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Abstract
Medical diagnosis has been greatly improved thanks to the development of new techniques capable of performing very
sensitive detection and quantifying certain parameters. These parameters can be correlated with the presence of specific
molecules and their quantity. Unfortunately, these techniques are demanding, expensive, and often complicated. On the
other side, progress in other fields of science and technology has contributed to the rapid growth of nanotechnology.
Although being an emerging discipline, nanotechnology has raised huge interest and expectations. Most of the enthusiasm
comes from new possibilities and properties of nanomaterials. Biosensors (simple, robust, sensitive, cost-effective) combined
with nanomaterials, also called nanobiosensors, are serving as bridge between advanced detection/diagnostics and daily/
routine tests. Here we review some of the latest applications of nanobiosensors in diagnostics field.
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Introduction

In recent decades, medical diagnosis has been greatly

improved, thanks to the development of new techniques capa-

ble of performing detection and quantification of specific

molecules and components, the presence or absence of which

give information about the physiological state of a living

being. Previous to the discovery of such techniques, diagnos-

tics were based on just observable parameters. However, solid

data of presence/absence of substances or other parameters to

support the diagnosis represent the possibility to perform more

accurate forecasts and more robust studies of the situation of

the patient. This possibility of gathering precise and solid

information of the patient by measuring specific molecular

components needs to be complemented by a deep knowledge

of the principles related to the physiological state and the

mechanism involved in the disorder or diseases. In other

words, it is necessary to know which components should be

measured and be able to make an interpretation of the results

obtained regarding the situation of the patient. Biomarkers can

be defined as parameters that can be objectively measured or

evaluated in order to get either information of a physiologic/

pathologic situation or a response to a therapeutic interven-

tion.1 Although biomarkers can be physically measured (e.g.,

body temperature or thickness of a nerve fiber), most common

biomarkers, the so-called molecular biomarkers, are measured

biochemically.2 Usually molecular biomarkers are molecules

biologically relevant for the intra- or intercellular function,

and their expression or presence is altered by a nonregular

situation or activity of a living entity. In medicine, the interest

of biomarkers lays on the possibility to relate an altered para-

meter to a certain pathologic condition, for instance, overex-

pression of maternal superoxide dismutase to screen the

potential risk of Down syndrome,3 prostate-specific antigen

(PSA) as biomarker for prostate cancer,4 C-reactive protein as

inflammation and cardiovascular risk biomarker,5 and so on.

Nowadays, thanks to the sophisticated equipment avail-

able in laboratories, it is possible to make very sensitive

detection of a wide range of molecules.1 Techniques, such
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as 2-D gel electrophoresis,6 mass spectroscopy,7–9 and

isotope-coded affinity tags,10 allow researchers to make

detection of very small amounts of biomolecules under

study. Furthermore, the cited techniques are not only able

to perform detection but also capable of giving valuable

information about other characteristics of the biomolecules

under study, for instance, their modification states, confor-

mation, or interactions with other molecules. The above-

mentioned techniques are very sensitive, as they require the

analyte in the proper context to carry out the detection;

therefore, there is a need to treat the samples prior to the

detection; these treatments involve mainly purification and

concentration processes usually done by chromatography.

These extra steps represent a huge drawback for the appli-

cation of the techniques in real situations out of the lab and

enormously limit the possibilities of processing high num-

ber of samples and its feasibility in terms of time and costs.

Moreover, the experimental procedure has to be carried out

by trained personnel with broad expertise in the field. The

cited techniques represent important and remarkable tools

for basic research studies. However, owing to the draw-

backs cited, they do not represent an attractive possibility

for routine diagnosis or research that requires wide screen-

ing of several samples. Hence, it is interesting to develop

not only new devices for detecting certain molecules or

components in patients but also new sensing techniques

to allow researchers to carry out studies to improve or

generate knowledge around the disease or miss function.

The already known and described biomarkers, together

with new discoveries in the field of nature sciences, have raised

the demand of analytical devices for detecting and measuring

a wide range of analytes. Analytes with interest in different

areas such as food quality control, bio-security, contaminants/

pollutants and diagnosis. The functioning of these types of new

devices depends on the reliable monitoring of parameters of

interest for the proper control of the state of goods and envi-

ronmental conditions (food and drinks, drugs, air and gases

etc.), the physiological conditions of living entities (bacteria,

cells, organs, plants, animals etc.), or drug control tests. Such

close control would make early detection more feasible, pre-

venting unwanted or hazardous situations. In particular, in the

field of clinics, early detection of biomarkers even prior to

manifestation of any symptom of the disease is essential for

the successful medical treatment and patient survival rates.11,12

It is worth mentioning the huge interest behind the discovery of

reliable biomarkers for early detection of cancer to allow the

possibility of quick screening of the population sector at risk.13

In this context, the development of point-of-care (POC) testing

devices has been growing in last years.14 These devices are

defined as ‘testing at or near the site of the patient care’.15 The

main point of this type of sensing is to achieve the in situ and

immediate patient parameter testing in order to facilitate the

evidence-based diagnosis. The final goal when developing a

POC test is to match the ASSURED criteria: affordable, sen-

sitive, specific, user friendly, robust, equipment free, and deli-

verable to those in need. Their characteristics aim to promote

these tests to the general public. This criteria was set by the

World Health Organization (WHO) which gives strong prior-

ity to the tests that fulfill the mentioned characteristics.16

Biosensors represent a group of analytical devices that

can be adapted to match the characteristics requested for

POC testing and ASSURED criteria. Biosensors are defined

as analytical devices in which the recognition system is

based on biochemical or biological mechanisms.17 Thanks

to the high specificity of the biological recognition systems,

biosensors are provided with a high selectivity tool for

detecting the analytes. In general terms, biosensors consist

of two integrated components18 as shown in Figure 1:

i. The receptor, usually a biological element such as

enzymes, antibodies, DNA, microorganisms, tis-

sues, or even synthetic molecules.

ii. The transducer, part of the sensor that transforms the

recognition event into a measurable signal which can

be used for the quantification of the analyte.

When the recognition event takes places in the biosensor,

a significant change occurs in the properties of the system so

Figure 1. General scheme of parts of a biosensor. It represents how an analyte captured by a receptor induces a change in the
transducer’s surface. The transducer is the responsible for translating the capturing event into an electrical signal.
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the transducer can read it and transform the perturbation into

an electrical signal. In some cases, signal labels are neces-

sary in the system to achieve this readable signal. This type

of sensors is referred as label-based biosensors. Usually

labels are organic molecules, nanoparticles (NPs), or pro-

teins (proteins or enzymes) which can generate a fluorescent

or electrochemical signal. The other alternative is the so-

called label-free biosensors, in which the interaction

between the target and the recognition element generates a

change, physical or chemical, that can be directly read by the

transducer and hence used by itself to monitor the interac-

tions in the biosensor. As a general rule, label-free biosen-

sors are the preferred possibility owing to the disadvantages

associated with label-based sensors: the costs of both the

labels themselves and labeling the recognition elements, the

additional steps in the detection procedure, the alteration of

the binding properties of the recognition element due to the

attachment of the label, and the nonspecific signal issues

associated with the labeling.19,20 Unfortunately, the main

limitation of label-free assays is the lack of significant

changes in recognizing the event of the target. In order to

move forward in the field of label-free sensing, it is neces-

sary to find new strategies in which the binding of the target

can develop a significant change such as nanochannels

blocking21,22 and so on. Another possibility is to improve

the already existing transducers to be capable of reading

even smaller changes related to the target recognition, for

example, modifying the electrodes with nanomaterials or

using the same nanomaterials as electrodes.22–26

Examples of most used assay formats in biosensing are

shown in Figure 2. In the scheme antibodies are used to

exemplify capturing agents. Despite being the most popular,

several other components can be used as capturing agents, for

instance, DNA short sequences, RNA, locked DNA, peptide

nucleic acids, cell membrane receptors, organic molecules,

and so on. As shown in Figure 2, antibodies are labeled with

an enzyme or NPs responsible for generating the signal. Sig-

nal is generated by the enzyme in the presence of a substrate.

Since the amount of labeled antibodies is correlated to the

amount of antigen (analyte), the signal of the labels is used to

quantify the antigen.28 Different types of assays are displayed

in Figure 2a:

Figure 2. Examples of types of assay in biosensors using antibodies as selective biomolecules. Antibodies are labeled with an enzyme or
nanoparticles, which in the presence of such labels generate a signal. Therefore, the amount of labeled antibodies is correlated to the
amount of antigen/analyte. (a) Displays a direct, indirect, capture (‘‘sandwich’’), and competitive assay. Labeled antibody and labeled
antigen are used to perform detection and the read out. (b) Example scheme of magneto-immunoassay on magnetic particles. In the
presence of the analyte in solution, they form magneto-immunosandwiches displayed on the right. (c) Examples of label-free biosensing
assay. First, label-free assay, displaying the principle of detection. Below, examples of label-free biosensing using an indicator, typical
detection principle used in electrochemical label-free biosensors. Part figure b is Adapted from the open-access reference.27

Chamorro-Garcia and Merkoçi 3



� Direct assay: Antigen is directly absorbed on the

surface where the biosensing is performed, a detec-

tion antibody against the antigen is used.

� Indirect assay: Antigen absorbed on the biosen-

sing platform substrate and a primary antibody

is used as intermediate between the analyte and

labeled antibody.

� Capture assay ‘‘sandwich’’: A capturing antibody is

preimmobilized on the substrate surface, a sandwich

with the analyte is formed between the capturing

antibody and the detecting antibody. A labeled anti-

body against the detection antibody is used to detect

the analyte.

� Competitive assay: Artificial analyte or analogues to

the analyte is externally labeled, analyte from the

sample competes with these labeled pseudo-

analytes to capture the antibody. Native analyte in

the sample displaces the labeled analyte from the

capturing antibodies, washing away the labeled anti-

gen; in the example displayed, the amount of analyte

in the sample is related to the decrease in signal of

the assay.

Figure 2b, shows an example scheme of magneto-

immunoassay on magnetic particles. The capturing anti-

body is immobilized on the magnetic beads, while the

detection antibodies are labeled with nanoparticles. In the

presence of the analyte in solution, they form magneto-

immunosandwiches as the scheme. In Figure 2c examples

of label-free biosensing assay are presented. First, label-

free assay, displaying the principle of detection, consists

of capturing the analyte. Below are provided examples of

label-free biosensing using an indicator, and the presence

of the analyte prevents the indicator from reaching the

transducer, the typical detection principle used in electro-

chemical label-free biosensors.

Owing to the biosensor’s versatility and applicability in

concrete situations of detection, this field has experienced a

sensational growth.29 This fact shows the necessity to

incorporate new discoveries from different fields in

improving performance of biosensors, therefore allowing

researchers to adapt biosensors based on the characteristics

they are required for in each scenario.

Advances in different disciplines of science and tech-

nology have provided the necessary techniques and equip-

ment, enabling to study matter at smaller levels and

allowing researchers to work at nanoscale. Thanks to this,

today the whole field of nanotechnology, as we know, has

been established. Although being an emerging discipline,

nanotechnology has raised huge interest and expectations

among researchers due to the possibilities of application in

other fields of science and technology. Most of this enthu-

siasm comes from the fact that matter behaves in a different

way at the nanoscale than at the macroscale, hence new

possibilities and properties may emerge from macroscale

materials when structured at the nanoscale. Generally,

nanomaterials are those whose size ranges from 1 to 100

nm. Their main advantages are related to their large surface

to volume ratio, their physicochemical properties regarding

composition, their shape, and the unusual binding charac-

teristics. Nanomaterials can be classified into several

groups: NPs, quantum dots (QDs), graphene, graphene

oxide (GO), carbon nanotubes (CNTs), and nanochannels.

Several reviews in the literature confirm the broad pos-

sibilities and applications of nanomaterials improving the

existing technologies. For instance, generating motility,30

catalysis,31 new biomaterials,32 and phototherapy against

cancer,33 especially in the field of sensing; new labels in

electrochemical34 and optical35 sensors, signal amplifica-

tion in biosensors,36 detection directly with undiluted real

samples,37 enhancing pesticide detection and degrada-

tion,24 heavy metal detection,38 and so on. In the field of

biosensors, huge improvements have been achieved, the

overall aim being to obtain smaller, more portable, more

sensitive, and more robust analytical devices, thanks to

nanomaterials. Combination of nanomaterials with biosen-

sors used for either building or modifying them gives rise to

the so-called ‘‘nanobiosensors,’’ a term introduced by

Malik and coworkers.39 It is interesting to point out that

the term does not refer to sensors specialized to detect

nanoscale events but to those in which nanomaterials are

used for building or modifying the sensor.

The main focus of this review is to provide a brief intro-

duction to each nanomaterial and its corresponding state-

of-the-art of how they are applied in the field of biosensors.

Special importance is given to those sensing systems with

potential application in clinical diagnostics in a relative

short- to mid-term, thanks to being capable of detecting

relevant molecules for diagnostics (biomarkers, pathogens

etc.) in real/complex samples.

Nanoparticles

NPs are considered clusters of atoms or molecules ranging

in size from 1 to 100 nm. Beside single materials,40 alloys41

or core shell NPs42 are also reported. Compositions of the

NPs may range from metals (gold,43 copper,44 silver,45

iron,46 titanium dioxide47 etc.) to carbon48 or even poly-

mers.49 Generally, NPs can present characteristic proper-

ties such as optical, electronic, magnetic, chemical,

mechanical, and catalytic. Furthermore, a very interesting

issue is the fact that these properties can be easily tuned by

changing parameters of the NPs such as size, shape, and

composition.50 In addition, more functionalities and prop-

erties can be introduced into NPs by tailoring different

molecules (chemical or biological) on their surface.

Together with the high surface to area ratio, NPs can be

found in several situations, carrying out different roles:

optical/electrochemical labels, catalyzers, immobilization

platforms, phototherapy, and so on.

The most obvious and exploited characteristic of NPs is

their optical properties, mainly those related to their color,
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which is different from the typical color that the material

shows in bulk, thanks to plasmons. Plasmons can be

defined as an oscillation of the free electron cloud with

respect to the fixed position of the atoms in the lattice that

conforms the material51,52; when light is incident on NPs,

electrons in the conduction band will show collective oscil-

lation due to its interaction with the specific resonant wave-

length. These oscillations are also called ‘‘localized surface

plasmons.’’ Depending on the size, shape, ligands on the

surface, and composition of the nanoparticle, the scattering

would be at certain wavelengths. Thanks to this phenom-

enon, NPs can scatter light at a specific wavelength range,

which gives the NPs their characteristic color.53,54 These

properties have been exploited by applying NPs as optical

reporters in two main ways (see Table 1). First, with the

direct use of the NPs as labels, NPs are modified with a

specific capturing agent against the analyte; and due to the

interaction with the analyte, NPs are accumulated, and the

presence of analyte is correlated with the accumulation of

NPs, which are usually read by the color intensity specific

of the nanoparticle. This principle of detection has been

remarkably exploited in paper-based nanobiosensors using

gold nanoparticles (AuNPs),69 especially in the case of

lateral flow immunoassays (LFIAs).70 Second, the altera-

tion in the plasmon oscillation due to the interaction with

the analyte and the consequent change in the color of the

nanoparticles.53,54

Besides the color signal achieved due to the plasmon

absorption phenomena, a fluorescent signal can be obtained

from NPs. When the size of the nanoparticle is reduced, the

continuous density of states allows plasmons disappear,

and hence there is a confinement of their free electrons

leading to quantum transitions responsible for fluores-

cence.71,72 Size of the clusters plays a key role in the transi-

tion from plasmons to fluorescence emission, for instance,

2 nm is the critical diameter below which fluorescence

emission of gold and silver nanoclusters will take place.71

Still, the main challenge in this particular field is the proper

synthesis of the small nanoclusters with intense fluores-

cence signals. Although fluorescent, NPs will be discussed

in the section on quantum dots/colloidal semiconductors

nanocrystals. Fluorescent AuNPs represent a particular

case in the literature, usually referred to as gold nanoclus-

ters or gold nanodots, they are neither generally included in

QD classifications nor referred to as QDs. As a conse-

quence, gold nanoclusters are included within the section

of nanoparticles.

Electroactive properties of nanoparticles toward certain

reactions have been widely exploited in biosensing. In elec-

trochemical sensors, NPs can be detected by direct or indi-

rect electrochemical detection. In the former, NPs are

detected by their own redox properties; therefore, they can

be detected without any preliminary step, meaning that the

metal forming the NPs is electrically detected in a direct

mode. As a strong point, direct detection offers rapid

responses with reasonable limits of detection (LOD), short

analysis time, and the possibility to perform a compact/

integrated assay.73 On the other hand, indirect electroche-

mical detection exploits the electrocatalytic properties of

the AuNPs. As electrocatalyst, nanoparticles take part in

the catalysis and contribute to the electron transfer between

the electrode and the reagents involved. However, an alter-

native procedure to perform indirect electrochemical detec-

tion is the preliminary oxidative dissolution of the AuNPs

in acidic medium followed by the detection of the metal

ions released from the particle. Electrochemical signal

from NPs can be easily monitored by electrochemical

means such as chronoamperometry, differential pulse vol-

tammetry, square wave voltammetry, electrochemical

impedance spectroscopy, and so on. Thanks to the ampli-

fication nature of these procedures, low LOD, in order of

pM have been achieved73(Table 2).

Magnetic properties of NPs have been also exploited for

performing detection in the field of biosensing (Table 3).

Magnetic properties make possible to perform distance

manipulation, thanks to applying external magnetic fields,

giving several possibilities related to the localization or

retention of the NPs in specific sites. Examples of these

properties are the widely used protocols for purification

and preconcentration of magnetic NPs.97–99 Here the bio-

molecule assemblies are built onto the surface of the

magnetic particles, forming the so-called magneto-

immunosandwiches when the detection is antibody based.

In these situations, despite using magnetic particles, the

magnetic properties are used merely for sample pretreat-

ment, but they do not take part in the measurement.

Nevertheless, magnetic properties of the nanoparticles can

be exploited to obtain a signal or analytical value which can

be used in detection.100 These approaches are based on two

main strategies. The first and more direct is the reading of

magnetic signal from the nanoparticles acting as a label;

special sensors for magnetic reading are in need for this

type of measurement,101 and fortunately they neither rep-

resent a technical limitation nor represent a demanding

equipment, allowing researchers to develop biosensors

based on this principle of detection.102 And the second is

based on the modification of relaxation times in presence

of the analyte,103 in most assays the analyte induces aggre-

gation of magnetic NPs, which responsible for the relaxa-

tion time modification. Typical equipment employed in the

detection of magnetic nanoparticles are giant magneto-

resistive sensors, magnetic tunnel junction sensors, and

superconduction quantum interference device.99 Magnetic

measurements offer the advantage of noninvasive data

acquisition, giving the chance to perform in vivo measure-

ments of magnetic NPs directly in cultures or tissues.

Besides, unlike in electrical and optical measurements,

there is a lack of interferences coming from components

of biological systems, regarding the magnetic properties.

As a consequence, these types of measurements make

Chamorro-Garcia and Merkoçi 5



Table 1. Biosensing with nanoparticle-based optical methods.

Biomarker/
analyte

Type of
nanoparticle LOD/LR Detection principle; sample Ref

Adenosine
(biological
cofactor)

Magnetic NPs
(commercial)

1.5 mM / 1.5 mM–19.3 mM Magnetic NPs–DNA–adenosine aptamer. Adenosine
competes for the aptamer, the ssDNA can bind to
DNA-GOx probes. Paper-based biosensor,
quantitative naked eye reading of the signal; human
serum samples.

55

Breast cancer
cells

NiONPs 136 cells mL�1 / 500–40,000
cells mL�1

SPR detection of NiONPs conjugated to a peptide
specific for breast cancer cells; cell culture samples.

56

Cholesterol AuNPs 100 ng mL�1 / 160–600 ng mL�1 Ligand immobilized on the AuNPs induces aggregation in
the presence of cholesterol; standards in buffer.

57

Cathepsin – G.
(periodonitis
biomarker)

Commercial
magnetic
nanoparticles.

1 fg mL�1 / - - Magnetic NPs immobilized on plated gold masking the
gold. Activity of the analyte cleaves connection of NPs
to the gold. The developing of gold is related to the
amount of analyte; saliva samples.

58

Dengue, yellow
fever and Ebola

Multicolored
silver
nanoparticles

150 ng mL�1 (the three of
them)

LFIA. Proved the viability for the multiplexed detection
of all three analytes in one assay; human serum
samples.

59

DNA from HIV AgNPs 0.195 pmol mL�1 /
0.3–2 pmol mL�1

Sandwich assay using AgNPs. Aggregation induced by the
presence of the target sequence results in color
change; HIV standards in buffer.

60

HNE (Periodonitis
biomarker)

Commercial
magnetic
nanoparticles.

1 pg mL�1 / - - Magnetic NPs immobilized on plated gold masking the
gold. Activity of the analyte cleaves connection of NPs
to the gold. The developing of gold is related to the
amount of analyte; saliva samples.

58

Melamine AuNPs 17.1 pg mL�1 / 0.05–1 ng mL�1 Presence of the analyte prevents AuNPs from catalyzing
the degradation of fluorescent dyes; milk samples.

61

Hg2þ ions Gold nanoclusters 8.6 nM / 37.5 nM–3.75 mM Alteration of fluorescence due to aggregation induced by
the analytes. Turn off sensing for Hg2þ detection and
turn on for OTC; human serum samples.

62

miRNAs from
cancer cells

Fe3O4@Ag
magnetic
nanoparticles

0.3 fM / 1 fM–1 nM Fe3O4@AgNPs with a DNA-Cy3, miRNA hybridizes to
the DNA-Cyt, nuclease cleaves the DNA releasing
the Cy3, reducing the SERS signal; cell culture
extracts.

63

miRNAs AuNPs 5 pM / 10–200 pM DNA labeled in 5’ with fluorescein, and by 3’ to AuNPs.
Analyte complementary to DNA, DSN cleaves the
duplex, increasing the fluorescence of the sample; cell
culture extracts.

64

OTC Gold
Nanoclusters

0.15 mM / 0.375–12.5 mM Alteration of fluorescence due to aggregation induced by
the analytes. Turn off sensing for Hg2þ detection and
turn on for OTC; human serum samples.

62

PGF (breast
cancer
biomarker)

Gold nanodots
and AuNPs

0.25 nM / 0.5–5 nM Competitive assay. Fluorescence recovery due to the
presence of analyte; cell culture supernatant and urine
samples.

65

PTHLH AuNPs 1.42 ng mL�1 / 2–100 ng mL�1 LFIA. Detection of PTHLH; cell culture medium, cell
culture lysates and in human serum samples.

66

PSA AuNPs Qualitative Protein corona formation of AuNPs. Early stage
screening technique. DLS, not a quantitative method;
human serum samples.

67

PSA AuNPs 3 pg mL�1 / 0.005–5 ng mL�1 Label-free detection. When PSA binds the antibodies on
AuNPs electroluminescence changes; human serum
samples.

68

AuNPs: gold nanoparticles; AgNPs: silver nanoparticles; PSA: prostate-specific antigen; Hg2þ ions: mercury (II) ions; HNE: human neutrophil elastase;
LFIA: lateral flow immunoassay; NPs: nanoparticles; NiONPs: nickel oxide nanoparticles; DNA-GOx: glucose oxidase; DLS: dynamic light scattering;
Fe3O4: iron (III) oxide; LFIA: lateral flow immunoassay; LOD: limits of detection; LR: linear range; PGF: platelet-derived growth factor; SPR: surface
plasmon resonance; SERS: surface-enhanced Raman spectroscopy; GO: graphene oxide; PTHLH: parathyroid hormone–like hormone; OTC:
oxytetracycline.
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Table 2. Nanoparticle-based electrical methods for biosensing.

Biomarker/analyte
Type of
nano-particle LOD/LR Detection principle; sample Ref

AFP AgNPs and
CNTs

0.061 pg mL�1 /
0.1–5,000 pg mL�1

AgNPs modified with antibody are loaded on CNTs. Capture
‘‘sandwich assay’’ is performed. Detection of Ag by SV;
human serum samples.

74

ApoE (Alzheimer
biomarker)

Iridium oxide
NPs

7nM / 0.7–35 nM Magneto-immunosandwich using iridium oxide NPs as label,
CA; human plasma samples.

75

ApoE AuNPs 80 pg mL�1 /
100–12,500 pg mL�1

Magneto immunosandwich on porous silica beads, using
AuNPs as labels. CA reading of HER catalyzed by the
AuNPs; cerebrospinal fluid samples.

76

Antibodies anti
Hepatitis B virus

AuNPs 3 mlU mL�1 / - - Magneto immunosandwich on magnetic silica beads. CA
reading of AuNPs by HER catalyzed; human serum.

77

Beta amyloid AuNPs 19 pg mL�1 /
20–12,500 pg mL�1

Magneto immunosandwich on porous silica beads, using
AuNPs as labels. CA reading of HER catalyzed by the
AuNPs; cerebrospinal fluid samples.

76

Apo-A1 (biomarker of
risk of cardiovascular
disease)

AgNPs and
AuNPs

0.02 pg mL�1/
0.1 pg mL�1–
50 ng mL�1

AgNP conjugated to labeling antibody and AuNPs to capture
antibody on a screen printed carbon electrode. Detection of
Ag by SV; mg mL�1 LOD for human serum samples.

78

Breast cancer
biomarkers

AuNPs 1.72 fM / 0.05–1000 pM Label-free detection of cancer biomarker-related sequences.
EIS using a redox indicator; human serum samples.

79

CEA AgNPs and
CNTs

0.093 pg mL�1 /
0.1–5000 pg mL�1

AgNPs modified with antibody are loaded on CNTs. Capture
‘‘sandwich assay’’ is performed. Detection of Ag by SV;
human serum samples.

74

Cortisol (biomarker of
physiological
conditions)

AuNPs 10 pg mL�1 / 0.03–
10,900 ng mL�1

Aptamers against cortisol on AuNPs electrodeposited on
graphene-modified GCE. Competitive assay using an
electroactive analogue of cortisol detected by SWV; serum
and saliva samples.

80

IgG AuNPs 0.31 ng mL�1/
2–500 ng mL�1

Capture assay using AuNPs as label. AuNPs read by EIS; IgG
standards in buffer.

81

Leishmania kinetoplast
DNA

AuNPs 0.8 parasites per 1 mL of
animal blood

Capture assay (magneto sandwich), capturing sequence on
magnetic beads and detection sequence labeled with AuNPs,
CA reading; amplified DNA extracted from blood.

82

miRNA-21 SiO2-PLL-Au 6.3 fM (0.02–120 pM) SiO2-PLL-AuNPs conjugated to Fc molecules through a DNA.
miRNA binds to the DNA pulling the Fc away from the
SiO2-PLL-AuNPs, recovering ECL; human serum samples.

83

miRNA -141 SiO2-PLL-Au 8.6 fM (0.03–150 pM) SiO2-PLL-AuNPs conjugated to Fc molecules through a DNA.
miRNA binds to the DNA pulling the Fc away from the
SiO2-PLL-AuNPs, recovering ECL; human serum samples.

83

Muc1 (tumor
biomarker)

AuNPs 0.1 nM / 1–10 nM Aptamer on gold electrode with to a DNA-AuNP complex.
Analyte competes for the aptamer and displaces the
complex, modifying the interphase impedance; human
serum samples.

84

CYFRA-21 -1 (tumor
biomarker)

ZrO2 – rGO 0.122 ng mL�1

(2–22 ng mL�1)
ZrO2 rGO electrodeposited on the sensor and modified with

the antibodies. In presence of redox indicator analyte
modifies DPV spectra; saliva samples.

85

PSA PtNPs 1 ng mL�1 /
1–30 ng mL�1

Capture assay, detection antibodies conjugated to PtNPs,
capture on a gold electrode. Signal related to the current
generated by the electrocatalysis of PtNPs toward H2O2;
PSA standards in buffer.

86

Telomerase activity
(tumor biomarker)

PtNPs 100 cells mL�1 /
5�102–1�107 cells mL�1

GCE surface modified with a primer for telomerase activity.
DNA-modified PtNPs bind to the telomerase elongated
sequence. LSV using as redox indicator; cell extracts
samples.

87

AFP: a-fetoprotein; AgNPs: silver nanoparticles; ApoE: apolipoprotein E; Apo-A1: apolipoprotein A-1; AuNPs: gold nanoparticles; CNTs: carbon
nanotubes; CEA: carcinoembryonic antigen; CA: chronoamperometry DPV: differential pulse voltammetry; ECL: electrochemiluminiscence; EIS: elec-
trochemical impedance spectroscopy; Fc: ferrocene; GCE: glassy carbon electrode; IgG: human immunoglobulin; H2O2: hydrogen peroxide; HER:
hydrogen evolution reaction; LOD: limits of detection; LR: linear range; LSV: linear sweep voltammetry; Muc 1: Mucin 1; miRNA: micro RNA; NPs:
nanoparticles CYFRA-21 -1: oral cancer biomarker: cytokeratin-19; PSA: prostate-specific antigen PtNPs: platinum nanoparticles; rGO: reduced
graphene oxide; SiO2-PLL-Au: silica–poly-L-lysine and AuNPs; ssDNA: single-stranded DNA; SWV: square wave voltammetry; SV: stripping voltam-
metry; ZrO2: zirconium dioxide.
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feasible to perform in vivo detection through the skin in

complex biological scenarios.

Quantum dots

Colloidal semiconductor nanocrystals, which also receive

the name of quantum dots, are small crystalline particles

with sizes ranging from 1 and 100 nm dispersed in a sol-

vent, thanks to the help of a stabilizing ligand on their

surface. QDs present fluorescent properties with enormous

applicability in the field of sensing and imaging. The size

and shape of QDs determine their optical and electrical

properties, therefore QD’s properties can be engineered

by changing the size of the crystals, without need to change

the chemical composition.104 In semiconductors, the gap

energy can be understood as the energy required to excite

an electron from the valence band to the conduction band

(see Figure 3). As a consequence, this energy gap deter-

mines both the absorption of photons capable to excite

electrons from the valence band to the conduction band

(excitation wavelength) and the fluorescence emitted by

the electrons which relax back to the valence band (emis-

sion wavelength). The smaller the particle is, the band

structure is shifted to higher energy by the quantum con-

finement effect,105,106 hence the emission of an excited

electron would be at lower wavelengths.107

Generally, QDs are composed of an inorganic core,

which contains between few hundred to thousands of

Table 3. Biosensing with nanoparticle-based magnetic methods.

Biomarker/ analyte
Type of
nanoparticle LOD/LR Detection principle; sample Ref

a-Thrombin Au layer grown on
Fe3O4 magnetic
NPs

1 nM / 1.6–30.4 nM Fe3O4@AuNPs modified with two different
aptamer aggregated in the presence of
thrombin changing T-2 relaxation time;
AFP; a-Thrombin standards in buffer.

88

AFP (tumor biomarker) Fe3O4 magnetic
NPs (Dynabeads)

1 pg mL�1 / 1–10 ng mL�1 Analyte captured on the sensor surface
detected with antibody-modified magnetic
beads; AFP standards in buffer.

89

CRP Dynabeads Myone
(commercial
magnetic NPs)

1 ng mL�1/ 1–10 ng mL�1 Capture sandwich, using magnetic
nanoparticles as label. Detection based in
giant magneto; CRP standards in buffer.

90

CA72-4, (gastric
cancer biomarker)

Fe3O4 0.38 IU mL�1 / 0- 100 IU mL�1 LFIA using the magnetic nanoparticles as label.
Quantification performed using a magnetic
assay reader; human serum samples.

91

cTnI (biomarker for
myocardial
infarction)

Commercial
magnetic NPs

1.43 pg mL�1 / 1.43–1000 pg mL�1 Capture assay, immunosandwich on
electrodes surface. Magnetic NPs as labels;
NT-proBNP standards in buffer; CTnl
standards in buffer.

92

DNA short sequences
from HPV

Fe2O3 NPs covered
by dextran

<1 pM / - - Capture assay, sandwich, using DNA,
magnetic NPs – streptavidin and biotin-
DNA; PCR-amplified products in buffer.

93

hCG Commercial
magnetic NPs
(magnetic
nanotags)

2.4 pM / - - Immunosandwich on surface using magnetic
NPs as labels. Detection performed using
giant magnetoresistive sensor; serum
samples diluted 50%.

94

mRNA Iron oxide magnetic
NPs

1 Copy in 1 mg of mRNA DNA specific against analyte on the magnetic
NPs. Analyte induced aggregation, modifies
T2 relaxation; cell extract samples.

95

NT-proBNP, (risk
factor of coronary
disease)

Commercial
magnetic NPs

0.33 pg mL�1 / 0.33–500 pg mL�1 Capture assay, immunosandwich on
electrodes surface. Magnetic NPs as labels;
NT-proBNP standards in buffer.

92

S. enterica Magnetic beads 102 cfu mL�1 / 102–108 cfu mL�1 Presence of analyte triggers the
immunoreaction with the antibodies on the
magnetic nanoparticles, altering the
transversal relaxation (T2); milk samples.

96

TNF-a Magnetic iron NPs
(magnetic
nanotags)

5.7 pM / - - Immunosandwich on surface using magnetic
NPs as labels. Detection performed using
giant magnetoresistive sensor; serum
samples diluted 50%.

94

AFP: a-fetoprotein; CRP: C-reactive protein; Fe3O4: iron (III) oxide; hCG: human chorionic gonadotropin; HPV: human papillomavirus; LFIA: lateral flow
immunoassay; LOD: limits of detection; LR: linear range; mRNA: messenger RNA; NPs: nanoparticles; NT-proBNP: N-terminal pro-brain natriuretic
peptide; S. enterica: Salmonella enterica; TNF-a: tumor necrosis factor-a.
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atoms. Surrounding this core an outer layer of surfactant

molecules acts as ligand, helps stabilization, and acts as

passivation agents. Passivation of the surface of QDs plays

a key role in avoiding nondesired relaxation pathways,108

ensuring a good quantum yield. In order to improve this

passivation of QDs, a shell of a second semiconductor is

overgrown onto the surface of the first, resulting in the

conformation of a core/shell systems. This new type of QDs

presents an enhanced fluorescence efficiency and better

stability against photo-oxidation.108 Usually composition

of core/shell QDs are expressed as component1@compo-

nent2 where component 1 is the material of the core and

component 2 the material of the shell. Several materials

have been successfully applied in the fabrication of QDs:

CdS,109 CdSe,109 CdTe,109 ZnSe,110 ZnSe,111 CdSe@ZnS,112

CdSe@CdS,113 and so on.

In order to be applied in biosensing, QDs need to be

functionalized with the specific molecules necessary to

perform the specific recognition. For such purpose, QDs

should present a coating compatible with the molecules to

be anchored onto their surface. These coatings are usually

polymers—polyethylene glycol, polysaccharides, and so

on—or bifunctional organic molecules, with an anchoring

and a functional group at the end of the molecules.114 Non-

covalent conjugation represents an interesting immobiliza-

tion strategy due to its simplicity, in these approaches

biomolecules were attached to the QD surface by electro-

static interaction. Other reported noncovalent binding is

based on the modification of the biomolecules with a group

that displaces the capping ligand and binds directly to the

QD surface, thiol groups being the most extended exam-

ples.115 Moreover, the possibility to conjugate streptavidin

on QDs meant the consolidation of QDs as an entity for

universal immobilization of biomolecules, thanks to the

widely applied immobilization through the streptavidin–

biotin method.116,117

An important aspect in molecular biology is the under-

standing of interactions and localizations of different biolo-

gical components either in in vitro or in in vivo situations. In

order to study this, optical labels which allow the direct

observation have come to be of special interest for research-

ers. QDs, thanks to their optical properties, can be success-

fully applied as labels for sensing and imaging. In fact, QDs

present important advantages which make them a good

choice compared to traditionally used organic dyes: high

quantum yield and molar extinction coefficient, broad

absorption with narrow symmetric emission spectra, large

effective Stokes shift, high resistance to photobleaching,

and high resistance to photo and chemical degradation.118

QDs have been applied to in vitro sensing as fluorescent and

electrochemical label in multiple type of assays. Typically,

QDs have been applied as substitutes of the fluorescent

labels in traditional assays in regular sandwich assays:

direct/indirect, competitive, and so on. Furthermore, QDs

can interact with certain molecules in such a way that the

resulting fluorescence emission is affected; this modulation

can be used with sensing and biosensing purposes. QDs have

been extensively applied in detection based on Föster reso-

nance energy transfer (FRET); briefly, it is a phenomenon

that takes place between two components. An acceptor is

excited due to light absorption, and by FRET process it

transfers the energy to the emitter, which reaches an excited

state and relaxes the emitting fluorescence (see Figure 4).

Depending on the QDs and the situation, they can act as

either donors or acceptors. Modulation of FRET process

by action of an analyte is used as the detection principle.

Similar detection principles are based on the use of quench-

ers that fade the fluorescent emission of the QD. The mod-

ulation of the quenching activity by the presence of the

analyte represents an alternative detection principle.

First example of protein detection using QDs was

reported by Chan and Nie and coworkers,117 and in this

Figure 3. Representation of electronic energy states of different size colloidal nanocrystals. Conduction bands (CBs), valence band
(VB), and energy gap (Eg) are represented.
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Figure 4. Representation of fluorescence and FRET processes through Jablonsky diagrams. Left, situation of excitation and fluores-
cence relaxation process of a fluorophore. Right, emission phenomena through FRET process, the excited donor, thanks to the
proximity, and the acceptor can relax through FRET exciting the acceptor which will relax through a fluorescence process emitting light
at a different wavelength than the emission of the donor in a regular fluorescent process. FRET: Föster resonance energy transfer.

Table 4. Biosensing with quantum dots–based biosensors.

Analyte Type of QDs LOD/LR Detection principle; samples Ref

AFP (tumor
biomarker)

Mn-doped
ZnS QDs

4.8 pg mL�1 / 5–1000 pg mL�1 MIP using a-fetoprotein as template synthetized on
the QDs surface. Recognition enhances QDs’
fluorescence; human serum samples.

119

AFP CdTe@CdS 250 fM / 0.250–2500 pM Regular capture assay, immunosandwich, in a mfluidic
system, plastic surface; human serum samples.

120

ApoE (Alzheimer
biomarker)

CdSe@ZnS 62 pg mL�1 / 0.062–100 ng mL�1 mArray on glass substrate. QDs show better
fluorescence performance than organic dyes;
diluted human serum samples.

121

ApoE CdSe@ZnS 12.5 ng mL�1 / 10–200 ng mL�1 Magneto-immunosandwich in PDMS mchannels.
SWV measurement of Cd2þ ions released from
the quantum dots dissolution in acidic media;
diluted human plasma.

122

Ab 1-42 (Alzheimer
biomarker)

CdSe/ZnS 0.2 nM / 0.5–8 nM QDs linked to magnetic beads via immunocomplex
with the analyte. Precipitation of magnetic
complexes decrease the fluorescence in the
supernatant; human cerebrospinal fluid samples.

123

CA 19 (tumor
biomarker)

ZnO 0.04 U mL�1 / 1–180 U mL�1 Capture assay, immunosandwich on silicon, ZnO
QDs modified with antibody. Fluorescence and
electrochemical reading; buffer samples.

124

CA 125 (tumor
biomarker)

ZnS 0.005 U mL�1 / 0.008–60 U mL�1 Capture assay. Analytes captured on magnetic beads,
dendrimers modified with the antibody and loaded
with QDs. SV detection of each QD; human
serum samples.

125

CA 15-3 (tumor
biomarker)

CdS 0.003 U mL�1 / 0.01–80 U mL�1

CA 19-9 (tumor
biomarker)

PbS 0.002 U mL�1 / 0.01–60 U mL�1

CEA (tumor
biomarker)

CdTe@CdS 250 fM /0.250–2500 pM Regular capture assay, immunosandwich, in a mfluidic
system, plastic surface; human serum samples.

120

CEA CdSe@ZnS 1 ng mL�1 / 10–100 ng mL�1 Capture assay, immunosandwich on polystyrene
beads, QDs as fluorescent labels; human serum
samples.

126

(continued)
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Table 4. (continued)

Analyte Type of QDs LOD/LR Detection principle; samples Ref

CRP PbS 0.05 ng mL�1 / 0.2–100 ng mL�1 Capture immunoassay on a Bismuth modified SPE,
PbS QDs as labels. SV detection of PbII ions
released by acidic dissolution of QDs; human
serum samples diluted 1:500.

127

EGFR (tumor
biomarker)

CdSe@ZnS
or InGaP

0.18 nM Capture assay, immunosandwich. Tb-complex and
QDs. Sandwich formation induce FRET process
between Tb-Complex and QD; human serum
samples.

128

hsa-miR-20a-5p, hsa-
miR-20b-5p, and
hsa-miR-21-5p.

(tumor biomarkers)

CdSe@ZnS 0.2nM / 0.2–20 nM miRNA stabilize the interaction of QDs with DNA
probe labeled with Lumi-Tb complexes, these
complexes show FRET; human serum samples
diluted at 10%.

129

MMP-2 (tumor
biomarker)

CdTe and
CdTeS

Imaging screening of metastatic
tumor cells

MMP-2 activity induces the fluorescence recovery by
cleaving a FRET acceptor attached to the QD;
imaging in vitro (cell cultures) and in vivo (mice).

130

miRNA-141
(prostate cancer
biomarker)

CdSE@ZnS 0.28 pM / - - QDs conjugated to quencher through ssDNA which
binds to miRNA-141. DNS cleaves the DNA-
miRNA, ending the quenching. Signal amplification
by telomerase activity generating
chemiluminiscence in presence of hemin; human
serum samples.

131

NSE (lung cancer
biomarker)

CdSe@ZnS 1 ng mL�1 / 3–100 ng mL�1 Capture assay, immunosandwich on polystyrene
beads, QDs as fluorescent labels; human serum
samples.

126

Progesterone
(reproductive
function indicator)

CdSe@ZnS 0.21 ng mL�1 / 0.385 – 4.55 ng mL�1 QDs with antibodies immobilized on the bottom of a
multiwell plate. Detection by change in
fluorescence upon analyte capture; human serum
samples.

132

PSA CuS 0.1 pg mL�1 / 0.5–50�103 pg mL�1 Capture immunoassay on indium tin oxide with
CNTs using QDs as labels, which catalyze
oxidation of a substrate into a fluorescent
product; human serum samples.

133

PSA CdSe@ZnS 1.6 ng mL�1 / 1.6–480 ng mL�1 FRET assay, Tb as donors and QDs acceptors.
Immunosandwich between Tb and QD, when
brought close they show FRET; human serum
samples.

134

S100B (biomarker
for brain injury)

CdSe@(Cd,
Zn)S

10 pg mL�1 / 0.01–10 ng mL�1 Capture assay: Magneto Immunosandwich capturing
S100B between magnetic beads (immobilization
platform) and quantum dots. Fluorescence
reading; human serum samples.

135

sCD40 L biomarker
or CVD

- - 5 ng mL�1 / 5–166.7 ng mL�1 Capture assay, magneto-immunosandwich.
Capturing sCD40 L between magnetic beads and
QDs (fluorescence reading); sCD40 L standards in
buffer.

136

Type A influenza
virus H5 and H9
subtypes

CdSe@ZnS For H5 0.016 HAU, for H9 0.25 HAU Single lateral flow assay for both subtypes at the
same time; human serum samples.

137

VEGF165 ZnS 0.08nM / 0.1–16 nM QD–aptamer for VEGF165. Quencher–ssDNA
forms duplex with the aptamer. Analyte competes
for the aptamer recovering fluorescence. AgNPs
used to enhance QD signal; human serum samples.

138

AFP: a-fetoprotein; Ab 1–42: amyloid b peptide 1–42; ApoE: apolipoprotein E; CdS: cadmium sulfide; CdSe: cadmium selenide; CNTs: carbon nanotubes;
CuS: copper sulfide; CEA: carcinoma embryonic antigen; CVD: cardiovascular disease; DNS: duplex-specific nuclease; EGFR: epidermal growth factor
receptor; FRET: Föster resonance energy transfer; HAU: hemagglutinating units; LOD: limits of detection; LR: linear range; MMP-2: matrix
metalloproteinase-2; MIP: molecular imprinted polymer; NSE: neuron-specific enolase; PbS: lead sulfide; PDMS: polydimethyl siloxane PSA: prostate-
specific antigen; QDs: quantum dots; SPE: screen printed electrode; SV: stripping voltammetry; SWV: square wave voltammetry; VEGF165: vascular
endothelial growth factor 165; ZnS: zinc sulfide.
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work detection was based on agglutination of modified

QDs caused by the analyte. Since then QDs have been

applied in other regular types of assays (Table 4) such as

detection on nitrocellulose membranes,139 Western blot,140

lateral flow,141 and even ELISA multiwell plate tests.142

Although electrochemical detection of QDs has not reached

such a high impact and popularity as fluorescence-based

assays, it still represents an interesting and useful approach

with regard to its possibilities to be miniaturized and inte-

grated within portable device.143 Several examples of suc-

cessful reports can be found in the literature.122,144 QDs

have also proved their feasibility to be used in electrolumi-

nescence (EL) and photoelectrochemistry (PE).145

Graphene, graphene oxide, and carbon
nanotubes

These types of carbon nanostructures share an atomic con-

figuration of sp2 hexagonal networks resulting in one atom

thick planar structures, which make them share remarkable

properties146 such as high specific surface area, extraordi-

nary electronic properties, good electron transport capabil-

ities, pliability and impermeability, mechanical strength,

and excellent thermal and electrical conductivities.147,148

Although they all share the same honeycomb basic atomic

disposition (see Figure 5), their space disposition is differ-

ent. Graphene presents a planar structure,149,150 which is

mostly used in the form of flakes since obtaining relatively

big continuous structures still remains a challenge. Similar

to graphene is GO, which presents oxide groups as charac-

teristic connected to the carbon, disrupting the uniformity

of hexagonal network.23 CNTs are nanoscale tubes made of

the same hexagonal carbon network as graphene, and they

can be understood as the material obtained when folding a

graphene sheet into a cylinder. Making single-walled CNTs

is its just a single cylinder of graphene, or a multi-walled

CNTs if more than one cylinder are concentrically placed.

The cited carbon nanoallotropes have been applied in

biosensing assays in several ways,151 introducing new

properties, enhancing stability, or even generating new

functionalities. Thanks to this, they have found their place

in several types of biosensors: electrochemical, electro/che-

miluminescent, biological field effect transistors (bio-FET),

and fluorescence-based biosensors. Depending on the type

of measurement, carbon nanomaterials can adopt different

roles in the sensing systems; for instance, the enhancement

of the electrocatalytic properties of the sensors’ transducers

by increasing the roughness and active area of the sensor

surface, or the enhancement of enzymatic activity.152 In

fluorescence-based bioassays, quenching properties of gra-

phene and GO flakes are widely exploited in order to

Figure 5. Examples of carbon nanomaterials. Atomic structure display of the carbon nanoallotropes. From left to right: Graphene,
graphene oxide, multiwall and single-wall carbon nanotubes. The basic atomic composition and distribution is shown.

Figure 6. (a) Scheme of main components of an FET. (b) Example
of graphene applied in an FET for sensing of human IgG. Source
and drain connected by a graphene sheet decorated with AuNPs
modified with capturing antibodies. The presence of analyte
induced changes in the electrical properties of graphene, modu-
lating the current between source and drain. Part figure a and b
extracted from references155 and,156 respectively. FET: field effect
transistor; IgG: human immunoglobulin G; AuNPs: gold
nanoparticles.
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Table 5. Biosensing using graphene, graphene oxide, and carbon nanotubes.

Analyte
Type of nano
material LOD/LR Detection principle; sample Ref.

b-Lactoglobulin (milk
allergen)

Graphene 0.85 pg mL�1 / 0.001–
100 ng mL�1

SPE modified with graphene. Capture antibodies covalently
attached to the graphene. Captured analyte blocks
diffusion of a redox indicator; food samples.

162

CEA and SCCA (tumor
biomarkers)

rGO CEA: 13 pg mL�1 /
0.05–20 ng mL�1

Simultaneous detection of both biomarkers.
Immunosandwich performed on a GCE modified with
rGO. Redox labels give two electrochemical signals in
parallel; human serum samples.

163

SCCA: 10 pg mL�1 /
0.03–20 ng mL�1

CEA (tumor biomarker) CNTs 0.018 ng mL�1 / 0.05–
5 ng mL�1

Capture assay formed between gold electrode CNTs
modified with HRP. Amperometric detection of HRP with
an electroactive substrate; human serum samples.

164

CEA Graphene
nanosheets

40 fg mL�1 / 0.0001–
10 ng mL�1

GCE is modified with graphene, AuNPs. Formation of
immunocomplex with the analyte blocks the diffusion of
redox indicator; ng mL�1 of LOD for human serum
samples diluted 1 in 100.

165

CRP rGO 0.08 ng mL�1 /
2–1000 ng mL�1

Graphene and AuNPs composite on ITO electrode. Analyte
captured changes the charge transfer on the electrode
surface. EIS using redox indicator; human serum samples.

166

Cyclin A2 (cancer
biomarker)

GO 0.5 nM / - - Peptide modified with dye, free in solution it binds to GO
(quencher). Cyclin A prevents the peptide from interacting
with GO avoiding quenching; cell extract samples.

167

CNTs 5 nM / - -

Cyclin A2 Graphene 1.02 pM / 3–10 pM and
10–100 pM

GCE modified with graphene. Capture of Cyclin A with
specific peptide on graphene, blocking a redox from
electrode surface. Label-free detection by EIS; cell extracts
samples.

168

DNA methyl-transferase CNTs 1�10�4 U mL�1 /
1�10�4–100 U mL�1

DNA-dye with endonuclease / methylase target sequence,
and a CNT binding region. Endonuclease activity releases
dye. Methylase avoids the release, keeping the
fluorescence polarization signal; human serum samples.

169

DNA short sequences rGO 100 fM / 0.1–1000 pM bioFET with rGO modified with PNAs. Interaction of analyte
with PNAs induces to changes in the electrical properties
of the graphene; DNA standards in buffer.

170

GO 0.2 fM / 1–1�106 M Carbon paste electrode modified with rGO and xanthurenic
acid. DNA immobilized on available COOH groups. DNA
captures target sequence and changes the interface
impedance; DNA standards in buffer.

171

E. coli O157: H7 pathogen
strain.

GO 5 cfu mL�1 / - - E. coli captured by antibodies on CdSe@ZnS QDs prevent
GO flakes from quenching the QD surface; tap water
samples.

172

E. coli O157: H7 (pathogen
bacteria)

GO 100 cfu mL�1 / - - LFIA with QDs–antibodies lines capture the analyte, which
prevents GO from causing quenching of the QDs; bottle
water and milk samples.

173

FR (tumor biomarker for
metastatic cancers)

GO 0.81 ng mL�1 /
1–80 ng mL�1

Fluorescein–ssDNA–folate. FR binds to folate and avoids
exonuclease activity, consequently fluorescein is
prevented from interacting with GO (quencher); human
serum samples at 2%.

174

FR rGO 1 pM / 1–100 pM Folic acid immobilized onto rGO. Capture of analyte on rGO
induce changes in the DPV using a redox indicator; human
serum samples.

175

DNA from HIV virus Graphene
and rGO

0.158 pM / 1–1�105 pM ssDNA probe immobilized on rGO on SPE. Target DNA
captured affects the diffusion of a redox indicator. CV and
DPV measurements; DNA standards in buffer.

176

Glycoprotein from African
trypanosomes

SWCNTs 4 fM / 1–1000 pM CNTs modified with aptamer deposited on a GCE.
Potentiomeric measurements, changes introduced by the
analyte-binding aptamer; human blood samples diluted 1
in 100.

177

(continued)

Chamorro-Garcia and Merkoçi 13



perform the detection.23,153 Graphene QDs are small gra-

phene monolayers (disks) with sizes ranging between 2 and

20 nm. Thanks to their small size, they present quantum

confinement effect, which provides them with very interest-

ing optical and electrical properties, in particular, the capa-

bility to carry out fluorescent emission.146,154 The property

contrasts with the quenching properties that present bigger

monolayers or ‘‘flakes’’ of graphene.146

It is worth mentioning the particular case of FETs based

on graphene or CNTs. Typically, regular FETs (see Fig-

ure 6) are composed by a source and a drain on a semi-

conductor substrate connected by a dielectric (channel).

Source and drain consist of regions (wells) doped with

either n- or p-type dopants. A gate is placed on top of the

dielectric. It is through source and drain that the current is

injected and collected, respectively. In regular FETs, the

flow of charge between source and drain is blocked, the

application of a voltage through the gate brings carriers

close to the surface, which opens a channel that allows the

flow of charge from source to drain. This current flow can

be controlled by the potential applied through the gate.

Application of FETs for biosensing (BioFETs) has been

achieved by carrying out the detection event on the gate

surface. Modification of gate’s properties due to the sen-

sing process induces modulation in the current between

source and drain.157 This principle can be applied in the

fabrication of different devices for biosensing, for instance,

Medina-Sánchez and coworkers reported the successful

detection of proteins using a BioFET fabricated by Ink-

Jet.158 Graphene and CNTs represent suitable materials for

FET sensors, thanks to their zero-energy band gap. Their

electronic properties can be changed surface modifications,

making it a feasible principle to be applied in detection.153

In their reduced form, both graphene and CNTs present

relatively limited applications due to the strong hydropho-

bicity. The use of these materials in their oxidized forms

has been significantly spread for two main reasons23,147:

First, introducing oxygen groups in the structure turn the

graphene into more hydrophilic, making it easier to dis-

perse more solvents. Second, oxygen acts as reactive

groups to tailor other molecules, giving the possibility to

introduce the desired functionalization.159

However, introducing oxygen groups in the carbon

structure generates defects in the uniformity of the carbon

lattice, making the resulting structure less planar.160 In the

particular case of electrochemical biosensors, edges and

defects in the GO structure introduce points for electron

transfer between the electrode and the solution (heteroge-

neous electron transfer),153 an interesting property for the

electrochemical measurements and electrochemistry

Table 5. (continued)

Analyte
Type of nano
material LOD/LR Detection principle; sample Ref.

hCG Graphene 0.62 ng mL�1 / 0.62–
5.62 ng mL�1

Graphene modified with an antibody for hCG patterned in
channels. When the analyte binds the antibody it increases
the resistance; synthetic urea samples.

178

HIV antibody GO 2 nM / 5–150 nM Glycoprotein gp120 of HIV conjugated to fluorescent
nanoparticles bind spontaneously to GO (quencher). Anti-
HIV antibodies for gp120 prevent quenching of GO;
diluted human serum samples.

179

miRNA (cancer
biomarker)

GO 10.8 fM / - - miRNA absorbed on GO, hybridizes with probe, allowing
amplification. Sylber green intercalates in the formed
dsDNA generating the fluorescent signal. Cell culture
extracts.

180

Mucin 1 (cancer
biomarker)

GO 40 nM / 64.9–1036.8 nM Aptamer for Mucin 1 attached to chemiluminescent
molecule, quenched by GO. The analyte interacts with the
aptamer and displaces the GO; cancer cells extract.

181

Osteoponin (cancer
biomarker)

SWCNTs 0.3 pg mL�1 / 0.001–
1000 ng mL�1

Label-free detection bioFET using SWCNT modified with
antibodies. Capture of the analyte changes resistance of
CNTs; human serum samples.

182

PMPs (risk factor for
arterial pro-thrombotic
pathologies)

GO 100 mparticles mL�1 /
100–7000
mparticles/ mL�1)

GCE modified with GO and antibodies. In presence of redox
indicator EIS value increases upon capture of analyte on
GO; human blood samples.

183

Troponin I Graphene
bioFET

0.1 pg mL�1 /
1–1000 pg mL�1

FET built using graphene sheets acting as gates label-free
detection through the antibodies immobilized on the
graphene; Troponin I standards in buffer.

184

bioFET: biosensor-based field effect transistor; CRP: C-reactive protein; CNTs: carbon nanotubes; CEA: carcinoembryonic antigen; CV: cyclic voltam-
metry; DPV: differential pulse voltammetry; dsDNA: double-stranded DNA; EIS: electrochemical impedance spectroscopy; FR: folate receptor; GCE:
glassy carbon electrode; GO: graphene oxide; HRP: horseradish peroxidase; hCG: human chorionic gonadotropin; HIV: human immunodeficiency virus;
ITO: indium tin oxide; LFIA: lateral flow immunoassay; LOD: limits of detection; LR: linear range; miRNA: micro RNA; MWCNTs: multiwall CNTs;
PMPs: plate-derived microparticles; PNA: peptide nucleic acid; rGO: reduced graphene oxide; SPE: screen-printed electrodes; SWCNTs: single-walled
CNTs; SCCA: squamous cell carcinoma antigen.

14 Nanobiomedicine



studies. In some situations, after taking advantage of the

oxygen groups within the carbon lattice, a reduction pro-

cess of the nanomaterials is performed in order to recover

the reduced material and the interesting properties corre-

sponding to the reduced stage. A nice example of this

strategy has been reported by Baptista-Pires and cowor-

kers161 in which GO is printed/transferred on a substrate

to later reduce it, this technology can be further applied to

fabricate graphene biosensors with all shapes and on sev-

eral different surfaces (Table 5).

Nanochannels

Nanochannels and nanopores have emerged as systems

inspired by ion channels and pores already found in cell mem-

branes.185 According to different authors, when the pore

depth is much larger than the diameter, the resulting structure

will be considered nanochannel. Pores with diameters within

1 and 100 nm are considered nanopores, as long as the pore

diameter is larger than the depth.22,185 These pore and channel

elements found in nature act as ‘‘smart gates’’ in charge of

transport of specific molecules across biological membranes.

This transport mechanism across barriers allows the cell to

control a steady-state situation and the presence of certain

molecules inside and outside of the cell. This principle of

transport control easily caught the attention of researchers,

and its applicability to sensing was rapidly accepted.186 The

fundamental sensing using nanochannels is based on the

Coulter counter concept,187,188 when a microscopic particle

enters through a mchannel, a change in the electrical conduc-

tance would be recorded as electric current pulse. This electric

pulse can be correlated with the nature and properties of the

particle and used to make quantification of the number of

particles. Furthermore, since changes introduced by the pres-

ence of an analyte in the channels or pores can also be read by

optical means, optical reading (fluorescence, interferometry,

SPR, etc.) represents an alternative to electrical measure-

ments. Initially most of the works were driven by the devel-

opment of sensors for DNA detection, mainly due to the

possibility to perform direct DNA sequencing while the DNA

strain is traveling in a linear conformation through the pore/

channel (Figure 7).189,190

Biological nanopores and nanochannels found in nature

are not only made of organic materials but also embedded in

lipid bilayers, becoming especially susceptible to deteriora-

tion when subject to certain harsh conditions such as pH,

temperature, mechanical stress, and so on.191 Much effort has

been applied with the aim to create reproducible, stable, and

robust solid-state nanopores/nanochannels, for the applica-

tion in sensing;192 nevertheless, biological nanopores/nano-

channels present some properties against which synthetic

cannot compete yet.193 With this aim, several nanopore-

based sensors have been developed.194 For instance, Singer

and his team reported the detection and sequencing of DNA

using a nanopore-based device, where the pore has been per-

formed in a free-standing silicon nitride membrane with a

silicon chip as the frame.195 Unfortunately, the real applic-

ability of single pore devices for analysis is limited by the

fabrication procedures. Every single reproduction of the

device requires long and tedious clean room procedures, with

several time-consuming and expensive steps. Furthermore,

the signals that can be achieved with such small devices

require very specific and sophisticated instrumentation.

In order to overcome the above-cited drawbacks, nano-

channel arrays emerged as a feasible solution, setting a new

line of nanochannel/nanopore-based biosensors. First, the

array global result can be understood as the parallel and simul-

taneous behavior of all the single channels,196 hence the small

signal coming from a single channel is magnified as the sum

of all channels in the array generating a larger signal easier

and more feasible to read. Second, the device fabrication of a

bigger area with an array of channels represents an easier and

more feasible alternative that can be performed through con-

ventional chemistry procedures in contrast with the equip-

ment and facilities necessary for single pore/channel

fabrication. Most common and popular material for making

these nanochannel arrays is the anodized aluminum oxide.

The simplest and most straightforward application of

solid-state nanochannels arrays in biosensing is their inte-

gration/coupling with conventional electro transducer sur-

faces. The parameter measured is the electrochemical

response generated by electroactive species (redox indica-

tors) that are able to diffuse through the channel and reach

the transducer surface. When the analyte is captured by the

ligands immobilized on the walls of the nanochannels, the

Figure 7. Example of detection using nanochannels. Detection
and sequencing of ssDNA traveling through a-hemolysine pore,
identification of each nucleotide due to their characteristic time
recordings acting as fingerprint signal for each base. ssDNA:
single-stranded DNA.
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Figure 8. Principle of electrochemical detection using AAO nanochannel array membranes. Scheme of the sensing principle for a
nonspecific assay (left) and for a specific assay with unlabeled (middle) and 20 nm AuNPs labeled (right) target ssDNA. (Bottom) The
corresponding DPVs for nonspecific target ssDNA (a) and for unlabeled (b) and 20 nm AuNPs labeled–specific target ssDNA (c).
Reproduced with permission from reference.197 AAO: anodized aluminum oxide; AuNPs: gold nanoparticles; ssDNA: single-stranded
DNA; DPVs: differential pulse voltammograms.

Table 6. Nanochannel-based biosensors.

Analyte Type of nanochannel LOD/LR Detection principle; sample Ref.

CA15-3 (breast
cancer biomarker)

20 nm diameter
nanochannel array
AAO

52 U mL�1 / 60–240 U mL�1 Aptamer on nanochannels and antibody-AuNPs
generate a sandwich with the analyte, preventing
the diffusion of a redox indicator. Silver deposition
on AuNPs to enhance signal; human whole blood
samples

198

Cocaine a-hemolysin pores in
lipidic membrane

- - / 5–500 mM Aptamer forming a DNA duplex. Analyte competes
for the aptamer, displaced DNA which has a target
sequence to be captured by a-hemolysin generating
a characteristic current; cocaine standards in
buffer.

200

CTC Nanoporous AAO <1000 cells/mL /
1000–100,000 cells mL�1

CTCs captured by the EpCAM immobilized on the
AAO surface. CTCs introduce a change in the
optical reflection. RiS; blood samples diluted 1 in 10
in PBS.

201

DNA sequencing MspA nanopore in a
lipidic membrane

Up to 4.5 Kpb of DNA DNA translocated through protein pore MspA,
generates an electrical pattern allowing sequencing;
DNA standards in buffer.

202

DNA, 20 pb of
anthrax lethal
factor

a-hemolysin pore in
a lipid bilayer

1 pM / 0.001–10 nM Target DNA and probe hybridize, creating a
characteristic electrical signal; DNA standards in
buffer.

203

E. coli Nanopore array in
silicon

103 cfu mL�1 /
103–107 cfu mL�1

Shift of EOT in the nanochannel array due to of BSA.
E. coli captured on the pores prevent BSA from
reaching the nanochannels; E. coli cultures samples.

204

Human IgG in urine 200 nm LB forming
monolayers on
ITO-coated PET

580 ng mL�1 /
0.125–100 mg mL�1

Antibodies against human IgG immobilized on LB.
Captured analyte prevents diffusion of redox
indicator; human urine samples.

205

(continued)
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assembly formed prevents the electroactive species from

reaching the transducer surface, thus decreasing the elec-

trochemical signal read by the sensor. An important issue to

take into account is the fact that the achievable signal

change is related to the blocking capabilities of the analyte

once captured by the ligand immobilized on the nanochan-

nel array. The bulkier the analyte is, or more electrostatic

repulsion with the electroactive indicator has, the more

sensitive the system will be (Figure 8).

In some cases, direct contact of certain molecule or

components in the sample may interfere or foul the sensing

surface disrupting the measurement; solid-state nanochan-

nel detection by the very principle of detection offer the

possibility to be used as a barrier protecting the electrode

acting as filtering platform avoiding possible interferences

caused by different components in the sample medium, for

instance, de la Escosura-Muñiz reported the measurement

biomarkers in untreated blood samples, thanks to the filter-

ing effect of the nanochannel arrays toward red blood cells,

preventing them from reaching the transducer surface and

hence avoiding the interference in the measurement.198

Besides the electrochemical-based sensing using nano-

channels, optical ways of detection represent a feasible

approach for nanochannel-based sensing. It is possible,

thanks to the characteristic response of the nanochannel

arrays when exposed to light. The presence of biomolecules

on the surface of the nanochannels may alter the interaction

and hence shift the light emission pattern199; fluorescence

and photoluminescence, surface plasmon resonance,

surface-enhanced Raman scattering, interference spectro-

scopy, and so on.22,199

Nanopore/nanochannel-based sensing offers several

new possibilities to study biomolecules with interest in

clinics, although most expectations are still focused on the

possibility to perform real-time sequencing of nucleic acids

and peptides, several interesting approaches for biosensing

have been successfully proved and reported (Table 6).

Conclusions

Despite being launched decades ago, amperometric glucose

meter and lateral flow pregnancy tests remain the most com-

mercialized biosensors.29 Back in 2008, glucose meter

meant just by itself 85% of the total biosensor market,29,211

and still new glucose meters are being developed and

launched; for instance, Abbott in fall 2015 launched a

Table 6. (continued)

Analyte Type of nanochannel LOD/LR Detection principle; sample Ref.

HIV protease activity a-hemolysin pore in
a lipid bilayer

0.47 ng mL�1 / - - Translocation of peptide fragments after protease
activity generate different electrical pattern than
that obtained in the absence of protease.

206

Lung cancer miRNA a-hemolysin pore in
a lipid bilayer

0.1 pM / 0.1–100 pM microRNA of interest is captured by an ssDNA
probe, which has an extra sequence to be
translocated by a-hemolysin; human serum
samples.

207

PTHLH (tumor
biomarker)

20 nm diameter
nanochannel array
AAO

50 ng mL�1 / 50–500 ng mL�1 Label-free detection. PTHLH captured by antibodies
prevents a redox indicator from diffusing through
the nanochannels, DPV detection; cell extract
samples.

208

Renin activity
(indicator of
hypertension)

a-hemolysin pores in
lipidic membrane

Qualitative detection Renin cleaves angiotensinogen Nterm region, the
resulting fragment is purified, and quantified by
signal through a-hemolysin pores; human serum
samples.

209

Thrombin 20 nm diameter
nanochannel array
AAO

1.8 ng mL�1 / 2–100 ng mL�1 Aptamer on nanochannels and antibody-AuNPs
generate a sandwich with the analyte, preventing
the diffusion of a redox indicator, DPV detection;
human whole blood samples.

210

Thrombin a-hemolysin pores in
lipidic membrane

- - / 5–500 nM Aptamer forming a DNA duplex. Analyte competes
for the aptamer, displaced DNA which is captured
by a-hemolysin, generating a characteristic current;
thrombin standards in buffer.

200

VEGF a-hemolysin pores in
lipidic membrane

- - /5–500 pM Aptamer forming a DNA duplex. Analyte competes
for the aptamer, displaced DNA which is captured
by a-hemolysin, generating a characteristic current;
VEGF standards in buffer.

200

AAO: anodized aluminum oxide; AuNPs: gold nanoparticles; CNTs: carbon nanotubes; CA: chronoamperometry; CTC: circulating cancer cells;
DPV: differential pulse voltammetry; E. coli: Escherichia coli; EOT: effective optical thickness; HIV: human immunodeficiency virus; ITO: indium tin oxide;
LB: latex beads; LOD: limits of detection; LR: linear range; miRNA: micro RNA; MspA: Mycobacterium smegmatis porin A; NPs: nanoparticles;
PBS: phosphate-buffered saline; PET: polyethylene substrate; PTHLH: parathyroid hormone-related hormone; RiS: reflectometric interference spectro-
scopy; ssDNA: single-stranded DNA; VEGF: vascular endothelial growth factor.
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patch-based sensor for continuous monitoring of glucose in

blood,212 by the same time Dexcom launched a similar

device for continuous glucose monitoring in blood.213 Yet,

it is important not to neglect the traditional stick-based glu-

cose meters already discussed and described in the litera-

ture.29 Furthermore, other successful biosensors for other

small analytes and biomarkers have been developed and

commercialized. Nevertheless, despite all the achievements

there is still a strong demand for affordable POC biosensors

in order to carry out a close monitoring of certain biomar-

kers, with a special focus on the cancer biomarker.214 Hence,

simple and cheap devices that can be used by nontrained

personnel in nonspecialized facilities are strongly desired.

Nanomaterials represent new source of alternatives to be

applied in biosensing devices; they can enhance several

aspects of the performance of the biosensor, for instance,

improve the sensitivity, increase stability and shelf life,

achieve better signal to noise ratio, better time of response,

and so on. In the same line, they are potential candidates for

reducing fabrication costs, allowing to develop cost-

effective sensing devices compared to the current alterna-

tives of detection,215 furthermore, the possibility to develop

small compact devices. Unfortunately, an issue that limits

the development and application of nanobiosensors in real

life is related to the safety and toxicity regarding nanoma-

terials, their composition, and particular properties.216

There is still a controversial discussion which requires

more studies related to these materials and their effects.

In recent years, several biosensors taking advantage of

nanomaterials have been reported, generating a huge

amount of published literature. The interesting issue is the

practical and useful point of view given to all this research,

looking for devices with potential applicability and the aim

of solving real problems. However, many of the developed

sensing strategies are rather complicated; and despite rep-

resenting a solution to a problem, they do not solve it in the

practical way needed to be an interesting alternative to

other already available possibilities. Therefore, some of

them do not represent a feasible approach to be easily

brought to a commercial sensor. This is shown by the lack

of attention regarding the time of response and time of

operation of new reported biosensing techniques. Despite

being crucial parameters of any biosensor applied in any

real situation, they are not often described, the LOD and

linear range of response still being the main focus of atten-

tion. An important and successful application of nanoma-

terials in biosensors is the nanopore-based portable

sequencing device launched by Nanopore,217 in which the

nanopores introduce a new functionality instead of just

substituting or enhancing already existing properties. Most

applied biosensors for commercial purposes are based

on electrochemical transductors, mainly due to their advan-

tages (low cost, simple equipment, easy to fabricate, strong

signal etc.) and their suitability to successfully develop a

device ready for commercialization.29

Finally, new frontiers for biosensing are still focused on

the integration of sensing systems with technology already

available in common everyday life, allowing the patient or

healthy individual to carry out certain tests themselves and

incorporate this data to their own record.29 A tremendous

number of possibilities rely on the use of the huge potential

that smartphones offer,218 from optical reading of QDs-

based test219 and LFIAs220 to electrochemical reading.221
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tañeda M, et al. Detection of parathyroid hormone-like hor-

mone in cancer cell cultures by gold nanoparticle-based

lateral flow immunoassays. Nanomedicine 2016; 12(1):

53–61. DOI: http://dx.doi.org/10.1016/j.nano.2015.09.012.

67. Zheng T, Pierre-Pierre N, Yan X, et al. Gold nanoparticle-

enabled blood test for early stage cancer detection and risk

20 Nanobiomedicine

http://dx.doi.org/10.1016/j.cattod.2005.01.002
http://dx.doi.org/10.1016/j.cattod.2005.01.002
http://dx.doi.org/10.1016/j.pmatsci.2013.09.003
http://dx.doi.org/10.1016/j.colsurfb.2012.07.036.
http://dx.doi.org/10.1016/j.colsurfb.2012.07.036.
http://dx.doi.org/10.1016/j.bios.2015.12.003
http://dx.doi.org/10.1016/j.bios.2015.12.003
http://dx.doi.org/10.1016/j.bios.2011.06.015
http://dx.doi.org/10.1016/j.bios.2011.06.015
http://dx.doi.org/10.1016/j.bios.2015.12.052
http://dx.doi.org/10.1016/j.bios.2015.12.052
http://dx.doi.org/10.1016/j.nano.2015.09.012


assessment. ACS Appl Mater Interf 2015; 7(12): 6819–6827.

DOI: 10.1021/acsami.5b00371.

68. Li J, Ma H, Wu D, et al. A label-free electrochemilumines-

cence immunosensor based on KNbO3-Au nanoparticles@-

Bi2S3 for the detection of prostate specific antigen. Biosens

Bioelectron 2015; 74: 104–112. DOI: 10.1016/j.bios.2015.

06.027.

69. Parolo C and Merkoci A. Paper-based nanobiosensors for

diagnostics. Chem Soc Rev 2013; 42(2): 450–457. DOI: 10.

1039/C2CS35255A.
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electrical biosensing. Trends Anal Chem 2015; 79: 134–150.

DOI: http://dx.doi.org/10.1016/j.trac.2015.12.003.

195. Singer A, Wanunu M, Morrison W, et al. Nanopore based

sequence specific detection of duplex DNA for genomic

profiling. Nano Lett 2010; 10(2): 738–742. DOI: 10.1021/

nl100058y.

196. Sawafta F, Clancy B, Carlsen AT, et al. Solid-state nano-

pores and nanopore arrays optimized for optical detection.

Nanoscale 2014; 6(12): 6991–6996. DOI: 10.1039/

C4NR00305E.

197. de la Escosura-Muniz A and Mekoci A. Nanoparticle based

enhancement of electrochemical DNA hybridization signal

using nanoporous electrodes. Chem Commun 2010; 46(47):

9007–9009. DOI: 10.1039/C0CC02683B.
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