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Soft Glassy Materials (SGM) consist in dense amorphous assemblies of colloidal particles of mul-
tiple shapes, elasticity, and interactions, which confer upon them solid-like properties at rest. They
are ubiquitously encountered in modern engineering, including additive manufacturing, semi-solid
flow cells, dip-coating, adhesive locomotion, where they are subjected to complex mechanical histo-
ries. Such processes often include a solid-to-liquid transition induced by large enough shear, which
results in complex transient phenomena such as non-monotonic stress responses, i.e., stress over-
shoot, and spatially heterogeneous flows, e.g., shear-banding or brittle failure. In the present article,
we propose a pedagogical introduction to a continuum model based on a spatially-resolved fluidity
approach that we recently introduced to rationalize shear-induced yielding in SGMs. Our model,
which relies upon non-local effects, quantitatively captures salient features associated with such com-
plex flows, including the rate dependence of the stress overshoot, as well as transient shear-banded
flows together with nontrivial scaling laws for fluidization times. This approach offers a versatile
framework to account for subtle effects, such as avalanche-like phenomena, or the impact of bound-
ary conditions, which we illustrate by including in our model the elasto-hydrodynamic slippage of

soft particles compressed against solid surfaces.

I. INTRODUCTION

Soft Glassy Materials (SGMs) encompass a broad va-
riety of colloidal particles densely packed into an amor-
phous microstructure showing solid-like properties at
rest [I, 2]. These particles, which can be either soft
and deformable or hard, form a jammed assembly with
glassy-like mechanical properties characterized by (i) a
linear viscoelastic response where the elastic contribu-
tion is dominant [3], and (i¢) time-dependent properties
referred to as “aging” in the literature [4] [5]. Moreover,
under a sufficiently large external stress or strain, par-
ticles can rearrange. For vanishingly low shear rates,
such rearrangements take the form of local plastic events
such as T1 events in foams and emulsions [6], or shear-
transformation zones in colloids [7]. Eventually, for suf-
ficiently large accumulated deformation, these plastic
events, which act as a mechanical noise, lead to the
fluidization of the sample. Remarkably, such a shear-
induced solid-to-liquid transition displays generic fea-
tures that are quite insensitive to the sample microstruc-
ture [8HITI]. For instance, under a constant applied shear
rate 4, the stress o builds up and reaches a maximum
before relaxing towards a steady-state value. Such a non-
monotonic response, known as a stress overshoot [12], co-
incides with the yielding of the sample, which may either
flow homogeneously, or rather display a spatially hetero-
geneous yielding process [I3]. In the latter case, flow het-
erogeneity occurs due to localized, brittle-like failure [14],
or results from a more ductile process in which an ar-

rested region coexists with a fluidized one, referred to as
a “shear band,” whose lifespan depends on the volume
fraction and on the particle interactions [I5HIT].

Various modelling efforts have been undertaken over
a broad range of spatial scales, from that of the build-
ing block, thanks to, e.g., Molecular Dynamic simula-
tions [I8-20], to mesoscale or macroscopic continuum ap-
proaches in which the SGM microstructure is accounted
for only by a few parameters [12, 21], up to typically
10, in order to capture more subtle effects such as non-
isotropic resistance of the sample inherited from shear
history [22] 23]. Here, we shall focus on a continuum
approach traditionally referred to as “fluidity models”
[24, 25] in which the microscopic properties of the sam-
ple are expressed by the fluidity f, a local quantity, which
stands for a rate of plastic events.

Recently, fluidity models were derived theoretically by
Bocquet et al. [20] as the continuum limit of a micro-
scopic equation for the probability distribution originally
proposed by Hébraud and Lequeux [27]. Such an ap-
proach showed that fluidity models naturally encompass
non-local effects in steady state via a so-called “cooper-
ativity” length scale that quantifies the extension of the
region that is impacted by a neighboring plastic rear-
rangement [28H3I]. The approach of Ref. [26] was ex-
tended to transient flows by some of us in Ref. [32]. This
extended non-local version of the fluidity model has been
used to quantitatively capture the key features of the
yielding transition of a soft glass [33H35].

In the present Perspective, we first summarize these
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FIG. 1. Phenomenology of shear start-up experiments in Carbopol microgels. (a) Stress o as a function of strain
v = 4t recorded after a shear rate ¥ = 5, 1, 0.2, and 0.03 s~! from top (darker color) to bottom (lighter color) is applied at time
t = 0. The red dashed line highlights the linear response at short time o = Goy with Go = 300 Pa. Inset: same data plotted as
a function of time ¢ using semilogarithmic scales. (b,c) Velocity profiles v normalized by the velocity of the moving plate vy as
a function of the distance y to the moving wall normalized by the gap size L and recorded (b) at short times around the stress
overshoot under 4 = 0.1 s}, and (c) at long times during the transient shear-banding regime under 4 = 0.7 s~ . In both cases,
the inset shows the corresponding stress response o (t) and the colored symbols show the times at which the velocity profiles in
the main graph are recorded. The colored lines are guides to the eye in (b) and fits to the velocity profile in the shear band in
(c). The gray dashed line in (c) shows the velocity profile expected for a Newtonian fluid in the absence of wall slip.

findings to illustrate the power of the non-local fluid-
ity model. Second, we extend our approach and include
the elasto-hydrodynamic slippage of soft particles com-
pressed against a solid surface in order to describe recent
results from the literature [36].

II. PHENOMENOLOGY OF SHEAR START-UP

EXPERIMENTS

In a shear start-up experiment, one imposes a constant
shear rate 4 at time ¢ = 0 upon an SGM initially at rest.
Figure [1] illustrates the general phenomenology of shear
start-up through a selection of experimental results on
Carbopol microgels [37H39]. As recalled in the introduc-
tion, a stress overshoot is classically observed: at short
times t, the shear stress o grows linearly with the strain
v = A4t [see red dashed line in Fig. a)], which is typ-
ical of an elastic response. At longer times, the stress
progressively deviates from a linear response and reaches
a maximum oyp; at time ty. As the stress maximum is
reached, the material has become strongly anisotropic,
and subsequent stress relaxation processes lead the ma-
terial to flow on even longer time scales. This global
behaviour is typical of ductile-like yielding.

To get more insight into the local structure of the
flow during the solid-to-liquid transition, velocity pro-
files measured using ultrasonic velocimetry are displayed
in Fig. [[fb) and [I[c). In the case of the present micro-
gels, the material is homogeneously strained prior to the
stress overshoot, and the stress maximum corresponds
to the point when the microgel fails at the shearing sur-
face [see Fig. [T{b)]. Such failure is followed by an elastic

recoil [see the negative velocities for the velocity profile
with o symbols in Fig. b)], then by a fully arrested
regime with v = 0 across the whole sample except for
a thin, unresolved lubrication layer at the moving wall.
Yet, on time scales much longer than the time ¢y of the
stress maximum, a fluidized region, i.e., a shear band,
of width £, grows from the moving wall and coexists
with the arrested, solid-like material until a fully homo-
geneous flowing state is reached at a well-defined fluidiza-
tion time 7 [see Fig. [[{c)]. Finally, whatever the com-
plexity of the stress relaxation, the stationary velocity
profiles of the present microgels are ultimately homoge-
neous with insignificant wall slip. It is also essential to
note that the fully flowing material is well described by
the widespread Herschel-Bulkley (HB) constitutive law
relating the stress o and the shear rate 4 in the system
at steady state [I7], o = oy + A4™, where oy is the yield
stress, A the consistency and n the shear-thinning index.

From the experimental results displayed in Fig. [1} one
may argue that the yielding transition can be consid-
ered as a dynamical first-order phase transition, where
one phase (the fluid-like phase) nucleates into the other
phase (the solid-like phase). As we shall see, this idea un-
derlies most of the following discussion, which focuses on
two relatively simple yet fundamental questions: (i) How
does the stress overshoot o) depend on the applied shear
rate 4?7 (i4) How does the fluidization time 7t depend on
the applied shear rate 4 or stress ¢? Our ultimate goal
is to obtain a general framework that describes quantita-
tively the yielding transition and its mesoscopic features.




III. CONTINUUM MODELING

We start by considering a two-dimensional shear ge-
ometry where the SGM is confined between two infinite
parallel plates separated by a distance L. The flow is
assumed to be one-dimensional along the direction =,
i.e., it is described by a velocity field v = (v, v,) with
vg(z,y,t) = v(y,t) and vy(z,y,t) = 0, where y denotes
the velocity gradient direction and ¢ the time. The wall
at y = 0 moves with a constant velocity vy imposed at
the initial time ¢ = 0, while the wall at y = L remains
fixed with zero velocity. As in experiments, the SGM
is assumed to be initially at rest so that v(y,0) = 0
for y € [0,L]. For the sake of simplicity, we introduce
the dimensionless stress and shear rate, ¥ = o/o, and
I' = 4/(o,/A)Y™, such that the SGM in steady state
follows the dimensionless HB law:

() =1+1". (1)

Following Refs. [20, 28], in order to describe the local
behaviour of the SGM, we introduce the fluidity f(y,t)
of the SGM as the relevant order parameter in the sys-
tem, as well as a characteristic length scale, called the
cooperativity scale £, which controls spatial dynamics of
the fluidity. Qualitatively, the fluidity corresponds to the
rate of plastic events at a given time and position in the
system. When the SGM flows in steady-state under an
applied stress X, Bocquet et al. [26] linked the fluidity to
elasto-plasticity at mesoscale through the following equa-
tion:

EAf+mf - f37 =0, (2)
where
mZE%G(E—l), (3)

and © is the Heaviside function. As noted in Ref. [26],
Eq. can be associated to the functional derivative of

L L
F[f}:/o ‘P[f]dyz/o [1(Vf)2—;mf2+§f5/2 dy.

2

(4)

From the above equation, it is tempting to consider
F[f] as a free energy functional for the fluidity f. Based
on this idea, we proposed in Refs. [32] [33] to extend the
approach and formulate the dynamics of the system using
F[f]. In order to model shear start-up, i.e., a constant
velocity vg imposed at the moving wall at ¢ = 0, we take
the shear rate I' as the imposed control parameter. In
this case, the quantity f = f/I" should be proportional to
the number of plastic events occurring at some position y
over the time scale I'"!. Such a number may increase or
decrease locally depending on the dynamics of the system
induced by the external driving I'. Since I is constant,
the temporal variation df /0t is nothing but the fluidity
variation due to { = I't, i.e., df /0t = 8f/di. Our first

modeling step is to assume that the fluidity dynamics is
given by:

of _
ot

SF(f]
of
where [f] plays the role of a “mobility”. Suppose now
that the system can be decomposed into two different
regions: a fluidized region where f > 0 and a solid-like
region where f = 0. Our second important assumption
is to require that both regions correspond to stationary
solutions of Eq. (B). Assuming x[f] to be an analytic
function of f, the simplest choice is k[f] ~ f. This im-
plies that the formation of a shear band in the system
coexisting with a solid-like region with ezactly f = 0 can
be described by the superposition of two stationary states
of the dynamics: one corresponding to f > 0 [see Eq. (2)]
and the other one to f = 0. Moreover, it can be easily
understood that, if the solid-like region is described by
a small yet non-vanishing fluidity f > 0, then it cannot
remain solid forever and it will eventually flow, i.e., it is
unstable. This situation therefore corresponds to tran-
sient shear banding as we shall describe in the following.

The third and last modeling step is to couple Eq. ()
with an equation for the time evolution of the stress X(¢),
which we suppose spatially homogeneous. This can be
done by decomposing the total strain I' = I',, + I, into
an elastic contribution I',, = 7%, where 7 is a charac-
teristic time inversely proportional to the elastic modu-
lus, and a plastic contribution I',, such that I",, = 3(f),
where (...) denotes spatial average, and by using the
well-known Maxwell model [40]. The evolution equation
for the shear stress then reads:

—~[f] (5)

< T, 1

- == ==, (6)

with I = T, + fpl. This last equation is coupled to
Eq. (5), which can be rewritten as:

A (eartmi- ), ™)
with m given by Eq. .

Finally, we must specify boundary and initial condi-
tions. Assuming that the external driving is acting at
the boundary y = 0, we choose the following bound-
ary conditions. For m? > 0, we impose a “wall flu-
idity” f. = f(0,£) = m2(X) at the moving wall, and
9y f(L,t) = 0 at the fixed wall. When m = 0, we assume
9,f(0,£) = 0 = 9,f(L,t) at both walls. Moreover, we
take the initial fluidity profile to be homogeneous and
very small, i.e., f(y,0) = fo with fo < 1. As soon as
3 > 1, we expect a shear band to develop from y = 0 with
a size £,(t) that increases with time and whose dynamics
is set by the spatio-temporal evolution of the fluidity.

Figure [2| provides examples of numerical resolutions
that illustrate the general phenomenology of shear start-
up in our fluidity model. In particular, the time evolu-
tion of ¥(t), obtained from the numerical integration of
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FIG. 2. Phenomenology of shear start-up in the fluidity model. (a) Stress response X(t) computed for n = 1/2, L = 1,
T =10, £ = 0.04, I = 2, and fo = 107%. The colored symbols highlight the times at which the data in (b) are extracted.
(b) Normalized fluidity profiles f(y)/m? as a function of the normalized spatial coordinate y/L. The dashed-dotted lines
represent an analytical estimate of the steepness of the interface between the fluidized and the solid-like regions. (c) Stress
distance to the yield stress, ¥ — 1, as a function of the effective shear rate, I“L/Eb, developing in the shear band of width £,
[see arrow in (b)], for various global shear rates I' = 8 x 10™* (0), I' = 9 x 107% (a) and I' = 1072 (¢). The red solid line
corresponds to the HB prediction, ¥ — 1 = (fL/éb)l/Q, relating the shear stress to the effective shear rate.

Eqgs. @ and @ for € = 0.04, fo = 1074, and T' = 2,
shows a stress overshoot very similar to that observed
in experiments [Fig. 2(a)]. Moreover, the fluidity pro-
files f(y,7) displayed in Fig. [2b) for two specific times
present a sharp interface between a fluidized shear band
for y < fy, where f ~ m?, and a solid-like region for
y > {, where f(y,t) = fo. Note that the shear band
grows in size because of the instability of the solid-like
region, while retaining a sharp interface at f ~ fy. This
results from our requirement that x[f] = f. More pre-
cisely, it is possible to estimate analytically the steep-
ness of the interface at f ~ fp, shown in dash-dotted
lines in Fig. (b), as Oy fly=e,/m? = (m/5¢%)1/2. Deep
into the region f = fo < 1, i.e., far enough from the
interface, the fluidity increases algebraically in time as

fly,t) ~ fo (1 + fo fjm(s)ds) However, at the bound-

ary of the fluid-like region for y ~ #,(t), an instability
occurs with an exponential growth of the fluidity. Dimen-
sional considerations suggest that the instability extends
over a scale of order £/m!'/? and grows with a character-
istic time scale m™3. This implies that the size of the

shear band £, (f) satisfies the equation [35]:

e
! 8
0 (®)

We will come back to the dynamics of the transient shear
band below when discussing the fluidization.

~ £m5/2.

IV. STRESS OVERSHOOT

We now investigate how the stress maximum ¥y scales
with ', which is an observable classically extracted from
experiments [38, [41], [42]. Concomitantly to the stress
overshoot, the size £, of the shear band increases with

time. As detailed in Ref. [35], at short time Z, the band
dynamics is dominated by the diffusion term f, &2 ~
m2€2 and £, grows as (m2¢2)'/2, while for large enough
0y, it follows Eq. (8). The overall process is illustrated
in Fig. c) by plotting the distance to the yield stress,
Y. — 1, as a function of the effective shear rate Lf‘/&,,
which corresponds to the average shear rate in the flu-
idized band. Such a representation of the flow dynamics
clearly highlights the separation between two different
dynamical regimes: a short-time “unsteady” regime that
strongly depends on the applied shear rate I' and where
the data fall well below the equilibrium HB curve, and
another “quasi-steady” regime at longer times, where all
data nicely collapse on the HB curve, including during
the transient shear-banding regime.

Based on the previous observations, the scaling of ¥y
with T' can be computed using Egs. @ and . In a
nutshell (see Refs. [34] 5] for full details), considering
that the stress grows linearly up to the stress maximum,
i.e., X(t) ~ t/7, that the stress is large enough that m =
(B —1)1/2n/551/2 ~ 331/27=1/2 " and that (f) ~ fym?, the
condition d¥/df = 0 at the stress maximum leads to:

' = [Sn(tn) — 1]° 6 (Fu) 9)
where # is the strain at the stress maximum Yy;. Fur-
ther analysis of the two dynamical regimes then yields:

NG ) ™
Sm-1~B (671/2> +C (&) o (10)

where B and C' are two numerical prefactors, and

4n
9—n’

_2n

JORE

and a(n) =

(1)
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FIG. 3. Scaling of the stress overshoot. Predictions of
the fluidity model for an HB exponent n = 1/2. Rescaled
stress maximum (Zy — 1)7%4 vs normalized shear rate I'7%7.
Colored symbols refer to different values of 7 from 0.1 to 100.
Inset: Experimental results in Carbopol microgels. Rescaled
stress maximum (om /oy —1)7" vs normalized shear rate 4/%,
where T = 0y /Go with oy and Go the yield stress and elastic
modulus of the microgel respectively, u = 2n/(3 — n), and
4* a rescaling factor as defined in Ref. [34]. Colored symbols
refer to different Carbopol concentrations from 0.1 to 3 % wt.
The red solid lines (dotted lines resp.) show the scaling law
inferred from the fluidity model with exponent o« = 4n/(9—n)
in the asymptotic regime (8 = 2n/3 in the diffusive regime
resp.).

The first term on the r.h.s of Eq. dominates for small
I', when the shear band grows due to the diffusion term
fuw€?, while the second term dominates for large I', when
the shear band increases according to Eq. . Note that
Eqgs. and hold both for transient and stable
shear bands. As shown in Ref. [35], an extensive survey
of the existing numerical and experimental data shows
excellent agreement with Eq. . Figure (3] illustrates
this agreement by comparing the model predictions to
experiments on Carbopol microgels. In both cases, two
power-law regimes can be identified in Xy — 1 vs I', and
the exponents are consistent with the values 5 = 1/3 in
the “diffusive” regime and with @ = 4/17 in the “asymp-
totic” regime at large I' predicted for a shear-thinning
index n = 1/2. Finally, we emphasize that Eq. de-
pends on ¢ with a singular limit for £ — 0, and that the
above results depend on the choice s[f] ~ f. The good
agreement between Eq. and experimental data there-
fore provides strong support for the present formulation
of the fluidity model, which constitutes a remarkable,
non-trivial result.

V. INCLUDING ELASTO-HYDRODYNAMIC
(EHD) INTERACTIONS INTO THE MODEL

Based on experiments and numerical simulations,
Cloitre, Bonnecaze and collaborators [43-45] have shown
that the flow of SGMs constituted of dense assemblies
of deformable particles, such as microgels, emulsions or
glasses of elastomeric particles, is controlled by elastohy-
drodynamic (EHD) interactions, which result from the
lubrication flows of solvent within the thin films be-
tween the particles. In particular, a recent study [36]
has shown that EHD interactions impact the scaling of
the stress overshoot in a non-trivial way. We herewith
discuss an easy way to include such EHD effects in our
continuum model through a simple modification of the
Maxwell equation (@ for the stress evolution. We pro-
pose to add a contribution I'yyp from EHD interactions
to the total strain, I' = I',; + I',, + I'gup, which is related
to the shear stress through FEHD = fOEQ, where fo is
a reference shear rate below which EHD effects become
significant. This specific choice of scaling for the EHD in-
teractions is justified by [44] [46]. The resulting modified
Maxwell model reads:

as 1

by 3
T %‘FO?' (12)

First, EHD interactions modify the steady-state rheol-
ogy. Indeed, with f = m?©(X — 1) and dX/dt = 0, we
get:

I=(Z-1)Y"0(x —1)+Tyx2. (13)

The inset in Fig. 4| compares the steady-state flow curve
predicted from Eq. with n = 1/2 and T'y = 0.04
to experimental data on microgels obtained under two
different boundary conditions [46]. While the experi-
mental flow curve for rough shearing surfaces (brown
squares) nicely follows the HB law, the flow curve mea-
sured for smooth surfaces (yellow circles) presents a kink
for I < 0.05 that is usually interpreted as the hallmark of
predominant slippage at the walls [T0]. Interestingly, in-
cluding EHD interactions in our model using I'y = 0.04
allows us to nicely predict the steady-state flow curve
for the smooth surface: in spite of some deviations at
extremely low shear rates, EHD contributions produce
deviations from the HB behaviour when I' < I'y, while
leaving the HB flow curve essentially unaltered for ¥ > 1,
very much like experimental observations. This suggests
that 'y most probably embeds some non-trivial depen-
dence on boundary roughness, which remains to be mod-
eled theoretically.

Second, EHD interactions also modify the scaling of
the stress overshoot, which can be derived using Egs. (7))
and . In particular, EHD interactions change Eq. (9)
to:

I'=[Su(tu) — 1]2 y(tn) + T3y - (14)
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FIG. 4. Effects of elasto-hydrodynamic (EHD) inter-
actions. Scaling of the stress overshoot maximum Xy (V)
and its distance to the yield stress ¥m — 1 (4) as a function
of the shear rate I computed from the fluidity model with
n=1/2,T9 =0.01, and £ = 0.001. The red solid and dashed
lines show the scaling laws predicted by the model respectively
with EHD interactions (exponent 1/2) and without EHD in-
teractions (exponent 4/17). Insert: Steady-state flow curve
for microgels on smooth (0) and rough (m) surfaces extracted
from Fig. 1 of Ref. [46]. The red dashed line is the HB flow
curve withn =1/2,ie, 3 =1 +f1/2, while the red solid line
is the flow curve computed from Eq. with 'y = 0.04.

Therefore, for I' < I'y where EHD effects dominate, the
stress maximum no longer depends on the HB expo-
nent, but rather simply on the EHD scaling as ¥y ~
(I'/T'9)'/2. For I >> T, however, the scaling of Eqs.
and is recovered. This is confirmed in Fig. [4| by the
numerical integration of the full dynamical equations.
Note that when EHD interactions dominate, the expo-
nent 1/2 is observed for the stress maximum Xy rather
than for ¥y — 1, which indicates that the yield stress is
no longer a “reference” stress for the stress overshoot.

VI. TRANSIENT SHEAR BANDING AND
FLUIDIZATION TIME

The fluidity model can be further used to compute the
duration of the transient shear banding regime, i.e., the
fluidization time T} as a function of I', which constitutes
an important prediction for experiments and applications
of SGMs. Indeed, during the fluidization process, the
system satisfies the balance I' = (f)X = m2(,%. This
allows us to compute m as a function of ¢, and T". Using
Eq. , one then predicts that, for small enough I':

1

~ W7 (15)

1%

in excellent agreement with experimental data [33], B7].
Note that the scaling exponent for T vs I is independent
of the HB exponent n.

In the case of stress-induced fluidization, i.e., when
forcing at a constant external stress 3, Eq. can still
be used upon identifying t = m?t, which results from the
fact that m? ~ I for small I". Thus, Eq. generally pre-
dicts T; ~ (¢ém®/?)~1, which leads to T; ~ 1/[¢(X—1)%/47]
for small imposed values of ¥ — 1. Therefore, the present
fluidity model predicts that the ratio of the scaling expo-
nents under imposed I" to that under imposed X is given
by the HB exponent n, as observed in experiments on
Carbopol microgels [17, [33].

Finally, as examined in details in Ref. [35], one may
introduce long-range correlations in the fluidity through
noise-like dynamics and investigate how the above pre-
dictions depend on boundary conditions. In brief, the
transient shear-banding scenario and the scaling of Tt
given by Eq. are very robust to fluidity correlations
when the fluidity at the moving wall is fixed through
fw = f(0,%) = m2. However, when rather fixing the flu-
idity gradient at the moving wall through 9, f(0,0) = 0,
long-range spatial correlations conspire with the bound-
ary condition to promote the emergence of a completely
different fluidization scenario, where the growth of the
shear band is prevented, leading to a stress increase that
is initially smoother, but later characterized by an abrupt
drop, resembling brittle-like failure [I4] and similar to
the one discussed in recent theoretical and numerical
works [I8, 47, [48].

VII. SUMMARY AND OPEN QUESTIONS

We started this Perspective paper by asking how two
classical observables that characterize shear start-up in
SGMs, namely the stress overshoot ¥y = om/oy and
the fluidization time, depend upon the applied shear rate
I". We have shown that a dynamical fluidity model al-
lows one to predict the way rheological variables should
be analyzed, i.e., Xy — 1 vs. T and T vs. I' or m.
The corresponding scaling exponents and their depen-
dence on the HB exponent are in excellent agreement
with experiments on Carbopol microgels. The model is
versatile enough to include EHD interactions that, when
dominant, change the scaling of the stress overshoot to
3m ~ I'g whatever the underlying HB behaviour. Over-
all, the model predictions hinge on some basic ingredi-
ents: (i) the “mobility” function [f] in Eq. that
allows the coexistence of a fluidized band and a solid-
like region, (ii) the Maxwell equation (6) for the stress
evolution, and (iii) the boundary conditions, which are
crucial, for they discriminate between ductile-like and
brittle-like types of fluidization. Focusing on items (ii)
and (iii) above, we highlight two important open prob-
lems.

First, future work should analyze situations where the
forcing has some increased complexity. In particular, it



would be very interesting to explore the present fluidity
model with time-dependent protocols such as the shear-
rate ramps that are widely used by rheologists. Whether
or not this model may predict rheological hysteresis in
SGMs and its dependence with the shear-rate sweep rate
[49H51], in the two cases of transient and permanent shear
banding, is an outstanding task.

Second, accounting precisely for boundary conditions
is key for further theoretical advances. As already noted
in Ref. [35], since a simple change of boundary conditions
may suppress the nucleation of the fluid-like phase at the
moving wall, boundary conditions appear to control the
shear-induced solid-to-liquid transition in SGMs. How-
ever, we still miss physical insight into the microscopic
dynamical processes at play at the walls. Here, the pro-

posed phenomenological treatment of EHD interactions
and the observation that EHD parameters must depend
on boundary conditions call for more modelling effort.
This can open the way to obtain a realistic fit of ex-
perimental results once the various parameters for the
continuum modelling are extracted from experiments.
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