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Abstract

Variable stars play a crucial role as standard candles and provide valuable insights into stellar physics. They can be
modeled either through fully fledged hydrodynamical simulations or analytically as systems of coupled differential
equations describing the evolution of relevant physical quantities. Typically, such equations are arrived at by
simplified physical assumptions concerning the conservation laws governing stellar interiors. Here we apply a data-
driven technique—sparse identification of nonlinear dynamics (SINDy)—to automatically learn governing
equations from observed light curves. We apply SINDy to 3100 light curves of three different variable types from
the Catalina Sky Survey. The success rate depends systematically on variable type, with possible implications for
variable star classification; however, it does not obviously depend on amplitude or period. Successful models can
be reduced to the generalized Lienard equation ̈ ( ) + + + + =x a bx cx x x 0. Members of the Lienard class of
ordinary differential equations, such as the well-studied van der Pol oscillator, already saw some application to
variable star modeling. For a, b= 0 the equation can be solved exactly, and it admits both periodic and nonperiodic
solutions. We find a condition on the coefficients of the general equation for the presence of a limit cycle, which is
also observed numerically in several instances.

Unified Astronomy Thesaurus concepts: RR Lyrae variable stars (1410); RRab variable stars (1413); RRc variable
stars (1415); Pulsating variable stars (1307); Delta Scuti variable stars (370)

1. Introduction

Variable stars have historically been modeled through either
detailed hydrodynamical simulations (e.g., Bono & Stellingwerf
1994; Bono et al. 1997) or coupled nonlinear differential
equations representing simplified physics (Baker et al. 1966;
Moore & Spiegel 1966; Stellingwerf 1972, 1986; Icke et al. 1992;
Munteanu et al. 2005). The latter have been studied mathema-
tically as dynamical systems (see Buchler 1993, for an early
review).

In the following we will focus on RR Lyrae (RRL) and δ Scuti
stars. RRL stars are old, short-period variables with radial
pulsation periods of �1 day.13 These core helium-burning stars
occupy the instability strip in the Hertzsprung-Russell (H-R)
diagram. They have been used as tracers to map different parts
of the Milky Way (e.g., Ivezić et al. 2005; Sesar et al. 2010;
Abbas et al. 2014; Pietrukowicz et al. 2015; Neeley et al.
2019), enhancing our understanding of galaxy evolution

(Simion et al. 2014; Iorio et al. 2018; Kunder et al. 2019; Prudil
et al. 2021). The two most common subtypes of RRL stars are
the RRab stars that pulsate in the fundamental mode and the
RRc stars that pulsate in the first overtone. RRab stars have
larger pulsation amplitudes (A) and periods (P) compared to
RRc stars. RRab light curves tend to have a sawtooth shape,
while RRc light curves are more sinusoidal. δ Scutis are short-
period (P≈ 0.3 days) variable stars and have amplitudes
A< 1.0 mag in the V band; they are divided into low-amplitude
(LADS) and high-amplitude (HADS) δ Scutis (Alcock et al.
2000). In addition, metal-poor variables with similar periods
and old ages are usually referred to as SX Phoenicis stars (SX
Phe; Nemec & Mateo 1990). Both δ Scuti and SX Phe are
located where the main sequence crosses the instability strip in
the H-R diagram. δ Scutis pulsate in radial and nonradial
modes, and the driving mechanism for their pulsations is
similar to that of RRL stars. This mechanism is relatively well
understood, depending on the opacity and equation-of-state
variations (the so-called kappa and gamma mechanisms) in the
partial ionization region of both hydrogen and helium.
In this paper, we present governing equations learned

automatically from light curves of RRL stars and δ Scuti
variables. We use the sparse identification of nonlinear dynamics
(SINDy; Brunton et al. 2016) method, which discovers equations
that accurately reproduce the observed dynamics with as small a
number of terms as possible. SINDy is now available as a Python

The Astrophysical Journal, 930:161 (13pp), 2022 May 10 https://doi.org/10.3847/1538-4357/ac5624
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

13 One day is the more classical threshold, but 1.4 days would be more realistic
when taking into account evolution and chemical composition (see, e.g., Braga
et al. 2020).
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module (de Silva et al. 2020) and applied to numerous fields (e.g.,
Arzani & Dawson 2020; Guan et al. 2021; Horrocks &
Bauch 2020). Unlike three-dimensional hydrodynamical simula-
tions, concise systems of governing equations are easily
interpretable, similarly to those derived by a simple physical
model. Unlike the latter, though, SINDy is entirely data driven,
except for a few user choices (sparse regression hyperparameters
and the basis of functions against which to carry out said
regression).

We report several cases of striking agreement between a light
curve and the solution to the governing equations learned from it.
In general, the success rate of SINDy depends on variable star
type, being much higher on RRc and δ Scuti variables than on
RRab variables. This is likely due to the fact that RRab stars have
unique and asymmetric light curves, while RRc stars are known
for their symmetric, nearly sinusoidal light curves. The
intrinsically more complex dynamics of RRab stars could likely
be described with the use of higher-order equations than those we
adopted here.

The learned governing equations have a common form, which
reduces to a single second-order ordinary differential equation
(ODE) known as a generalized Lienard equation (see, e.g.,
Moehlis et al. 2006; Abdullah 2017). A typical, well-studied
Lienard equation is the van der Pol oscillator (Van der Pol 1934).
Equations of this class have previously been applied to stellar
pulsation (Tanaka et al. 1990; Addo-Asah et al. 1995) and to the
solar cycle (Nagy & Petrovay 2013).

2. The Data

We use time-series data from the Catalina Sky Survey (CRTS;
Drake et al. 2013a). The CRTS consists of three different
telescopes: the Catalina Schmidt Survey (CSS), the Mt. Lemmon
Survey (MLS), and the Siding Spring Survey (SSS). The CSS and
MLS are located in Tucson, Arizona, while the SSS is in
Australia. Overall, these telescopes scanned ∼33,000 deg2 of the
sky in the −75° to +65° decl. range.

The CSS is equipped with a 0.7 m Schmidt telescope and an
unfiltered 4k× 4k CCD with an 8 deg2 field of view (FOV). The
CSS’s exposure time is ∼30 s, and it observes objects in the
∼11.5–19.5 mag range. The MLS survey uses a 1.5 m Cassegrain
reflector telescope and an unfiltered CCD (1.2 deg2 FOV). The
MLS bright and faint magnitude cutoffs are 13.0 and 21.5 mag,
respectively. Finally, the SSS is equipped with the smallest 0.5 m
Schmidt telescope and an unfiltered 4k× 4k CCD and has a
4.2 deg2 FOV. It observes objects in the ∼11.0–19.0 mag range.

The CRTS was originally designed to discover, track, and
catalog near-Earth objects, including potentially hazardous
asteroids. At the same time, the CRTS data were used to study
variable sources, and a full catalog of CRTS variable stars was
published in a series of papers (e.g., Drake et al.
2013a, 2013b, 2014; Torrealba et al. 2015; Drake et al. 2017).

To search for variable sources, the authors of the latter studies
followed a systematic approach. At first, they distinguished
variable from nonvariable sources using the Welch–Stetson
variability index (IWS; Welch & Stetson 1993). Then, they used
the Lomb–Scargle periodogram analysis (LS; Lomb 1976;
Scargle 1982) to look for periodicity signals, and they used the
M-Test (Kinemuchi et al. 2006) to measure how much time was
spent by each star above or below the mean magnitudes. They
then calculated the periods of variability using different period-
finding algorithms, including the Analysis of Variance (AoV;
Schwarzenberg-Czerny 1989) technique.

The combined catalogs of variable stars result in ∼110,000
variable sources. Each object was observed between ∼25 and 600
times with an average of ∼200 epochs. For objects brighter than
V = 17 mag, the completeness and purity levels for RRab stars
reach ∼90% and ∼80%, respectively. These values decrease for
fainter objects and for RRc and δ Scuti variables. Finally, the
identification numbers (IDCRTS), equatorial J2000.0 R.A. (R.A.)
and decl. (Dec.) coordinates, average magnitudes (〈V〉), periods in
days (P), amplitudes (A), number of observations (NCRTS), and
other properties are included in the published catalogs. On our
adopted sample the median time elapsed between the first and the
last observation was 2794 days for δ Scuti variables and 2787 and
2703 days for RRc and RRab variables, respectively. An issue
worth noting is that Catalina data mostly do not include dense
regions around the Galactic plane, which might affect the
generality of our results given the expected dependency of
variable star properties on metallicity.
In the following, we adopted periods from the catalogs and

phased light curves shifted to mean zero magnitude. The light
curves were fitted with a smoothing spline.14 This approach
results in a smooth curve and tolerates a few outliers in the raw
data, as shown, e.g., in Figure 2, top left panel. The phased
light curves represent the stars’ light intensity variation folded
over specific periods. Periodicity has been enforced by adding
copies of the light curve at the beginning and at the end of the
interval used to fit the spline. The resulting smooth curve and
its derivative were then sampled regularly at 200 points per
period. The resulting time series, identically repeated 10 times,
were provided as input to SINDy, treating the light curve and
its derivative as two separate variables. With this approach
SINDy will discover systems of governing equations of the first
order that are equivalent to a single second order ODE.
We ran our analysis on a subsample of light curves containing

100 δ Scuti variables, 1500 RRab variables, and 1500 RRc
variables. The Bailey diagram for the full sample is shown in
Figure 1. Six light curves from this sample are shown in Figure 2
with our smoothing spline superimposed. The relevant parameters
for each star in Figure 2 are reported in Table 1.

3. Methods

SINDy leverages sparse regression to learn governing
equations for dynamical systems from the measured time
series of state variables. Sparse regression is a type of
regularized regression where the regularization term is chosen
to force many coefficients to be exactly zero (Tibshirani 1996).
When predicting a dependent variable by linear regression
against a large number of independent variables, this results in
a much simpler model than conventional least squares (or even
other regularized regression approaches) because just a few
independent variables enter the equation.
In SINDy, the measured time series of the derivatives of state

variables (relevant variables describing the state of a dynamical
system) are predicted via sparse regression against a basis of
nonlinear functions of said variables. In our case, the state
variables are the magnitude of a given star and its time
derivative. In the following, we denote these quantities by x
and y, respectively. For simplicity and ease of interpretation we
chose a polynomial basis truncated to the second power,

14 Obtained by applying the smooth.spline function from the stats package in
the R programming language (Bates et al. 1992; R Core Team 2019), with all
the points being treated as knots.
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including interaction terms. Thus, the most general system of
governing equations that SINDy can learn is in the form

( )





= + + +
+ +

= + + +
+ +

x a a x a y a x

a xy a y

y a a x a y a x

a xy a y . 1

00 01 02 03
2

04 05
2

10 11 12 13
2

14 15
2

We focused on autonomous governing equations, so time does
not appear on the right-hand side of Equations (1).

We used the SINDy implementation for Python pysindy (de
Silva et al. 2020). Sparse regression was carried out for each light
curve using the Lasso function from scikit-learn, with regulariza-
tion parameter α= 0.01. Increasing α forces more terms in
Equation (1) to be exactly zero, resulting in more parsimonious
equations, but at the extreme of too high α the resulting dynamics
may be too simple, predicting, e.g., a constant magnitude. The
adopted value of α was chosen by interactive experimentation on
a handful of curves, with no access to the full data set later used
for the main analysis. The learned systems were integrated
numerically using the simulate method of pysindy for 10 periods.
We computed the mean squared error (MSE) between the solution
to the governing equations and the actual light curve during the
last of these 10 periods. This results in a more conservative MSE,
where solutions that initially appear to follow the data but do not
do so in the long term (such as a periodic solution whose period is
slightly off with respect to the original) are penalized. In the
following we report the normalized MSE, that is, the ratio
between the calculated MSE and the MSE of a constant, taken to
be the median magnitude of the light curve.

4. Results

In Figures 3–5 we show a small selection of our results, obtained
by applying SINDy to the light curve of four RRab variables, eight
RRc variables, and six δ Scuti variables, respectively. In each plot
we compare the interpolated observational light curve (thick black
dotted line) with the solution to the differential equations learned by
SINDy (solid red curve). Note that this is not a fit to the curve, but
the result of solving the system of differential equations in

Equation (1) with the coefficients learned by SINDy. Solutions start
from initial conditions corresponding to the first point (a couple of
values representing magnitude and its derivative) on each light
curve and are calculated for up to 10 periods of the observational
light curve. In each plot we show only the last such period. In
Figure 6 we illustrate the effect of slightly perturbing the initial
conditions.
The stars presented in Figures 3, 4, and 5 have been selected

randomly among those for which normalized MSE is under 0.16,
which we define as an acceptable level of matching between the
original curve and the solution to the learned equation, as can be
visually ascertained. In general, in most cases in which such a result
is obtained, the coefficients a00, a01, a03, a04, and a05 in
Equation (1) are all exactly zero, and a02 is approximately one.
This is expected, because we are feeding SINDy the first derivative
of magnitude together with magnitude. While we treat the two
variables as independent, the algorithm rediscovers their relation-
ship. Typically, when a good solution is found, also a13 is found to
equal zero (for 187 out of 197 stars for which normalized MSE is
under 0.16). The resulting equation can thus be rewritten as

( )


=
= - + + +

x Ay

y B Cx Dy Exy Fy , 22

which reduces to

̈ ( ) ( ) = - + + +u u a bu cu u 3

with the substitutions
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Figure 1. Adopted sample for this study in the period–amplitude plane.

3

The Astrophysical Journal, 930:161 (13pp), 2022 May 10 Pasquato et al.



where the dots now indicate derivation with respect to ¢t .
However, we will drop the prime in the following.

In the following we will indicate the family of Equations (3)
with the symbol ٥ (Eastern Arabic numeral for five, pronounced
khamsa) owing to the resemblance it bears to the phase curves
of its periodic solutions. We will call the case where all
coefficients a, b, and c differ from 0 the general form (or g-٥
form) and the particular case where a= b= 0 the simplified
form (or s-٥ form). For Equation (2) to reduce to the s-٥ form, it

is necessary and sufficient that D= E= 0. If also F= 0, then
the equation reduces to a harmonic oscillator of frequency Ω.
Equation (3) immediately reveals some interesting proper-

ties: neither the g-٥ form nor the s-٥ form is conservative, as can
be seen by multiplying both sides by u, obtaining

[ ] ( ) ( )  + = + +
d

dt
u u a bu cu u

1

2
, 52 2 2

Figure 2. Raw light curves for six stars from our original catalog (gray points with error bars) with our best-fit spline superimposed (black solid curve).
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with the right-hand side in general being nonzero, since
otherwise the phase trajectory would be confined to the line

+ + =a bu cu 0 or to the line  =u 0. Consequently, if
Equation (3) is capable of producing oscillatory behavior at all,
it must be a nonconservative oscillator, with the term

+ +a bu cu changing sign at least twice during a period.

The phase plane for the s-٥ form is shown in Figure 7(a) and
for the g-٥ form in Figure 7(b), for choices of the coefficients in
the range appropriate for reproducing observational light
curves. In the following we show that the s-٥ form can be
fully solved analytically and find a condition for the g-٥ form to
have a stable limit cycle.

4.1. Analytical Solutions for the s-٥ Form

The coefficient c, the only one to be nonzero in the s-٥ form,
sets the strength of the u2 perturbing term in Equation (3).
While this term is quadratic in u2, it is not equivalent to a
damping with quadratic viscosity because it does not change
sign with u. The fact that  u 02 endows the s-٥ form with a
symmetry whereby mapping u→− u is equivalent to changing
the sign of c. Therefore, in the following we will restrict our
analysis to c> 0, keeping in mind that the case c< 0 will yield
mirrored phase trajectories in the ( u u, )-plane.
Another interesting property derives from the fact that the

right-hand side of the s-٥ form depends only on the square of
the magnitude derivative, u. Therefore, the phase trajectory is

Figure 3. Four light curves for stars classified as RRab (thick dotted black lines) and the respective SINDy solution (thin solid red line). In each plot the top left panel
tls shows the phase plane, where the derivative of the star’s magnitude is plotted against its magnitude. A closed curve in this plane represents a periodic evolution, and
a perfect ellipse would correspond to a harmonic oscillator. The top right and bottom left panels show the magnitude derivative vs. time and time vs. the magnitude,
respectively. The name and type of the star are shown in the bottom right panel.

Table 1
Relevant Parameters for the Stars Whose Light Curves Are Shown in Figure 2

Numerical ID R.A. Decl. Period V Npts Amp

3027046031919 102.84 −27.48 0.17 11.14 116 0.29
3055031035294 106.15 −55.24 0.19 17.46 222 0.34
3021061023318 129.66 −21.69 0.63 17.24 69 0.33
3025046038291 99.42 −25.28 0.58 17.12 107 0.25
3025064006521 140.68 −26.04 0.27 14.52 251 0.22
3039073051652 186.27 −38.83 0.29 15.74 253 0.48

Note. We report the numerical ID (Col. (1)), R.A. (Col. (2)) and decl. (Col.
(3)), period in days (Col. (4)), V-band magnitude (Col. (5)), number of
measurements (Col. (6)), and amplitude (Col. (7)).
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Figure 4. Eight light curves for stars classified as RRc (thick dotted black lines) and the respective SINDy solution (thin solid red line). In each plot the top left panel
shows the phase plane, where the derivative of the star’s magnitude is plotted against its magnitude. A closed curve in this plane represents a periodic evolution, and a
perfect ellipse would correspond to a harmonic oscillator. The top right and the bottom left panels show the magnitude derivative vs. time and time vs. the magnitude,
respectively. The name and type of the star are shown in the bottom right panel.
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symmetric with respect to reflection about the u-axis, a property
that is not shared by the g-٥ form.

We solve the s-٥ form by introducing the new variable
=v u2 and observing that ̈ =v uu2 ; hence, by the chain rule

̈ =u dv du2 . So the s-٥ form becomes

( ) =  =  + +u v
c

ke
u

c

1

2
, 6cu

2
2

Figure 5. Six light curves for stars classified as δ Scuti (thick dotted black lines) and the respective SINDy solution (thin solid red line). In each plot the top left panel
shows the phase plane, where the derivative of the star’s magnitude is plotted against its magnitude. A closed curve in this plane represents a periodic evolution, and a
perfect ellipse would correspond to a harmonic oscillator. The top right and bottom left panels show the magnitude derivative vs. time and time vs. the magnitude,
respectively. The name and type of the star are shown in the bottom right panel.
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where k is a constant of integration. We thus reduced the
problem to quadratures. Phase trajectories are symmetric with
respect to the u-axis, as argued above. Equation (6) yields two
kinds of phase curves: ones exponentially escaping to infinity
(“supernova solution”) with k� 0, and closed periodic ones
with k< 0.

The value of k is set by the initial conditions u0 and u0. If
these obey the constraint  - <cu u

k0
2 1

2 0, then k< 0 and
periodic evolution follows. The coefficients found by SINDy

always place the initial conditions well within this range. This
is demonstrated in the left panel of Figure 6, where we alter the
initial conditions slightly for a star whose learned governing
equation is in the s-٥ form, showing that the resulting solutions
are still periodic.
We could not find closed-form solutions for the g-٥ form, as

opposed to the s-٥ form. The right panel of Figure 6 shows that,
in general, solutions are not periodic. Numerical integration
from slightly perturbed initial conditions reveals, however, that

Figure 6. Effects of perturbing the initial conditions of the equation learned by SINDy in two different cases. The left panel shows star 3055031035294, which is a δ
Scuti variable, whose learned equation is in the simplified form, with a = 0 and b = 0; the right panel shows star 3039073051652, which is an RRc variable described
by an equation in the full form, with a ≠ 0 and b ≠ 0. The dotted gray line is the solution with unperturbed initial conditions, and the solid lines fading from gray to
green (blue) correspond respectively to perturbed initial conditions where the magnitude has been increased (decreased). In the left panel these correspond to different,
but still closed, phase curves. In the right panel they are not closed, but they evolve slowly toward the limit cycle corresponding to the unperturbed solution. Unlike in
the previous figures, here the top right and bottom left panels show three periods rather than one.

Figure 7. Phase planes for the s-٥ form with c = 0.2 (left) and for the g-٥ form with a = − 0.01, b = c = 0.25 (right). Color encodes the modulus of the vector tangent
to the phase trajectory in each point.
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the solution found by pysindy (red line in the figure) is close to
what appears to be a limit cycle, and perturbed solutions (green
and blue lines in the figure) apparently converge toward it. This
is by no means a rigorous proof that the trajectories are located
within the basin of attraction of a limit cycle, nor that the limit
cycle itself exists; still, it suggests that this may be the case. A
more rigorous mathematical discussion follows.

4.2. Limit Cycle Behavior of the g-٥ Form

The g-٥ form has a single critical point at the origin
( ) ( ) =u u, 0, 0 with linearization in the local neighborhood
producing the Jacobian J with corresponding stability

eigenvalues λ1,2,

⎡
⎣

⎤
⎦

( )l=
-

= 
-

J
a

a a0 1
1

,
2

i 4

2
. 71,2

2

The results from Equation (7) suggest that the phase-space
dynamics locally around the origin resemble a stable spiral
for a ä (− 2, 0) and an unstable spiral for a ä (0, 2). Indeed,
we note that there is a bifurcation at a= 0, whereby the
origin transitions from attracting locally to repelling. To
establish the existence of limit cycles near the origin, we
begin by showing that the g-٥ form can be written in the

Figure 8. Relation between the a, b, and c coefficients for which ˆ >A 0 (green shaded area), resulting in the existence of a limit cycle for the g-٥ form.

Table 2
Summary of SINDy Results Broken Down by Variable Type (Columns)

Variable Type RRab RRc δ Scuti All

norm. MSE <1.00 solutions (%) 251 (16.7%) 468 (31.2%) 36 (36.0%) 755 (24.3%)
norm. MSE <0.25 solutions (%) 12 (0.8%) 225 (15.0%) 15 (15.0%) 252 (8.1%)
norm. MSE <0.16 solutions (%) 10 (0.7%) 179 (11.9%) 8 (8.0%) 197 (6.3%)
norm. MSE <0.10 solutions (%) 7 (0.53%) 139 (9.3%) 8 (8.0%) 154 (5.0%)
norm. MSE <0.01 solutions (%) 3 (0.2%) 40 (2.6%) 3 (3.0%) 46 (1.5%)
Sample size 1500 1500 100 3100

Note. The number of governing equation solutions found to match the observed light curve to within a given normalized MSE is shown, with percentage on the
sample in parentheses.
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Cartesian Hopf normal form

( )
( ) ( )




a w
w a

= - +
= + +

y y v f y v
v y v g y v

, ,
, , 8

where λ1,2= α± iω and f (y, v) and g(y, v) are arbitrary
functions to be determined by transformation from the original
g-٥ form equation.

Figure 9. Normalized MSE as a function of the light-curve amplitude (panel (a)) and period (panel (b)). Big black circles represent RRab variables, small gray circles
represent RRc variables, and blue circles represent δ Scuti variables. Panels (c) to (f) show, in order, normalized MSE, a, b, and c color-coded onto the Bailey diagram.
Colors scales have been clipped to the first and last decile of each variable. The sizes of circles codify the star type as in the first two panels.
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From the linearization eigenvalues, we construct a transfor-
mation matrix

⎡
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9
a a

2

4

2
1 0
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so that the matrix product Φ−1JΦ produces the correct
coefficients in Equation (8) to first order in (y, v), thereby
ensuring the linear relationships necessary between ( )u u, and
(y, v) to change system g-٥ form into the normal Hopf form

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

( )

( )




 = F =
- +

= F =

- + -

+ -

- + -

-

-

y
v J

u
u

u au

u
u J

y
v

y a av a

ay v a

,

2 4

2

4

2

. 10

u a u au

a

1 2

4

1

2 2

2

2

In this case, the functions f (y, v) and g(y, v) are explicitly given
by

( ) [( ) ]
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With these transformations into the Cartesian Hopf normal
form, proof of the existence of limit cycles automatically
follows. Furthermore, we are able to derive asymptotic
approximations for both the amplitude15 Â and period T̂ of
these solutions, including their stability, in (y,v) space provided
that a parameter regime close to the bifurcation is chosen,
|a|= 1, and the trajectories remain close to the origin (y,
v)= (0, 0). The reasoning is that in this regime the
nonlinearities of Equation (8) are subdominant to the linear
terms in y and v, so that the results from the prototypical Hopf
normal form carry over to our system. For our system, the
amplitude and period are given by (see, e.g., Glendinning 1994)
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16

, 0,0

2

4 4

2 4

4

2

2

with the limit cycle being stable if ˆ >A 0 and unstable if
ˆ <A 0. For a given value of a this corresponds to the area
delimited by two intersecting lines through the origin in the (b,
c)-plane, as shown in Figure 8.

4.3. Statistics on the Full Sample

Out of the 3100 stars in the sample, 755 showed an agreement
with the solution to the governing equation discovered by SINDy
with a normalized MSE below 1. We also considered more
stringent criteria on MSE, as shown in Table 2. Interestingly,
regardless of the threshold in MSE chosen, RRab stars appear
quite impervious to SINDy, with a consistently lower success rate
than RRc and δ Scutis. The latter two classes of variables perform
similarly, with essentially identical success rate. Very good results
for RRab, with normalized MSE below 1/100, are essentially
absent, and it is not unlikely that they correspond to misclassified
RRc stars.
In Figure 9 we show the normalized MSE as a function of

the light-curve amplitude (top left panel) and period (top right
panel). To avoid cluttering the plots, only stars with normalized
MSE below 1/4 are shown here. There is no apparent relation
with amplitude or period, but the RRab variables that have the
lowest MSE appear to have periods more similar to the RRc,
suggesting that they may be misclassified RRcs. In the other
panels of Figure 9 we show the Bailey diagram, with the values
of MSE, a, b, and c color-coded. Again, no obvious patterns are
apparent.
In Figure 10 we plot MSE, a, b, and c against each other.

The only emerging regularity is that c appears to anticorrelate
with a for RRc variables.

5. Conclusions

Variable stars play a key role in measuring stellar distances,
allowing us to build up the cosmic distance ladder by
calibrating secondary distance indicators. They can also be
regarded as laboratories to test the accuracy of input physics in
stellar models and the general reliability of such models.
Detailed models of stellar interiors—including those of variable
stars—typically rely on hydrodynamical simulations. However,
like many other complex systems, variable stars are also
amenable to a synthetic description based on mathematical
relations aimed at capturing a simplified version of the
underlying physics. The art of capturing complex dynamical
behavior by means of concise sets of equations is as old as
science itself, but only recently has it become possible to learn
such governing equations directly from the data using a
machine-learning approach.
In this paper we have shown that simple governing equations

learned from variable starlight curve data are able to reproduce
the dynamics of RRc and δ Scuti stars, while RRab variables
prove impervious to this approach at least with the modeling
choices we adopted, with only a handful of stars from our
RRab sample being fit successfully. Large-amplitude RRab
variables are affected by nonlinear phenomena such as shock
formation and propagation. There is evidence that across the
phases approaching the maximum in luminosity the radial
velocities in the outermost envelope regions become sonic (see
Gillet et al. 2019, and references therein). This may be the
underlying physical reason for our finding. The presence of
outliers in the light curves and general issues with the quality of
the data are, on the other hand, likely to affect both RRab and
RRc stars similarly, so they should not play a role in the
different behavior of the two types of variables.
At any rate, when modeling is successful, the learned

equations take on a universal form that is essentially a
perturbed harmonic oscillator. The perturbing nonlinear terms,

15 Note that this is not the amplitude, measured in magnitudes, of the original
light curve, nor does it bear any relation to the coefficient A introduced
previously. It is the amplitude of the oscillation in the transformed Hopf
system.
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however, are nontrivial: even in a simple particular case that we
solved exactly, two classes of solutions emerge, only one of
which has periodic behavior. The general case, which falls
within the generalized Liénard equation class, displays a limit
cycle for which we found a simple stability condition.

While variable type has a clear effect on whether effective
governing equations can be discovered, the position on the
Bailey diagram appears not to. Therefore, our result may
have implications for variable type classification because it
reveals information on the light-curve shape that is not
immediately tied to period and amplitude. A straightforward
approach could be to use the coefficients found by SINDy as
features to train a simple machine-learning model (such as a
decision tree, e.g., Askar et al. 2019; or a support-vector
machine, e.g., Peruzzi et al. 2021), possibly after extending
our analysis to higher-order equations or higher-degree
polynomials on the right-hand side, thus possibly gaining the
ability to model also RRab stars. This may be valuable in
light of the upcoming large-scale surveys, such as the Vera
C. Rubin Observatory, and could allow us to test whether our
approach can be applied to describe more variable star
physics, such as the Blazhko effect.
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