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ABSTRACT

Context. Static and quasi-static aberrations represent a great limit for high-contrast imaging in large telescopes. Among them the
most important ones are all the aberrations not corrected by the adaptive optics (AO) system, which are called non-common path
aberrations (NCPA). Several techniques have been proposed to mitigate it. The typical approach is to set an offset on the AO system
with exactly the opposite sign of the NCPA in order to correct for the aberrations introduced by all the optical components downstream
the wave-front sensor (WFS) up to the science camera. An estimate of the NCPA can be obtained with a trial-and-error approach or by
more sophisticated techniques of focal-plane wave-front sensing.
Aims. In all cases, a fast procedure is desirable to limit the telescope downtime and to repeat, if needed, the correction procedure to
cope with the temporal variation of the NCPA. Very recently, new approaches based on neural networks (NNs) have also been proposed
as an alternative.
Methods. In this work, through simulated images, we test the application of a supervised NN for the mitigation of NCPAs in high-
contrast imaging at visible wavelengths and, in particular, we investigate the possibility of applying this method to fast imagers such as
SHARK-VIS, the forthcoming visible-band high-contrast imager for the Large Binocular Telescope (LBT).
Results. Preliminary results show a measurement accuracy of the NCPA of 2 nm root mean square (RMS) for each sensed Zernike
mode in turbulence-free conditions, and 5 nm RMS per mode when the residual turbulence has a wave-front error (WFE) of approx-
imately 42.5 nm RMS, a typical value during LBT AO system calibration. This measurement is sufficient to guarantee that, after
correction, NCPA residuals in the system are negligible compared to the typical WFE > 100 nm RMS of the best AO systems at large
telescopes.
Conclusions. Our simulations show this method is robust even in the presence of turbulence-induced aberrations that are not labelled
in the training phase of the NN. The method could thus be used in a real-world setting by offloading a corrective static offset to the AO
system of a telescope to mitigate the NCPA.

Key words. instrumentation: adaptive optics – methods: data analysis – techniques: image processing – techniques: miscellaneous –
telescopes – turbulence

1. Introduction

Astronomical high-contrast imaging demands accurate wave-
front control to minimise residual atmospheric aberrations that
can hamper the detection of very faint objects, for example for
extrasolar planet imaging (e.g. Mesa et al. 2019; Lagrange et al.
2009; Marois et al. 2008). A significant limitation to the achieve-
ment of the theoretical contrast limit is represented by static or
quasi-static aberrations that can result from, for example, opti-
cal imperfections, misalignments, or thermal effects. This is the
case for both space- (e.g. Hubble Space Telescope Gonsalves
& Nisenson 1991) and ground-based observations. In the latter
case, particularly with regard to adaptive optics (AO) systems,
imaging instruments operated at ground-based telescopes are
affected by wave-front errors (WFEs) that result from different
contributions: residual atmospheric turbulence not corrected by
the AO, telescope vibrations, gravity- or temperature-induced
deformations of the optics, and the performance of the optical

elements themselves. Image aberrations originating downstream
of the WFS are not sensed by the wave-front sensor (WFS) itself,
and therefore are not corrected by the AO system, thus contribut-
ing to the increase of the overall WFE, as noted in Esposito et al.
(2020).

In this regard, wave-front sensing performed by the science
camera would be ideal to effectively mitigate these residual aber-
rations (Jedrzejewski et al. 1993), which are generally referred to
as non-common path aberrations (NCPA).

Achieving a robust focal plane or close-to-focal plane wave-
front sensing, based on the analysis of the point spread function
(PSF), would also offer a series of advantages in different fields
of astronomical instrumentation, including post-facto image
deconvolution and analysis. In general, it would also be useful
whenever a mitigation of the residual WFE is desired but a ded-
icated WFS or a secondary focal plane are not available, leading
to analysis of extrafocal plane image momentum, as in Terreri
et al. (2019b).
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Fig. 1. Focal-plane images simulated at two different wavelengths:
Hα = 656 nm and K band = 2200 nm. From left to right: diffrac-
tion limited PSF; PSF with NCPAs of WFECPA ≈ 50 nm RMS; PSFs
with AO residual WFEAO ≈ 100 nm RMS; PSFs with AO residuals and
NCPAs.The Strehl ratio (SR) is calculated using Szapiel (1983); Ross
(2009). The NCPA effect is clearly stronger at the shorter Hα wave-
length.

Even if smaller than the residual amplitude of the see-
ing aberrations, NCPAs can still represent a severe limitation
(see Fig. 1), in particular in applications such as high-contrast
imaging of circumstellar discs and exoplanets where extreme
wave-front control is required (Potier et al. 2021).

Preliminary on-sky tests (Esposito et al. 2012) conducted
on the First Light Adaptive Optics (FLAO) instrument at the
Large Binocular Telescope (LBT, Arizona USA; Hill 2010) have
shown an overall residual WFE ranging from an 80 nm root mean
square (RMS) for a star of RMag = 7.5 to a 218 nm root mean
square RMS for a star of RMag = 14.5, as also reported in Pinna
et al. (2015, 2016); Agapito & Pinna (2019) and provided by the
Strehl Calculator1. According to Li Causi et al. (2017); Causi
et al. (2018); Hope et al. (2019); Stangalini et al. (2018); Mattioli
et al. (2019), these results limit the contrast achievable at visible
wavelengths to about 5 × 10−5 at 100 mas separation from the
central star under typical observing conditions (seeing ranging
from 0.8′′ to 1.2′′).

NCPAs contribute to the overall WFE budget and show typ-
ical sub-Hz frequencies and amplitudes in the range of a few
tens of nanometers RMS, as in Pedichini et al. (2017); Esposito
et al. (2020). NCPAs usually affect the low orders of the Zernike
components of the wave-front (in this article Zernike compo-
nents are indexed according to the Noll convention Noll 1976),
and the effects are stronger as the wavelength becomes shorter
as confirmed by experimental and theoretical results reported in
Vassallo et al. (2018); Esposito et al. (2020); Szapiel (1983); Ross
(2009). In the case of point-like sources, in the last decade new
wave-front sensing technologies (Guyon et al. 2006; Korkiakoski
et al. 2014) have been developed based on the analysis of
images taken directly from the science camera: these are referred
to as focal-plane wave-front sensors (FPWFS). A few exam-
ples are phase diversity (PD; Gonsalves 1982), curvature WFSs
(Roddier 1988), the Roddier Test (Roddier et al. 1988), the Itera-
tive Fourier Transform method (Roddier & Roddier 1991), the
Photonic Lantern WFS (Norris et al. 2020), and approaches
based on machine learning (Orban de Xivry et al. 2021)
(Menduiña Fernández 2021). These methods are useful to mea-
sure NCPAs and mitigate their effect. In particular, on AO-
assisted telescopes this is done through the addition of a specific
static offset to the AO real-time correction, which corresponds
to the opposite value of the measured NCPA.

1 http://adopt.arcetri.inaf.it/strehl.html

Fig. 2. Detailed view of the degeneracy problem for even radial orders
(n) at focal plane. Top panel: aberrations induced by even radial-order
Zernike with n = 2 (Z4,Z5,Z6). Bottom panel: aberrations induced
by odd radial-order Zernike with n = 3 (Z7,Z8,Z9). Top rows: wave-
front OPD at pupil. Centre rows: focal-plane images of aberrated PSFs.
Bottom rows: extra-focal-plane images,obtained with 10 mm of defocus
on an f /25 beam. The removal of the degeneracy is evident in each
extra focal image (the WFE amplitude was always 50 nm RMS).

However, one of the principal drawbacks of this approach is
the degeneracy at the focal plane of the PSF with respect to the
sign of some aberration components, that is the fact that for some
aberrations, opposite sign amplitudes produce the same PSF at
the focal plane; hence, there is a difficulty in disentangling the
contribution of these aberration terms. This effect can be seen
in Fig. 2, where pupil plane wave fronts and their correspond-
ing PSFs are compared: for even Zernike orders n = 2, 4, 6, ...,
a positive (+50 nm) or negative (−50 nm) Optical Path Dif-
ference (OPD) produces exactly the same PSF, while for odd
Zernike orders n = 3, 5, 7, ... the PSFs are different. In the extra-
focal plane, however, this degeneracy is removed, so the use
of extra-focal plane images allows the retrieval of information
even for even radial-order Zernike components. In order to solve
this ambiguity, most methods exploit images from intra- and
extra-focal planes, such as the Roddier test (Roddier & Roddier
1993), which uses both, or the Phase Diversity (PD) technique
described in Gonsalves (1982), which uses one image taken in-
focus and another taken with a known amount of defocus, as
done by SPHERE at the VLT by Sauvage et al. (2011). It is, how-
ever, also possible to solve this problem with a single PSF image
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Fig. 3. Conceptual optical layout of SHARK-VIS at LBT for closed-dome calibration operations.

taken at a defocused plane by using its morphology and inten-
sity distribution; an example of this approach is the Wave-front
Reconstruction Software (WRS), which is currently used at the
Large Binocular Camera (LBC) at the LBT to preset the shape of
the active primary mirror and was used to identify the first low
Zernike order static aberration values in Terreri et al. (2019b).

Building on this knowledge base, we introduce the idea
of using an Artificial Intelligence (AI) approach to FPWFS,
using Principal Component Analysis (PCA) encoded out-of-
focus images as input for a Neural Network (NN) to retrieve
aberrations in optical systems (Hotelling 1933, Terreri et al.
2019a). Neural Networks are extremely efficient in mapping
non-linear relationships between input and output in regres-
sion problems and they have almost real-time results once the
model is trained. The present work used a Multi-Layer Per-
ceptron (MLP) NN to analyse defocused images and measure
their wave-front aberrations. All images reported in this work
are simulations generated following an optical prescription cor-
responding to the optical design of SHARK-VIS (Fig. 3), the
new forthcoming high-contrast and high-resolution visible-band
imager for the LBT, as described in Pedichini et al. (2016) and
Mattioli et al. (2018).

We generated two datasets of simulated images in differ-
ent conditions and, for each one of them, an NN model was
trained to measure the first 21 Zernike polynomials. In the
first dataset, only aberrations encoded in the first 21 Zernike
polynomials were injected, while the second set also contained
high-order aberrations typical of the LBT AO residual turbu-
lence that occurs during closed dome calibrations (Esposito et al.
2012). The range of this is from 40 to 50 nm RMS. The lat-
ter situation closely represents the conditions of an instrument
such as SHARK-VIS at the LBT, when calibration procedures
intended to minimise NCPAs are executed by using the tele-
scope diffraction-limited source of ARGOS, as in Schwab et al.
(2010).

2. Methods

Our wave-front analysis procedure takes extra-focal-plane
images of optical systems, generated with physical optics prop-
agation, and applies a two-stage process to retrieve the Zernike
expansion (Noll 1976) of our original wave-front. First, a PCA

(Hotelling 1933) of the image is performed, and then the
resulting PCA coefficients are analysed by a properly trained
NN using the python code in the scikit-learn (Ross et al. 2008)
library package.

Neural Networks (Sect. 2.3) are algorithms designed to
recognise patterns in data by establishing correlations between
input and desired output data. As described in Van Der Malsburg
(1986), a simple toy model can be graphically described by a net
of lines connecting a set of nodes called ‘neurons’, representing
input numbers, with other nodes representing output, possibly
including auxiliary nodes in-between. These neurons are usually
structured in three different blocks called ‘layers’: the input layer,
the hidden layer(s), and the output layer. The net works by prop-
agating the node values from the input layer to the output layer,
processing the values at each node and propagating the result to
the next. At each node, the separate input values are each multi-
plied by a weight and summed. A bias value is then added to the
sum. The resulting value is then fed as an argument to an acti-
vation function; the output value of the function is the value for
that neuron and is fed to the next layer. Activation functions can
be of different types (Sigmoid, ReLU, atan,...) and they are the
element that makes the whole process non-linear. In our case, the
activation function is a fixed ReLU for all neurons and the biases
are set to 0. The values in the output layer are thus dependant on
the weights. Before the NN can be used, the weights must first be
optimised: this is the ‘learning’ process of the net and is called
“training’ the NN. In this phase, data consisting of known corre-
sponding inputs and outputs are fed to the NN, respectively to the
input and output layers, and used to iteratively update connection
weights. After the training process is completed, it is possible to
apply the NN to new and unknown datasets in a ‘testing’ phase.
In this phase (which can be also called the ‘working’ or ‘predic-
tion’ phase), data are fed to the input layer and the NN outputs
the result(s).

In our case, the NN is trained to output a measure of the
wave-front aberrations from input-simulated images whose aber-
ration is known. Once the training is completed, a different set
of images with different known aberrations (the testing dataset)
is fed to the NN; the output is then compared with the known
input and the accuracy of the prediction is measured. For our
purpose, we generated different sets of defocused PSF images
for the training and testing phases (Sect. 2.1) simulating different
Zernike aberrations by means of an optical propagation software.
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Table 1. Settings used for the optical simulations and for the develop-
ment of the NN.

Parameter Value

F# 25
Defocus [mm] 10
Simulation grid points 1024 × 1024
Detector pixel size [µm ] 6.5
Entrance Pupil Diameter [mm] 8200
Wave-front sampling [mm] 18.6
Final image size [pixel] 137 × 137
Simulation wavelength [nm] 656
λ\D [mas] 16.5
# pixel corresponding to λ\D 2.52
# sample training 8000
# sample validation 2000
# sample testing 100
# PCA components 500
# hidden layers 1
# hidden layers neurons 10 000
range ci [nm RMS] ±50
# Zernike simulated 21
# Zernike used for NN 18

We then applied a PCA (Sect. 2.2) to the simulated defocused
PSF images, which encodes each image into a vector of a few
hundred coefficients. These coefficients are used as values for
the input layer nodes, and the values of the output layer corre-
spond to the Zernike coefficients for all the simulated PSFs. In
practice, the NN maps PCA coefficients to Zernike coefficients,
allowing us to directly measure the wave-front aberrations from a
defocused image of the PSF. In Sect. 2.4 we describe how atmo-
spheric turbulence residuals were simulated and then introduced
together with Zernike coefficients.

2.1. Simulations

All the simulations used in this work were made using the
proper_lib python optical propagation library developed by Krist
(2007). Using this library, it is possible to inject known aberra-
tions expressed in terms of Zernike polynomials as

W = W0 +

N∑
i

ciZi (1)

where W is the final wave front that generates our images, W0
is the original wave front (with no NCPA), and

∑N
i ciZi is the

NCPA aberration, with ci being the amplitude RMS of the i-
th Zernike polynomial, using the Noll index (Noll 1976) on the
index i to identify the Zernike order.

For our simulations, we generated several series of random
ci with a uniform distribution in the ±50 nm RMS range, with
one series for each image of each set. These were organised into
2D-arrays (‘Zernike dataset’), with row indices corresponding to
the image number and column indices corresponding to the i-th
Zernike polynomial. Hereafter, all the measures regarding the
WFE are to be considered as RMS.

Running the optical propagation we generated an image
for each coefficient set and created a cube of images (‘Image
Dataset’). Optical simulation parameters were chosen in order
to reproduce the working conditions of SHARK-VIS. Table 1
summarises the parameters used to generate the image datasets

for each of the three stages of NN learning and application (i.e.
training, validation, and testing; see Sect. 2.3).

Each set of Zernike coefficients is thus mapped to each image
of the ‘image dataset’. Out-of-focus images were initially gener-
ated on a 1024 × 1024 grid to guarantee super-Nyquist sampling
of high-order components and avoid aliasing; these were then
re-sampled onto a smaller 147 × 147 grid to reproduce the real
sampling of the 6.5 µm pixels of the SHARK-VIS science cam-
era detector (Andor Zyla as described in Andor 2018). Each
image was then registered to make the array centre coincide with
the position of its photo-centre and cropped to a dimension of
137 × 137 pixels to remove tip and tilt (Z2 and Z3).

The expected NCPA typical of an imaging instrument such
as SHARK-VIS, resulting from Pedichini et al. (2017), is of the
order of a few tens of nanometers, with the dominant aberrations
described by Zernike polynomials from Z4 to Z11. To make our
simulation robust and realistic, in Eq. (1) we set N = {1...21}
and the ci range of each component to ±50 nm RMS in the
Noll representation. The piston term Z1 is neglected because it
is a constant phase offset on the optical pupil of the system and
does not affect the in-focus or out-of-focus PSF. Tip (Z2) and
tilt (Z3) do not modify the PSF shapes on the image plane, only
its position; their effects are eliminated by the centring during
the dataset pre-processing and are not relevant for the NCPA
analysis. Consequently, it is the Zernike from 4 to 21 that are
processed by the NN. We set the value of the defocusing of the
images to 10 mm after the nominal focal plane in order for it to be
compatible with the range of the focus stage of the SHARK-VIS
science camera, which is between −10 mm and +40 mm. This
value was found to work through preliminary tests: as stated in
Sect. 5, we plan to further explore the effect of different defocus
positions in future studies. The number of image samples for the
NN training phase was set to 10 000.

The simulation tool ran on a laptop with an INTEL core
i5 3320M processor. The average time for the generation (with
or without AO residual turbulence) of one aberrated extra-focal
image of 1024 × 1024 pixels is ∼2.5 s when using N = 21; a
further ∼0.5 s are necessary for the post-processing (centring,
cropping, and disc storage).

2.2. PCA

After its generation, each data set is processed with a PCA that
computes a basis of eigen images from an image dataset (Fig. 4).
This technique is widely used to reduce data dimensions as in
JPEG encoding for image compression, PSF reconstruction for
angular differential imaging (ADI) as in Amara & Quanz (2012),
and pattern recognition. Every image of the dataset can then be
expressed in terms of this basis as a sum of eigen images with a
specific set of coefficients. These coefficients are used as input
for the NN in place of the actual images, thus requiring only
a small number of neurons in the NN input layer. We see that
500 components are enough to keep most of the information
present in the image dataset, as can be verified in Fig. 5, where
the maximum absolute values of each PCA coefficient over the
whole dataset and their cumulative function are plotted, versus
the PCA component order. It is evident that after 400 modes
there is little added information; the high number of components
needed to properly encode our problem reveals the faintness of
information present in the NCPA signal we are trying to mea-
sure. The datasets are thus encoded on one side by the Zernike
coefficients of the injected aberrations and on the other side by
the PCA coefficients (Fig. 6). The NN training process creates a
robust correlation between these two descriptors.
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Fig. 4. Example of the first and last 8 eigen images output by the PCA of
one extra-focal dataset. The first PCA eigen images encode wide spatial
scales in the image, while the last ones contain information on high
spatial frequencies.

Fig. 5. Contribution of PCA components to image information. Blue:
maximum absolute value for each PCA coefficient across all images
used to create the basis. Orange: cumulative value of all previous PCA
coefficients. The dashed grey line is the 0.8 limit reference reached
using more than 400 PCA components.

2.3. Artificial neural network and multi-layer perceptron

Artificial Intelligence is a branch of informatics focused on the
creation of machines that are able, using specific algorithms,
to make decisions autonomously when stimulated by external
inputs. Inside this AI family, there are ‘deep-learning’ meth-
ods based on artificial NNs. In the biological world, cognitive
functions are provided by the presence of ‘neurons’ which are

arranged in an interconnected network. The multi-layer percep-
tron (MLP) is one of the most used NN layouts and is detailed
in Van Der Malsburg (1986). This layout (Fig. 7) has a series of
artificial neurons organised in layers, where each neuron com-
municates with all the others placed on the previous and next
layers; the first and last layers manage the input and output func-
tions and are called input and output layers, while all the others
are referred to as the hidden layers.

In order to tune the connection weights and biases of the
neurons, the NN must be trained. In this phase, the input and
output are both fed with known linked data: the process is iter-
ative, and at each step, known as an ‘epoch’, the weights and
biases are modified, until the RMS error between the NN output
and the expected output is below the required precision. There
are different optimisation algorithms to train the NN weights.
We used ADAM, which is described in Kingma & Ba (2017).
Such training processes usually require two phases: the NN is
first trained on a large dataset, called a training set; then, after
convergence, the NN is applied to a smaller dataset, called a val-
idation set to check if the prediction error is still low on different
data than that used for training. If this condition is not met the
network parameters are changed until a validated NN model is
achieved.

In our case, each set is composed of PCA data and Zernike
data. During training, we fed the NN with the PCA training
set as input and the Zernike training set as output. At specific
regular epoch intervals, a PCA validation set and its correspond-
ing Zernike-validation-set elements are injected into the NN.
The validation-set elements, which represent 20% of the entire
training dataset, are useful to avoid the NN ending up on local
minima. After typically 100 epochs, the accuracy stabilizes just
below 4 nm, which is an acceptable level for our kind of applica-
tion (see Fig. 8). Once a NN training phase has been concluded,
it is said that a specific NN model has been generated. In our
NN, the input layer has Ninput = 500 neurons, corresponding to
the number of PCA components, the single hidden layer has
Nhidden ≫ Ninput and the output layer has 18 neurons correspond-
ing to the number of Zernike components. Our hidden layer is
composed of Nhidden = 10 000 neurons with a ReLU activation
function; this number was chosen by trial and error, following
the principle expressed in Hornik et al. (1989) whereby a NN
with one hidden layer whose number of neurons tends to infinity
can approximate any functional relation.

The capture range of the NN is defined by the training
process, for instance if we train the NN with Zernike coeffi-
cients randomly distributed in the ±50 nm range then the NN
will be able to recognise aberrations in this range. After the
training stage, the testing set is used to test our concept and
explore the NN performance on unknown data, which are to
those used for training. The testing set is composed of Ntest =
100 images. These are decomposed on the same PCA eigen
image basis as the training dataset to obtain the PCA testing
set. The corresponding Zernike testing set contains the aberra-
tions encoded into each image and the values against which the
NN output will be compared to verify its accuracy in working
conditions.

We also tested how fast the NN reached a plateau for differ-
ent numbers of PCA components [200, 300, 500] and for what
mean absolute error (MAE) over all the Zernike components. In
Fig. 8, we notice that with 500 components the plateau is reached
faster (~100 epochs ) and, more importantly, with a lower MAE
(~2.4 nm ). In the same figure, with 300 components the plateau
is reached at 300 epochs and ~3.2 nm MAE and with 200 at
150 epochs and ~3.9 nm MAE.
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Fig. 6. Left matrix represents the PCA-training-set input of the NN and right matrix is the Zernike-training-set output of the NN. Each row of the
two matrices represents one of the 10 000 images of the training dataset.

Fig. 7. Working flow structure of the NN.
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Fig. 8. Mean absolute error (MAE) over the Zernike component vs.
training epochs of the NN. A larger number of PCA components allows
a faster and more accurate training of the NN. The asymptotic values for
each PCA curve are reported above the plot final parts.

2.4. AO residual and NCPA

As stated previously, we analysed two scenarios, one where only
NCPA aberrations were present and one with both NCPA and AO
residuals. AO residuals are high-order aberrations left after the
correction of the AO system with a timescale τ that corresponds
to the atmospheric turbulence timescale and is of the order of
a few milliseconds Stangalini et al. (2017). These residuals com-
bine with other present aberrations (e.g. NCPA), further reducing
the SR at the science focal plane. The final wave front can then
be expressed as follows:

WFEtotal ≈

√√√
WFE2

AO +

N∑
i=1

(ciZi)2. (2)

In order to create a NN model capable of identifying
quasi-static aberrations within images affected by turbulence,
i.e. AO residuals, we had to create a realistic model of the
turbulence itself. Creating a realistic model of the turbu-
lence requires comparing the model with a real-case measure-
ment at the telescope that is to be simulated. This in turn
implies comparing long-exposure PSFs of the simulated and real
cases.

Long- and short-exposure PSFs in AO systems are different.
Short-exposure PSFs (texp < τ) are dominated by a bright diffrac-
tion core and high-frequency spatial structures called ‘speckles’.
Long-exposure PSFs (texp ≫ τ) have a central core with the pres-
ence of diffraction rings that are similar to those of the Airy
diffraction pattern, while the halo is smooth and resembles that
of a seeing-dominated PSF (Fig. 9). The transition point between
the two regions is called the control radius and is identified by
a bump in the PSF luminosity profile (see Fig. 10). The control
radius is a function of the number of corrected modes in the AO
system according to the following equation:

Rc[mas] ≈
180 · 3600
π

√
Nmodes

π

λ

D
= 210 mas (3)

where Rc is the control radius, Nmodes the total number of actua-
tors in the AO system, λ is the observing wavelength and D is the
diameter of the telescope pupil. For the LBT forerunner exper-
iment, Nmodes = 550, λ = 630 nm, and D = 8.2 m, resulting in
Rc = 210 mas (Pedichini et al. 2017; Tyson 2011).

To obtain the long-exposure PSF profiles, we added ran-
dom phases to our optical simulation of the wave front at the

Fig. 9. Comparison between simulated and on-sky images of forerunner
PSFs at LBT. Top row: PSF-simulated images. Bottom row: forerun-
ner at LBT PSF images at λ = 630 nm, f# = 44. Left column: Short
1 ms exposures. Right column: long 1 s exposures.In the real on-sky
image, it is possible to see the slow wind effect left uncorrected by AO
and causing an asymmetric scintillation halo structure, as explained in
Madurowicz et al. (2019).

Fig. 10. Long exposure PSF (1 s) radial profile comparison between
real (Forerunner) and simulated data.

pupil plane. The phase screen representing the random phases
was sampled every 18.6 mm across the LBT aperture of 8.2 m
diameter; its PSD was derived from a low-pass filtered Kol-
mogorov spectrum similar to the response of the LBT AO system
with a WFE value of approximately 42.5 ± 2 nm RMS. This
Optical Path Difference (OPD) phase screen, which simulates
typical AO residual turbulence during closed dome calibrations,
has been verified experimentally at LBT in the same conditions
(Quirós-Pacheco et al. 2010). Data were saved in a large fits file
of 4096 × 4096 pixel (see Fig. 11).

We then took random 440 × 440 pixel portions of this phase
screen and injected them in simulations generating a series of
images equivalent to an exposure time of 1 ms. We summed
1000 of these short-exposure images in order to create the PSF
of an equivalent long-exposure of 1 s and normalised it to its
peak to compare its luminosity profile with the real one obtained
from the SHARK-VIS forerunner experiment PSF at 1 s expo-
sure (Pedichini et al. 2017); see Figs. 10 and 9. The simulated
PSF has a control radius that matches the real one well, and
the core and wing profiles also match. The phase screen of AO
residuals is also useful to simulate short integration times. As
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Fig. 11. OPD layer phase screen (4096 × 4096 pixel) used to emulate
LBT AO residual turbulence with WFE ≈ 42.5 nm RMS. The annulus
shows a 440 pixel diameter disc corresponding to the real pupil of the
telescope.

the refreshed timescale of speckles is of the order of millisec-
onds, as expected according to Stangalini et al. (2017), using
a high-speed acquisition frame rate ( >1 KHz) it is possible to
freeze the atmospheric turbulence and acquire images similar to
our AO residual simulation (see Fig. 9). This condition is still
valid in every image plane, including the extra-focal one; fur-
thermore, the defocusing performs a smoothing and broadening
effect on high spatial frequency structures, which is helpful for
the PCA encoding. We can exploit the fast imaging approach and
the corresponding atmospheric frozen flow condition to infer the
NCPA as an average of the NN prediction results. The testing set
with AO residuals was obtained from a set of constant Zernike
coefficients, representing a fixed NCPA and random AO resid-
uals added as different OPDs for each of the simulated images
of the dataset. This is a good representation of a short burst of
1 ms exposure images acquired during a calibration run when
the NCPA is static and the AO residual varies on milliseconds
scales. The AO residual can be considered as noise for the NN
and thus is not expected to influence the training process.

2.5. NCPA mitigation concept with AO residuals

To test the NN efficiency, we first generated different sets of
images: each image of one set had the same fixed NCPA. For
each set, we let the NN measure the NCPA (Zernike coefficients)
of every image. These values were then averaged over the whole
set to estimate the total NCPA for that set. We then measured
the MAE between the injected and measured values and imple-
mented an iterative process where successive NCPA estimates
are removed and the corrected images are then fed to the NN for
a new estimate. In a real-world operation, this is equivalent to
measuring the NCPA, sending the corresponding correction to
the AO system for removal and repeating the measure until the
NCPA value is below a certain threshold.

This process was simulated with the proper_lib and the
42.5 nm phase screen. The NCPA measured by the NN in one set
is multiplied by a gain factor and then subtracted from the initial
NCPA (which had been injected in that set): the new NCPA is
then injected in the simulation tool to create a new set of images,
as per the following equation:

NCPA(i + 1) = NCPA(i) − g · NN(i), (4)

where i is the iteration step, NCPA(i) is the NCPA at step i, NN(i)
is the NN output at step i, and g is the gain factor.

Table 2. Summary of the results obtained for the WFE [nm] RMS by
the NN prediction averaged for every dataset.

Dataset (λ = 656 nm) Initial WFE [nm] Recovered WFE [nm] MAE [nm]

No turbulence + NCPA 140 26 2.36
AO res.+ NCPA 133 58 5.36
AO res. NCPA mitigation 150 44 1.84

Notes. AO residual RMS WFE is 42.5 nm.

Fig. 12. No turbulence case. Comparison of predicted (red) and injected
(green) Zernike values of a single image of the testing set (exact values
in Table 3).

We let the simulation run for 15 iterations to verify if oscilla-
tions were triggered for certain gain values. Results are presented
in Sect. 3.4.

3. Results

The values from NN models with and without AO residual tur-
bulence are summarised in Table 2. The recovered RMS WFEs
are the final residual RMS after applying the NCPA calculated
by the NN as a correction to the input wave front. The results are
the average over the whole set.

3.1. Ideal condition: No turbulence

The median MAE achieved from our predictions in this case is
3.67 nm, and in Fig. 12 we compare the magnitudes of injected
and retrieved values versus Zernike order for a specific case, with
values reported in Table 3. We further reduced the WFE and flat-
tened the NCPA components by applying recursive predictions
and corrections, as described in Sect. 2.5.

In Fig. 13, we plot the RMS WFE values before and after the
prediction and correction phase. As shown, the NN reduces the
RMS WFE by a factor of almost 6, taking the average on the test
set from WFEinitial ∼ 124 nm to WFEfinal ∼ 21 nm. In Fig. 14, we
show the effects on the PSF after the correction of NCPA by the
NN prediction in one of the simulated cases. The NN prediction,
however, can then be re-applied after the first step of correc-
tion and so on with the aim of improving the final results, as in
Fig. 15, where we find that using a process gain of 0.8 makes it
possible to flatten the wave front to a final MAE of ≈10 nm RMS
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Table 3. Injected Zernike coefficients and the corresponding values
found by the NN in two images of the testsets for the two different cases
of no turbulence and AO residual 42.5 nm turbulence.

Zernike n° Values from Fig. 12 [nm] Values from Fig. 16 [nm]

Injected Predicted Injected Predicted

Z4 –32.96 –28.18 –12.20 –7.19
Z5 10.84 5.21 0.48 –2.77
Z6 –7.25 –1.05 39.03 38.53
Z7 –30.41 –34.89 7.73 9.91
Z8 41.55 45.89 –10.33 –15.54
Z9 32.40 28.27 –10.60 –6.57
Z10 –39.65 –44.58 29.52 18.29
Z11 –45.94 –45.68 –25.53 –30.26
Z12 –38.05 –41.37 28.65 20.17
Z13 45.17 46.04 3.66 11.02
Z14 32.42 28.23 46.86 34.53
Z15 –16.27 –22.20 –24.22 –24.71
Z16 –24.38 –22.98 –7.34 –6.87
Z17 30.49 26.77 –46.07 –54.12
Z18 –19.29 –23.58 –21.41 –27.45
Z19 30.90 27.31 –12.94 –11.59
Z20 27.54 26.6 34.53 34.54
Z21 –3.06 –8.65 –49.8 –47.18

Fig. 13. NCPA correction in the case of no turbulence. Dashed lines
represent the mean, over the entire testing set, of initial and corrected
values. Each sample represents a ‘single iteration’ of the NN prediction
and simulated NCPA correction.

in a few steps despite the initial NCPA components. This result is
also mathematically supported by the quadratic sum of the MAE
of the 18 Zernike components (each one with a MAE of 2.36 nm
RMS) giving a final value for the WFE of ≈10 nm RMS.

3.2. Addition of AO residual turbulence: NN behaviour

In this section, we cover the behaviour of the NN when typi-
cal AO residual aberrations are present and when using short
exposure images as NN input (see Sect. 2.4). In this test set,
every image has both different AO residuals and different NCPA
aberrations. We increased the number of training samples from

Fig. 14. PSF of one case from Fig. 13 in log scaling. From left to right:
NCPA aberrated; corrected for NCPA with only one NN prediction;
diffraction-limited PSF (for comparison).

Fig. 15. Effects of iterative application of the NCPA prediction and cor-
rection by NN on ten different cases of initial NCPA using a gain of 0.8.
The MAE is always reduced to only 10 nm RMS in a few steps.

Fig. 16. Turbulence case. Comparison of predicted (red) and injected
(green) Zernike values of a single short exposure image of the testing
set (exact values in Table 3).

10 000 to 15 000 in order to improve the NN prediction capa-
bility, reaching a median value of MAE = 5.17 nm. Figure 16
shows a specific case to compare the magnitudes of injected and
retrieved values versus Zernike order. Exact numerical values are
reported in Table 3. The WFE after prediction by the NN and cor-
rection is less than half of the initial value and close to the AO
correction without NCPA (Fig. 17).
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Fig. 17. NCPA correction in case of ≈42.5 nm turbulence based on our
NN model predictions. Dashed lines represent the mean, over the entire
testing-set, of initial and corrected values. The red dashed line is the
AO system limit without NCPA. In this test set every image has both
different AO residuals and different NCPA aberrations.

This test shows that the NN is effective in identifying aberra-
tions with sufficient accuracy even if high-order aberrations from
AO residuals are present. This includes aberrations that were not
labelled during the training phase, i.e. the NN has not been ’told’
what they are.

3.3. Estimation of static NCPA with AO residuals

In a sequence of short exposure images, we have different WFEs,
and, consequently PSFs with different sharpnesses, depending
on the combination between the NCPA and the instantaneous
AO residual; thus, it is not possible to estimate quasi-static aber-
rations and minimise the average WFE with a NN prediction on
a single image. This is why several images arranged in a time
series are needed for a correct evaluation of the NCPA. To verify
this, we fixed a static NCPA value for a dataset of 100 images and
let the NN infer the NCPA value. The predictions of the injected
NCPA are shown for each Zernike component in Fig. 18. The
average of the NN predictions for each Zernike is assumed as
the NCPA estimate for that component. For most of the NCPA
Zernike components, the typical estimate error is less than 10
nm.

3.4. NCPA mitigation process

As described in Sect. 2.5, we simulated NCPA correction in
a real-world system by iteratively estimating it from a set of
images, correcting the same set and feeding the corrected images
to the NN for a new estimate. In Fig. 19 we present the results of
15 steps and of the values of the single Zernike coefficients after
each successive step in the iteration.

We then ran three 15-step simulations, each with different
gain settings. The results are presented in Fig. 20 with the result-
ing WFE at every step of simulated correction; a gain, g = 1
is still stable and allows the NCPA to be removed after only
three simulation steps. This means that a few hundred images
are sufficient to correct the NCPA of the system. In a fast imag-
ing instrument, such as SHARK-VIS, this corresponds to about a
few seconds of exposure, assuming the time for NN predictions

is negligible with respect to the exposure time. The RMS WFE
goes from the initial value of WFE ≈ 185 nm to WFE ≈ 43 nm,
which is the typical value of the residual turbulence left by AO
in closed dome conditions.

We also verified the NN mitigation process on 20 sets of data
with different NCPA values to see if the method is robust in dif-
ferent conditions. We used a gain value of g = 1, 42.5 nm of
residual AO turbulence and only three iteration steps.

Figure 21 shows the results, that NCPA are almost com-
pletely removed (see Sect. 3.2). Figure 22 shows the effect of
the NN NCPA mitigation process on the sharpness of the PSF in
one of the simulated cases. It is worth noting that, in our specific
case, there is no temporal correlation between the images of the
100 image testing set because the AO residual is sampled ran-
domly. This allows us to use a smaller number of samples in the
testing set to give a solution with sufficient accuracy.

In a real-world setting, the states of atmospheric turbulence
between consecutive frames during acquisitions will not be inde-
pendent, and this decoupling effect will not be valid. Thus, to
achieve sufficient accuracy at each step of the mitigation process,
images should be acquired with short exposures (texp ranging
from 1 to 2 ms) and sampled more slowly than the typical turbu-
lence de-correlation time, which is between 10 ms and 100 ms,
as expected by Stangalini et al. (2017).

4. Discussion

Comparing the mitigation processes without turbulence (Fig. 15)
to that with AO residuals (Fig. 20), it is possible to notice that,
counter-intuitively, the measurements of the NCPA is more accu-
rate when working with turbulence than without it, passing from
a value of approximately 10 nm to almost 7 nm RMS (Fig. 19).
We also have to take into account that the NN trained on tur-
bulence has almost double the MAE for each Zernike, so the
expected value for the mitigation process (given by the squared
sum of the MAE for each Zernike) is 5.17 ∗

√
18 ≈ 22 nm. The

reason is in the averaging of the NN predictions, which provides
the system with a way to overcome the NN limits, making it per-
form better in the presence of turbulence on instruments capable
of fast imaging.

Preliminary results (which will be the subject of future
articles) show that the method is robust even in the pres-
ence of photon and detector noise, and also in more generic
cases. Such cases would be, for example, spiders at the pupil
plane, wide-band filter images instead of monochromatic light,
coronagraphic images, different f#, and defocused offsets.

In Fig. 23, we present just a few of these aspects: the pres-
ence of spiders, the effect of photon and read-out noise (RON),
and the use of a wide-band filter. We performed these tests both
with and without turbulence (WFE = 42.5 nm RMS), basing
them only on a single prediction by the NN in order to quickly
estimate the potential of the method even in these scenarios. Fur-
thermore, the NN used for these preliminary tests was trained
on monochromatic images at λ = 656 nm without any spider or
image noise and not on similar images, as should be the case.

We added in the optical propagation a mask corresponding
to the LBT spiders in order to have a more realistic simulation
and applied the mitigation process. We followed the same proce-
dure considering a more realistic source dominated by Poisson
noise (PN). We simulated a defocused guide star with a flux of
5×104 photons s−1 spread over a few thousand pixels, which was
affected by photon noise and acquired with a detector read-out
noise RON[RMS] = 1e − /pixel. Wide-band filter images were
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Fig. 18. Comparison of injected (red dotted line) and averaged prediction of NCPA component (red line) for each Zi in the simulation when NCPA
is fixed over the whole dataset of 100 images while the turbulence is evolving. Blue dots are the single NN predictions for NCPA.

Fig. 19. Mitigation iterative process. Barplots of the NCPA Zernike coefficients after each iteration. For each Zernike, the bars, from yellow to
blue, show the value of the components almost decreasing at each iteration step.

generated with a spectral bandwidth of FWHM = 60 nm cen-
tred at λ = 656 nm coadding 12 monochromatic PSFs within
the spectral bandwidth equally spaced out by 5 nm. As can be
seen from the plots in Fig. 23, results are almost identical to
the ones obtained by using monochromatic light in ideal condi-
tions both in the presence and absence of turbulence. In all these

described scenarios, we fixed the same amount of initial NCPA
values and then performed the mitigation process as explained in
Sect. 2.5.

We note that once verified on real hardware (telescope or
optical bench), the imaging-detector-with-NN approach may
become a cheap substitute for WFSs in all cases in which these
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Fig. 20. Temporal evolution of NCPA mitigation process for one AO
residual condition. NCPA aberrations’ RMS WFE (solid lines) and total
RMS WFE (dashed lines) versus iterations for different gain values. The
NCPA is well mitigated after a few iterations, independently of the loop
gain value.

Fig. 21. WFE expressed in RMS [nm] versus a different set of NCPA.
The applied NCPA correction is estimated by the average of NN pre-
dictions over 100 images. The red gradient bar represents the ±3σ error
bar for the AO residual.

are not retro-fittable in already developed and installed instru-
mentation, provided a focusing system is present. Despite its
imperfections and limited accuracy with respect to a dedicated
WFS or an optical interferometer, simulations show the NN is
sufficiently precise to mitigate NCPA in AO systems where a
final WFE less than 80−100 nm RMS is not expected. In the
future, the team will investigate the opportunity to increase the
number of used components to map the aberrations and the use

Fig. 22. Long-exposure (100 ms) PSF of one case of Fig. 21 in log scal-
ing. From left to right: NCPA aberrated with a WFE ≈ 185 nm RMS;
NN corrected for NCPA; AO limit PSF (for comparison).

Fig. 23. Comparative results of iterative mitigation process based only
on a single NN prediction in case of presence of spider, a noise-
dominated faint source of 5 × 104 photons, and a wide-band filter. Solid
lines represent the case without turbulence while dashed lines represent
the case with an additional WFE = 42.5 nm RMS of turbulence.

of different NNs tuned to different amplitudes of aberrations in
a cascaded system where the first NN is trained on large aber-
ration ranges (e.g. 250 nm RMS) and the successive ones are
instead tuned and optimised to smaller ranges. This would act
as a multiple-step process in which the larger aberrations are
measured and removed first, and smaller scale aberrations are
then measured and removed by increasingly more finely tuned
systems.

5. Conclusions

In this work, thanks to optical propagation simulations based
on a simplified layout where we used monochromatic light,
ideal optical elements without obstructions (such as spiders or
occulters) and no photon noise, we demonstrated that a sim-
ple multi-layer perceptron NN is able to establish a robust
relation between defocused PSF images and the corresponding
pupil phase aberrations. This relation also holds in the pres-
ence of limited AO residual turbulence, such as the one present
during closed-dome calibrations. This is possible thanks to a
pre-processing step in which the dimensionality of the data is
reduced by projecting images onto an orthonormal base of PCA
eigen images and the pupil wave front phase onto Zernike poly-
nomials. In the training phase, we feed the NN with the PCA
components of a set of images and the Zernike coefficients from
which they were generated. In the predicting phase, after being
fed with the images to be analysed through their PCA compo-
nents, the NN outputs the Zernike coefficients that describe the
NCPA aberrations.

Typical WFE measurements, retrieved during our simula-
tions, showed errors of a few nanometers per Zernike mode with
a MAE ranging from 2 to 3 nm RMS that encouraged us to apply
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this method to a more realistic case. Here, the AO residual tur-
bulence typical of LBT closed-dome calibrations was added to
the static pupil aberration. Here, by using a dedicated NN and
starting from an initial RMS WFE of 180 nm, the final RMS
WFE was drastically reduced to less than a few nm above the
AO residual limit value of 42.5 nm RMS with only three steps of
measurement and correction of the NCPA component.

Further studies in this field are planned to improve the MAE
so that the method works even in the case of AO full turbulence
residual, photon, and detector noise. This will be done by search-
ing for an optimal defocus position, for the optimal ratio between
the number of Zernike polynomials and the number of samples
in the training stage, for different kind of basis to be used instead
of PCA and Zernike, and for different NN layouts. The method
presented in this work has two important features. The first is the
possibility to train the NN to recognise static aberrations hidden
by the larger and dynamic aberrations of atmospheric turbulence.
The second is that the method is computationally fast, both in the
training and application stages, because we do not use the whole
image but its compact representation through PCA coefficients.
In a fast imaging approach, this can be used to measure NCPA
as the average of the NN prediction, taking care that the aver-
age is taken over a period at least one order of magnitude longer
than the typical turbulence timescale. We expect that this method
can be used directly on sky, once the NN is trained on a realis-
tic model of the telescope optics or by injecting aberrations with
its AO system, because it does not need additional hardware to
be added to the instrumentation or telescope. We are currently
working to confirm the results of these simulations on a dedi-
cated optical bench in the ADONI laboratory at INAF (Rome)
and at the ESO (Garching) GHOST bench Kasper et al. (2021).
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