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Abstract. A complementary system for a given logic is a proof system
whose theorems are exactly the formulas that are not valid according to
the logic in question. This article is a contribution to the complementary
proof theory of classical propositional logic. In particular, we present a
complementary proof-net system, CPN, that is sound and complete with
respect to the set of all classically invalid (one-side) sequents. We also
show that cut elimination in CPN enjoys strong normalization along with
strong confluence (and, hence, uniqueness of normal forms).
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1. Introduction

A complementary system for a given logic L is a proof system whose theo-
rems are exactly those formulas in L’s language that are not valid according
to L. By extension, if S is any proof system that is sound and complete with
respect to L-validity, a complementary system for S is a proof system S in
the same language such that, for every well-formed formula A, S proves A
if and only if A is not provable in S. Thus defined, complementary systems
belong to the broad category of so-called refutation calculi [10,27] (also known
as rejection calculi [33]). Generally speaking, however, such calculi are not
bound to soundness, since a refutation rule may be designed so as to infer
something unprovable by combining provable and unprovable premises [25,26].
For example, the original refutation calculus of �Lukasiewicz [15] includes the
“reverse modus ponens” rule: If A → B is provable and B is unprovable,
then A is unprovable. Complementary systems are to be understood more
strictly as refutation calculi in which such “mixed” patterns of inference are
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banished altogether; all inference rules are required to be soundness-preserving.
In other words, they are pure refutation calculi [24]. The results presented in
this paper are meant as a contribution to the structural proof theory for such
systems. Specifically, we shall be concerned with complementary systems for
classical propositional logic, hence proof systems that are sound and complete
with respect to the set of classical non-tautologies (contradictions and contin-
gencies). There are several systems of this sort in the literature, both Hilbert-
style [3,37,38] and Gentzen-style [2,4,9,33,35] (see Pulcini and Varzi [21] for
overviews and comparisons). Here we propose a new proof-net complementary
system whose mathematical properties are significantly stronger.

Proof nets were originally introduced by Jean–Yves Girard with the in-
tent to provide an alternative, more perspicuous syntax for linear logic [7,8].
Later developments have led to numerous variants, and proof-net systems are
now available for a larger range of non-classical logics as well as for classi-
cal logic [11,14,16,17,22,23,31]. In general, proof nets are distinguished by
the fact that they do not require the rigid sequentiality imposed by familiar
sequent calculi; one can represent sequent proofs more freely modulo trivial
permutations of the rules. As a consequence, proof nets usually induce nice
properties that may fail in a standard sequent setting. This is true also of our
complementary proof-net system. Particularly, we will show that cut elimina-
tion on complementary proof nets enjoys two major properties that are missing
in a complementary sequent calculus of the sort pioneered by Tiomkin [35] and
Goranko [9]: strong normalization (to the effect that every reduction strategy
leads to a normal form) and confluence, indeed strong confluence (so that any
two normalizing reductions will lead to the same form) [8,29,34].

With these results, we also aim to support three different philosophical
thoughts. First of all, any proof-net system can be seen as a multi-conclusion
natural-deduction system. In particular, the proof-net system that we intro-
duce in Sect. 3 can be seen as a complementary natural-deduction system for
classical logic alternative to the Fitch-style formalism proposed by Tamminga
[33]. In the second place, given a proof system S, any complementary S can be
thought of as delivering a semantic characterization of S itself. Any formula
in the language can be interpreted as the set of its S-proofs, and it will count
as an S-theorem if and only if it is interpreted as the empty set. Among other
things, this licenses perspicuous renderings of important metalogical notions.
For instance, S’s soundness effectively amounts to the conditional: if �S A,
then �S A, i.e., anything that is provable by S cannot be refuted. Since this,
in turn, amounts to denying the possibility that �S A and �S A, such a for-
mulation clarifies the somewhat opaque relationship between soundness and
consistency. Likewise, the converse conditional amounts to the completeness
of S: if �S A, then �S A, i.e., S proves every formula that is non-refutable.
From this perspective, which is not available in “mixed” refutation calculi,
any further improvement in the study of S’s syntax turns into an improve-
ment in our semantic grasp of S, and this can be especially rewarding when
complementary proofs are graphs, i.e., structures having a clear mathematical
raison d’être prior to their logical interpretation. The third and final thought
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concerns the fact that any complementary system S can be seen as a mirror
image of the complemented system S and, hence, as identifying the same logic,
albeit “in the negative” [20]. In a completely decidable setting, such as classi-
cal propositional logic, one can actually establish that a formula A is theorem
of a sound and complete proof system S just by excluding the possibility of
an S-derivation ending in A. Accordingly, the availability of a proof-net sys-
tem for complementary classical propositional logic may suggest novel ways to
conceive and design proof nets also for classical propositional logic as normally
understood, i.e., “in the positive”.

2. Background: The Complementary Antisequent Calculus GS4

2.1. Basic Facts

A proof-net system is usually based on a suitable sequent calculus, typically a
one-sided calculus with rules dealing exclusively with sequents of the form � Γ
[36]. Here we focus on one-sided calculi formulated à la Tait [32], whose lan-
guage includes only the binary connectives for conjunction (∧) and disjunction
(∨); negation (⊥) comes as a primitive on atomic formulas and is extended to
compound formulas in the following way:

(A⊥)
⊥ ≡ A, (A ∧ B)⊥ ≡ A⊥ ∨ B⊥, (A ∨ B)⊥ ≡ A⊥ ∧ B⊥.

More precisely, this means we take the set of atoms, A, to be comprised of all
literals p, p⊥, q, q⊥, . . ., and the set of formulas, F , is defined recursively by
means of the following grammar:

F ::= A |F ∧ F |F ∨ F .

We shall use capital Greek letters Γ,Δ, . . . to range over finite multisets of for-
mulas (i.e., sets [A1, . . . , An] whose elements are allowed to repeat), whereas
small Greek letters π, ρ, . . . will be reserved for proofs. To simplify notation,
we shall write Γ, A and Γ,Δ for the multisets Γ � [A] and Γ � Δ, respec-
tively. A multiset Γ is consistent if and only if there is no formula A such that
{A,A⊥} ⊆ Γ.

The proof-net system we shall be concerned with is based on the one-sided
sequent calculus GS4 summarized in Fig. 1 below [19]. GS4 is a complementary
system for GS4, the one-sided version of Kleene’s G4 [13], and is inspired by
the (cut-free) two-sided complementary calculi of Tiomkin [35] and Goranko
[9] mentioned above. Its peculiarity lies in its dealing with antisequents, which
is to say sequents that are classically invalid. Such sequents are indicated by
reversing the turnstile symbol. Thus, generally speaking, whereas a standard
sequent Δ � Γ expresses the fact that

∧
Δ (the conjunction of every formula in

Δ) entails
∨

Γ (the disjunction of every formula in Γ) and is classically valid if
and only if every valuation that verifies

∧
Δ verifies

∨
Γ, an antisequent Δ 
 Γ

expresses the failure of the entailment, i.e., the fact that there is at least one
valuation that verifies

∧
Δ but not

∨
Γ. (Thus Δ 
 Γ is not tantamount to

its mirror-image standard sequent Γ � Δ, since we have, e.g., p 
 q but not
q � p.) In particular, a right-side antisequent 
 Γ expresses the fact that
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Figure 1. The sequent calculus GS4

there is at least one valuation under which every formula in Γ is false, hence∨
Γ is not a tautology. (Again, this is not tantamount to Γ �, which holds

only when
∧

Γ is a contradiction.)
The rest of this section and the next will be devoted to illustrating the

working of GS4 and to reviewing its most relevant computational properties.

Example 2.1. The following is a GS4-derivation for the classical contingency
(p ∧ p⊥) ∨ (p ∨ q).

ax
 p, p, q ∧R
 p ∧ p⊥, p, q ∨
 p ∧ p⊥, p ∨ q ∨
 (p ∧ p⊥) ∨ (p ∨ q)

Theorem 2.2 (Soundness and completeness). GS4 proves an antisequent 
 Γ
if and only if the sequent � Γ is classically invalid.

Proof. Soundness: By induction on the length of the proof π ending in 
 Γ,
i.e., the number of rules occurring in π. By definition, there always exists a
valuation falsifying all the atomic propositions in any instance of ax. Concern-
ing the inductive step, the case of the Cut-rule is straightforward, since any
valuation that falsifies each formula in Γ, A will a fortiori falsify each formula
in the sub-multiset Γ. Consider, then, the ∧R-rule. Assume there is a valuation
v falsifying all the formulas occurring in the multiset Γ, A. Clearly, if v(A) = 0,
then v(A ∧ B) = 0 for every formula B. Therefore, v falsifies all the formulas
in Γ, A ∧ B as well. The other cases can be treated similarly.

Completeness: It suffices to reason in terms of proof search, by induction on
the number of occurrences of (binary) connectives in Γ. The backwards con-
struction of a proof π of 
 Γ must be implemented by considering one of the
valuations under which every formula in Γ is false.

The base case is simple. In fact, for any multiset Γ of atoms, if there is a
valuation v falsifying each element of Γ, then Γ contains no pair of dual literals
p, p⊥, so 
 Γ can be derived directly as an instance of ax.
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As for the inductive step, the key part concerns formulas obtained by the
conjunction rules. Consider, for instance, the ∧R-rule and assume the invalidity
of the sequent � Γ, A ∧ B. This means that there is a valuation v under which
all the formulas in Γ, A∧B are false. In particular, we must have v(A∧B) = 0,
and so v(A) = 0 or v(B) = 0. Let’s say that v(A) = 0. Then v will also falsify
all the formulas in Γ, A. This means that the antisequent 
 Γ, A ∧ B can be
further analyzed by applying the ∧R-rule upwardly to obtain 
 Γ, A ∧ B from

 Γ, A. The other cases can be handled similarly, essentially as in Proposition
1 by Tiomkin [35]. �

The significance of these soundness and completeness results will be fur-
ther discussed and explained in Sect. 2.3. Moreover, it is worth noticing that
the proof-search algorithm employed to establish the completeness of GS4 does
not (need to) resort to any application of the Cut rule. Accordingly, the same
algorithm can also be read as providing a semantic proof of cut-eliminability.
In the next section we shall however look at a fully syntactical, Gentzen-style
cut-elimination algorithm.

2.2. Cut Elimination and Other Properties

Obviously, 
 and � do not behave alike. Consider, for instance, the negative
counterpart of the Cut rule in its standard multiplicative formulation.

Γ 
 Δ, A Γ′, A 
 Δ′

Γ,Γ′ 
 Δ,Δ′

As noted by Carnielli and Pulcini [4], as well as by Tiomkin [35], this rule
is not sound in complementary classical logic. We have, for instance, p 
 q
and q 
 p even though p � p, showing that a classically valid sequent may
sometimes be obtained by cutting two invalid antisequents.

On the other hand, Carnielli and Pulcini [4] argue that the following
inverse Weakening rules, which clearly violate the subformula property, may
be treated as (unary) complementary Cut rules for all intents and purposes:

Γ 
 Δ, A

Γ 
 Δ
Γ, A 
 Δ
Γ 
 Δ

On this basis, they outline a corresponding proof of Cut elimination for the
two-sided Tiomkin–Goranko calculus. Here we show that Cut elimination holds
of GS4 as well, with Cut understood literally as the one-sided rule listed
in Fig. 1.

To this end, the complete enumeration of Cut reductions is listed in Fig. 2
below. We use the notation π → π′ to signify that proof π′ is obtained from
proof π after exactly one reduction step. When a specific reduction is applied,
we generally write the corresponding number above the arrow. In addition, we
shall use the star-arrow notation π

∗−→ ρ to indicate that ρ is a normal form
of π, meaning that the following two conditions are simultaneously satisfied:
(i) there is a finite chain of reductions transforming π into ρ, and (ii) no
application of the Cut rule occurs in ρ. The procedure yielding a normal form
ρ of a proof π by means of a finite series of reductions is called normalization
[8,29,34].
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Figure 2. Cut reductions for GS4-proofs

Definition 2.3 (Size of formulas, contexts, and proofs). The size ‖A‖ of a for-
mula A is given by the number of occurrences of binary connectives in A. A
multiset Γ= [A1, . . . , An] has size ‖Γ‖= ‖A1‖ + · · · + ‖An‖. For any proof π,
the size of π is defined as ‖π‖ = ‖Γ1‖ + · · · + ‖Γn‖, where [
 Γ1, . . . ,
 Γn] is
the multiset of the antisequents displayed in π.

Theorem 2.4 (Cut elimination). If an antisequent 
 Γ is provable in GS4, then
it is provable also without using the Cut rule.

Proof. Consider the set of Cut reductions listed in Fig. 2. The Cut-elimi-
nation algorithm needed to establish the theorem will proceed by successive
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reductions of the uppermost Cut application occurring in the normalizing proof
of 
 Γ. This means that the last reduction, 8 , is not allowed. Now, it is easy
to see that any chain of reductions produced by following the strategy just
explained will terminate. It suffices to observe that each Cut reduction (except
for 8 ) decreases the size of the normalizing proof π, i.e., if π → π′, then
‖π′‖ < ‖π‖. �

Example 2.5. Figure 3 illustrates an application of the Cut-elimination algo-
rithm to a proof ending in the empty antisequent. Its normal form just consists
of one axiom-application introducing the empty antisequent.

The proof of Theorem 2.4 exploits a well-defined reduction strategy. One
may wonder whether this is just a matter of convenience, i.e., whether any
other strategy would have led unproblematically to the normal form. In other
words, GS4 normalizes, but does it strongly normalize? The answer to this ques-
tion is in the negative. As a counterexample, consider the reduction strategy
illustrated in Fig. 4, which consists in invariably reducing the lowermost Cut
application. Clearly, the process never terminates, since the second reduction
always returns the initial proof.

A related question concerns the uniqueness of normal forms, i.e., whether
π

∗−→ ρ1 and π
∗−→ ρ2 always entail the identity ρ1 = ρ2. As noted by Carnielli

Figure 3. An application of the Cut-elimination algorithm

Figure 4. A counterexample to strong normalization in GS4



G. Pulcini and A. C. Varzi Log. Univers.

and Pulcini [4], one might consider a version of the Tiomkin–Goranko calculus
in which logical contexts are construed as sequences of formulas, and such a
calculus would enjoy the uniqueness property. However, in the present setting it
seems more appropriate to construe the contexts of GS4 as ordinary multisets,
since the Exchange rule


 Γ, A,B


 Γ, B,A

automatically becomes “transparent” when viewed from a graph-theoretic per-
spective. And if contexts are multisets, then again it is easy to see that our
question has a negative answer; normal forms in GS4 need not be unique.

Consider, for instance, the case in Fig. 5 below. In the initial proof, on the
left, the final cut transforms the multiset [p∧q, p∧q] into [p∧q]. Multisets are
not order-sensitive, and so there is no information concerning which occurrence
of p ∧ q has been erased in this Cut-application step. Thus, depending on how
a choice is made (the occurrence introduced by ∧R or the one introduced
by ∧L), two diverging chains of reductions are produced, resulting in non-
identical normal forms.

This result highlights a computational “defect” that GS4 shares with Gent-
zen’s original calculus for classical logic, LK [6]. In LK, pathological behaviors
of this sort are typically induced by the structural rules of Weakening and
Contraction [8] (which for this reason are restricted to specific formulas in the
sequent calculus for linear logic). Here the blame is entirely on the Cut rule.
Nonetheless it is noteworthy that the problematic Cut application in the proof
of Fig. 5 could be read as an instance of Contraction:


 Δ, A,A


 Δ, A

This is not among the fundamental rules of GS4. It is, however, an admissible
rule and, indeed, a special case of the one-side Cut rule (with Γ = Δ, A).

2.3. GS4 from a Broader Perspective

Before moving to proof nets, it is worth adding a few remarks concerning
the nature of the soundness and completeness results for GS4. Consider the
sequent system GS4 summarized in Fig. 6, where 1 and 0 stand for � and 
,

Figure 5. A counterexample to the uniqueness of normal
forms in GS4
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Figure 6. The sequent calculus GS4

respectively, and 0 ≤ i, j ≤ 1. This system comes as the one-sided version of
Kleene’s G4 enriched with the complementary axiom rule of GS4 (subject to
the same restrictions) [12,18]. It turns out that GS4 is a “mixed” system for
classical logic in the sense that it proves a sequent � Γ just in case the formula∨

Γ is a tautology, and an antisequent 
 Δ just in case
∨

Δ is non-tautological
[1,19]. It is easy to verify that GS4-proofs, in their bottom-up reading, are
isomorphic to tableaux à la Smullyan [1,28]. An illustrative example is given
in Fig. 7 below, which displays, one after the other, a GS4-proof ending in the
antisequent 
 (p ∧ q) ∨ (q⊥ ∧ r) along with its corresponding tableau, with an
open branch indicating a successful refutation strategy. More generally, any
GS4-proof ending in an antisequent must display at least one application of
the complementary axiom, i.e., in terms of tableaux, an open branch.

Figure 7. A GS4-proof (top) and its tableaux-style counter-
part (bottom)
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Figure 8. Three “negative” slices of a GS4-proof

Figure 9. From binary mixed Cut rules to unary comple-
mentary Cut rules

Put in this way, GS4’s rules can be thought of as designing a proof system
explicitly devoted to producing single “negative” threads in GS4-proofs, i.e.,
paths in the whole proof tree connecting the root antisequent with a specific
application of the complementary axiom. (For instance, the three GS4-proofs
in Fig. 8 are obtained by “unthreading” the negative paths occurring in the
GS4-proof of Fig. 7.) From the tableaux viewpoint, a GS4-proof ending in the
antisequent 
 Δ guarantees the existence of a non-closing branch in each one
of the possible tableaux associated with the multiset of formulas Δ.

It should be clearer, now, why every GS4-rule comes in the form of a
unary inference, including the Cut rule. That may seem odd, considering that
Cut applications are expected to combine at least two independent proofs or
processes. However, in all three possible cases, listed on the left of Fig. 9,
exactly one of the two premises proves completely superfluous. This allows the
deductive machinery to be optimized by reducing the three binary version of
the Cut rule to the two unary rules reported on the right side of the same figure,
without any loss of information. The interactional view normally associated
with the Cut rule can be easily restored once GS4-derivations are reframed
within the broader deductive context provided by GS4.

3. Complementary Proof Nets

3.1. Complementary Proof Structures and Proof Nets

We are now ready to introduce our complementary proof-net system. We shall
refer to this system with the acronym CPN.

Traditionally, a proof-net system comes in three steps, and CPN is no
exception. To begin with, a set of links is provided in such a way that each
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Figure 10. CPN links

link corresponds to an inference rule taken from a suitable one-sided sequent
calculus—in our case, GS4 (Fig. 10). Each link involves a node and one or more
directed edges, represented by arrows. Nodes are labeled with rule names and
edges with formulas. In particular, incident and emerging edges represent the
premises and the conclusions, respectively, of the rule. In the case of CPN, each
of the five links shown in Fig. 10 is designed so as to represent a corresponding
GS4-rule graph-theoretically. For instance, the ∨-link has two premises and one
conclusion, whereas the Cut-link has one premise and no conclusion. Cut-links
will be graphically highlighted by shading them in grey.

The second step is the definition of a proof structure. Generally speaking,
proof structures are directed graphs (see West [39, § 1.4]) constructed by com-
posing the given set of links, subject to minor constraints intended to rule out
meaningless constructions. The proof structures of CPN are specified in the
following definition.

Definition 3.1 (Proof structures). A proof structure is a directed labeled graph
recursively built from the basic links displayed in Fig. 10 in accordance with
the following conditions: (i) each formula/edge is the conclusion of exactly one
rule/node; (ii) each formula/edge is a premise of at most one rule/node; (iii)
no edge can be premise and conclusion of the same rule/node.

In the following, proof structures will generally be referred to by capital Greek
letters, Π,Σ, . . ..

Finally, a correctness criterion must be provided. In the proof-net jargon,
a correctness criterion is an algorithm capable of deciding whether or not a
given proof structure is correct, i.e., encodes a proof in the sequent calculus of
reference. A proof net is then defined as a correct proof structure. Typically,
this third step is the hardest one, for a truly informative correctness criterion
is expected to rely solely on extra-logical information involving the geomet-
rical structure of the graph under consideration. In CPN, however, this task
turns out to be relatively straightforward. The reason is that the antisequent
calculus of reference, GS4, comprises only 0-ary and 1-ary rules, so proofs in
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Figure 11. A proof structure that is not a proof net

this calculus turn out to be simple chains of antisequents. As a result, the
correctness criterion for CPN can be stated quite easily as follows.

Definition 3.2 (Proof nets). A proof net is a proof structure in which exactly
one ax-link occurs.

Example 3.3. The simplest proof net is the graph formed by only one node, the
ax-link, and no edges. Its counterpart in GS4 will be the axiom introducing the
empty antisequent. By contrast, the proof structure in Fig. 11 is not a proof
net, since it displays two ax-links.

We conclude this section by proving the adequacy of our correctness crite-
rion, i.e., that a proof structure Π is a proof net if, and only if, Π corresponds
to a GS4-proof.

Definition 3.4 (Conclusions, terminal links). The multiset of the conclusions
of a proof structure Π, written C(Π), is the multiset of those formulas labeling
edges in Π that are premises of no link. Links introducing the non-atomic
conclusions and Cut-links of Π (if any) are said to be terminal.

Example 3.5. Let Π be the proof structure shown in Fig. 11. Then C(Π) =
[ q, p ∨ p⊥ ]. Moreover, the ∨-link is Π’s unique terminal link.

Theorem 3.6 (Soundness/Desequentialization). Every GS4-proof π of an anti-
sequent 
 Γ can be turned into a proof net Π such that C(Π) = Γ.

Proof. By induction on the length of π. �
Example 3.7. In Fig. 12, the GS4-proof of Example 2.1 is turned into its cor-
responding proof net.

Theorem 3.8 (Sequentialization). Every proof net Π can be turned into a GS4-
proof π ending in the antisequent 
 C(Π).

Proof. By induction on n(Π), the total number of nodes in Π.
When n(Π) = 1, Π is just an instance of the ax-link. Since no pair of

dual atoms can occur in C(Π), the antisequent 
 C(Π) is clearly an instance of
the GS4 axiom.

For n(Π) > 1 (inductive step), we distinguish three cases, one for each
rule that may be associated with the terminal nodes of Π.
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Figure 12. An antisequent proof and the corresponding
proof net

(i) ∨-link : Suppose C(Π) = Γ, A ∨ B for some Γ (possibly empty). Consider
the proof structure Π′ in which the terminal ∨-link introducing the con-
clusion A ∨ B has been removed, so that C(Π′) = Γ, A,B. Clearly, Π′

is still a proof net and, moreover, n(Π′) < n(Π). Hence, by induction
hypothesis, there exists a GS4-proof π′ of the antisequent 
 Γ, A,B. A
GS4-proof π of 
 Γ, A ∨ B can easily be obtained by extending π′ by one
final application of the ∨-rule with A and B as premise labels and the
disjunction A ∨ B as conclusion label.

(ii) Cut-link: Suppose Π contains a Cut-link whose incident edge is labeled
with formula A. Consider the graph Π′ obtained from Π by removing
the Cut-link under consideration, so that C(Π′) = C(Π), A. Since Π is
a proof net, Π′ will be a proof net as well. Moreover, we have that
n(Π′) < n(Π) and thus, by induction hypothesis, there exists a GS4-
proof π′ ending in 
 C(Π), A. Given π′, we can obtain a GS4-proof π
of 
 C(Π) just by adding a final application of the Cut rule erasing one
occurrence of A from the end antisequent.

(iii) ∧R-and ∧L-links: Similar to the previous cases. �
Let us observe that the correctness criterion provided in Definition 3.2

proves equivalent to a “weakened” version of the better known Acyclic-and-
Connected criterion (AC) designed to characterize proof nets in multiplicative
linear logic [5]. In particular, whereas AC demands acyclicity and connected-
ness of the switching graphs, its transposition into the complementary setting
of CPN requires only to test connectedness.

Before proving this fact, we need to introduce the two notions of switching
function and switching graph.

Definition 3.9 (Switching function, switching graph). Given a proof structure
Π, let Π∨ = {�1, �2, . . . , �n} be a complete enumeration of the ∨-links occurring
in Π. A switching for Π is a function S : Π∨ → {left, right}. For any switch-
ing function S , the switching graph S (Π) is defined as the graph obtained by
transforming Π according to the following instructions for each �i ∈ Π∨: (i) if
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S (�i) = left, then erase the left premise of �i; (ii) if S (�i) = right, then
erase the right premise of �i.

If Π∨ has cardinality n, then there are 2n switchings functions associated
with Π and, therefore, 2n corresponding switching graphs. Let us indicate
with SΠ the set collecting the switching functions associated with Π; the AC
criterion can be then formulated as follows:

Definition 3.10 (AC proof structures). A proof structure Π is said to satisfy AC
just in case S (Π) is a connected graph for all S ∈ SΠ.

Example 3.11. Figure 13 displays the four switching graphs associated with
the proof net Π of Fig. 12. Each of them turns out to be connected, thus Π
satisfies AC. By contrast, the proof structure in Fig. 11 does not satisfy AC,
since the switching functions associated with it return a disconnected graph.

The following theorem establishes the fact that the two notions of proof
net (Definition 3.2) and AC proof structure (Definition 3.10) are extensionally
equivalent, i.e., characterize the same class of proof structures.

Figure 13. The four switching graphs associated with the
proof net of Fig. 12
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Theorem 3.12. A proof structure Π is a proof net if and only if it is an AC
proof structure.

Proof. By induction on n(Π), the number of nodes of Π.
If n(Π) = 1, then Π is just an instance of the ax-link. Therefore, SΠ = ∅

and the claim of the theorem is trivially verified.
For n(Π) > 1 (inductive step), we need to consider two cases.

(i) C(Π) = Γ, A ∧ B. We can assume without loss of generality that the
terminal link introducing the conclusion A ∧ B is a ∧R-link. Consider
the proof structure Π′ obtained from Π by removing that link, so that
C(Π′) = Γ, A. By inductive hypothesis, Π′ satisfies the theorem. Since
SΠ = SΠ′ , we easily get the desired conclusion.

(ii) C(Π) = Γ, A ∨ B. Consider the proof structure Π′ obtained from Π by
removing the terminal ∨-link � introducing the conclusion A ∨ B, so
that C(Π′) = Γ, A,B. By inductive hypothesis, Π′ is a proof net just
in case it is an AC proof structure. We proceed by proving the following
biconditionals:
(1) Π is a proof net if and only if Π′ is a proof net;
(2) Π is an AC proof structure if and only so is Π′.

Biconditional (1) is an immediate consequence of Definition 3.2. As for (2),
let Π′

∨ = {�1, �2, . . . , �k} and Π′
∨ ∪ {�} be two complete enumerations of the

∨-links occurring in Π′ and Π, respectively. For every S ∈ SΠ′ , the switching
functions S R,S L ∈ SΠ are defined as follows:

S R(�) = right and S L(�) = left;
S R(�i) = S L(�i) = S (�i), for all �i ∈ SΠ′ .
It suffices to observe that, for any S ∈ SΠ′ , the switching graph S (Π′)

turns out to be connected precisely when the switching graphs S R(Π) and
S L(Π) are both connected. �

3.2. Cut Elimination, Normalization, and Confluence

In this section we show that the complementary proof-net system CPN enjoys
Cut elimination and offers significant improvements over the antisequent cal-
culus GS4, both with respect to normalization and with respect to uniqueness
of normal forms.

The complete list of Cut reductions for CPN is given in Fig. 14. We may
see how Cut elimination concretely works in CPN by considering the example
in Fig. 15, where the initial proof net on the left corresponds to the GS4-
proof presented in Example 2.5. Starting from this graph, we implement Cut
elimination until we reach a normal form, i.e., a proof net with no Cut-links,
which consists of just one node, the ax-link, introducing no conclusion.

The example of Fig. 15 generalizes, yielding a proof-net analogue of the
Cut-elimination Theorem 2.4 (see Theorem 3.14 below). Furthermore, as with
any respectable proof-net system, CPN allows us to identify GS4-proofs modulo
trivial permutations of the rules they involve. The easiest example is given
by the two derivations in Fig. 16, which share the single proof net reported
underneath.
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Figure 14. Cut reductions for proof nets

Figure 15. An example of normalization

Figure 16. One proof net for two sequent proofs

This fact allows us to rule out counterexamples to strong normaliza-
tion. For instance, the non-terminating chain of GS4-reductions considered in
Sect. 2.2 (Fig. 4), which consists in an infinite alternation of the two sequent
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Figure 17. A strongly normalizing proof net

proofs just mentioned, is immediately defused in CPN. There are only two pos-
sible reduction strategies for the corresponding proof net and both normalize.
Indeed, both yield the same normal form, the empty axiom-link (Fig. 17).

The following theorems establish more rigorously the technical improve-
ments just underlined.

Definition 3.13 (Size of proof structures). The size ‖Π‖ of a proof structure Π
is defined as n(Π) + e(Π), where n(Π) is the number of nodes in Π and e(Π)
the number edges.

Theorem 3.14 (Cut elimination). Every proof net Π can be reduced to a proof
net Π′ containing no Cut-links and such that C(Π) = C(Π′).

Proof. Consider the set of reductions in Fig. 14. It is easy to see that: (i) proof
nets are closed under those Cut reductions, and (ii) if Π → Π′, then
‖Π′‖ < ‖Π‖. �

Corollary 3.15 (Strong normalization). Every reduction strategy leads to a nor-
mal form.

Proof. Straightforward, since the proof of Theorem 3.14 does not mention any
specific normalization strategy. �

Turning now to the issue of uniqueness, we can see that the sort of am-
biguity that is responsible for the non-uniqueness of normal forms in GS4
cannot find an analogue in CPN. Consider again the two diverging reductions
displayed in Fig. 5. Because of the lack of information induced by the order-
insensitivity of multisets, the initial sequent proof can in principle be turned
into two different proof nets, depending on whether the Cut-link is attached
below the ∧R-link or below the ∧L-link (Fig. 18).

However, it is easy to see that each of these proof nets yields a unique
normal form. Whereas GS4 allows for proofs whose normalization requires
specific (even if arbitrary) choices, yielding divergent solutions, CPN treats
those choices like any other, as the sort of strategic decision that is involved
in the very process of setting up a proof.
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Figure 18. Two proof nets for the same sequent proof

It is perhaps surprising that a single sequent proof corresponds to two
proof nets. Proof nets are typically called upon in relation to the complex
problem of the identity of proofs (see e.g., [30]), the general idea being that
sequent proofs that yield the same proof net could in principle be identified.
This is the case, for instance, in multiplicative linear logic [5]. In the case of
GS4-proofs, however, such a result cannot be fully accomplished, since com-
plementary proof nets will sometimes force the disambiguation of critical cases
such as the one under consideration. In such cases, the disambiguation may
produce, not fewer, but more proof nets than the corresponding sequent proofs.
Nonetheless this is once again due to the fact that the antisequents of GS4 have
been defined in terms of multisets. It would suffice to shift from multisets to se-
quences of formulas to increase the number of sequent proofs, thereby restoring
the canonical functional relationship. (This means that revising GS4 in terms
of sequences would secure the uniqueness of normal forms, although the system
would still lack strong normalization, as the counterexample in Fig. 4 would
still apply, as well as strong confluence, as shown in Fig. 19 below.)

Now, to return to our question, of course the uniqueness of the normal
forms for the proof nets in Fig. 18 does not by itself establish the general fact
we are interested in, namely, that in CPN normal forms are always unique.
Nevertheless the result holds. Indeed, we can prove the following stronger
result, which generalizes the case illustrated in Fig. 17.

Theorem 3.16 (Strong confluence). For any proof nets Π, Π′, and Π′′, if Π →
Π′ and Π → Π′′, then there exists a proof net Λ such that Π′ → Λ and Π′′ → Λ.

Proof. We exploit a standard result for rewriting systems, to the effect that
termination + confluence = convergence (existence of a common reduct); see,
e.g., Terese [34]. Let Cut(1), Cut(2), . . . , Cut(n) be an arbitrary enumeration
of the Cut-links occurring in Π, and let Π i−→ Π′ indicate that Π′ has been
obtained from Π by specifically reducing Cut(i). Similarly for Π j−→ Π′′ etc. We
can show that, for every i, j ≤ n, if Π i−→ Π′, Π j−→ Π′′, Π′ j−→ Λ, and Π′′ i−→ Λ′,
then Λ = Λ′. The proof is by cases, according to the kind of reductions that are
applied. Figure 20 illustrates the case in which Cut(i) and Cut(j) are the
conclusions of a ∧R-link and of a ∨-link, respectively. The other cases can be
treated similarly. �
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Figure 19. A counterexample to strong confluence in GS4

Figure 20. A case of strong confluence in CPN
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It is now a straightforward matter to derive the uniqueness of normal
forms from the confluence property [8,34].

Corollary 3.17 (Uniqueness of the normal form). If Π ∗−→ Λ and Π ∗−→ Λ′, then
Λ = Λ′.

Proof. Suppose Λ �= Λ′. Since Λ and Λ′ are both Cut-free proof nets, they
cannot be further rewritten by means of some Cut reduction. Therefore they
would constitute a counterexample to Theorem 3.16. �

This concludes our presentation. While patterned after the antisequent
calculus GS4, the proof-net system CPN offers significant improvements to
our complementary grasping of classical propositional logic. GS4 enjoys cut
elimination; however, it does not strongly normalize and, while its failure to
secure uniqueness of normal forms may be seen as a accidental feature, it is
at best weakly confluent. CPN preserves cut elimination, strongly normalizes,
and is strongly confluent.
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