
ICES Journal of Marine Science , 2023, 0 , 1–12 
DOI: 10.1093/icesjms/fsad092 
Original Article 

An approach to map and quantify the fishing effort of 

polyvalent passive gear fishing fleets using geospatial data 

Nuno Sales Henriques 

1 ,2 ,, Tommaso Russo 

3 ,4 , Luis Bentes 

1 , Pedro Monteiro 

1 , 

Antonio P ar isi 3 , Ramiro Magno 

5 , F rederico Oliv eir a 

1 , Karim Erzini 1 ,2 , and Jorge M. 

S . Gonçalv es 

1 

1 Centro de Ciencias do Mar, 8005-139, Faro, Portugal 
2 Universidade do Algarve, 8005-139, Faro, Portugal 
3 Università degli Studi di Roma Tor Vergata, 00133, Roma, Lazio, Italy 
4 CoNISMa, Roma, Lazio, Italy 
5 Pattern Institute, 8005-222, Faro, Portugal 
∗Corresponding author: tel: + 351 289800051, e-mail: nsaleshenriques@gmail.com . 

The use of tracking devices, such as vessel monitoring systems or automatic identification system, enabled us to expand our knowledge on the 
distribution and quantification of fishing activities. Ho w e v er, methods and models based on vessel tracking data are mostly devised to be applied 
to to w ed gears, whereas applications to multi-gear and passiv e fisheries ha v e been underrepresented. Here, w e propose a methodology to deal 
with geospatial data to map and quantify the fishing effort, as soak time, of passive fishing gears used by a multi-gear fishing fleet. This approach 
can be adapted to other passive multi-or single-gear fisheries, since it requires only three variables that can be extracted from a pre-classified 
dataset, to identify the beginning (gear deployment) and the end (hauling) of passive fishing e v ents. As f ar as w e are a w are, this is the first 
time a methodology that allows quantifying the soak time of static passive fishing e v ents, within a polyv alent fishery conte xt, is presented. We 
argue that the information that can be extracted from suc h approac hes could contribute to improved management of multi-gear and static-gear 
fisheries and the ecosystem-based approach. 
Keywords: AIS, fisheries mapping, fishing effort, passive fishing gears, polyvalent fishing fleet, soak time, vessel tracking data. 
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Introduction 

To ensure appropriate management and conservation of the 
marine environment, it is important to understand the distri- 
bution and impact of human activities at sea. Fisheries, as one 
of the most important sources of food for human consump- 
tion, are also one of the most impactful extractive activities 
occurring in this environment (Pauly et al., 1998 ; Swartz et al.,
2010 ). To ensure the proper management of the marine envi- 
ronment, by establishing comprehensive marine spatial plans,
design effective marine protected areas, and protect vulnerable 
habitats and species it is vital to understand how this activity is 
performed and where it occurs (Halpern et al., 2008 ; Camp- 
bell et al., 2014 ; McCauley et al., 2016 ; Vespe et al., 2016 ).
Despite the efforts to increase knowledge on fisheries, the dis- 
tribution and quantification of fishing effort are far from be- 
ing fully understood (Kroodsma et al., 2018 ; Leblond et al.,
2019 ). 

Accurate estimates of fishing effort are critical for ensuring 
sustainable fisheries, being essential for improving stock as- 
sessment, tracking market trends, and studying fishers’ prof- 
itability (McCluskey and Lewison, 2008 ; Peterson et al.,
2017 ). Direct control of fishing effort could be a possible al- 
ternative to other traditional forms of fisheries management,
such as the use of total allowable catches and quotas. But, due 
to the difficulty of precisely estimating and comparing the fish- 
ing effort of different vessels, gears, and locations, this man- 
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gement approach has seldomly been implemented (Shepherd,
003 ). 
With the introduction of tracking devices in fishing ves- 

els, such as Vessel monitoring system (VMS) and automatic 
dentification system (AIS), the possibility to study the spatial
nd temporal distribution of fishing activities and the quantifi- 
ation of fishing effort has improved dramatically (Witt and 

odley, 2007 ). A growing number of studies have used data
rom tracking devices to identify fishing grounds (Gerritsen 

nd Lordan, 2011 ; Jennings and Lee, 2012 ; Le Guyader et
l., 2017 ) and to estimate and map fishing effort (Natale et
l., 2015 ; Russo et al., 2019 ) with an accuracy that was not
reviously possible. The underlying approaches when dealing 
ith this data are generally to identify and classify different

tates of fishing trips (e.g. steaming, resting, and fishing) and
o determine whether a vessel is fishing or not (Vermard et
l., 2010 ; Poos et al., 2013 ). These approaches often rely on
 simple statistical speed filter to detect fishing activities, un-
er the assumption that fishing occurs at a speed much lower
han steaming. In other cases, they use more complex mod-
ls that rely on trajectory metrics, such as step length, turn-
ng angle, and correlation with environmental cues to infer 
he different phases of fishing trips (Lee et al., 2010 ; Russo
t al., 2014 ; Leblond et al., 2019 ; Mendo et al., 2019a ). Hid-
en Markov models (HMM) have been widely used to classify
essel tracking data using these metrics (Vermard et al., 2010 ;
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e Souza et al., 2016 ; Whoriskey et al., 2017 ; Mendo et al.,
019a ). 
The majority of studies using geospatial data derived from

IS or VMS have focused on active gears such as trawls
Lee et al., 2010 ; Natale et al., 2015 ), with few studies on
tatic or passive gears that represent an important propor-
ion of fishing effort and impact (Kelleher et al., 2012 ). One of
he main reasons is that passive gear fishing events are more
omplex to model than active ones. Fishing with active gears
enerally involves continuous movement, with the vessel be-
ng connected to the gear throughout the entire fishing event,
hich usually lasts up to some hours. Meanwhile, a passive
shing event is composed of two phases: the first is the start
f the fishing event, which is the gear deployment, and then it
nds with the second phase of the fishing event, which is when
he gear is retrieved onboard, i.e. the hauling of the gear. The
eriod between these two phases is called soak time, and it
an take hours to days or even weeks. During this period, the
essel is detached and away from the gear. 

The existing studies on static gears have mainly focused on
apping fishing activities by identifying the moments when

essels hauled their gears. Hauling events are characterized by
ow vessel speed, usually in an approximately linear direction.
hese events are quite distinctive from other states of a fish-

ng trip, like navigation or gear deployment (Marzuki et al.,
018 ; Mendo et al., 2019a ). Yet, to estimate the fishing effort
f passive gears in terms of soak time, the beginning of the
shing event, i.e. the deployment of the gear, needs to be iden-
ified. It is critical to identify deployment, soaking of gears,
nd hauling in the correct sequence. In fact, let’s imagine the
ase in which one of the deployment or hauling phase occur-
ing during a fishing day is absent within the spatial data: The
orresponding estimation of soak time would be dramatically
iased. 
When the behaviour of vessels deploying a static gear is

ifferent from steaming, the identification of the deployments
as shown to be possible (Charles et al., 2014 ). But, in cases
here the behaviour of the vessel when deploying is too simi-

ar to when it is steaming, this poses an additional challenge to
dentify gear deployments using only the behaviour variables
f the vessel (Mendo et al., 2019a ) and therefore to calculate
he soak time of that particular gear. 

The quantification of soak time allows identification of il-
egal fishing behaviours, as some gears are not allowed to fish
or more than a certain period of time (EU regulation No.
27/2013). It is also important in a stock assessment context,
ot only because captures vary, in quantity and variety, de-
ending on the time a gear is fishing, but also because soak
ime affects catch rates of fishing gears (Boutillier and Sloan,
987 ; Erzini et al., 1997 ; Ward et al., 2004 ; Morgan and Carl-
on, 2010 ; Li et al., 2011 ). 

In this study, we propose an approach to dealing with
igh-resolution geospatial data from a polyvalent (multi-gear)
assive gear fishing fleet. We used AIS data from the Por-
uguese mainland coastal fishing fleet operating two main fish-
ng gears: bottom nets (gillnets and trammel nets) and pots and
raps. The methodology is primarily devised to be applied to
ingle vessels to identify and classify the different behaviours
ithin a trip: steaming, gear deployment, hauling of gears, and

low navigation. With the presented methodology, we aim to
ssess the distribution of this type of fishery and to provide
nsights on its effort, as soak time, by identifying the start
 f  
deployment) and the end (hauling) of a passive gear fishing
vent. 

As far as the authors are aware, this is the first study
o present a methodology to address the distribution and
uantification of fishing effort, in terms of soak time, for a
olyvalent passive gear fishing fleet using geospatial data. 

ethods 

ata 

ishery-dependent and spatial data from the Portuguese
oastal polyvalent fishing fleet (length overall—LOA > 12 m)
sing nets, pots, and traps, from 2014 to 2020, were used. This
eet operated within the continental Portuguese economic ex-
lusive zone (EEZ; Figure 1 ). 

The Directorate-General for Natural Resources, Safety and
aritime Services (DGRM) provided fishery-dependent data

n the form of daily landings and logbook data. For spatial
ata, we used land-based AIS data collected from the AIS
epository AIShub ( www.aishub.net ) and from MarineTraffic
 www.marinetraffic.com ). 

To train and validate the classification models, two sources
f data were used: (1) onboard GPS-collected data and (2)
anually labelled AIS data. The onboard GPS data was col-

ected from 32 fishing trips, from 9 different fishing vessels, of
hich 5 used nets (gill nets and trammel nets) and the remain-

ng 4 vessels operated pots and traps. Fishing trips were classi-
ed into four different phases: steaming, deployment, hauling,
nd slow navigation. The latter corresponds to when a vessel
s either drifting or slowly navigating, usually waiting for a
ear to fish before starting the hauling process. The classified
PS and AIS data were then split into training and validation
ata. 
For a summary on the raw AIS data, details of the pro-

ess on selecting the AIS data from the desired vessels,
nd a description of the data used to train and validate
he classification models, check the Supplementary material,
ection 1. 

A schematic representation of the entire workflow is repre-
ented in Figure 2 . 

ata pre-processing 

re-processing of the data included: cleaning erroneous data
oints; split the AIS data into singular fishing trips; remove in-
dequate/incomplete fishing trips and interpolating the track
ata to a consistent frequency. 
To reconstruct fishing tracks to have a timely consis-

ence of datapoints, the tracks were interpolated using the
lgorithm developed by Russo et al. ( 2011 , 2014 ) that
elies on the Catmull–Rom approach, a modification of
he hermit cubic spline algorithm (Tremblay et al., 2006 ;
intzen et al., 2010 ). The interpolation was set to gen-

rate data points at 1-minute intervals, as this frequency
as shown to be best suited to identify passive fishing
vents (Mendo et al., 2019b ). For a more detailed de-
cription of these steps, check the Supplementary material,
ection 2. 

et up the classification variables 

he approach intends to classify the AIS data into four dif-
erent phases of a fishing trip: steaming, deploying, hauling,

http://www.aishub.net
http://www.marinetraffic.com
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Figure 1. The current approach focuses on the Portuguese polyvalent fishing fleet operating within the Portuguese EEZ. 
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and slow navigation. To do so, we defined three classification 

variables: (1) vessel speed; (2) future overlap (FO); and (3) 
past overlap (PO). Vessel speed aided classification in states 
by observing that steaming and deployment were carried out 
at high navigation speeds, while slow navigation and hauling 
of gears were carried out at lower speeds ( Figure 3 and Sup- 
plementary Figure S1). 

The FO and PO aided in distinguishing (1) deployment 
events from steaming and (2) hauling events from slow nav- 
igation or drifting, respectively. We relied on the fact that if 
a gear is deployed, it must be hauled with vessels running 
the same path when deploying and hauling a gear. To iden- 
tify a gear deployment, there must be overlap with a hauling 
track (carried out at a slow speed), happening in the future in 
elation to the deployment track. Likewise, to identify the 
auling of a gear, there must be an overlap with a deploy-
ent track (carried at a fast speed), happening in the past in

elation to the hauling track ( Figure 3 ). 
Given the previous rationale, we determined a distance to 

stablish if two datapoints overlapped. To do so, we cal-
ulated the distance of 3620 deployment datapoints to the 
losest hauling datapoint, within the same fishing event and 

onversely, 14690 distances from the hauling datapoints to 

heir closest deployment datapoints of the same fishing event 
Supplementary Figure S2). With the calculated distances,
e defined two threshold distances: (1) future overlap dis- 

ance (FOD), being the threshold distance from a deployment 
atapoint to a hauling datapoint occurring in the future in
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Figure 2. Schematic representation of the major steps carried out throughout our procedure. For a more detailed description of the data and the data 
selection procedure, c hec k the Supplementary material. 
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elation to the deployment datapoint; and (2) past overlap
istance (POD), being the threshold distance from a haul-
ng datapoint to deployment datapoint that occurred in the
ast in relation to the hauling datapoint. These threshold dis-
ances were then defined using the normal distribution to
odel the distance value at which P ( X ≤ x ) = 0.99, using

he mean and standard deviation obtained from the calculated
istances. The established distance values for FOD and POD
ere 150 m and 235 m, respectively (Supplementary Figure

3). 
When calculating the minimum distances between data-

oints, an important aspect to consider was the maximum
oak time. The range of the soak time of the two gear types
s very wide, and to identify the overlapping deployment and
auling datapoints, we precautionarily selected a time win-
ow that spanned from 90 minutes to 20 days. This window
ssumed that after a deployment, the gear is fishing for at
east 90 minutes (in the case of nets) and that it can be soak-
ng/fishing for up to 20 days (pots/traps). 

Considering the parameters and assumptions previously de-
cribed, for each datapoint with speed values corresponding to
ossible deployment or steaming events ( ≥3.6 knots), we as-
igned a value equal to one to the binary variable FO. The as-
igned value of one means that for that given datapoint, there
s an overlapping datapoint within the established threshold
istance, at a low speed ( < 3.6 knots), 90 minutes to 20 days
head in time to the referred datapoint. For high-speed data-
oints without overlapping datapoints, and all low-speed dat-
points were assigned zero for the FO variable. Conversely,
or low speed datapoints (possible hauling or slow naviga-
ion/drifting datapoints), we assigned the PO binary variable,
here value 1 means the existence of an overlapping data-
oint, with speed of a deployment datapoint ( ≥3.6 knots) that
as generated 90 minutes to 20 days in the past, in relation to

he low speed datapoint. Low-speed datapoints without over-
apping datapoint and all datapoints with speed values ≥3.6
nots were assigned zero for the PO variable. 
We are aware that in the case of pots and traps, fishers do

ot always haul the entire gear on deck and then deploy it else-
here. Instead, fishers may run slowly along the line checking

f there is any catch in each trap/pot whilst leaving the entire
et in the water, and this behaviour can be repeated indefinitely
or a given gear. This means that the overlapping tracks are all
erformed at a low speed. At the present, the identification of
his particular fishing behaviour is beyond the scope of our
pproach. 
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Slow navigation

Steaming

Deploying

Hauling

(a)

(b)

(c)
Fishing states

Figure 3. AIS tracks with three different fishing e v ents. Fishing e v ents are represented by the deployment datapoints (in yellow) that are displayed 
underneath the hauling datapoints (in green) when they overlap in space, meaning that a fishing event, as expected, starts with the deployment of a 
gear, at a fast navigation speed and terminates with its hauling, which is carried at low speed. The tracking data was interpolated at a 1-minute rate, 
meaning that the larger the distance between consecutive datapoints, the faster the vessel navigates, and vice versa . The behavioural diversity and 
complexity of this fishery are evident from this figure: (a) vessels can deploy two sets of fishing gears in a single event and haul them within the same 
trip; (b) deploy just one gear and after the deployment the vessel waits some hours, while slowly navigating/drifting, and then collect the gear within that 
same trip; or (c) a vessel can go out to sea to deploy a gear and then return on a f ollo wing da y to haul the gear. T he soak time will depend on the type of 
gear and target specie. 
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For a complete description on the process of setting up 

the classification variables, check the Supplementary material,
Section 3. 

Data classification 

The R package MomentuHMM (McClintock and Michelot,
2018 ) was used to classify each of the data points into one 
of the four different underlying hidden states of a fishing trip: 
steaming, deploying, hauling, and slow navigation. 

We used three different variables in the HMM analysis: (1) 
speed, (2) future overlap (FO), and (3) past overlap (PO). To 

model speed values, we used the positive gamma distribution,
and given that datapoints were interpolated into regular time 
intervals of 1 minute, we used the standard approach of Mo- 
mentuHMM and converted speed values into distance values 
between datapoints (step length) as a proxy for speed. The dis- 
tribution parameters of each fishing state, calculated from the 
training data, were used as the initial distribution parameters 
of the HMM model. Since the FO and PO were established as 
i  
inary, we used the Bernoulli distribution to model these two
ariables. After assigning the overlap variables to the training 
ata, we assessed the probability of FO = 1 and PO = 1 for
ach of the four states. Just like for the step parameters, these
robability values, directly calculated from the training data 
ere used as initial parameters for the HMM model. For a

urther description of the data classification with the HMM,
heck the Supplementary material, Section 4.1. 

Because the HMM classification alone yielded an undesir- 
ble number of false positives for both states of the fishing
vent (deployment and hauling), the next step was to clean the
iss labelled fishing datapoints. A description on the cleaning 
f false positives is described in Supplementary material, Sec- 
ion 4.2. 

After establishing the distribution parameter for the three 
ariables considered in the HMM analysis, and developing the 
rocedure to clean false positives, we ran the entire classifi-
ation analysis on the validation dataset. The rational of the
ssessment of the performance of the classification procedure 
s based on the comparison of the accuracy of the procedure’s
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Figure 4. Confusion matrices and Cohen’s coefficient values from the validation data classified by the procedure. Confusion matrices plot the number of 
datapoints, of each state, classified by the model (Predicted) against the actual number, of each state, of the validated data (Reference). The validation 
procedure was carried for the overall validation dataset, i.e. for all fishing trips regardless of the gear used (nets, pots, and traps) and for fishing trips 
using the same type of gear: nets or pots and traps. 
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utput with the onboard ground-truthed and the manually la-
elled data, used as test/validation dataset to assess the model
erformance. For a more detailed description on the model
alidation, see Supplementary material, Section 4.3. 

ootprint and ef for t assessment 

fter the classification of datapoints into the different states of
 fishing trip, the last step was to identify the fishing events by
atching the corresponding start (deployment) and end (haul-

ng) of the fishing events. This is a critical step, as both mo-
ents of a passive fishing event need to be correctly matched

o calculate the soak time of a gear. The approach to iden-
ify the fishing events was carried for each vessel, by match-
ng each classified deployment datapoint with the most re-
ent hauling datapoint that falls within the pre-established
ime window (90 minutes to 20 days) ahead of the deploy-
ent datapoint timestamp and within the FOD in relation

o the deployment datapoint. For the full explanation on
he process of identification of the fishing events and calcu-
ation of the soak time, check the Supplementary material,
ection 5. 

To map the fishing footprint of this fleet, we divided the
tudy area into a 1 × 1 km grid. The footprint was then as-
essed through the presence/absence of the identified fishing
vents in each grid cell. 

To map and calculate the total effort, as total soak time, we
sed the same 1 × 1 km grid. The effort was then calculated
s the sum of the averages of soak time of each fishing event’s
atapoints present within each grid unit. The Effort formula
or each grid unit can be represented as such: 

Effort = 

n ∑ 

f = 1 

∑ N 

j = 1 S f j 

N 

, 

here j is the fishing vessel, f is the fishing event, S is the soak
ime, i.e. the difference between timestamps of the matching
eployment and haul datapoints, and N is the number of pairs
f matched datapoints, of each fishing event, within the grid
quare unit. 
As already stated, AIS data have some limitations in terms
f inconsistent spatial and temporal coverage (Metcalfe et al.,
018 ; Shepperson et al., 2018 ). For that reason, we studied the
roportion of total effort that we were able to quantify and
ap. To do so, we compared the number of AIS fishing trips

hat passed all the steps of our approach, with the number
f fishing trips of the same vessels, inferred from the landings
ataset, under the assumption that each landing event corre-
ponds to a fishing trip. 

esults 

odel validation 

fter setting the parameters that yielded the best accuracy val-
es for the training data, which is the highest value of the av-
rage between the rate of true positives (Sensitivity) and the
ate of true negatives (Specificity), we ran the classification
rocedure on the validation data and assessed its accuracy.
he accuracy was assessed through confusion matrices for all

he fishing trips, regardless of the gear used. To evaluate the
lassification performance for each type of gear used, we also
arried out the validation of the model for trips using only nets
nd for trips operating only pots and traps ( Figure 4 and Table
 ). For a further description on the model validation, check the
upplementary material, Section 4.3. 

Overall, the model performed well in identifying the start
nd end of fishing events, with an accuracy of more than 90%
or both phases of the fishing events. Comparing the two types
f gears, the model, as it was set up, seems to be better suited to
dentify fishing operations with nets than with pots and traps.
he classification accuracy of deployments of pots and traps
as the lowest, with only 85% of the deployment datapoints

lassified as such by the algorithm and because of that, the Bal-
nced Accuracy for the deployment of pots and traps was the
owest. On the other hand, the model returned a higher rate
f false positives for hauling events when classifying fishing
vents using nets (Specificity = 89%). 

Through the analysis of Cohen’s coefficient, the results of
he classification demonstrate an overall strong agreement
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Table 1. Results of the accuracy assessment for the deployment and hauling states for both types of gear. 

All gears Nets Pots and Traps 

Fishing state Deployment Haul Deployment Haul Deployment Haul 

Sensitivity (recall) 0.90 0.97 0.93 0.98 0.85 0.92 
Specificity 0.98 0.90 0.98 0.89 0.96 0.93 
Balanced Accuracy 0.94 0.93 0.96 0.93 0.91 0.93 
Number of vessels 11 7 4 
Number of trips 34 22 12 

The performance of the model was assessed through the Sensitivity (true positive rate), the Specificity (true negative rate), and the Balanced Accuracy, which 
is the arithmetic average of the Sensitivity and the Specificity of the model. 

 

k  

8  

r  

o  

F  

t  

(

D

W  

i  

l
v  

i  

t  

B  

e  

l  

o  

s

p
a  

t  

o  

l  

fi  

t  

i  

i  

a  

m  

d  

b
l  

g  

e  

fi

f  

t  

o
i  

fl  

i  

i  

t  

2

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsad092/7197498 by guest on 14 June 2023
between the reference and the predicted data: kappa ≥0.8 

(McHugh, 2012 ), especially when classifying fishing trips with 

pots and traps. 

Soak time 

The soak time of each fishing event was assessed through the 
difference between the timestamp of corresponding deploy- 
ment and hauling datapoints. From the analysis of the gear 
used in each fishing event recorded in the logbook data, the 
analysed vessels commonly use both types of gear. Of the 146 

vessels, 7 vessels reported using only one type of gear, with 6 

vessels using only nets and one using just pots and traps during 
the period of 2014–2020. 

To visually assess the distribution of the soak time of fishing 
events, we calculated the average soak time between matching 
deployment and haul datapoints of each fishing event (Aver- 
age soak time). As expected, the distributions of soak time 
of these two types of gears are different. Pots and traps are 
known for being left fishing for a long period, ranging from 

some days to several weeks, while fishing with nets usually 
takes less time, from hours to a maximum of a few days (see 
example in Figure 5 a and b). For most of the vessels that used 

both gears, the distribution of soak time, depending on the 
proportion of use of each type of gear, is expected to resem- 
ble, to some extent, the combination of the distributions of 
both types of gears ( Figure 5 c). 

Footprint and ef for t 

Applying the selection criteria for this study, i.e. fishing vessels 
of LOA > 12 m, operating in the waters of mainland Portugal 
and using only nets and/or pots and traps, from 2014 to 2020,
resulted in a list of 301 fishing vessels. When querying the 
AIS databases from the list of these fishing vessels, and after 
cleaning the AIS dataset of erroneous datapoints, we started 

our analysis with ∼85.4 million AIS datapoints, from 151 

vessels. 
After the procedure of identification of the fishing trips 

and removing fishing tracks with gaps, 21950 fishing trips 
from 146 vessels remained to be interpolated and classified 

by the HMM procedure. Overall, the data availability, com- 
bined with the data requirement of the procedure, enabled us 
to classify 21.7% of the fishing trips carried out by these 146 

vessels, during the period of 2014–2020 ( Table 2 ). An exam- 
ple of the classified data is shown on Supplementary material 
section, Supplementary Figure S5. 

To map the footprint (Supplementary Figure S6) and the 
effort ( Figure 6 ) of this fishery, we selected the classified 

fishing trips containing matching states of the fishing events 
(deployments and hauls). This selection criteria, along with 

the existence and quality of the AIS data, allowed us to 
eep 13224 out of the 21950 classified fishing trips, from
4 of the 146 vessels from the classification dataset, cor-
esponding to 12.1% of the total number of trips carried
ut by the number of vessels within the initial AIS dataset.
rom the remaining fishing trips, we were able to quan-
ify 24353 complete fishing events, carried out by 84 vessels
 Table 2 ). 

iscussion 

e introduce a method to a posteriori map the fishing effort,
n terms of soak time, of passive fishing gears used by a polyva-
ent fishing fleet, using data from high-resolution tracking de- 
ices. The method relies on the ability to classify vessel track-
ng data into a set of a priori defined states, and in particular
he beginning (deployment) and end (haul) of fishing events.
y doing this for all vessels, it allows the footprint of the fish-
ry to be studied and to quantify and explore, with high reso-
ution, the spatial and temporal dynamics of the fishing effort
f these polyvalent fishing vessels at an aggregated (e.g. fleet
egment) scale. 

Previous studies have also addressed the spatial dynamics of 
assive fishing gears through vessel tracking data. Mendo et 
l. ( 2019a ) and Jennings and Lee (2012) , for example, mapped
he footprint of a passive fishery and studied the distribution
f the fishing effort. The approach in Mendo et al . (2020) al-
ows assessing the distribution of the footprint of a passive
shery, but it does not calculate the fishing effort. Meanwhile,
he method used by Jenning and Lee ( 2012 ) defines the fish-
ng effort as the time vessels spent hauling their gears, which
s different from the time gears fished (soak time). Campos et
l. (2023) took a different approach: The fishing effort was
apped and calculated as the distance carried by the vessels
uring the period of the fishing event as recorded on the log-
ook. This approach may overestimate the location and total 
ength of fishing events, as the vessel after deploying a fishing
ear can navigate while waiting for the gear to fish, or it can
ven deploy other gears before finishing (hauling) the initial
shing gear. 
The proposed methodology brings the possibility of identi- 

ying the full duration of passive fishing events, which, un-
il now, was only possible by means of onboard observers
r from logbook data. Monitoring with onboard observers 
s very costly and generally only covers a small fraction of the
eet, while logbooks are compiled by fishers and their qual-
ty depends on the willingness of fishers to precisely log every
mportant detail of the fishing activity, which is not always
he case (Bastardie et al., 2010 ; Sampson, 2011 ; Russo et al.,
016a ). 
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(a) (b) (c)

Figure 5. Distribution of the a v erage soak time, in da y s, of each fishing e v ent of one vessel using only nets (a), one vessel using only pots and traps (b), 
and of one vessel both types of gears (c). The average soak time of each fishing event was calculated as the average difference of timestamp between 
pairing deployment and hauling datapoints of a given fishing event. Vessels using nets tend to fish during short periods of time, usually up to one or two 
da y s, while vessels using pots and traps tend to leave the gears fishing for longer periods. The distribution of soak time of vessels using both types of 
gear is expected to resemble the combination of the distributions of nets (high number of fishing events with short periods of soak time) with the 
distribution of soak time values of pots and traps (a wider distribution of fishing events that can range for several days). The average values of soak time 
for each fishing event were calculated to the resolution of one decimal place. Meaning that a fishing e v ent that lasts 0.5 da y s (12 hours) it is represented 
on a different bar that of a 24 hours (1 day) fishing event, for example. 

Table 2. Data composition from the application of the vessel selection criteria until the final steps of the procedure. 

Initial list of vessels 
with AIS data 

Classification 
dataset 

Footprint and 
effort dataset 

Number of vessels 151 146 84 
Number of trips (from landing data) 109 006 101 152 49 876 
Number of trips (from AIS) NA 21 950 13 224 
Proportion inferred from AIS NA 21.7% 26.5% 

Number of fishing events (from AIS) NA NA 24 353 

Overall number of vessels, trips, and fishing events that were kept and identified from the AIS data, during the period 2014–2020, throughout the three main 
steps of our procedure. 
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The proposed method was developed and set up to be ap-
lied to a polyvalent passive fishery, regardless of which gears,
ith overlapping deployment and hauling tracks. Despite the

ood performance of the classification algorithm ( > 90% for
eployment and hauling events), when analysing the accuracy
or both gears separately, there is indeed a difference depend-
ng on gears and events. As the model was set up, the accuracy
etecting fishing events using nets outperformed the ones us-
ng pots and traps. The deployments of pots and traps had a
ower rate of true positives compared to the deployment of
ets. The reason for this is probably related to the fact that
n some cases, the deployment of pots and traps happens at
 lower speed than the defined overall “fast speed threshold”
 ≥3.6 knots). On the other hand, when assessing the specificity
rate of true negatives) of hauling datapoints, fishing events
ith nets returned a higher number of false positives. This
as to do with the behaviour of the vessel after deploying a
et. The vessel commonly stays in the vicinity of where the
et was deployed, usually slowly navigating or drifting, wait-
ng for the net to fish. This proximity to the deployment or
teaming tracks increases the chances of slow navigation dat-
points being assigned the PO variable and consequently be-
ng classified as hauling datapoints. Contrary to most fishing
vents with nets, when fishing with pots and traps, the ves-
el leaves the area after deploying the gear, as these gears are
lmost never hauled within the same deployment trip. There-
ore, the rate of false positives on hauling events using pots
nd traps was lower. 

As anticipated, fishing events of nets, pots, and traps vary
istinctly in terms of soak time. Fishing with nets usually
eans leaving the net fishing for some hours up to a few
ays, as caught fish tend to die and risk being eaten by scav-
ngers. Also, the legal maximum soak time is 24 hours, except
or nets of mesh size larger than 100 mm operating in zones
f depth > 300 m (Portuguese Ordinance No. 1102-H/2000).
his exception is associated with particular fishing metiers tar-
eting, for instance, monkfish ( Lophius spp.; Szynaka et al.,
021 , 2022 ). In contrast, sheltering or trapping gears like pots
nd traps, the catches remain alive, allowing these gears to
sh for much longer periods. Furthermore, unlike gillnets and



An approach to map and quantify the fishing ef for t 9 

Figure 6. Map of fishing effort (soak time) of fishing events using nets, pots, and traps, during the period from 2014 to 2020. The resulting effort map 
represents 24353 fishing e v ents, from 13224 fishing trips carried by 84 fishing vessels. The majority of the fishing activity is distributed within the 500 m 

depth, and the fishing effort presents a patchy distribution appearing to be more relevant in the northern part of the study area. 
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rammel nets, maximum catch rates of traps are often a week
r more after deployment (Erzini et al., 2008 ). Still, accord-
ng to logbook data, one fishing vessel using nets had fishing
vents reaching up to 9 days of soak time. This either mean
hat this vessel used a gear such as pots or traps, or that it left
ets fishing for longer periods than the maximum soak time
ermitted by law. In any case, neither the information about
he use of pots and traps nor net soak times of up to 9 days
f fishing were reported in the logbook, making this approach
lso useful to monitor the compliance of fishers with existing
egulations, such as maximum soak time. 

Within the analysed fleet, there were only seven vessels that
eported using only one type of gear. For this reason, the dis-
ribution of soak time of vessels using both gears was studied.
s expected, the distribution of the soak times of these ves-

els resembles the combination of the distribution of vessels
hat only use one type of gear, with several fishing events last-
ng around one and two days (nets) and several fishing events
asting up to 14 days, with a few soak times of up to 20 days
pots and traps). 

The fishing footprint of this fleet is mainly located within
he continental shelf, extending to the upper part of the con-
inental slope, as also shown by Leitão et al. (2022) . Fishing
ffort was patchily distributed and seems to be more relevant
n the northern part of the study area and along two subma-
ine canyons. It is important to stress that these maps do not
epresent the whole reality of this fleet. In fact, they repre-
ent the footprint and the fishing effort of 12.1% of the fish-
ng trips carried by the 151 vessels included in the initial AIS
ataset. 
There are several issues with AIS systems, one of which

s potential poor fishing fleet coverage (Russo et al., 2016b ,
019 ; Shepperson et al., 2018 ). Also, land-based AIS systems,
ven though more accurate than satellite-based AIS, have the
isadvantage of having a limited range and are dependent
f the existence of AIS antennas on land. Moreover, the sig-
al transmission can be affected by external factors, such as
eather conditions, and it can be deliberately switched off in

ase the skipper does not want to disclose his vessel’s where-
bouts (Russo et al., 2016b ; Emmens et al., 2021 ). So, the foot-
rint and distribution of fishing effort presented here mostly
epend on the AIS fleet coverage, the signal reception infras-
ructure (existence of AIS antennas), and on the willingness of
he skippers to leave the AIS transponder ON throughout the
ntire trip. In fact, when sorting the classified data from the
46 vessels to map and quantify the fishing effort, 62 vessels
nd 8726 fishing trips were discarded, as these trips did not
nclude fishing events. From a GIS-based assessment of these
ncomplete trips, we saw that most of these vessels had the
IS transmitting while leaving the port, probably as a safety
easure to avoid collisions with other vessels, but once at sea,

he AIS would stop transmitting. 
Another specificity of this approach that requires consis-

ent data has to do with the fact that the identification of the
tart and end of a fishing event is dependent on each other.
his means that in case the tracking data of a deployment

s missing, the hauling data, even though existent, will not
e classified as hauling because of the inexistence of the Past
verlap variable, but instead will be classified as slow nav-

gation. A similar situation happens in case the data for the
auling event is missing and the deployment track is present:
he deployment track will be classified as steaming, since the
O variable is missing. It is also important to stress that the
requency of datapoints generated by the tracking devices is
f the upmost importance. This approach is able to identify
he full duration of passive fishing events because the aver-
ge frequency of datapoints generated by the AIS system is
f 3 minutes (Supplementary Table S1). If the data frequency
ould be lower, the identification of the deployment events
ould probably not be possible, as these events can take 15
inutes to be completed. 
The last process of grouping deployment datapoints into a

ingle fishing event requires prior knowledge about the fishery
eing studied. By observing the training data, where deploy-
ents always took more than 17 minutes to be carried out,

nd given that these vessels deploy gears with several kilome-
res in length, we set a conservative threshold of 15 minutes,
s the minimum time a deployment would need to be carried
ut. This value was set based on the specificity of this type of
shery, and indeed, if a vessel deploys a smaller gear, or takes
 15 minutes to deploy it, then the fishing event would be dis-

arded. 
The development and tailoring of this methodology cannot

gnore the specificities of the different fisheries it is intended
o be applied to. The fact that this procedure allows the study
f more than one type of gear or fishery is one of its major ad-
antages. But, at the same time, because nets, pots, and traps
re not handled exactly the same way, nor have the same dis-
ribution of soak time, there is the compromise of setting up
arameters suitable to model different gears, which may be
ess suitable from those to model single-gear fisheries. For ex-
mple, choosing a time window from 90 minutes to 20 days to
alculate the overlapping distances between datapoints, does
ot make much sense from a pots and traps standpoint, as the
oak time of these gears is longer than 1 or 2 days, and net
resumably do not fish for up to 20 days. But because we are
ealing with two types of gears that do differ considerably in
erms of soak time, we needed to choose a time window that
ould accommodate the soak times of both gears. This is a
rade-off that must be considered when dealing with a poly-
alent fishery. But in case this method is used in fisheries with
ust one type of gear, or a particular fishery, then the parame-
ers, such as speed and time window, can be set according to
he peculiarities of the studied fishery or gear. 

The comprehensive knowledge about fisheries distribution
nd the quantification of fishing effort is fundamental to
mprove ocean governance as well as to improve fisheries
anagement and marine conservation (Halpern et al., 2008 ;
ampbell et al., 2014 ; McCauley et al., 2016 ; Vespe et al.,
016 ). Yet, the precise and complete understanding of this
ort of information is still lacking (Kroodsma et al., 2018 ;
eblond et al., 2019 ), especially regarding polyvalent fisheries,
hich comprise the majority of the fishing fleets worldwide

Kelleher et al., 2012 ). Improving the resolution of fishing ef-
ort through the knowledge of where and for how long a gear
s fishing will allow us not only to map the distribution of
he fishing effort, but will also provide us with better esti-
ates for stock assessment, better monitor fishing activities,

nd assess the relationships between soak time and landing
omposition or bycatch. By increasing the coverage of the dif-
erent fishing fleets with high-resolution and high-frequency
atapoint generation tracking devices, it will be possible to
pply approaches such as the one described in this paper to
 whole fleet segment, contributing to ecosystem-based ap-
roaches and improve management and conservation of the
arine realm. 
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