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SUMMARY

Describing the sheer scale of the global fishing industry necessitates a lot of zeros: 4,900,000 fishing ves-
sels, 40,000,000 million workers, and an annual production of 80,000,000 tonnes of seafood valued at
$141,000,000,000. Effective management of the fishing industry requires crunching these big data—while
the humanmindbalks at such a task, the artificialminddoes not. Artificial intelligence (AI) is a family of systems
that allow computers to simulate human behaviors, such as learning from experience and recognizing visual
patterns. This primer explains how AI is used to monitor and surveil fishing vessels from space, shore, and
the seafloor and then how it is applied to process this information to meet fisheries management goals, like
combating illegal fishing. The exponential rise of AI in fisheries applications over the past decade shows no
signs of slowing.We reflect on how the AI of tomorrowmay improve fisheries’ sustainability and transparency
while emphasizing the sustained need for human oversight in an increasingly automated future.
INTRODUCTION

Imagine a world in which the locations of a significant portion of

airplanes were unknown. Nations would struggle to track or

identify the aircrafts entering their airspaces, with limited ability

to enforce airspace violations. The regulatory oversight that en-

sures safe onboard working conditions and equipment would be

non-existent. Without information on where planes are landing,

the transport of cargo would go unmonitored, creating blind

spots that allow contraband smuggling and human trafficking

to proliferate. While this aviation scenario is fortunately just a

thought exercise, it is a harsh reality in the global fishing industry.

Roughly 98% of the 4.9 million vessels in the global fishing

fleet do not publicly broadcast their locations. The lack of trans-

parency created by these missing data poses significant chal-

lenges for fisheries sustainability. Fishing vessels move through

a complex patchwork of governance spanning waters managed

by regional fisheries management organizations, national gov-

ernments, and local territories without contiguous information

on where they are fishing or what they are catching. Poor infor-

mation on the catch can prevent accurate assessments of overf-

ishing of target species like tunas and the incidental catch (i.e.,

bycatch) of threatened and protected species, like marine mam-

mals and turtles. This lack of oversight creates blind spots that

allow illegal, unreported, and unregulated (IUU) fishing activity

to operate on a large, systemic scale. IUU fishing results in up

to $25 billion in annual economic losses, and fishing vessels
This is an open access article under the
engaged in IUU often commit human rights violations like human

trafficking and modern slavery. It is estimated that 128,000 fish-

ermen worldwide are trapped in forced labor onboard these

vessels.

In recognition of these issues, a suite of global mandates have

been ratified to improve fisheries sustainability, for example,

the Convention on Biological Diversity, the Sustainable

Development Goals, the Port States Measures Agreement, and

Biodiversity Beyond National Jurisdictions. Improving fisheries

sustainability requires better data on the global and dynamic

footprint of fishing. Artificial intelligence (AI) has emerged as a

critical tool for mapping fishing fleets, improving the quality, vol-

ume, and immediacy of data on where vessels are fishing and

what they are catching. In this primer, we overview how AI is

revolutionizing fisheries monitoring and surveillance, beginning

with the story of AI’s rapid proliferation into most aspects of

modern life and an explanation of AI systems. We also elaborate

on how AI reveals where fishing vessels operate and how AI

translates this information in support of fisheries efficiency,

enforcement, and conservation. Lastly, we reflect upon how

the next decade of AI advancements will enhance our under-

standing of how fisheries operate across our vast marine global

commons, guiding their sustainable use for future generations.

The rapid rise of AI
AI has undergone a Cambrian-like explosion over the past several

decades, rapidly diversifying, proliferating, and complexifying
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Figure 1. The rapid rise of artificial
intelligence in fisheries monitoring and
surveillance
(A and B) Number of peer-review publications per
year that mention AI and fisheries tracking and
select launch dates for satellites used to observe
fishing vessels from space. Images: (B) automatic
identification system (AIS) tracks from a bottom
trawler off the coast of Italy, colored by fishing
activity (white) and transiting (orange). Vessel
monitoring system (VMS) tracks are similar in
appearance but cannot be publicly mapped due to
confidentiality restrictions.
(C) Nighttime lights in the Gulf of Thailand.
(D) Daytime imagery of five trawlers.
(E) Synthetic aperture radar (SAR) image of five
vessels.
Image credits: (B) Global Fishing Watch, (C)
NASA, (C, inset) Skylight and NOAA, (D) Global
Fishing Watch, (D, inset) European Space Agency
and Sentinel Hub, and (E) https://github.com/
chaozhong2010.
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from the early checkers-playing programs of the 1950s. Today, AI

has expanded into nearly all major industries: streamlining the

scouting process inmajor league sports, identifying cancers in tis-

sue samples, and putting on the brakes in self-driving cars. Fish-

eries monitoring and surveillance has a similar AI trajectory, with

less than 10 scientific papers published on the topic in 1995 to

over 300 published in 2023 (Figure 1A). The rapid rise of AI coin-

cides with exponential growth in computing power, power that

is critical to run AI’s intricate instructions and algorithms. Personal

laptops today are five orders of magnitude faster than the early

computers of the 1960s. Increases in the volume and speed of

data transfer over the internet spurred advances in cloud

computing. Cloud computing spreads out processing tasks

across multiple remote servers, effectively scaling up computing

power without the need for additional hardware. As computing

power increased, so too did computer literacy, open-source

frameworks, and educational resources, making AI easier to use

and accessible to a broader range of users. With more people

building and testing, AI products became increasingly accu-

rate—consider, for example, the collective global awe when

ChatGPT, a virtual chatbot that can rapidly process natural lan-

guage to formulate informative human-like conversations, was

rolled out in late 2022.

The final component of AI’s rapid rise is big data, which are

data on the scale of terabytes to exabytes. In fisheries moni-

toring and surveillance, big data have rapidly expanded due to

satellites. Reduced launch and hardware costs have led to a

massive increase in the number of satellites orbiting the Earth

(Figures 1B–1E). Satellites capture a suite of geospatial infor-

mation on fishing vessels: GPS-based vessel position infor-

mation from vessel monitoring systems (VMS) and automatic

identification systems (AIS), low-light emissions or ‘‘nighttime

lights’’ from vessels at night, radar signal reflections from ves-

sels captured by synthetic aperture radar (SAR), and daytime

imagery of vessels. These datasets are too large, complex,

and rapidly generated to process manually and require the

automation, advanced pattern recognition, and real-time pro-

cessing afforded by AI. A lack of training data has historically

been a significant barrier to applying AI at scale—AI systems

must be trained over large volumes of data to produce accu-
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rate results. Thus, the same big data that required AI to be

processed have also enabled AI systems to improve.

AI-enabled machine learning to analyze fishery data
AI is the simulation of human intelligence in machines and com-

puters that are programmed or trained to mimic human behav-

iors, like learning from experience and recognizing visual pat-

terns. In this section, we aim to provide a brief explanation of

how AI works, specifically focusing on a vital subfield of AI called

machine learning (Figure 2). We do not cover all subfields of AI,

such as swarm intelligence, evolutionary algorithms, or natural

language processing, but readers can explore these notions

further in Dong et al. and MahmoudZadeh et al. in the recom-

mended reading section. Broadly, machine learning systems

learn from data without needing explicit instructions from a hu-

man by using one of three learning paradigms: supervised, unsu-

pervised, or reinforcement.

The three learning paradigms (supervised, unsupervised, and

reinforcement) can use shallow and deep learning. Shallow

learning algorithms have a simple structure, do not require

much training data, and generally perform best on tabular data-

sets. Shallow learning algorithms are various, and their applica-

tions can be case specific, which we will touch upon below.

Deep learning leverages neural networks, which are a family of

algorithms inspired by the structure and functioning of the hu-

man brain; examples include multilayer perceptron network

(MLP), convolutional neural network (CNN), and transformer-

based models. Deep learning requires significantly more training

data compared to shallow learning, but it can learn from a wide

range of data types, such as image, video, audio, and text, as

well as tabular datasets.

In supervised learning, the system is trained on a labeled data-

set, and the goal is to predict a specific output. Take, for

example, a supervised system designed to predict how at risk

certain areas are for illegal fishing as an output. The system is

trained on a dataset of area features (e.g., number of patrol ves-

sels, marine productivity, the dollar value of species that frequent

the area, and the financial health of the nation that controls the

area) labeled by the area’s corresponding risk of illegal fishing.

The system learns relationships within the dataset to create an
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Figure 2. AI systems commonly used in fisheries monitoring and
surveillance
Machine learning (white circle) is a subfield of AI characterized by algorithms
that learn from data without needing explicit instructions from a human.
Learning paradigms within machine learning include supervised, unsuper-
vised, and reinforcement learning (blue circles). Within each learning para-
digm, shallow and deep learning algorithms are applied to power tasks such as
classification, regression, clustering, dimension reduction, and strategy opti-
mization (yellow circles).
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algorithm that accurately predicts illegal fishing risk as a function

of these features. If the goal is to predict low-risk versus high-risk

areas (a binary output), then it is a classification task; if the goal is

to predict the degree of riskiness (a continuous output), then it is

a regression task. Examples of shallow supervised learning algo-

rithms include random forest (RF), gradient boosting (GB), naive

Bayes, and support vector machine (SVM).

In contrast, an unsupervised learning system is trained on un-

labeled data, and the goal is to identify patterns as opposed to

predicting a specific output. In the illegal fishing example, the

system is trained on the dataset of area features, but the areas

are not labeled by their corresponding risk of illegal fishing.

Dimension reduction compresses datasets by finding a smaller,

summarized set of representative features that preserve the

maximum amount of information in the full dataset. For example,

it might be applied to the illegal fishing dataset to find that the

number of patrol vessels and financial health can be described

as a single feature, and that marine productivity does not vary

much across areas and is therefore unimportant. Examples

of shallow algorithms include principal-component analysis

(PCA), factor analysis, and forward/backward model selection.

Clustering partitions data into groups that have high within-

group similarity and high between-group dissimilarity; examples

of shallow algorithms include k-means, partitioning around me-

doids (PAM), andGaussianmixturemodels (GMMs). In the illegal

fishing example, clustering may partition the areas into low and
high risk, but because the system is not trying to predict a spe-

cific output, it may also partition the areas into productive and

unproductive or waters controlled by wealthy and developing

nations. It is also worth noting that an algorithm can use a mix

of supervised and unsupervised learning, a category known as

semi-supervised learning, in which the algorithm is trained on a

usually small amount of labeled data and a larger amount of un-

labeled data.

The goal of reinforcement learning is to optimize a specific

strategy. An agent interacts with a virtual environment, and its

actions are either rewarded or punished. The agent self-learns

from this feedback to discover the optimal strategy to maximize

the rewards (or minimize punishment) over time. In the illegal

fishing example, the goal of a reinforcement learning system is

to optimize the route a patrol vessel (the agent) takes across a

crowded seascape (the virtual environment). The patrol vessel

is penalized when it collides with another vessel and rewarded

when it transits around the vessel. By simulating the trial-and-er-

ror process humans use to learn, over time, the patrol vessel

learns the most efficient way to move across the water.

Fishing vessel tracking and detection
Monitoring the global fishing fleet requires observing the move-

ments of nearly 5 million vessels across 360 million km2 of ocean

surface. This significant undertaking relies on a constellation of

technologies and AI systems (as well some non-AI techniques)

to overcome challenges such as badweather, cloud cover, dark-

ness, and vessel operators who may not want their movements

observed (Figure 3). In this section, we provide an overview of the

tech-AI systems that track and detect fishing vessels from

space, shore, and the seafloor.

Identifying fishing activity in vessel tracking data

Shipboard VMS and AIS transponders use GPS satellites to

determine vessel positions, which are then relayed to satellite

and terrestrial receivers. Although the two systems have similar

functionality, the VMS was designed for surveilling commercial

fishing vessels and is usually confidential, while the AIS was de-

signed for collision avoidance and is publicly accessible. A pri-

mary use of AI in fisheries tracking is the identification of fishing

versus non-fishing activities (Figure 1B); understanding when

and where vessels fish is essential for monitoring fishing effort

and enforcing regulations. Vessels exhibit distinctive movement

patterns that allow for the classification of their activities into cat-

egories such as fishing, resting, and transiting. Unsupervised

learning can be used to categorize activities based on patterns

in VMS and AIS data without the prior labeling of fishing activity.

However, supervised learning methods trained on labeled data

can identify fishing activity with greater accuracy. Labeling is

done manually by expert review or cross-referencing tracking

data to other fishery datasets in which fishing activity is re-

corded, such as observer, logbook, or electronic monitoring

data. Electronic monitoring involves the use of vessel-mounted

cameras to record key operational activities like gear deploy-

ment and catch handling. Traditionally, these activities have

been identified through manual review of the footage, but com-

puter vision is increasingly being applied to automate the identi-

fication process. Computer vision is an AI application that lever-

ages deep learning to interpret visual data from images and

videos, akin to human visual perception. Electronic monitoring
One Earth 7, October 18, 2024 1687



Figure 3. The constellation of tech-AI systems used to track and detect fishing vessels
Data are collected by satellites, uncrewed vehicles, seabirds, and fixed sensors like time-lapse cameras and hydrophones. AI systems are then used to identify
vessels and observe their movements.
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data arematched to VMSdata to produce geospatial information

on fishing activity and catch. In addition to fishing versus non-

fishing activities, unsupervised and supervised learning tech-

niques are used to categorize vessels by fishing gear type and

estimate vessel length.

Detecting fishing vessels from space

AIS and VMS are powerful tools for tracking fishing fleets; how-

ever, many vessels are not equipped with either system. Glob-

ally, an estimated 52%–85% of vessels larger than 24 m are

equipped with AIS. A comparable global statistic has not been

estimated for VMS, but roughly 5% of US and 14% of European

commercial fishing vessels are equipped with VMS. Public sat-

ellite-based optical imagery and SAR provide a means of de-

tecting untracked fishing vessels. Optical imagery consists of

daytime imagery and nighttime lights and can identify the loca-

tion of vessels as long as clouds are not present. Daytime imag-

ery can detect individual vessels on the water during the day,

while nighttime lights can detect where there are vessels that

use light, a common fisheries practice to attract catch like

squid. Using radar waves, SAR captures radar signal reflections

from vessel surfaces. It penetrates through clouds and operates

both day and night, making it highly effective in all weather con-

ditions. Computer vision is used to detect vessels in daytime im-

agery, nighttime lights, and SAR and then categorize fishing

gear types and estimate vessel length. Detected vessels are

then cross-referenced against vessel tracking data to identify

untracked or ‘‘dark’’ fishing vessels—those that are not tracked

by AIS or VMS. Despite the large increase in the number of sat-

ellites orbiting the earth, it is still difficult to repeatedly detect—

i.e., track—dark vessels across time due to low revisit rates

(how often satellites return to observe the same point on the

Earth), particularly offshore, where public satellite coverage is

more limited.
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Detecting fishing vessels using local technologies

Nearly a third of the world’s seafood is captured by small-scale

fisheries, yet these vessels are significantly underrepresented in

fisheries tracking and satellite datasets. VMS and AIS are biased

toward larger vessels, with less than 1% of vessels under 12 m

equipped with AIS. Public satellite imagery struggles to resolve

objects smaller than 10 m and distinguish vessels from rocks

and manmade objects in nearshore waters, where small-scale

fisheries primarily operate. In contrast, local technologies allow

for high-resolution vessel detection over small, discrete portions

of the ocean. Harbor-mounted time lapse cameras and closed-

circuit television (CCTV) continuously monitor vessel traffic

entering and leaving port. These photo and video streams are

analyzed using computer vision to detect vessels at high enough

resolutions to identify vessel ID plates. Seafloor-mounted hydro-

phones listen for vessel engine noise, using deep learning to

track the amount of vessel traffic overhead. Uncrewed aerial

and surface vehicles survey fishing vessels from the air and

ocean surface using deep learning and computer vision. On-

board these uncrewed vehicles, operational activities like

obstacle avoidance and path planning are also governed by AI

systems, such as swarm intelligence and evolutionary algo-

rithms. The propensity of seabirds to follow fishing vessels has

also been harnessed for vessel detection: albatross fitted with

radar detectors are used to detect radio emissions from naviga-

tional equipment onboard vessels (although AI is not currently

integrated into this technology). Like satellite-based detections,

these local detections are cross-referenced against vessel

tracking data to identify dark vessels.

Toward transparent fisheries
Fisheries transparency refers to the open and accessible sharing

of information related to human activities at sea. Here, we



Figure 4. Using AI to integrate AIS data with value-added products to meet fisheries management goals
(A) Decoding fishing behaviors: unsupervised learning is applied to AIS and target species data to identify functional fishing groups; each color represents a
unique group.
(B) Mapping resources: human-wildlife risk is estimated by applying supervised learning to satellite tagging data frommarine predators and then overlapping AIS
data; unseen activity represents vessels that are equipped with AIS but are not broadcasting their locations.
(C) Combating illegal fishing: supervised learning is applied to AIS and vessel registry data to model forced labor risk; map shows the percentage of longliner
activity predicted to be high risk for forced labor.
Image credits: (A) Frawley et al. in the recommended reading section, https://creativecommons.org/licenses/by/4.0/; modifications: figure cropped. (B) Welch et
al. in the recommended reading section, https://creativecommons.org/licenses/by/4.0/; no modifications. (C) McDonald et al. in the recommended reading
section, https://creativecommons.org/licenses/by-nc-nd/4.0/; modifications: figure cropped and legend relocated.
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overview how AI is applied to promote transparency by inte-

grating fisheries tracking and detection data with value-added

datasets that describe the ecological, social, and economic con-

ditions of our seascapes (Figure 4).

Decoding fishing behaviors

Understanding vessel-level and fleet-level dynamics is important

for effectively designing fishery regulations, as well as predicting

the impact of proposed regulations. Deep learning is applied to

fisheries tracking data to forecast vessel trajectories in order to

reduce maritime risks, such as collision and stranding. Rein-

forcement learning is used to optimize vessel voyage planning,

improving fishing efficiency and profitability while reducing risks

from adverse weather conditions. Functional fishing groups—or

métiers—are fishing units with similar size and common exploi-

tation patterns. Supervised and unsupervised learning is used

to predict and cluster fisheries tracking data into métiers based

on attributes such as gear types, fishing ground locations, and

target species (Figure 4A). Supervised learning is also applied

to fisheries tracking data to evaluate the impacts of regulatory

changes on fleets and forecast fleet responses to proposed ma-

rine protected areas up to 3 years in the future. Supervised

learning can be directly applied to fisheries tracking data to un-

derstand what drives vessels to fish or disable their transpon-
ders. Fisheries tracking data, associatedwith economic informa-

tion from the World Bank and vessel registries, provide insights

into howwealth and corporation ownership drives fishing behav-

iors. This information can guide policy to support the economic

growth of developing countries and prevent industry consoli-

dation.

Mapping resources

Fisheries tracking and detection data offer valuable information

on the locations where vessels are fishing, but they provide

little insight into which species the vessels are targeting and

catching. While VMS-associated electronic monitoring data

contain information on catch, electronic monitoring has been

implemented on less than 1,000 vessels. A broadscale under-

standing of the spatial patterns of targeted and protected re-

sources is essential to prevent overfishing, reduce bycatch of

threatened and protected species, and assess the impact of

regulatory actions on fishermen’s economic opportunities and

livelihoods. Geospatial records of targeted and protected spe-

cies, drawn from logbooks, observer datasets, and satellite

tagging programs, are integrated with environmental data. Su-

pervised learning is then used to map the biomass, abundance,

or distribution of targeted and protected species. Fishing vessel

activity can be overlaid on these maps, providing estimates of
One Earth 7, October 18, 2024 1689
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the risk of human-wildlife interactions, such as catch, bycatch,

ship strike, and noise pollution (Figure 4B). Information on inter-

action risk is integrated into stock and mortality assessments

and then used to informmanagement levers, such as gear mod-

ifications and fishery closures. Revenue is mapped by linking

VMS fishing activity to data on shoreside deliveries. These

spatial descriptions of fishing activity and revenue are used to

guide marine spatial planning, an essential tool to navigate

trade-offs between industries like fishing and offshore wind

development in our increasingly crowded oceans.

Combating illegal fishing

Illuminating the locations and activities of untracked vessels—

particularly those equipped with vessel tracking systems that

then go dark—is a powerful first step toward identifying in-

stances of IUU. Although untracked vessels are not necessarily

engaged in illegal activities, this information narrows the nee-

dle-in-haystack problem of focusing finite enforcement re-

sources across large numbers of vessels. Insights into dark ves-

sels are used by enforcement agencies to position patrol assets

and schedule port inspections to target vessels with the highest

risk of IUU. High-resolution optical satellites (usually run by pri-

vate companies) can be cued to capture detailed imagery of in-

dividual dark vessels for one-tenth of the cost of deploying a pa-

trol vessel. Successful enforcement response to suspected IUU

requires information on dark vessels to be available in as close to

real time as possible. At present, this information can be pro-

duced in 4–6 h, with most of the delay due to the time it takes

to receive the data from satellites (AI processing takes minutes,

at most). Supervised and unsupervised learning is applied to

fisheries tracking data linked to value-added datasets, (e.g.,

ownership databases, vessel registries, and forced labor re-

ports) to map IUU risk near ports, forced labor risk, transship-

ment risk, and the activities of unidentified or unauthorized ves-

sels (Figure 4C). Vessel tracking data are compared against

these maps to reveal if vessels have been operating in risky wa-

ters—further focusing enforcement actions. Supervised learning

is used to predict the footprints of dark fleets and when vessels

are illegally fishing in unauthorized waters. A growing body of

research uses supervised and unsupervised learning to detect

anomalies in vessel tracking data to reveal potential instances

of IUU: vessels fishing using different methods than their

declared gear type, vessels fishing with their transponders

disabled, and vessels spoofing (deliberately falsifying or manip-

ulating) their locations.

Outlook
Over the past decade, AI has become deeply embedded in fish-

eries monitoring and surveillance, translating the big data gener-

ated therein into practical, actionable information. The rapid

rise of AI shows no sign of plateauing. Global competitions,

backed by monetary rewards, have emerged as vehicles of AI

advancement. One such competition spurred the next genera-

tion of computer vision algorithms for vessel detection. Others

are advancing AI for the identification of species in electronic

monitoring footage and navigation in uncrewed surface

vehicles. Currently, the constellation of tech-AI systems allows

for the identification of potential IUU in near real time; one

ongoing competition challenges participants to forecast

potential IUU before it occurs.
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AI systems from other industries are being adapted to achieve

fisheries monitoring and surveillance goals. The same block-

chain technology that records cryptocurrency transactions is be-

ing explored to improve the traceability and transparency of the

seafood supply chain. AI-identified catch information will be re-

corded in the blockchain and preserved during each transaction,

from the ocean to hors d’oeuvre. Consumers will access this in-

formation by scanning QR codes using the built-in computer

vision apps in their phones to learn about the sustainability of

their selection. Non-governmental organizations like Skylight

and Global Fishing Watch serve AI-processed fisheries tracking

and detection data in public portals. Large language models,

such as the one powering ChatGPT, are under consideration

to assist end users in asking the right questions to achieve their

management objectives.

Like all industries, fisheries will feel the effect of our changing

climate. AI is increasingly harnessed to forecast global

atmospheric and marine weather patterns. These physical fore-

casts, paired with machine learningmodels, can provide insights

into how fisheries and the species they catch will redistribute as

the oceans warm. Future exploitation of an increasingly ice-free

Arctic is being forecast to inform proactive policy. Forecasts of

transboundary shifts of target stocks provide early-warning sys-

tems to forewarn the social conflicts that can occur when one

country’s fish ends up in another country’s waters. Mobile ma-

rine protected areas—informed by machine learning models of

species distributions—are under exploration as a solution to

reduce bycatch of protected species as they redistribute during

extreme weather events, such as marine heatwaves.

AI is, in turn, highly capable and highly capable of making mis-

takes. Earlier this year, Google’s AI-enhanced search infamously

recommended users put glue on pizza and consume one small

rock a day. More seriously, AI-powered cancer detection and

facial recognition software have shown racial biases. Fisheries

tracking and detection data are biased to large vessels fromweal-

thy countries. The AI systems that ingest these data to inform pol-

icy, develop decision support tools, and guide regulation may

perpetuate or even amplify these biases. AI-based IUU detection

may unfairly flag certain vessels, ports, or gear types based on

prior interactions with law enforcement. To minimize harm, AI

should enhance, rather than replace, human capabilities. Human

oversight in the decision-making process remains essential for

developing ethical AI systems, particularly with regard to value

judgements. This human-in-the-loop approach involves a diverse

set of voices guiding decisions about which data AI systems are

presented with, which outcomes AI systems are optimized to

achieve, and who is accountable when negative outcomes occur.

In other words, use AI to determine if a vessel is at high risk for

IUU, but perform a cargo inspection before prosecuting it.
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N.A., Bebbington, J., and Decker Sparks, J.L. (2022). Revealing Global Risks
of Labor Abuse and Illegal, Unreported, and Unregulated Fishing. Nat. Com-
mun. 13, 1612. https://doi.org/10.1038/s41467-022-28916-2.

Watson, J.T., Ames, R., Holycross, B., Suter, J., Somers, K., Kohler, C., and
Corrigan, B. (2023). Fishery Catch Records Support Machine Learning-
Based Prediction of Illegal Fishing off US West Coast. PeerJ 11, e16215.
peerj.com. https://doi.org/10.7717/peerj.16215.

Welch, H., Clavelle, T., White, T.D., Cimino, M.A., Kroodsma, D., and Hazen,
E.L. (2024). Unseen overlap between fishing vessels and top predators in
the northeast Pacific. Sci. Adv. 10.10, eadl5528.

Zuzanna, K., Tomasz, U., Michal, G., and Robert, P. (2022). How High-Tech
Solutions Support the Fight Against IUU and Ghost Fishing: A Review of Inno-
vative Approaches, Methods, and Trends. IEEE Access 10, 112539–112554.
IEEE Xplore. https://doi.org/10.1109/ACCESS.2022.3212384.
One Earth 7, October 18, 2024 1691

https://doi.org/10.1016/j.oneear.2020.11.017
https://doi.org/10.1016/j.oneear.2020.11.017
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref2
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref2
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref2
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref2
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref3
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref3
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref3
https://doi.org/10.1371/journal.pone.0158248
https://doi.org/10.1371/journal.pone.0158248
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref5
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref5
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref5
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref5
https://doi.org/10.1126/science.aao5646
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref7
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref7
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref7
https://doi.org/10.1073/pnas.2016238117
https://doi.org/10.1073/pnas.2016238117
https://doi.org/10.1093/icesjms/fsw244
https://doi.org/10.1038/s41586-023-06825-8
https://doi.org/10.1038/s41586-023-06825-8
https://doi.org/10.1126/sciadv.abb1197
https://doi.org/10.1126/sciadv.abb1197
https://doi.org/10.1126/sciadv.abp8200
https://doi.org/10.3389/fmars.2019.00670
https://doi.org/10.1038/s41467-022-28916-2
https://doi.org/10.7717/peerj.16215
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref16
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref16
http://refhub.elsevier.com/S2590-3322(24)00474-3/sref16
https://doi.org/10.1109/ACCESS.2022.3212384

	Harnessing AI to map global fishing vessel activity
	Introduction
	The rapid rise of AI
	AI-enabled machine learning to analyze fishery data
	Fishing vessel tracking and detection
	Identifying fishing activity in vessel tracking data
	Detecting fishing vessels from space
	Detecting fishing vessels using local technologies

	Toward transparent fisheries
	Decoding fishing behaviors
	Mapping resources
	Combating illegal fishing

	Outlook

	Acknowledgments
	Declaration of interests
	Recommended reading


