-state measures of metabolic

homeostasis, and have a pro-inflammatory effect in multiple

organs (Hotamisligil, 2006; Lumeng and Saltiel, 2011). Leptin

normally acts as an endocrine hormone on the hypothalamus to

regulate food intake and energy expenditure (Tilg and

Moschen, 2006; Musi and Guardado-Mendoza, 2014;

Martínez-Uña et al., 2020). Leptin is also a pro-

inflammatory cytokine that is overexpressed during meta-

inflammation, causing a general inflammatory state, such as

in the liver, where it promotes the accumulation of lipids. We

observed that Leptin is overexpressed in HFD mouse livers,

whereas its expression was downregulated in HFD + mol-miR

pool livers. Another important pro-inflammatory adipokine is

Resistin, which is secreted by adipocytes and macrophages, and

is thought to be a link between obesity and type 2 diabetes.

Resistin increases LDL production in human hepatocytes,

degrades LDL receptors, and reduces the ability of the liver

to clear LDL (Tilg and Moschen, 2006). Resistin strongly

upregulates the expression of other pro-inflammatory

cytokines, such as TNF and IL-6 in human peripheral blood

mononuclear cells (Tilg and Moschen, 2006). Accordingly, a

consistent increase in the expression of Resistin was observed in

HFD mice, whereas its level decreased in HFD + mol-miR pool

mice. Interestingly, Resistin was downregulated in HepG2 cells

treated with the mol-miR pool, compared with untreated

controls. TNF-alpha was also downregulated and this can be

considered as a possible effect of both downregulation of

Resistin and direct modulation of mol-miRs. Moreover,

many genes belonging to families known to be involved in

lipid metabolism were upregulated by HFD. These included,

GATA binding proteins (GATA), Krüppel-like factors (KLFs),

Peroxisome Proliferator Activator Receptors (PPARs), and the

wingless-related MMTV integration site (WNTs) (Rosen and

MacDougald, 2006). KLFs are a large family of transcription

factors involved in processes such as regulation of infection

(Minutolo et al., 2014), differentiation, proliferation, and

apoptosis (McConnell and Yang, 2010). Interestingly, a

substantial increase in KLF2 gene expression was found in

HFD mouse. KLF2 has indeed been linked to steatosis and

triglyceride accumulation in the liver (Chen et al., 2014; Li et al.,

2020). Interestingly, all of the genes that were upregulated in

HFD mice, were downregulated in HFD + mol-miR pool mice.

Another gene involved in the regulation of lipid metabolism is

INSR, a transmembrane insulin receptor. Binding of insulin or

other ligands to this receptor activates the insulin signalling

pathway, which regulates uptake and release of glucose and the

synthesis and storage of carbohydrates, lipids, and proteins

(Payankaulam et al., 2019). Mutations in the INSR gene

underlie inherited syndromes of severe insulin resistance.

TABLE 5 The mol-miRs relative level in mouse livers, quantified by qPCR, and normalized with the housekeeping gene 5S rRNA.

miR159c miR156a miR162a miR171d miR482b miR397-5p miR166i

HFD 0.213* 0.06* 2.044* 0.024*** 0.11** 0.03*** 00.001***

ND + pool 84.54** 35.91** 50.27** 184.39*** 34.65** 145.00*** 98.01***

HFD + pool 19.15**++ 6.75*++ 10.92**++ 21.75**++ 8.18*++ 32**++ 36.92**+

*p < 0.05, **p < 0.01 and ***p < 0.001 treated vs. ND. + p< 0.05 and ++p< 0.01 HFD + mol-miR pool vs. ND + mol-miR pool.
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We found that INSR is overexpressed in the livers of HFD mice

whereas a decrease occurs in the HFD group treated with mol-

miRs. Downregulation is also observed in MOES-treated

HepG2 cells. Alteration of lipid metabolism is a crucial

mechanism in the development of HCC, as lipid

accumulation in hepatocytes leads to cell transformation

(Elmore, 2007; Baffy et al., 2012; Gu et al., 2016; Saitta et al.,

2019). Indeed, genes related to tumorigenesis were upregulated

in HFD mice and downregulated in HFD +mol-miR pool mice.

Along this line of evidence, previous work suggested the ability

of plant miRNAs to restore epithelial–mesenchymal transition

(EMT), a mechanism associated with cancer, and lipid

accumulation in HepG2 cells (Minutolo et al., 2018). In

summary, using human and mouse models we show that

MOES regulate lipid metabolism due to the presence of mol-

miRs in the extract (Supplementary Table S4). In view of these

results,mol-miRs can be considered as bioactive components of

MOES; however, confirmation of this hypothesis requires

further in-depth studies. Nevertheless, our results pave the

way for a new therapeutic approach based on plant miRNAs

for the treatment of diseases such as obesity. These miRNAs can

be used as dietary supplements to complement therapeutic

treatments and limit their side effects.
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