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A B S T R A C T

In the rapidly evolving domain of medical technology, the utilization of sophisticated algorithms for decipher-
ing transcriptional data has emerged as a critical aspect, especially in the oncology sector. These algorithms,
drawing upon methodologies from fields such as natural language processing and advanced image analysis, can
significantly enhance the accuracy in predicting cancer-related molecular states. Notably, Transformer models,
renowned for their proficiency in handling extensive datasets, are now being adapted for breakthroughs in
medical diagnostics or in stratifying patients according to prognostic levels. Our study contributes to the field
of precision medicine by integrating Transformer-based learning, exemplified by the Geneformer model, with
explainable AI techniques. These techniques are employed to find out the input variables (genes resulting
from genomic transcription) most correlated with the decisions of neural network systems. This insight, a
key goal in genomic research, aims to select the most relevant gene subset for each specific task in which
a neural network is employed. This selection approach has proven to be effective in two classification tasks:
cell type classification and breast cancer type classification. Such effectiveness has been demonstrated even
across various cohorts of patients. When applying Geneformer-like architecture analyses solely to the selected
gene subsets, the outcomes either maintain their accuracy or significantly improve. This approach, aims not
only to contribute to the identification of vital genetic markers in cancer genomics, but also to exemplify the
adaptability of AI models to different datasets, marking a significant step towards the development of accurate
and universally applicable diagnostic tools for precision medicine.
1. Introduction

The journey to unravel the mysteries of genetic information, tracing
back to Watson and Crick’s discovery of the structure of DNA (Watson
& Crick, 1953), has propelled significant advancements in genomic re-
search. Initiatives like the Human Genome Project (Lander et al., 2001)
and subsequent endeavors such as FANTOM (Kawai et al., 2001), EN-
CODE (Consortium et al., 2012) and Roadmap Epigenomics (Roadmap
Epigenomics Consortium et al., 2015) have vastly expanded our un-
derstanding of the human genome, epigenome, and transcriptome, as
in Vitale et al. (2023). This expansion fueled the transition from ge-
netics, which focuses on individual genes, to genomics, a discipline en-
compassing the study of all genes of an organism and their interactions
with the environment. Multi-omics research, now a data-intensive field,
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leverages high-throughput sequencing technologies, making it possi-
ble to analyze complete DNA sequences rapidly. These technologies,
globally accessible, have led to a substantial increase in genomic and
transcriptomic data, available through databases such as GDC, dbGaP,
and GEO, discussed in, just to cite a few, Amelio, et al. (2020, 2020),
Ganini et al. (2021) and Stephens et al. (2015). This abundance of data,
combined with advanced statistical methods, has opened new avenues
for exploring genomic and gene expression information, paving the
way for innovative research in identifying and understanding genetic
elements and their functions.

In the rapidly evolving development of artificial intelligence (AI)
methods in medicine, the exploitation of techniques for the analysis
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of such data represents the forefront of innovation. This is particu-
larly evident in oncology, where AI methodologies are increasingly
employed to predict cellular and tissue states linked to cancer (Ku-
mar, Gupta, Singla, & Hu, 2022). The integration of advanced neural
learning techniques, particularly those derived from fields such as
natural language processing (NLP) and computer vision, has marked
a significant advancement in these predictive processes. Transformer-
based models (Lin, Wang, Liu, & Qiu, 2022; Vaswani et al., 2017),
renowned for their efficiency in handling large volumes of data, are
now being adapted for the complex and nuanced field of medical
diagnostics (Yue et al., 2023). Their capability to exploit extensive
transcriptomic datasets for pre-training neural models has proved in-
valuable, particularly in applications characterized by few annotated
data. In particular, a novel Transformer-based architecture specifically
developed for the analysis of transcriptomic data within medical con-
texts, Theodoris, Xiao, Chopra, Chaffin, Sayed, Hill, Mantineo, Brydon,
Zeng, Liu, and Ellinor (2023), is the subject of this study. Starting from
the most recent advancements in deep learning methodologies (Yue
et al., 2023), this research investigates how Geneformer, together with
explainable AI techniques (XAI), can contribute to genomic research.

In fact, despite substantial advancements in genomic research, sig-
nificant challenges persist in efficiently and accurately decoding the
vast quantities of genetic data. Studies, such as Stephens et al. (2015),
have highlighted limitations in existing methodologies, particularly in
their ability to handle the complexity and heterogeneity of transcrip-
tomic data. The resulting models are difficult to interpret and seem
quite ineffective against the datasets on which they are trained. This
backdrop underscores the need for innovative approaches that not only
address the breadth and complexity of genetic data, but also provide
deeper, easier to interpret, insights into the results obtained.

Specifically, the study focuses on the role played by AI in represent-
ing gene information within medical or biological prediction tasks. As a
matter of fact, a complex interplay of genes plays a fundamental role in
biological phenomena. As a result, identifying those most informative
genes for learning a model of such phenomena, such as diagnosing
distinct cancer classes, is crucial for understanding the whole genetic
dynamics involved, e.g., how cancer development and progression can
be justified and signaled at genetic level. Models induced via Machine
Learning (ML) are trained on known phenomena and tend to select the
meaningful signals (also called features) that correlate with the target
phenomena. The models bet on the correspondence between correlation
and causal relations. In such a framework, important features for a
highly accurate induced model should have a higher probability of
showing biological and clinical correlations or causal relations.

Due to the above reasoning, it is clear why a pivotal element of
this study is the application of XAI methods to high-performance com-
putational models (Došilović, Brčić, & Hlupić, 2018). This approach is
grounded in the rationale that if a model’s decision is accurate, then the
genes selected for that decision are likely to be those associated with
the analyzed phenomenon. In other words, if a system can accurately
classify cells into specific cancer types, it is fundamental to learn the
genes most affecting the outcome as they are likely to be somehow
involved in the process. This challenge is a cornerstone in transcrip-
tomics, the aim being to devise neural methods that, while capable
of observing roughly 20,000 genes, can concentrate on a potentially
small, yet significant subsets of them. Identifying these subsets could
be immensely beneficial, for instance, in defining ‘‘customized’’ mark-
ers for types of inferences and diseases. This is particularly effective
given that current Transformer-based architectures like Geneformer can
handle gene sequences up to 2048 symbols, an order of magnitude less
than the existing 20,000.

In this work, we suggest that explainable AI methods are used to
pre-analyze gene sequences, thereby restricting Geneformer-like analy-
sis to a focused and significant subset of relevant genes. This strategy is
advantageous as it exploits a model that, though simpler, can effectively

identify which input variables (gene transcripts, hereafter ‘‘genes’’)

2 
have most contributed to the model’s final decision. The challenge lies
in verifying the accuracy of the selected gene subset. Our hypothesis
is that if a Geneformer-like architecture is applied to a truly relevant
subset of genes, its performance should either remain consistent or
improve.

In detail, we have employed the proposed methodology to select
the most pertinent genes in two distinct tasks. The first is cell type
recognition, which we have approached as a classification of genes
into 9 different organs via Transformer-based neural architectures. The
results of this task are exceptionally promising. We observed that by
focusing the analysis on a few hundred informative genes, rather than
the over 20,000 known functional genes, the predictive capability of
the model is either maintained or even enhanced. The second and
more intriguing task focused on breast cancer type classification. The
mplementation of our proposed techniques here significantly improves
he model’s quality. More importantly, it allows for the application
f the model across diverse patient cohorts, substantially amplifying
he method’s applicability. This research not only aims to contribute
o the identification of vital genetic markers in cancer genomics but
lso to exemplify the adaptability of AI models to different datasets to
ark a significant step in the development of accurate and universally

pplicable diagnostic tools.
We focus on two key areas that contribute to the field of medical AI

n genetic analysis for cancer diagnostics:

1. We explore how explainable AI can effectively identify the most
relevant genes in an inductive process. This targeted approach,
when combined with a recent transformer-based method, has
shown to be effective. Our research highlights the potential of
using explainable AI to refine gene expression analysis, making
it more precise and relevant for specific diagnostic tasks.

2. We introduce a new method for input representation that re-
duces the reliance on the specific techniques used to gather and
encode data. This involves a rank-based approach to represent
gene expressiveness, focusing on relative expression levels. This
methodology has enabled models to achieve improved accuracy
levels by exploiting far fewer genes than previous methods in
two tasks: cell type classification and cancer type discrimination.
It is worth noticing that the model also shows good generaliza-
tion abilities, as, when trained on a Caucasian patient cohort,
it is also effective over Korean patients: this is a good indica-
tion of its good generalization and broader applicability. Our
approach aims to make AI models in genomics more adaptable
and applicable across different populations.

In the remainder of the paper, Section 2 discusses the related work.
Section 3 details the proposed methodology, Section 4 outlines the
experimental evaluation, and Section 5 provides the conclusions.

2. Related works

In the past decade, the contribution of Machine Learning and Arti-
ficial Intelligence to the medical field has been growing in intensity
and significance (Van der Laak, Litjens, & Ciompi, 2021; Momeni,
Hassanzadeh, Saniee Abadeh, & Bellazzi, 2020; Sung et al., 2021).
Many new works have been published experimenting with different
strands of both fields (Osama, Shaban, & Ali, 2023). Particularly rel-
evant, and successful, have been the applications of Machine Learning
(ML) and Artificial Intelligence (AI) to tasks of visual or genetic data
classification for diagnostic purposes (Akhavan & Hasheminejad, 2023;
Miguel, Neves, Martins, do Nascimento, & Tosta, 2023; Osama et al.,
2023; Zhou, Chen, Yu, Pang, Cong, & Cong, 2024). The latter is the
focus of this study.

Regarding genetic and transcriptomic data for diagnostic purposes,
a traditional ML pipeline – i.e., data acquisition, data exploration, data

preprocessing, dimensionality reduction, machine learning algorithm,
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evaluation – is used in Osama et al. (2023) to predict an outcome based
on several features. The authors have reviewed different algorithms to
effectively select the smallest subset of genes for an accurate classifica-
tion and have developed a taxonomy including five classes of feature
selection algorithms and two of feature extraction. Although the logic
from data acquisition to evaluation is the same across the classes, they
differ in their approach to the selection of the relevant features and
the choice of the classification routine. All these techniques overcome
the curse of dimensionality and the curse of data sparsity (Osama
et al., 2023). Moreover, they are generally easier to interpret than
more sophisticated approaches (e.g., deep learning techniques). Major
limitations of these approaches include that data reduction is a property
of the data set, the inability to take advantage of the links among the
genes, and a tendency towards redundancy and overfitting (Khan & Lee,
2023; Osama et al., 2023).

Deep learning techniques, including artificial neural networks, have
also been applied in several other works with a similar approach (Aziz,
Verma, & Srivastava, 2017, 2018; Vanitha, Devaraj, & Venkatesulu,
2015). A number of features in input, such as genetic data, have been
used to predict some outcomes, as for example cancer subtypes (Hassan
Zadeh, Alsabi, Ramirez-Vick, & Nosoudi, 2020). Even this conventional
approach has shown some limitations, notably a bias towards over-
fitting (Khan & Lee, 2023). In this case too, feature selection has to
be performed before the deep network can be employed because the
number of symbols (genes) that can be handled by a neural network is
limited (Khan & Lee, 2023).

Approaches based on transformers, namely dynamic representation
of features from self-attention-based architectures, have been recently
suggested to overcome such limitations. Given their success in various
natural language processing (NLP) tasks (Dosovitskiy et al., 2020),
some works have tried to combine neural networks and self-attention
mechanisms to other domains (Bello, Zoph, Vaswani, Shlens, & Le,
2019; Carion et al., 2020). In the medical field, transformers have been
used mainly with visual data (Esteva et al., 2021). For example, Zhou
et al. (2024) developed an end-to-end weakly supervised framework for
classifying cancer subtypes based on histopathological slides. In their
work, the authors adopt the self-attention mechanism to produce slide-
level features for slide-level supervision, aiming to increase the number
of usable patch-level labels from experts. Xin et al. (2022) developed a
vision transformer, SkinTrans, to classify images of skin cancer. Their
ramework results in an accuracy across multiple databases of over
4%.

Some researchers have recently been attracted to the combina-
ion of transformers and explainable AI to genetic data, which is the
pplication presented in this work. Due to the novelty of the topic, con-
ributions are still few (Khan & Lee, 2023). Among the most relevant,
t least for this research, are Theodoris et al. (2023), Khan and Lee
2023), and Rajpal et al. (2023). Theodoris et al. (2023) exploits a set
f pre-trained embeddings on a large sample of genes (almost 30M) that
an be fine-tuned to the solution genetic classification tasks. Khan and
ee (2023) and Rajpal et al. (2023), on the other hand, are two novel
rameworks based on self-attention mechanisms to identify relevant
iomarkers in various cancer subtypes.

Compared to previous attempts, this work is innovative for several
easons. First, it does not use conventional ML techniques in the classi-
ication step as these have been shown to be inefficient and potentially
iased towards overfitting (Rajpal et al., 2023). In particular, this work
evelops a two-stage metaheuristic algorithm combining explainable
rtificial Intelligence (XAI) and Deep Learning (DL) techniques, as

ormalized in Yaqoob, Verma, and Aziz (2024), Yaqoob, Verma, Aziz,
nd Saxena (2024). In fact, as discussed in Yaqoob, Verma, Aziz, and
axena (2024), a common hindrance in extracting relevant features
rom genetic data is the presence, in our genome, of a large amount of
edundant information. Hence, the importance of the filtering step prior
o any classification attempt. Yet, rather than developing algorithms
3 
anew (Akhavan & Hasheminejad, 2023; Saxena, Chouhan, Aziz, & Agar-
wal, 2024; Yaqoob, Verma, Aziz, & Saxena, 2024), our methodology
makes use of already available building blocks, namely linear Support
Vector Machine (SVM) and the Geneformer model from Theodoris
et al. (2023). Moreover, and this is the second novel element in this
work, compared to Theodoris et al. (2023), in our case a simple XAI
technique – SVM – is used in the feature selection step in the pipeline
leading to the final prediction. Other metaheuristics, such as Akhavan
and Hasheminejad (2023), Saxena et al. (2024) and Yaqoob, Verma,
Aziz, and Saxena (2024), have instead combined sophisticated learning
algorithms to enhance the accuracy of their predictions at the expense
of explainability. In our case, the complex interactions between genes
have been taken into account thanks to the Theodoris et al. (2023)’s em-
beddings, while the task-specific feature selection has been performed
with an explainable technique. This choice has the advantage of making
it easier to identify important features behind a classification problem,
which we believe is highly relevant from a transcriptomic research
perspective.

In summary, given the limitation of current attempts (Akhavan &
Hasheminejad, 2023; Khan & Lee, 2023; Rajpal et al., 2023; Saxena
et al., 2024; Yaqoob, Verma, Aziz, & Saxena, 2024), we rely on a
transformer-based approach that learns optimal embeddings in the first
step (Theodoris et al., 2023). These are used for representing genes
as well as their context (i.e., interactions). Then, an explainable AI
technique, SVM, is used to reduce the number of features (i.e., genes)
exploited for representing instances, so that the final inference is im-
proved. More details are given in the next section. As suggested by
the experimental evaluation reported in this work, the proposed ap-
proach has a significant impact in terms of performance and range of
applicability. In fact, combining a linear classification technique, SVM,
with Geneformer improves its overall performance. On the other hand,
using general, i.e. organ or cell or task-independent, embeddings to
perform the classification allows the application of the algorithm to
heterogeneous cohorts without any significant loss of accuracy.

3. Enhancing geneformer with salient genes

In this section, we detail our approach to enhancing the Geneformer
model by integrating explainable AI techniques for selecting the most
informative genes. Our methodology aimed to improve both the inter-
pretability and the performance of the Geneformer model by focusing
on a refined subset of genes, which emerge as crucial for specific
classification tasks. The process involves several key steps, from the
initial input of gene sequences to the training of the Geneformer model
on filtered sequences. The diagram in Fig. 1 summarizes the overall
workflow.

The process starts with the input dataset containing gene sequences.
These sequences are normalized and ranked based on their expression
levels to ensure that the data is in a suitable format for subsequent
analysis. A linear Support Vector Machine (SVM) is then applied to
the normalized data to identify the most informative genes, which are
crucial for the classification tasks. From these identified genes, the top-
𝑘 genes for each class are selected. These top-𝑘 genes are then used
to construct filtered gene sequences, which serve as input for training
the Geneformer model. The final output of this process is the trained
Geneformer model along with the set of most relevant genes, for the
task at hand.

By integrating these steps, our methodology enhances the Gene-
former model’s ability to make accurate and interpretable predictions.
This approach not only improves the efficiency of gene sequence clas-
sification but also aids in uncovering causal connections between the
system’s inferences and underlying genetic factors. This is particularly
significant in the field of genomics, where understanding the relation-
ships between genetic components and observed phenotypic traits or

diseases is crucial.
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Fig. 1. Process flow diagram of our proposed methodology.

In the rest of this section, Section 3.1 discusses BERT (Bidirectional
Encoder Representations from Transformers), emphasizing its impact
on NLP tasks through pre-training and fine-tuning. Section 3.2 exam-
ines Geneformer, an adaptation of BERT for genomics, highlighting
the processing of genetic sequences. Lastly, Section 3.3 introduces a
task-specific gene-selection method using linear classifiers, particularly
Support Vector Machines (SVMs), to identify the most informative
genes for classification tasks.

3.1. BERT: Bidirectional encoder representations from transformers

In the field of computer vision, researchers have repeatedly shown
the beneficial contribution of transfer learning. Transfer learning is the
ability to use data available for a given task T1 as a useful source
of information to solve a different task T2. The common procedure
is to pre-train the neural network on data available for T1, and then
over the resulting pre-initialized model on T1 start training the target
system, as a fine-tuning stage, on data available for T2. For example,
the pre-training of convolutional neural networks on the ImageNet
dataset is commonly used to support the later fine-tuning stage of
the resulting pre-trained network to obtain a new optimized object
detection task-specific model, e.g., Girshick, Donahue, Darrell, and
Malik (2013).

The approach proposed in Devlin, Chang, Lee, and Toutanova
(2019), namely, Bidirectional Encoder Representations from Trans-
formers (BERT) provides a very effective model to pre-train a deep and
complex neural network over a very large-scale corpus of unannotated
texts. In this approach, after the network has been pre-trained, it
can be applied to a large variety of NLP task by simply fine-tuning
the entire architecture to each new problem. The building block of
BERT is the Transformer element, an attention-based mechanism that
learns contextual relations between words (or sub-words, i.e. word
pieces, Schuster & Nakajima, 2012) in a text. In its original form, pro-
posed in Vaswani et al. (2017), the Transformer includes two separate
mechanisms: an encoder that reads the text input and a decoder that
produces a prediction for targeted Machine Translation tasks.

In addition to the Transformer architecture’s core capabilities, a
crucial aspect of BERT’s input handling is the incorporation of posi-
tional embeddings. When BERT processes a sequence of symbols, such
as words or word-pieces, each symbol is coupled with a positional
embedding. These embeddings are vectors derived through sinusoidal
functions, designed to encode the position of each word within a
sentence. For example, consider the sentence ‘‘the dog is running in the
garden.’’ In this sentence, the positional embedding ensures that the

representation of the first occurrence of the word ‘‘the’’ is different
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from its representation when it appears in the sixth position. This
differentiation is achieved through the unique positional embeddings
that are assigned to each word based on their location in the sequence.
The significance of these positional embeddings lies in their ability to
capture and represent the contextual and syntactic information that is
inherently tied to the order of words in a sentence. By encoding the
position of each word, BERT can understand the role and relationship
of each one in the context of the entire sentence sequence.

A neural architecture such as BERT is inherently complex, compris-
ing over 110 million parameters. The key to the success of such an
architecture lies in the concept of pre-training. This involves initializing
the network’s weights through pre-training tasks that, while potentially
unrelated to the network’s eventual primary task, are linguistic and
therefore help the model to generalize its understanding of language
use.2 These tasks are thus carried out by applying the network to
extensive document collections, often consisting of billions of tokens.
Such large-scale exposure to diverse linguistic patterns enables BERT
to develop a deep and nuanced understanding of language. It is akin
to how humans learn language: by being exposed to a wide range of
sentences, words, and their corresponding contexts.

As shown in Fig. 2 (on the left), during pre-training the Transformer
ncoder reads the entire sequence of words at once and acquires a lan-
uage model by learning to reconstruct the original sentence applying
n MLM (masked language model) pre-training objective: the MLM ran-
omly masks some of the tokens from the input, and the objective is to
redict the original masked word based only on its context. In addition
o the masked language model, BERT also uses a next sentence prediction
ask that jointly pre-trains text-pair representations. This last objective
s crucial to improve the network capability of modeling relational
nformation between text pairs, which is particularly important in tasks
uch as Dialogue Modeling or Question Answering (Devlin et al., 2019)
o relate an answer to a question.

After the language model has been trained over a generic doc-
ment collection, the BERT architecture allows encoding (i) specific
arget words belonging to a sentence, (ii) the entire target sentence,
r (iii) sentence pairs with dedicated embeddings. These can be used
s input for further deep architectures to solve sentence classification,
equence labeling or relational learning tasks by simply adding layers
nd fine-tuning the entire architecture (Bouraoui, Camacho-Collados,
Schockaert, 2020). In detail, on top of the pre-trained embeddings,

ine-tuning is applied by adding task-specific layers. In a nutshell,
hese layers introduce a minimal number of additional task-specific
arameters that are used to train the extended network on the targeted
asks. This additional training is a simple fine-tuning of all pre-trained
arameters to optimize the performance of the network on the problem
t hand.
BERT’s encoding for classification in genomics. Consider BERT

s a model ℎ(𝑠) = 𝑀𝐵𝐸𝑅𝑇 (𝑠) that takes an input sequence 𝑠 and
enerates a vector representation. In the context of this work, our
rimary interest is in classification tasks. For a given input sequence
, BERT can be viewed as generating a vector from the first symbol of
he sequence. In BERT’s architecture, this first symbol is the artificial
oken [CLS], and ℎ(𝑠) is a dense vector of 𝑑 dimensions (e.g., 𝑑 = 768).
o utilize BERT for classification tasks, the output ℎ(𝑠) of BERT, a 768-
imensional vector, is processed through a classifier that maps this
igh-dimensional vector to a space of 𝑐 dimensions, where 𝑐 is the
umber of classes. The output of this classifier, 𝑦, is a one-hot vector

2 According to Wittgenstein (1953), language meaning arises as a side-
ffect of its use by native speakers. Language use is thus the crucial source
f information about syntactic and lexical semantics phenomena in natural
anguage. Pre-training in transformers aims at capturing exactly such universal
roperties of natural languages before attempting the training aimed at specific
linguistic inferences (e.g., machine translation or question answering).
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Fig. 2. Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same
pre-trained model parameters are used as initial model for different downstream tasks. During fine-tuning, all parameters are fine-tuned, i.e., optimized for target tasks. [CLS] is
a special symbol added in front of every input example, and [SEP] is a special separator token (e.g., separating questions/answers).
representing the class labels. Mathematically, this classification process
can be expressed as:

𝑦 = 𝖢 ⋅𝑀𝐵𝐸𝑅𝑇 (𝑠)

where 𝑀𝐵𝐸𝑅𝑇 (𝑠) is the BERT model applied to the input sequence 𝑠,
and 𝖢 is a weight matrix in R𝑑×𝑐 , with 𝑑 being the dimensionality of
the BERT output. The classifier is typically trained using a cross-entropy
loss function, defined as:

Loss = −
𝑐
∑

𝑖=1
𝑦𝑖 log(𝑝𝑖)

Here, 𝑦𝑖 is the true class label in one-hot encoded form, and 𝑝𝑖 is
the predicted probability of each class. This loss function optimizes
the model parameters, ensuring the accurate classification of input
sequences. The straightforward application of BERT has shown better
results than previous state-of-the-art models on a wide spectrum of
natural language processing tasks (Lin et al., 2022).

3.2. Geneformer: applying the BERT model in genomics

Building upon the systematic approach of pre-training transformer-
based models as demonstrated in approaches such as BERT, the Gene-
former architecture introduces a novel approach in genomics
(Theodoris et al., 2023). Moving from the success of BERT in pro-
cessing vast collections of unannotated texts, Geneformer represents
a significant stride forward in the field of genetic sequence analysis.
This architecture diverges from traditional text processing by focusing
on gene symbols, such as EIF1, CLCA1, EEF1A1, MUC2, TFF3,
and ITLN1, instead of words or word-pieces. Thus, to apply such
architecture, we need to adapt input gene sequences that are initially
provided as a list of pairs (𝑔𝑖, 𝑒𝑖), where:

• 𝑔𝑖 ∈ G is a gene, with G representing the dictionary of possible
genes, such as EIF1 or CLCA1, or possible expression patterns
(e.g., splicing isoforms, alternative promoters, post-translational
modifications).

• 𝑒𝑖 ∈ R is a real number describing the expressiveness of gene
𝑔𝑖, e.g., measured in terms of TPM (transcripts per million),
FPKM (fragments per kilobase of transcript per million fragments
mapped), and normalized counts using coefficient of variation,
intraclass correlation coefficient, and cluster analysis (Zhao et al.,
2021).

Clearly, the development of Geneformer is hindered by several key
challenges. Training the model effectively is one of these challenges
as it requires careful consideration of the adopted pre-training strat-
egy as well as the selection of appropriate data. The model must
be exposed to a wide range of genetic information to ensure robust
5 
learning and effective performance. Basically, the main idea behind
Geneformer is to pre-train an encoder-based architecture using a se-
quence of genes expressed as: 𝑆 = {(𝑔1, 𝑒1), (𝑔2, 𝑒2),… , (𝑔𝑛, 𝑒𝑛)} where 𝑔𝑖
is the 𝑖th gene in the sequence and 𝑒𝑖 is the corresponding expressive-
ness value. Geneformer’s pre-training involves utilizing Genecorpus-
30M (Theodoris et al., 2023), an extensive dataset comprising 30
million cell transcriptions, which enables the integration and analysis
of data from 561 publicly available datasets. During this pre-training
phase, an approach similar to BERT’s masked language model is em-
ployed, in which 15% of genes are masked and then predicted by
the architecture. This process allows Geneformer to learn contextual
relations between genes, similarly to how BERT learns meaningful
patterns as relations between words.

The representation of genes sequences is another crucial aspect. The
model needs to accurately interpret both the order and the expression
levels of each gene within a set. This understanding is necessary for the
model to analyze expression data correctly and make precise predic-
tions. Traditionally, transcriptomic sequences 𝑆 consist of genes paired
with a numerical value indicating their expressiveness. Geneformer
addresses this challenge by ranking genes based on their expression,
thus the most expressed genes are placed at the beginning of the
sequence. More formally, we define a total ordering on 𝑆 based on the
expression values such that (𝑔𝑖, 𝑒𝑖) precedes (𝑔𝑗 , 𝑒𝑗 ) in 𝑆 if and only if
𝑒𝑖 > 𝑒𝑗 . Thus, 𝑆 is ordered in descending order of expression values.
This ranking allows the model to consider the most representative genes
first, leveraging their context-dependent information.

However, an additional critical issue arises, namely the presence of
a large set of expressed housekeeping genes. These are not candidate
genes to provide relevant information to model task-specific phenom-
ena, yet to a token-processing network, they look like important bits of
information. To address this, Geneformer incorporates a normalization
step that utilizes the entire Genecorpus-30M dataset. Thus, for each
gene, the system relies on the non-zero median expression evaluated on
the entire Genecorpus-30M dataset, which serves as the normalization
factor. This normalization ensures that a gene with a high normalized
expression input into Geneformer is one whose original observed mean
expression is significantly higher than the overall average. Moreover,
since all genes undergo the same normalization process, this step
is uniformly applicable. Consequently, genes with high differential
expression, but average values much higher than the norm, will not ap-
pear unusually significant when analyzed by Geneformer. Conversely,
genes with moderate but significantly higher than average activation
levels will receive more attention in the analysis. This approach bal-
ances the data, ensuring that Geneformer focuses on genes that show
truly distinctive expression patterns.

For example, the original sequence in transcriptomics might ini-
tially appear as: 𝑆𝑂 = {(𝙼𝚄𝙲𝟸, 1.3), (𝚃𝙵𝙵𝟹, 0.3), (𝙴𝙸𝙵𝟷, 2.0), (𝙲𝙻𝙲𝙰𝟷, 1.9),
(𝙴𝙴𝙵𝟷𝙰𝟷 ∶ 0.8)…} which is then ranked according to expressiveness,
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resulting in a sequence like 𝑆𝑅 = {(𝙴𝙸𝙵𝟷, 2.0), (𝙲𝙻𝙲𝙰𝟷, 1.9), (𝙼𝚄𝙲𝟸, 1.3),
(𝙴𝙴𝙵𝟷𝙰𝟷, 0.8), (𝚃𝙵𝙵𝟹, 0.3)…}

In this rearranged sequence, the gene EIF1 appears in the first
position due to its high expression value. However, it is important to
note that EIF1 is a housekeeping gene involved in the initiation of
protein synthesis (Fletcher, Pestova, Hellen, & Wagner, 1999). While
crucial for cellular function, its high expression is not necessarily
indicative of specific disease states, as it is a gene routinely active in
various cellular processes. After normalization (N) and re-ranking (R),
the sequence might be transformed to:

𝑆𝑁𝑅 = {(𝙲𝙻𝙲𝙰𝟷, 2.37), (𝙼𝚄𝙲𝟸, 1.3), (𝚃𝙵𝙵𝟹, 1.2), (𝙴𝙸𝙵𝟷, 1.1), (𝙴𝙴𝙵𝟷𝙰𝟷,
0.88)…}

These resulting genes can be provided to the Geneformer. Each
gene symbol is assigned to an embedding, refined from the pre-training
phase, and extended with positional embedding, allowing the model
to track the gene’s position in the ranking. As a result, being in the
top positions implies not only high expression at a local cellular level
but also significant expressiveness compared to the average observed in
that gene across a 30-million-cell collection. This means that whenever
a gene is in the top positions for a given phenomenon (e.g., cells of a
given tissue), it can be considered highly informative.

Another noteworthy aspect is that this representation method
uniquely disregards the local expression values of genes within in-
dividual cells. Local expression levels can be quite specific to the
measurement method or the device used for gene expression detection.
The methodology utilizes first the absolute expressiveness values of
genes for ranking their relevance, and then selects the most informative
ones, neglecting the others as well as all the expressiveness values.
This approach effectively sidesteps potential biases and inconsistencies
that might arise from varying measurement techniques, ensuring a
more reliable and universal representation of gene expressiveness in
the context of large-scale genomic data analysis.

However, despite all their pros, methods like Geneformer, and
transformers in general, are still affected by computational complexity.
Traditional transformers have a computational complexity for estimat-
ing attention that is quadratic in terms of the length of the observed
sequences. This means that doubling the sequence length quadruples
the processing time, and tripling it makes it eight times slower. This
complexity also affects the amount of memory needed for the compu-
tation process. In BERT, originally designed to handle sentences, the
maximum sequence length is capped at 512 word pieces, sufficient
for small sentences or paragraphs. In Geneformer, the decision has
been made to handle sequences of up to 2048 symbols in length.
While this length was not a problem during the pre-training steps with
Genecorpus30M, where it could accommodate most of the sequences
observed in the dataset, it is important to note that a full transcriptome
may have up to 20,000 actively transcribed genes (features, symbols)
– roughly an order of magnitude larger than those effectively observed
by Geneformer. In scenarios where complete sequences are recovered,
especially with advancing technology, it becomes crucial to overcome
these limitations.

In the next section, we propose a classification method to address
the previously mentioned limitations. This method focuses on selecting
the most informative subset of genes for a given classification task
involving a sequence of genes. We aim to identify a key group of
genes, potentially up to 2048, that are most relevant to the analysis.
This approach is particularly important in scenarios where complete
gene sequences are extensive and computational resources are limited,
ensuring a more targeted and efficient analysis.

An additional advantage of this approach is its alignment with the
tenets of explainable AI. By focusing on the selection of the most
representative genes, our method not only enhances the efficiency
of gene sequence classification, but also aids in uncovering causal
connections between the system’s inferences and underlying causes,
such as the presence of specific genes. This aspect is particularly
significant in genomics, where understanding the causal relationships
between genetic components and observed phenotypic traits or diseases

is crucial. S

6 
3.3. Task-specific optimal gene-selection

Our research addresses the intricacy of analyzing genetic sequences
by considering the gene set G, which comprises approximately 20,000
symbols, representing the total number of protein-coding genes in
the human genome. We aim to refine this to the subset of the most
𝑘 informative genes. Our goal is to compress the original space of
possible 20,000 symbols by performing feature selection in order to
single out the most representative dimensions. Unlike traditional di-
mensionality reduction methods such as SVD (Bishop, 2007), which
might select dimensions based on variability, our approach leverages
machine learning techniques tailored to a task at hand.

In particular, we propose a linear classifier, which aligns with
the notion of PAC learnability (Vapnik, 1995), yet still achieves a
commendable level of generalization. Specifically, we adopt a Sup-
port Vector Machine (SVM), a linear discriminative Machine Learning
paradigm based on statistical learning theory. An SVM is effectively
utilized for binary classification tasks, operating by constructing a
hyperplane or set of hyperplanes in a high-dimensional space.

The classification function employed by the SVM is expressed as
𝑓 (𝑥) = sgn(𝑤𝑥 + 𝑏), where 𝑥 represents the input sequences while
the parameters 𝑤 and 𝑏 define the hyperplane used for categorizing
each example into positive (+1) or negative (−1) classes. In our case,
these are not gene sequences but points in a geometric space R𝑛 with
𝑛 = 20, 000. This approach, while neglecting the interactions among
dimensions, offers a clear view of each dimension’s impact. Regarding
the construction of feature vectors, there are two pathways: retaining
activation values post-normalization or following the approach used
by Geneformer, which involves transforming these values into boolean
representations (one-hot encoding).

Despite its simplicity and potentially lower performance compared
to more complex models like Geneformer, SVM offers a significant ad-
vantage in terms of interpretability. The classification function 𝑓 (𝑥) =
sgn(𝑤𝑥 + 𝑏) = sgn

(
∑

𝑖 𝑤𝑖𝑥𝑖 + 𝑏) provides explicit insights into how
individual genes influence the classification outcome, enhancing the
model’s transparency and understandability, as hereafter discussed.
Moreover, the individual 𝑥𝑖 values represent gene expression levels,
where each 𝑥𝑖 is set to zero if the corresponding gene is not transcribed,
or otherwise holds a positive value. This positive value can be a binary
1, following a boolean approach, or a greater than zero expression level
value, which by design is positive due to the nature of gene expression
measurements.

Consequently, the weights 𝑤𝑖 in the SVM play a pivotal role. In
etail, they adhere to the following schema:

• Each dimension corresponds to the same gene across different
instances.

• A positive weight (𝑤𝑖 > 0) is assigned to the 𝑖th gene that
‘supports’ a particular class, indicating a positive correlation be-
tween the gene’s expression and the class. Conversely, negative
weights (𝑤𝑖 < 0) are associated to those 𝑖th genes that are ‘‘not
supportive’’ of the class, implying an inverse relationship.

• Weights close to zero (𝑤𝑖 ≈ 0) are indicative of genes whose
presence or absence is not significantly informative toward class
determination.

• The magnitude of the weight (|𝑤𝑖|) reflects the degree of support
or opposition a gene offers to a class. A higher absolute value
denotes a stronger influence, either supporting or contrasting, on
class categorization.

This weighting system in the SVM model provides a nuanced view
f how each gene contributes to the classification task. It not only
dentifies the relevant genes, but also quantifies their impact, allowing
or a more comprehensive understanding of the underlying biological
rocesses influencing the classification.

Following the analysis of gene expression and the corresponding

VM weights, an important aspect of our study involves limiting the
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later analysis to the most influential genes in the classification decision.
To achieve this, we restrict our focus by selecting the top 𝑘 dimensions
of the weight vector 𝑤, which exhibit the highest absolute values.
This approach aims to pinpoint the genes that are most significant in
distinguishing between the classes, whether through strong positive or
negative associations.

In detail, given the weight vector 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑛), the process
for selecting the top 𝑘 dimensions is as follows:

1. Compute the absolute values of the weights: 𝑊abs = (|𝑤1|, |𝑤2|,
… , |𝑤𝑛|).

2. Sort the weights by their absolute values in descending order to
obtain 𝑊sorted.

3. Select the first 𝑘 dimensions from 𝑊sorted.

The resulting set of dimensions corresponds to the 𝑘 genes that have
he most significant impact on the SVM’s classification decision across
ne or more datasets. This method allows us to effectively identify and
ocus on the genes that play a crucial role in the classification process,
hus providing a clearer understanding of the underlying biological
echanisms.

Genes identified by selecting the top 𝑘 weights of the SVM have
pivotal function in refining the input dictionary for Geneformer.

y concentrating on these genes, we effectively narrow down the
ictionary of symbols in the input to those most relevant for the
lassification task. This approach ensures that Geneformer focuses on
he most impactful genetic elements, enhancing the model’s efficiency
nd relevance to the specific biological context.

The advantage of this supervised selection method, as opposed to
nsupervised approaches, is its direct correlation with the task and
he dataset at hand. While unsupervised methods might identify a
road range of features, they do not necessarily prioritize these features
ased on their relevance for different classification tasks. In contrast,
ur SVM-based selection is inherently task-driven, ensuring that the
imensions we focus on are the most informative for the classification
ase at hand. This task-oriented approach to feature selection, not only
treamlines Geneformer’s input, but also aligns the model more closely
ith the specific objectives and nuances of the dataset, i.e., clinical
henomena, being analyzed.

The methodology we have formalized thus far is primarily focused
n binary classifiers. However, it can be readily extended to mul-
iclass classification scenarios involving 𝑐 classes by employing the
ne-Versus-All (OVA) strategy for training 𝑐 separate binary classifiers.

In the OVA approach, for each class 𝑐𝑖, a dedicated binary classi-
fier is defined. For this classifier, examples belonging to class 𝑐𝑖 are
treated as positive instances, while all other examples are considered
negative. This results in 𝑐 distinct binary classifiers, each specialized
in distinguishing its corresponding class from all others. During the
classification phase, an input example is evaluated by all 𝑐 classifiers.
The classifier yielding the highest value of the classification function
𝑓 (𝑥) determines the class assignment for that example. This method
ensures that each example is classified into the class for which it has the
strongest positive association, as per the classifier’s learned parameters.

In the context of multiclass classification using the One-Versus-All
strategy, the gene selection process can be straightforwardly adapted.
For each gene, we assign a weight 𝑤∗

𝑖 that maximizes its absolute value
across all classes. This means that, instead of considering the weight
of a gene in a single binary classifier, we evaluate its impact across
all 𝑐 classifiers, choosing the weight that demonstrates the strongest
influence (either positive or negative) in any class.

More formally, given a set of classifiers {𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑐 (𝑥)} for 𝑐
classes, and corresponding weight vectors {𝑤1, 𝑤2,… , 𝑤𝑐}, the weight
assigned to each gene 𝑖 is determined by:

𝑤∗ = max |𝑤𝑗
|
𝑖 𝑗=1,…,𝑐 𝑖 ∇

7 
Here, 𝑤𝑗
𝑖 represents the weight of gene 𝑖 in the classifier for class 𝑗,

and 𝑤∗
𝑖 is the chosen weight for gene 𝑖 across all classes, based on its

maximal absolute value. This approach ensures that the most influential
genes, considering their ranking across all possible classifications, are
selected for further analysis with Geneformer.

This extension to multiclass scenarios allows our approach to main-
tain effectiveness and interpretability across a wider range of classifi-
cation tasks. The OVA strategy provides a straightforward yet powerful
means to adapt the binary classification framework to complex mul-
ticlass problems, retaining the core benefits of the SVM-based feature
selection and its integration with Geneformer.

3.3.1. Scalable linear model for efficient feature selection
One of the primary limitations of algorithms such as Support Vector

Machines (SVMs) is related to the optimization complexity in finding
the optimal hyperplane. Specifically, the complexity of the optimization
process in standard SVMs tends to grow almost quadratically with
the number of examples (Platt, 1998). This can become a significant
hindrance, especially when dealing with large datasets, as it directly im-
pacts the computational efficiency and scalability of the model without
adding overhead to Geneformer.

To address this additional complexity, we adopt the Dual Coordinate
Descent (DCD), defined in Hsieh, Chang, Lin, Keerthi, and Sundararajan
(2008), which is a batch and linear learning algorithm similar to the
Support Vector Machine (SVM). Given 𝑑 instances 𝑠 ∈ 𝑆, their labels
𝑦𝑖 ∈ ±1 and their corresponding 𝑥𝑖 ∈ R𝑛 counterparts, the DCD acquires
the function 𝑓 ∶ 𝑋 → 𝑅 which minimizes the misclassification error by
minimizing the probability that 𝑦𝑖𝑓 (𝑥𝑖) = 𝑦𝑖𝑤𝑥𝑖 ≤ 0, just like a binary
classification function.

The so-called primal formulation to determine 𝑤 can be written as
follows:

minimize
𝑤∈R𝑛

1
2
‖𝑤‖

2 + 𝐶
𝑑
∑

𝑖=1
max{0, 1 − 𝑦𝑖𝑤

⊤𝑥𝑖} (1)

The above problem can be rewritten in its dual form

minimize
𝛼

𝐷(𝛼) ∶= 1
2
𝛼⊤𝑄𝛼 − 𝛼⊤1

subject to 0 ≤ 𝛼 ≤ 𝐶1 (2)

Here, Q is a 𝑑 ×𝑑 matrix whose entries are given by 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝑥⊤𝑖 𝑥𝑗 ,
and 1 is the vector of all ones. The minimizer 𝑤∗ of Eq. (1) and the
minimizer 𝛼∗ of Eq. (2) are related by the primal/dual connection:

∗ =
∑𝑑

𝑖=1 𝛼
∗
𝑖 𝑦𝑖𝑥𝑖. The dual problem in Eq. (2) is a Quadratic Program

(QP) with box constraints, and the 𝑖th coordinate 𝛼𝑖 corresponds to the
𝑖th instance (𝑥𝑖, 𝑦𝑖).

According to Hsieh et al. (2008), the following coordinate descent
scheme can be used to minimize Eq. (2):

• Initialize 𝛼1 = (0,… , 0)
• At iteration 𝑡 select coordinate 𝑖𝑡
• Update 𝛼𝑡 to 𝛼𝑡+1 via

𝛼𝑡+1𝑖𝑡
= argmin

0≤𝛼𝑖𝑡≤𝐶
𝐷(𝛼𝑡 + (𝛼𝑖𝑡 − 𝛼𝑡𝑖𝑡 )𝑒𝑖𝑡 )

𝛼𝑡+1𝑖 = 𝛼𝑡𝑖 ∀𝑖 ≠ 𝑖𝑡. (3)

Here, 𝑒𝑖 denotes the 𝑖th standard basis vector. Since 𝐷(𝛼) is a QP, the
above problem can be solved exactly:

𝛼𝑡+1𝑖𝑡
= min

{

max{0, 𝛼𝑡𝑖𝑡 −
∇𝑖𝑡𝐷(𝛼𝑡)
𝑄𝑖𝑡𝑄𝑖𝑡

}, 𝐶
}

. (4)

In the above equation, ∇𝑖𝐷(𝛼) denotes the 𝑖𝑡-th coordinate of the
radient. The updates in each step are also closely related to implicit
pdates. If we maintain 𝑤𝑡 ∶=

∑𝑑
𝑖 𝛼

𝑡
𝑖𝑦𝑖𝑥𝑖, then the gradient ∇𝑖𝑡𝐷(𝛼) can

e computed efficiently using
⊤ 𝑡
𝑖𝑡𝐷(𝛼) = 𝑒𝑖𝑡 (𝑄𝛼 − 1) = 𝑤 𝑦𝑖𝑡𝑥𝑖𝑡 − 1 (5)
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and kept related to 𝛼𝑡+1 by computing 𝑤𝑡+1 = 𝑤𝑡+(𝛼𝑡+1𝑖 −𝛼𝑡𝑖 )𝑦𝑖𝑥𝑖. In each
iteration, the entire dataset is used to optimize Eq. (1) and a practical
choice is to access the examples randomly.

In Hsieh et al. (2008), the proposed method has been shown to reach
an 𝜖-accurate solution in 𝑂

(

𝑙𝑜𝑔(1∕𝜖)
)

iterations, so we can bound the
number of iterations. As a result, we can fix a-priori the computation
cost of the training time, still linear in terms of the number of training
examples.

These linear SVM formulations are especially relevant in the context
of genomic data, where the number of examples (gene sequences) can
be exceedingly large. By utilizing a linear approach to SVM optimiza-
tion, we can maintain the model’s robustness and interpretability while
significantly enhancing its applicability to larger datasets. This develop-
ment represents an important stride in making SVMs more versatile and
practical for a wider range of data-intensive applications. In practice,
in the experimental evaluation, training a Geneformer architecture
takes approximately 10 min using a dataset of 10,000 examples, while
training the adopted linear classifier takes a few seconds on the same
dataset.

Finally, to mitigate the potential bias in weight estimation inherent
in SVMs, we employed L2 regularization in our experiments (Hsieh
et al., 2008). The advantage of using L2 regularization is that it helps
control the magnitude of the weights, distributing the importance
across multiple features and reducing the risk of over-representation
of significant weights. This approach aims to ensure that the selected
genes are robust and biologically meaningful, enhancing the inter-
pretability and reliability of our model.

4. Experimental evaluation

The experimental section of this study is designed with two primary
goals in mind. First, we aim to evaluate the effectiveness of a combined
SVM-Transformer approach in two distinct tasks: cell classification and
tumor type classification. The second goal is to assess how effectively
the gene selections made by SVM can be integrated with the modeling
provided by Transformer. Through the whole experimentation, we seek
to demonstrate the potential of this hybrid approach in enhancing the
accuracy and relevance of gene selection in medical diagnostics.

4.1. Cell type classification

Task and Data. In an initial set of experiments, we endeavored
to determine whether an explainable AI method based on SVM is
capable of identifying the most relevant genes for the final decision
in a classification task. A further objective was to ascertain whether
Geneformer, when applied to filtered sequences that consider only the
classification-relevant genes selected by the SVM, can compete with a
Geneformer that analyses complete sequences. We hypothesize that if
the explainable AI method has successfully identified the most repre-
sentative genes, then a method like Geneformer should not experience
a significant loss of information. On the contrary, it should be able to
maintain the same scores even with a more drastic gene reduction.

Currently, Geneformer is capable of processing sequences up to
2048 symbols in length, each composed of genes from a complete
dictionary of about 20,000 known functional genes. Our strategy fo-
cuses on assessing the Geneformer’s performance when trained under
the constraint of markedly shorter sets of genes. These sets of genes,
although reduced in length, encapsulate a selection of genes that are
highly pertinent to the task at hand. By deliberately limiting the
training to a few hundred genes, we compel Geneformer to concentrate
on a subset of genes that are most closely associated with the task,
potentially enhancing its ability to extract meaningful patterns from a
more concentrated genetic signal.

To empirically test these hypotheses, we structured the experiments
as follows. We first used an SVM-based explainable AI method to select
genes that were deemed most crucial for the classification task. We
 c

8 
Table 1
Dataset statistics for the cell type classification task. The train/test split is 80% and
20%, respectively.

Organ Num. of Num. of train Num. of test Avg. Seq.
classes examples examples length

Brain 6 10,656 2,664 447
Immune 10 20,562 5,140 427
Kidney 15 35,199 8,800 561
Large Intestine 16 39,678 9,920 400
Liver 12 22,427 5,607 487
Lung 16 26,098 6,525 492
Pancreas 15 21,934 5,484 420
Placenta 3 7,415 1,854 603
Spleen 6 12,330 3,083 413

Average 11 21,811 5,453 472

then created a filtered gene set based on this selection and trained
Geneformer on these subsets. The performance of Geneformer on these
reduced sets was compared to its performance on the full gene set to
measure any potential loss of predictive accuracy.

First, we considered the task of cell classification. Given an organ
and the cellular transcription of its cells, the task is to assign individual
transcriptions to the corresponding cell type. For example, given a
cell from the large intestine and its transcriptome profile, we need
to determine whether the cell is one of 16 possible types such as
Enterocyte progenitor, Hepatocyte, or a B-cell.

For this dataset, we relied on an example provided by the au-
thors of Geneformer.3 In this example, the authors demonstrate how
Geneformer can be applied to the task of cell classification on cells
belonging to 9 different organs. Specifically, examples are selected
directly from Genecorpus-30M, and the distribution of the number of
cell types (classes in the classification task), the number of examples
in the training and test dataset, and the average length of sequences
are reported in Table 1. The data provided are already encoded to be
suitable for Geneformer; therefore, for the genes belonging to each cell,
all genes are normalized using the Genecorpus-30M distribution and
are locally ordered based on this value. It is also clear in this case that
the average length of the sequences (here on average 472) is less than
the maximum value that Geneformer can handle (2048).

Firstly, we evaluated the performance of Geneformer without any
truncation or selection, alongside the ‘‘simple’’ assessment of SVM,
which does not utilize contextual information provided by the
Transformer-based architecture of Geneformer and the pre-training on
the entire Genecorpus-30M. The analysis was replicated separately for
each organ, meaning a cell could only be classified into the types
anticipated for its respective organ.

Results and Discussion. The performance of the classification task
has been measured using accuracy, defined as the percentage of test
set examples correctly assigned to their class, and macro F1 score,
calculated as the arithmetic mean of the F1 scores computed for each
class. The latter metric is particularly relevant as it accounts for class
imbalance.

The results are detailed in Table 2, where each row represents
the outcomes corresponding to each organ, and the final row is the
average of the performance statistics averaged across all organs. As a
preliminary step, we established a baseline determined by the Most
Frequent Class (MFC), where each test set example was assigned to
the most prevalent class given the organ. The table results reveal
how certain highly imbalanced classes, including organ examples such
as Brain, show that 86% of examples belong to class Erythroid
progenitor cell (and are thus correctly classified even by this
naive classifier), rendering the accuracy potentially unrepresentative of

3 https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/
ell_classification.ipynb

https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/cell_classification.ipynb
https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/cell_classification.ipynb
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Table 2
Comparison of classification accuracy and F1 scores across models.

Organ Accuracy F1 Score

Baseline SVM Geneformer Baseline SVM Geneformer

Brain 86.2% 97.1% 97.6% 28.5% 80.6% 80.4%
Immune 24.8% 92.6% 94.4% 18.0% 86.0% 89.4%
Kidney 29.4% 90.0% 92.1% 12.5% 84.7% 87.1%
Large Intes. 23.1% 89.0% 92.5% 11.7% 81.6% 84.9%
Liver 33.1% 83.1% 91.2% 15.3% 73.0% 79.3%
Lung 22.3% 92.7% 93.4% 11.7% 86.5% 84.1%
Pancreas 26.5% 90.0% 93.8% 12.5% 85.6% 87.6%
Placenta 74.1% 97.8% 98.0% 48.8% 96.6% 96.8%
Spleen 74.3% 98.6% 99.0% 28.4% 96.3% 97.1%

Average 43.8% 92.3% 94.7% 20.8% 85.6% 87.4%

true model performance. On the other hand, the F1 measure tends to
be more resilient to class imbalance. In this case, it yields considerably
lower results (on average 20.8% compared to 43.8% accuracy). This lat-
ter result provides a more nuanced view of the classifier’s effectiveness
in handling skewed data distributions.

The initial model considered in our experiments was a linear SVM.
As said, we employed the Dual Coordinate Descent (DCD) algorithm
implemented in the KELP library,4 which operates directly in the primal
bservation space, and ensures that the model remains linear in its
ecision-making process. Each SVM model underwent optimization by
ine-tuning the trade-off parameter 𝐶 of the SVM on the dataset. The

parameter 𝐶 was selected from a range of values: [10−3, 10−2, 0.1, 1, 10].
The final model we tested was Geneformer. We utilized the im-

lementation and the pre-trained model made available in PyTorch
hrough the Huggingface framework.5 The parameters configured for
eneformer were as follows: a learning rate set to 5 × 10−4, a training
nd evaluation batch size of 12, and the AdamW optimizer with a
inear scheduler that incrementally improved the learning rate for the
irst 10% of the training steps. We included a weight decay of 0.001.
he models were trained over 20 epochs, selecting the models that
aximized accuracy on the Development Set.

In general, the results showcased Geneformer’s excellent perfor-
ance. The transformer achieves approximately 94.7% accuracy and an

mpressive 87.4% F1 score. This outcome is remarkable considering the
lass imbalance in many cases, such as samples from Brain, Placenta,
r Spleen, where more than 75% of examples belong to a single class,
r in organs like Kidney, Large Intestine, Lung, and Pancreas, where
here are more than 15 possible classes. Interestingly, the linear SVM
chieved slightly lower but very close results, with an accuracy of
2.3% and an F1 score of 85.6%. This closeness suggests that even
imple linear models can be enhanced using the pre-processing steps
sed in Geneformer. In some instances (such as Brain and Lung), the
wo approaches were very close, while in others it was significantly
ower, as in the case of Liver. In these latter examples, the contextual
nformation and pre-training provided by Geneformer were beneficial.
verall, these results suggest that SVM is capable of proficiently tack-

ing the task, implying that the genes with the most positive/negative
nfluence from the individual dimensions of the hyperplane are likely
o be useful.

For instance, the three most discriminative genes for the large
ntestine, according to the SVM, are PIGR,6 JCHAIN,7 and ITLN1,8 all
f which are clearly present in gastrointestinal tissues.9

4 https://www.kelp-ml.org/
5 https://huggingface.co/ctheodoris/Geneformer
6 https://www.proteinatlas.org/ENSG00000162896-PIGR
7 https://www.proteinatlas.org/ENSG00000132465-JCHAIN
8 https://www.proteinatlas.org/ENSG00000179914-ITLN1
9 Although a systematic manual analysis of all these pieces of evidence is

eyond the scope of this paper and is left for future work, however, these lists

or each organ will be released publicly upon the acceptance of the work.

9 
At this point, we utilized the hyperplane dimensions (the genes)
ordered from most to least informative to reduce the number of genes
to feed into Geneformer. The result of this analysis is reported in
Table 3. We applied different values of 𝑘 for cuts in the rows, from more
aggressive cuts, in which Geneformer’s analysis focuses only on the 128
most relevant genes per organ, going through the 256 most informative,
then 512 (an order of magnitude fewer than all known functional
genes), up to ALL (meaning no cut was applied). Subsequently, we
sought to determine whether this analysis allowed the most informative
genes to be at the head of the sequences provided to Geneformer.
Therefore, we applied cuts by selecting from each sequence only the
topmost 𝑙 genes, e.g., 16 genes, then 32, 64, 128, and so on, up to
not applying any cut, meaning all 2048 genes present in the original
data are included, as shown in the columns of the table. For each
combination of 𝑘 (rows) and 𝑙 (columns), we re-ran the entire analysis,
and Table 3 presents synthetically the average F1 scores obtained across
all organs.

The outcome is particularly striking since the F1 score of 87.4%
reported in the experiments in Table 2, corresponding to the measure
with 𝑘 = 20,000 and 𝑙 = 2048, is essentially replicated with 𝑘 = 1024
and 𝑙 = 256 (F1 of 87.0%), and even surpassed with a selection of
𝑘 = 2048 and 𝑙 = 512, achieving an F1 score of 88.0%. Evidently, the use
of an SVM-informed filter is consistently informative for achieving an
F1 score of at least 84% (which is practically equivalent to the original
Geneformer’s performance). This explainable AI method allows, for
example, to reduce from about 20,000 to only 512 possible symbols,
and sequences as short as 𝑙 = 64 genes remain highly informative, with
an F1 score of 84.7%. Selecting only 𝑙 = 64 genes would not be feasible
without selection; that is, with 𝑘 = 20,000 and 𝑙 = 64, an F1 score
of 68.1% would be achieved, which is lower than the limit case where
only 𝑙 = 16 genes are used to discriminate cells, yet still obtaining an F1
core of 72%. In general, then, working with short sequences requires
nformed gene selections. It is impressive to note that by looking at only
56 genes (and this applies to all organs, so some may even need fewer
enes) the system manages to achieve an F1=80.9%.

In summary, the gene selection by SVM is extremely informative
nd validates the soundness of the approach. However, in these tests,
e are examining a case where not all sequences saturate 𝑙 = 2048.

In the next task, we will examine longer sequences, exceeding 16,000
symbols, on average.

4.2. Breast type classification

Task and Data. The objective of this experiment is to apply the
proposed approach to the Breast Cancer Type Classification task. This
task involves assigning a patient to one of the following classes: Basal,
HER2, Luminal A (LumA), and Luminal B (LumB). A further goal is
to verify the method’s ability to generalize across different datasets
derived from different cohorts.

In detail, our model was trained and developed using the TCGA-
BRCA dataset.10 This dataset’s composition was approximately 60%
White, 17% African American, 6% Asian, and 9% not reported. The
original dataset comprised 1098 cases, reduced to 945 after discarding
healthy cells. Each case consisted of a gene expression profile as FPKM
values, with an average length of 16,960 genes per sequence. This is
significantly larger than the maximum length of 2048 symbols that
Geneformer can inherently manage. The testing was conducted on the
SMC Dataset,11 which comprised a 100% Korean Breast Cancer cohort.
The original SMC dataset of 187 cases was narrowed down to 166,
focusing on the target breast cancer types. The average length of gene
sequences in this dataset was 15392. The distribution of examples for
each class within the TCGA-BRCA train/dev set and the test set from
SMC are reported in Table 4.

10 https://portal.gdc.cancer.gov/projects/TCGA-BRCA
11 https://www.cbioportal.org/study/clinicalData?id=brca_smc_2018

https://www.kelp-ml.org/
https://huggingface.co/ctheodoris/Geneformer
https://www.proteinatlas.org/ENSG00000162896-PIGR
https://www.proteinatlas.org/ENSG00000132465-JCHAIN
https://www.proteinatlas.org/ENSG00000179914-ITLN1
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://www.cbioportal.org/study/clinicalData?id=brca_smc_2018
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Table 3
F1 Scores averaged across all organs by varying sequence lengths and dictionary sizes. Note: the F1 value in the last row and last column
corresponds to the Average F1 obtained in Table 2.

Sequence Length (𝑙)

16 32 64 128 256 512 1024 2048
Di

ct
Si

ze
(𝑘

) 128 77,3% 78,0% 78,2% 78,3% 78,3% 78,3% 78,3% 78,3%
256 76,0% 80,9% 82,6% 82,7% 82,7% 82,7% 82,7% 82,7%
512 72.1% 79.8% 84.4% 84.7% 85.6% 85.6% 85.7% 85.0%
1024 62.9% 75.2% 82.3% 86.3% 87.0% 86.7% 86.7% 86.7%
2048 54.8% 66.0% 78.5% 84.7% 87.2% 88.0% 87.9% 87.9%
4096 53.9% 61.2% 72.7% 81.8% 86.1% 87.6% 86.6% 86.5%
ALL 52.7% 61.2% 68.1% 78.0% 82.7% 86.6% 87.7% 87.4%
Fig. 3. Model performance metrics at selected token lengths.
able 4
istribution of examples for the Breast Cancer Types across different classes and
atasets. The split in the percentage of training and testing examples is 85% and 15%,
espectively.
Cancer type TCGA train TCGA Dev SMC

Basal 155 16 36
Her2 69 9 18
LumA 453 46 47
LumB 173 24 65

Total 945 166

In this part of the study, we compare several models, all trained
n the training portion of the TCGA dataset, with parameter tuning
erformed on the TCGA development set and testing on the SMC
ataset. Each of the following SVM models have been optimized by
uning the trade-off parameter 𝐶 of the SVM on the dataset, taking
alues from the range [10−3, 10−2, 0.1, 1, 10].

The first model, serving as our baseline, is a Support Vector Machine
SVM), which operates directly on the feature vector derived from
he gene expression data. This implies that the dimensionality of each
ector is equal to the number of expressed genes, which is about
0,500. This method represents our approach without the statistics
rom Genecorpus30M, as the values used are the original ones. For
fficiency reasons, we used the Dual Coordinate Descent (DCD) algo-
ithm implemented in the KELP library,12 which operates directly in
he primal space of observations, hence it is a linear model.

The second model is SVM𝑁𝑉 , which observes values normalized
ccording to the non-zero median value provided by Genecorpus-30M.
n this case,genes with low expressiveness relative to the median ob-
erved in Genecorpus-30M have been penalized. It is noteworthy that
he actual measured median values in Genecorpus30M are irrelevant
ince these median values are solely used to normalize our observations
nd will be applied consistently across all measurements.

12 https://www.kelp-ml.org/
10 
The third model is SVM𝑁𝐵 , where values are normalized and sub-
stituted with their boolean version, with each dimension being 0 or 1.
This approach is of interest as it aims to be independent not only from
individual measurements in a dataset but also from any discrepancies
observed between the TCGA and SMC datasets.

Finally, the last tested model was Geneformer. The parameters used
for Geneformer follows: the learning rate is 5 × 10−4; the batch size for
training and evaluation is 12; the optimizer is AdamW with a Linear
scheduler, which linearly improved the learning rate for the first 10%
of the training steps; Weight decay is adopted and set to 0.001. The
models were trained for 20 epochs, selecting the models that maximized
the accuracy on the Development Set.

Results and Discussion. The results of the experiment are pre-
sented in Table 5 and depicted in Fig. 3. The models are listed in
rows, while the columns indicate the level of cuts 𝑘. For each model,
only the genes with the highest expressiveness levels were preserved;
for SVM, this is before normalization, while for the other models, this
follows normalization. For the SVM, input is ordered using the original
‘‘activation score’’ without any reordering. This approach did not prove
effective, as selecting genes based on the original activation score led to
a limited accuracy of around 55%. However, when reordering accord-
ing to the 30-million cell statistics from Genecorpus-30M, the results
exhibit a significant change. Up to 2048 dimensions, both Genformer
and SVM models exhibit comparable performance; but beyond this
threshold, the inclusion of more evidence appears to be impactful.

Interestingly, a boolean representation of the gene expression data
seems to yield more robust results across different datasets. With a
sequence length of 8192, an impressive accuracy of 93% is achieved.
Geneformer demonstrates its effectiveness by improving the accuracy
from 55% to 72% but is inherently limited to handling up to 2048
genes. Nevertheless, normalization and the corresponding reordering
based on the 30-million cell statistics have shown to be highly benefi-
cial. By enabling the use of far more genes, accuracy is further increased
from 72% to 83%. The adoption of a boolean representation appears to
enhance robustness across different datasets even further, as evidenced
by the jump in accuracy from 83% to 93%. This suggests that boolean
normalization not only simplifies the data but also helps bridging the

https://www.kelp-ml.org/
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Table 5
Model performance metrics at selected token lengths.

128 256 1024 2048 4096 6144 8192 12 288 20 480

SVM 47.0% 54.8% 53.0% 53.6% 54.2% 53.6% 53.6% 53.6% 53.6%
SVM𝑁𝑉 64.5% 69.3% 71.7% 83.1% 80.1% 81.9% 80.7% 80.7% 80.7%
SVM𝑁𝐵 69.3% 66.9% 76.5% 78.9% 88.0% 84.9% 93.4% 86.1% 75.9%
Genef. 72.3% 71.7% 72.9% 71.7% – – – – –
Fig. 4. Comparison of SVM and Geneformer results. On the left are the models without the selection of the most informative genes. On the right, the same models after selecting
the top 2048 most informative genes using the best-performing SVM model.
.

gap between the TCGA and SMC datasets, making it easier for the
model to be generalized.

At this point, we questioned whether the 𝑆𝑉𝑀𝑁𝐵 model, in ad-
ition to achieving interesting results, had also selected genes that
ere relevant and informative for this type of analysis. Rather than
anual validation or literature analysis, we considered a quantitative

pproach. The underlying hypothesis was that if the genes identified
y 𝑆𝑉𝑀𝑁𝐵 are indeed informative, a classifier that focuses solely
n these genes should demonstrate superior performance. To test this
ypothesis, we selected the top 𝑚 genes (e.g., 2048 to align with

Geneformer’s capacity) that exhibited the highest absolute value in
their contribution to the classification decision across all classifiers.
This selection also included genes with original negative weights, as
they reflect genes strongly opposing a decision. We then repeated the
analysis considering only these 2048 genes.

The results of this focused analysis are depicted in Fig. 4. On the
left, we present the accuracy of the model when observing a ‘‘few
genes’’, ranging from 64 (very few) to 2048 (the maximum cutoff for
Geneformer). On the right, we display the results of both systems when
the analysis is confined to the 2048 genes deemed informative by the
best-performing model. Both models exhibit considerable improvement
when this filter is applied. For instance, the SVM model achieves an ac-
curacy of 92% at a dimension of 1024, a substantial increase compared
to the 8192 dimensions required previously. Similarly, Geneformer
improves from approximately 72% to 85% accuracy.

Finally, to provide a deeper understanding of the performance
differences between the linear SVM and Geneformer, we present an
error analysis through some confusion matrices. In particular, the tables
below show the confusion matrices for the linear SVM and Geneformer
under the best performing conditions: the SVM model at a dimension
of 1024 selected genes (see Table 6), and Geneformer at a dimension
of 2048 (see Table 7).

The confusion matrices reveal that, while both models follow a
similar pattern in their predictions, there is a notable increase in con-
fusion between the Her2 and LumB classes in the Geneformer model.
Specifically, Geneformer shows a higher number of misclassifications
between Her2 and LumB (11 Her2 instances misclassified as LumB
and 9 LumB instances misclassified as Her2) compared to the linear
SVM (2 Her2 instances misclassified as LumB and 2 LumB instances
misclassified as Her2).
11 
Table 6
Confusion Matrix for the SVM model at a dimension of 1024 selected genes (92%
accuracy).

Basal Her2 LumA LumB

Basal 36 0 0 0
Her2 0 17 0 1
LumA 0 0 45 2
LumB 1 2 7 55

Table 7
Confusion Matrix for Geneformer at a dimension of 2048 selected genes (85% accuracy)

Basal Her2 LumA LumB

Basal 33 3 0 0
Her2 3 11 1 3
LumA 0 0 44 3
LumB 1 9 2 53

Several factors might explain this increased confusion in the Gene-
former model. The Geneformer model, handling a larger number of
genes, might overfit specific patterns within the training data that do
not generalize well to the test data, leading to more misclassifications.
Geneformer might be capturing non-linear relationships that, while
generally beneficial, introduce noise into the classification of closely
related classes like Her2 and LumB. The inherent imbalance in the
number of samples for each class could be contributing to the misclassi-
fication, as the model might have a harder time distinguishing between
underrepresented classes.

Anyway, despite these minor issues, both models demonstrate
strong overall performance, highlighting the effectiveness of our gene
selection and model training approach.

4.3. Final remarks

In our experimental analysis, both Geneformer and SVM models
have achieved commendable results, with accuracy reaching up to
93% in the task of Breast Cancer Type Classification. This high level
of accuracy underscores the potential of machine learning models in
precision medicine and, more specifically, in the genomic analysis of

cancer.
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Despite its good performance, Geneformer does not appear to sig-
nificantly change the game in our experimental setup. One of the main
reasons for this is its built-in limitation of processing a maximum of
2048 genes. This constraint is somewhat mitigated by the application of
re-ordering based on the analysis of the 30-million cell dataset, which
has proven to be advantageous. By prioritizing genes according to their
relevance as indicated by large-scale cellular statistics, we enhance the
model’s ability to focus on the most impactful features.

The linear SVM model, on the other hand, demonstrates its effec-
tiveness in deriving ‘‘informative’’ genes. This capability is essential
for concentrating the analysis on a crucial subset of genes, effectively
compressing the data without a loss in performance. Such a focused
approach is not only beneficial for Geneformer, but it also enhances
the SVM model’s efficiency, allowing it to achieve high accuracy with
a significantly reduced feature set.

The concept of data ‘‘compression’’ that emerges from our experi-
ments suggests a promising avenue for handling vast genomic datasets.
By identifying and retaining only the most informative genes, we can
streamline the analytical process, reducing computational costs while
maintaining, or even improving, the accuracy of the predictions. This
strategy is particularly relevant when dealing with large-scale genomic
data, opening the door to more efficient and effective analysis in the
field of bioinformatics.

Our research, which combined SVM classifiers with the Geneformer
model in genetic sequence analysis for cancer diagnostics, has shown
promising results in terms of accuracy and efficiency. From a computa-
tional standpoint, the incorporation of SVM using the Dual Coordinate
Descent (DCD) learning algorithm proved to be minimally burdensome.
On average, it took approximately 10 s per organ to train an SVM model
on a standard laptop CPU, without the need for GPU acceleration.
In contrast, Geneformer required around 10–12 min for training on a
dataset of roughly 10,000 examples using an Nvidia T4 with 16 GB of
RAM. This stark difference in computational requirements highlights
the efficiency of our proposed methodology.

5. Conclusion

In this study, we showed the potential of combining transformer-
based learning and explainable AI methods in medical AI, particularly
for breast cancer type detection. By focusing on identifying and pri-
oritizing relevant gene subsets, we enhanced the capabilities of the
Geneformer model, extending its reach beyond its inherent symbol-size
limitation. This approach not only demonstrated the model’s adapt-
ability across diverse cohorts, but also emphasized its effectiveness in
maintaining high levels of accuracy regardless of the population under
study. Our experimental findings reveal that integrating explainable
AI methods with the Geneformer model significantly advances the
field of cancer genomics. The methodology provides a more nuanced
understanding of genetic markers associated with different types of
breast cancer.

In general, the proposed methodology offers several advantages,
including enhanced interpretability, improved performance, general-
izability, and computational efficiency. By leveraging explainable AI
techniques, our approach identifies and prioritizes the most relevant
genes for each specific task, making the model’s decisions more trans-
parent and interpretable. This is crucial in medical applications where
understanding the underlying decision process can aid in clinical val-
idation and acceptance. Our method demonstrates high accuracy in
both cell type and breast cancer type classification tasks, ensuring
that the model maintains or improves its performance even when the
input dimensionality is significantly reduced. The model’s ability to
generalize across different datasets and cohorts highlights its robustness
and potential applicability in diverse clinical settings. Additionally, the
use of linear SVM for initial gene selection significantly reduces the
computational burden, making the overall approach more efficient.
12 
Despite these advantages, our approach has some limitations. The
effectiveness of the Geneformer model relies heavily on the quality
and comprehensiveness of its pre-training on large-scale datasets. Any
biases or gaps in the pre-training data can affect the model’s perfor-
mance. Geneformer can handle sequences up to 2048 genes, which may
not capture the full complexity of the transcriptome in certain cases.
Although we mitigate this by selecting the most relevant genes, this
limitation can affect the model’s ability to utilize all available data.

In addition, while our use of linear SVM simplifies interpretability
and computation, it may miss capturing complex non-linear relation-
ships between genes. To address these complexities, an interesting
avenue for future work is the exploration of Kernel-based SVMs (Vap-
nik, 1995), such as the Fisher kernel (Shawe-Taylor & Cristianini,
2004). Although they are less efficient than the linear approaches used
in this study and do not offer straightforward interpretability, Kernel-
based SVMs can capture complex, non-linear relationships among genes
that linear models may miss. The trade-off between computational
efficiency and the ability to model non-linear interactions needs careful
consideration. Future research will investigate the integration of non-
linear SVMs with explainable AI techniques to enhance interpretability,
as suggested by studies like Sanz, Valim, Vegas, Oller, and Reverter
(2018).

In conclusion, while our experimental results demonstrate promis-
ing outcomes in molecular and breast cancer type classification, our
ongoing and future work is committed to further enhancing the model’s
robustness and practicality. We are currently undertaking a thorough
literature and experimental evaluation of all discriminative genes ex-
tracted by our model. Additionally, we plan to address potential overfit-
ting through advanced cross-validation techniques, integrate the model
into clinical workflows, and extend our testing to a broader range
of cancer types and populations. These steps are fundamental for
confirming the model’s effectiveness in diverse medical contexts.
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