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SUMMARY

Epstein-Barr virus (EBV), an oncogenic herpesvirus
that causes human malignancies, infects and immor-
talizes primary human B cells in vitro into indefinitely
proliferating lymphoblastoid cell lines, which repre-
sent a model for EBV-induced tumorigenesis. The
immortalization efficiency is very low, suggesting
that an innate tumor suppressormechanism is opera-
tive.We identify theDNAdamage response (DDR)asa
major component of the underlying tumor suppressor
mechanism. EBV-induced DDR activation was not
due to lytic viral replication, nor did the DDR marks
colocalize with latent episomes. Rather, a transient
period of EBV-induced hyperproliferation correlated
with DDR activation. Inhibition of the DDR kinases
ATM and Chk2 markedly increased transformation
efficiency of primary B cells. Further, the viral latent
oncoprotein EBNA3C was required to attenuate the
EBV-induced DDR. We propose that heightened
oncogenic activity in early cell divisions activates
a growth-suppressive DDR that is attenuated by viral
latency products to induce cell immortalization.

INTRODUCTION

Epstein-Barr virus (EBV) is an oncogenic herpesvirus causally

implicated in several malignancies including African endemic

Burkitt’s lymphoma (BL), posttransplant lymphoproliferative

disease, nasopharyngeal carcinoma, and HIV-associated lym-

phomas (Kieff and Rickinson, 2006). EBV infection in vitro drives

primary human B cells into indefinitely proliferating lymphoblas-

toid cell lines (LCLs), providing a model for tumorigenesis. This

process of growth transformation depends on a subset of viral

latent oncoproteins and noncoding RNAs collectively termed

‘‘latency III.’’ The proteins expressed include the Epstein-Barr

nuclear antigens, EBNA1, -2, -3A, -3B, -3C, and -LP as well as
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three latent membrane proteins, LMP1, -2A, and -2B. EBNA-

LP and EBNA2 are the first viral proteins expressed following

primary B cell infection (Alfieri et al., 1991) and upregulate cellular

genes inducing a transition of resting B cells into the cell cycle

(Sinclair et al., 1994; Wang et al., 1991). EBNA2 also induces

expression of the remaining EBNA proteins (Zimber-Strobl

et al., 1993) and subsequently the viral latent membrane

proteins, LMP1 and LMP2A/2B (Wang et al., 1990).

While the initial burst of viral and cellular gene expression

leads to the proliferation of infected cells in vitro, only a small

percentage of infected cells become indefinitely proliferating

lymphoblasts (Henderson et al., 1977; Sugden and Mark,

1977). The study of EBV-induced innate tumor suppressor path-

ways has been limited. EBV infection of primary B cells induces

the p53 protein concomitant with EBNA-LP expression early

after infection (Szekely et al., 1995). However, it remains unclear

whether this innate response to EBV-induced proliferation has

any long-term functional consequence or what pathways acti-

vate p53.

Innate tumor suppressor responses have been better charac-

terized in other systems. The DNA damage response (DDR) has

recently been appreciated as an important tumor suppressor

pathway in vitro and in vivo (Bartkova et al., 2005; Gorgoulis

et al., 2005). The DDR is triggered by aberrant replication struc-

tures generated by activated oncogenes attempting to constitu-

tively fire new origins and inappropriately enter S phase

(Halazonetis et al., 2008). The DDR limits aberrant proliferation

by mediating oncogene-induced senescence and apoptosis

(Bartkova et al., 2006; Di Micco et al., 2006). Signaling down-

stream of oncogenic stress involves activation of the single-

stranded DNA-dependent ATR pathway and the double-

stranded break-induced ATM pathway. These DDR kinases

relay downstream signals to critical repair factors and other

checkpoint kinases including Chk1 and Chk2 with extensive

crosstalk ultimately resulting in suppression of oncogene-

induced proliferation (Halazonetis et al., 2008; Stiff et al., 2006).

Genetic experiments have identified critical roles for ATM and

Chk2 in mediating oncogene-induced senescence and tumor

suppression (Bartkova et al., 2006; Pusapati et al., 2006;

Stracker et al., 2008). Given these observations and the low
vier Inc.
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Figure 1. EBV Induced a DNA Damage Response in Primary B Cells

(A) Indirect IF images of EBNA-LP (green) and g-H2AX (red) in uninfected B cells, B cells 4 and 7 days after infection with EBV B95-8 (moi�5), the recently derived

LCL EF3D, and uninfected g-irradiated B cells (0.2, 1, and 5 Gy, 1 hr). DNA is stained with DAPI. These images are representative of infections in five different

normal donors.

(B) Ser1981 phosphorylated ATM (pATM, red) in uninfected B cells and B cells 7 days after EBVB95-8 infection. EBNA-LP or other EBV latent antigen staining was

not possible in these samples due to antibody source; however, we know that the majority of these infected cells are EBNA-LP positive.

(C) EBNA-LP (green) and 53BP1 (red) in uninfected B cells and B cells 7 days after infection.

(D) EBNA-LP (green) and g-H2AX (red) in B cells 4 days after infection with UV-inactivated EBV B95-8 (UV EBV) or the nontransforming EBV strain P3HR1 (P3).
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efficiency of EBV transformation, the intriguing question remains

as to whether the host DDR senses EBV-induced oncogenic

stress and, importantly, if this is responsible for the block to

long-term outgrowth of the majority of infected cells.

RESULTS

Epstein-Barr Virus Infection of Primary BCells Activates
a Cellular DNA Damage Response
We first sought to determine whether EBV infection of primary

B cells might drive an oncogenic stress leading to the activation

of the DDR. Purified CD19+ B cells were infected with the proto-
Cell Host &
typical transforming EBV strain B95-8 at amultiplicity of infection

(moi) of �5. Nearly all cells were EBV genome positive as deter-

mined by fluorescence in situ hybridization (FISH) (see Fig-

ure S1A available online). Infected cells were initially assayed

for the expression of the earliest viral latency gene product,

EBNA-LP (LP), and the DNA damage marker, g-H2AX, at

different times postinfection. g-H2AX activation was not evident

prior to 4 days postinfection, was robust from 4 to 7 days post-

infection, and declined after 7 days to the low levels observed in

LCLs (Figure 1A and data not shown). Approximately 60% of the

infected cells were g-H2AX positive at 7 days postinfection.

Corroborating our findings of g-H2AX activation, EBV infection
Microbe 8, 510–522, December 16, 2010 ª2010 Elsevier Inc. 511
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induced additional hallmarks of the DDR including autophos-

phorylation of the H2AX kinase ATM (pATM Ser1981), and

punctate localization of the damage adaptor 53BP1 (Figures

1B and 1C).

EBV gene expression was important for virus-induced DDR

activation. Cells infected with UV-inactivated B95-8 virus did

not show g-H2AX staining at any point within the first week after

infection (Figure 1D and data not shown). Importantly, UV-inac-

tivated EBV B95-8 genomes reached the nucleus, and these

infections induced interferon-responsive genes (Figures S1A

and S1B). EBNA2 and latency III gene expression was specifi-

cally necessary to induce the DDR, as B lymphocytes infected

with the EBNA2-deleted, transformation-incompetent P3HR1

strain of EBV did not contain g-H2AX foci (Figure 1D), despite

similar levels of infection compared to B95-8 (Figures S1A and

S1C). These data collectively demonstrate that EBV latent

gene expression, rather than simply virion binding or nucleic

acid deposition into the nucleus, was required to induce

g-H2AX activation.

The EBV-Induced DNA Damage Response in Primary
B Cell Infection Is Not Associated with Viral Episomes
or Lytic Replication
We reasoned that either viral or cellular DNA may activate the

DDR. Since evidence in the literature suggested that either viral

lytic DNA replication (Kudoh et al., 2005) or latent viral episome

replication (Dheekollu et al., 2007) may be capable of inducing

a DDR, we first assayed viral DNA as a possible source of the

damage. Incoming linear viral DNA was not the source of the

damage, since UV-irradiated and EBNA2-deleted P3HR1 virus

infections did not induce the DDR (Figure 1). We next used

a FISH-based assay to assess the possible role of lytic DNA

replication. The B95-8 Z-HT cell line was used as a positive

control where lytic EBV DNA was recognized as a brightly stain-

ing FISH signal rather than the punctate foci of episomal

genomes (Figure S1D). Less than 1% of EBV-infected cells con-

tained evidence of lytic viral DNA 5 days postinfection, while

�1%–5% of infected cells were spontaneously undergoing lytic

replication by 14 days, similar to that found in LCLs (Figure S1E

and Kieff and Rickinson, 2006). Since far greater than 1% of

EBV-infected cells were g-H2AX positive early after infection,

we conclude that viral lytic DNA replication is not responsible

for DDR activation.

Next we assessed the possibility that latent viral episomes

activate the DDR. The mean episome number per cell as

assessed by FISH did not increase during the period when

g-H2AX activity was high early after infection (Figure S1F).

Furthermore, we failed to observe significant colocalization of

EBV episomes with g-H2AX foci in these cells (Figure S1G). In

fact, the number of g-H2AX foci per cell was consistently much

greater than the number of EBV genomes (Figure S1G). There-

fore, our data collectively suggest that the observed EBV-

induced DDR is not activated by viral DNA.

The EBV-Induced DNA Damage Response Is Associated
with a Transient Period of Hyperproliferation
Wenext focused our studies on changes in cellular DNA thatmay

induce a DDR. The period of time postinfection when the DDR

was active correlates with the initiation of B cell proliferation
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(Kieff and Rickinson, 2006). Analysis of CD19+ B cells using

the proliferation-tracking dye CFSE at different days after infec-

tion indicated that (1) proliferating cells appeared at day 3 (Fig-

ure 2A), (2) between days 3 and 4 there were always cells that

had dividedmore than once or even twice in 24 hr, and (3) at later

days postinfection cells appeared to proliferate at a slower rate

as judged by the less-pronounced shift of the CFSE profile to

the left.

A more rigorous kinetic analysis of EBV-induced B cell expan-

sion highlighted the biphasic nature of the proliferation rate

(Figure 2B). Infected CD19+ B cell CFSE profiles from five normal

donors were analyzed at time points prior to and during the first

seven cell divisions. The mean division number (MDN) at each

time point was determined by fitting the precursor-normalized

number of cells in each division to a Gaussian distribution (Fig-

ure S2A and Hawkins et al., 2007). The slope of the function

relating MDN to time postinfection inversely correlates with the

proliferation rate. Consistent with the data in Figure 2A, we

observed that EBV induced an early phase of hyperproliferation

that was attenuated over time (Figure 2B). The proliferation rate

of initially proliferating cells was approximately once per 8–12 hr,

while later cycleswere�24–30 hr, similar to the�24–28 hr rate of

LCLs. These findings were corroborated by cell-sorting experi-

ments where cells from earlier divisions proliferatedmore quickly

than those in later divisions (Figure S2B). Thus, EBV-mediated B

cell expansion proceeds through an initial period of hyperprolif-

eration followed by slower cell divisions typical of emergent

LCLs.

We next asked whether the DDR was activated specifically

during the hyperproliferative divisions independent of time post-

infection. EBV-infected B cells sorted based on population

doubling (PD) were subjected to immunofluorescence (IF)

for EBNA-LP and g-H2AX (Figure 2C). Sorted cells were >85%

EBNA-LP positive in cells not yet dividing (PD0) and >95%

EBNA-LP positive in all later PDs. We observed a robust

increase in LP+/g-H2AX+ cells during the early PDs (1–2 and

3–4) relative to uninfected cells or infected cells not yet prolifer-

ating (PD0) (Figures 2C and 2D). Importantly, this response was

attenuated through later PDs and in LCLs. Moreover, g-H2AX

intensity per cell was significantly higher in PD3-4 than PD0

(p < 0.0001) and LCL (p < 0.0001). We also observed a transient

activation and attenuation of the ATM-specific phosphorylation

of Chk2 on Thr68 (Figure 2E) as well as accumulation of

53BP1 into DDR foci (Figure 2F). These data strongly support

the notion that the EBV-induced DDR is caused by an early

period of hyperproliferation and is attenuated during LCL

outgrowth.

Proliferation and DNA Damage-Responsive Genes
Are Highly Induced Early after EBV Infection,
then Attenuated during LCL Outgrowth
Our cell-based findings were corroborated by mRNA microarray

studies of (1) uninfected B cells, (2) EBV-infected early prolifer-

ating cells (Prolif), and (3) monoclonal LCLs from four normal

donors (Figure 3). We first asked in an unbiased manner

which genes were significantly changed upon proliferation and

then, subsequently, during LCL outgrowth (two-way ANOVA,

p < 0.01). As expected, the most enriched gene ontology (GO)

category for genes induced from resting B cells to EBV-infected,
vier Inc.



Figure 2. EBV Induced a Period of Hyperproliferative Early after Infection thatWas Associated with Activation of the DNADamage Response

(A) Histograms show CD19+ B cell division as measured by CFSE staining at different days after EBV infection. Mock, mock infected cells.

(B) The MDN based on precursor cohort analysis for EBV-infected B cells is plotted at different times post infection. Vertical dashed lines estimate the hyper-

proliferation period. Data are presented from five normal donors.

(C) IF of g-H2AX (red) and EBNA-LP (green) in uninfected cells, infected cells that have yet to divide (PD0), infected cells after one or two divisions (PD1-2), or

seven or more divisions (PD7+) and LCLs. DNA is stained with DAPI.

(D) The percentage of EBNA-LP-positive cells with g-H2AX signal >53 over background is graphed from uninfected B cells, sorted PDs, and LCLs. Uninfected

B cells following 0.2, 1, and 5 Gy (1 hr) g-irradiation are also shown as a positive control. These data are representative of similar experiments from three inde-

pendent normal donors.

(E) Immunoblot of p-Chk2 Thr68 and Chk2 in sorted cells as in (D) including an LCL following 5 Gy g-irradiation (1 hr).

(F) The percentage of EBNA-LP-positive cells containing four or more 53BP1 foci per cell in sorted populations as in (D) are shown alongwith uninfected irradiated

B cell controls. PD3-4 contained significantly more 53BP1 foci per cell than uninfected B cells (p < 0.0001), PD0 (p < 0.0001), PD7 (p < 0.01), and LCL (p < 0.0001).
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proliferating B cells was ‘‘Cell Proliferation’’ (Figure 3A; GO,

0008283; Bayes factor, 51, p < 0.0001 [Chang and Nevins,

2006]). Genes associated with the ‘‘Response to DNA Damage

Stimulus’’ were also highly induced (Figure 3B; GO, 0006974;

Bayes factor, 17, p < 0.0001). Notably, we observed that the

majority of genes involved in cell proliferation and the DDR

were consistently repressed as cells transitioned from early

proliferating to established LCLs (Figure 3A, ‘‘Cell Proliferation,’’
Cell Host &
Bayes factor, 63, p < 0.0001 and Figure 3B, ‘‘Response to DNA

Damage Stimulus,’’ Bayes factor, 22, p < 0.0001). Consistently,

the expression of genes in an independently derived set of DNA

damage responsive and ATM-dependent p53 targets (Elkon

et al., 2005) was also increased in early proliferating cells and

subsequently attenuated during LCL outgrowth (Figure 3C and

Figure S3). Collectively, these global gene expression analyses

corroborate our findings of a period of hyperproliferation and
Microbe 8, 510–522, December 16, 2010 ª2010 Elsevier Inc. 513



Figure 3. Transcriptional Changes Correlate with an EBV-Induced Early Period of Hyperproliferation and DNA Damage Response Followed

by Attenuation upon LCL Outgrowth
(A) Heat map of average expression data across four normal donors for the GO category ‘‘Cell Proliferation’’ in uninfected resting B cells (B cell), EBV-infected

early proliferating B cells (Prolif), and monoclonal LCLs (LCL). The genes presented were derived from GATHER analysis of all genes with significant expression

changes (two-way ANOVA, p < 0.01) where the expression level increased from B cell to Prolif at least 1.5-fold and decreased from Prolif to LCL at least 1.2-fold

(left). Heat map of individual samples of top 20 ‘‘Cell Proliferation’’ genes (right).

(B) Heat map of ‘‘Response to DNA Damage Stimulus’’ GO genes across individual samples.

(C) Gene Set Enrichment Analysis (GSEA) of known DNA damage induced ATM and p53-dependent genes in the context of B-Prolif-LCL expression data. The

reference list of ATM/p53 target genes was derived from clusters 2 and 3 of Elkon et al. (2005) and compared with a preranked list (by fold) of global average gene

expression changes fromB cell to Prolif (left) and Prolif to LCL (right). Statistical scores are inset into the top right of analysis images (NES, normalized enrichment

score; and FWER, familywise error rate).
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activation of an ATM-dependent DDR early after infection that is

attenuated during LCL outgrowth.

The EBV-Induced Hyperproliferation-Associated DNA
Damage Response Is Growth Suppressive
To further analyze the consequences of the activated DDR in

early rapidly proliferating cells, we designed a sorting strategy

to assess the relative growth potential and DDR activation in

cells derived fromearly or late divisions after infection (Figure 4A).

We initially stained cells with the proliferation tracking dye

PKH26 and sorted cells after infection for PD1-4 and PD6+ pop-

ulations (Figure 4B). Subsequent staining with CFSE enabled the

analysis of proliferation from these populations. Supporting our

hypothesis, the cells in early hyperproliferating divisions
514 Cell Host & Microbe 8, 510–522, December 16, 2010 ª2010 Else
(PD1-4) were, in fact, more prone to growth arrest and cell death

than those in later divisions (PD6+) and LCLs (Figure 4C). Consis-

tently, arrested PD1-4 cells displayed more intense g-H2AX

staining than their proliferating counterparts (Figure 4D).

ATM and Chk2 Kinases Suppress EBV-Mediated
Transformation and Initial B Cell Proliferation
To determine if the activation of the DDR restricts EBV-mediated

long-term outgrowth, we simultaneously infected peripheral

blood mononuclear cells (PBMCs) with EBV and treated

them with an inhibitor of either ATM (ATMi [Hickson et al.,

2004]) or its downstream effector kinase Chk2 (Chk2i [Arienti

et al., 2005]); both are critical kinases in the DDR checkpoint re-

sponding to DNA double-stranded breaks and oncogenic stress.
vier Inc.



Figure 4. Growth Suppression and DNA Damage Enrichment in Early Cell Divisions
(A) A flowchart shows the separation of arrested and proliferating EBV-infected CD19+ PBMCs used for IF and FACS. PBMCs were first infected with EBV and

labeled with the red fluorescent dye PKH26.

(B) Then, 8 days postinfection, proliferating CD19+B cells were sorted for PD1-4 and PD6+ based on PKH26 intensity, labeled with CFSE, and cultured for 2 days.

(C) Sorted cells were then analyzed in a FACS-based growth assay where cells in the CFSElow population were considered proliferating and cells in the CFSEhi

population were considered arrested. Forward scatter (FSC) low reflects dying cells. Results are representative of three normal donors.

(D) PKH26low (PD1-4) cells were subsequently labeled with CFSE as above, sorted after 48 hr in culture into CFSEhi (arrested) and CFSElow (proliferating) pop-

ulations, and analyzed by IF for g-H2AX (red).

Cell Host & Microbe
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EBV-mediated B cell transformation efficiency increased in a

dose-dependentmanner in response to the inhibitorswhere 2mM

ATMi increased efficiency by �2-fold and 5 mM ATMi by 6-fold

over DMSO control-treated cells (Figure 5A). Similarly, Chk2 inhi-

bition increased EBV transformation efficiency �3-fold for 2 mM

Chk2i and 9-fold for 5 mM Chk2i (Figure 5B). Therefore, an

ATM- and Chk2-dependent DDR restricts EBV transformation.

We next assessedwhether ATMandChk2-mediated suppres-

sion of EBV transformation was due to limiting initial B cell prolif-

eration. The continuous presence of either ATM or Chk2 inhibitor

led to a dose-dependent increase in infected B cell number at

2 weeks postinfection (Figure 5C). Importantly, ATM or Chk2

inhibitor did not induce B cell proliferation in the absence of

EBV, suggesting that these compounds act to alleviate a block

to proliferation rather than stimulating B cells per se (Figure 5D).

ATM and Chk2 Suppress B Cell Growth 4–8 Days
after EBV Infection
Since the DDR peaked during the first week after infection, we

assessed when ATM and Chk2 inhibition enhanced proliferation
Cell Host &
and transformation. To that end, PBMCs infected with EBV were

transiently exposed to ATMi and Chk2i from the start of infection

or the compounds were added at different days postinfection.

EBV-induced B cell proliferation was most sensitive to the inhib-

itors between 4 and 8 days after infection when cells were

present in the hyperproliferative period (Figure 5E). For example,

when either inhibitor was added within the first 4 days of infec-

tion, we observed as pronounced an effect on proliferation as

if the inhibitor was added at day 0. However, if we added inhib-

itors after day 8, there was no effect on proliferation. Conversely,

if the inhibitors were removed prior to 4 days after infection, then

increased proliferation was not observed.

Similar results were obtained in long-term transformation

assays. Addition of either compound within 4 days of infection

increased transformation efficiency, while adding the com-

pounds at 12 days postinfection had little effect (Figures 5F

and 5G). The inhibitors also did not increase LCL growth rates

at normal or limiting density (Figure S4 and data not shown).

Therefore, during a critical period �4–8 days following infection,

EBV induced an ATM- and Chk2-dependent growth suppressive
Microbe 8, 510–522, December 16, 2010 ª2010 Elsevier Inc. 515



Figure 5. Inhibition of ATM and Chk2 Kinases Increased EBV Transformation Efficiency and Proliferation of B Cells during a Critical Period

4–8 Days Postinfection

(A) Quantification of EBV-induced B cell outgrowth following PBMC infection in the presence of 0.1% DMSO (black), 2 mM ATMi (green), or 5 mM ATMi (red). The

percentages of wells positive for LCLs at 5 weeks postinfection are plotted relative to the transforming units (TU) of B95-8 virus per well. Results shown are the

average of experiments with at least four independent normal donors. Error bars represent standard error of the mean (SEM). Dotted line represents 62.5% posi-

tive wells, which, based on a Poisson’s distribution, indicates outgrowth from the virus amount in the x axis of a single LCL per well.

(B) Similar experiments were performed as in (A), except using DMSO (black), 2 mM Chk2i (green), or 5 mM Chk2i (red).

(C) CFSE-stained PBMCswere infected with EBV in the presence of increasing amounts of ATMi or Chk2i (0, 1, 2, 5, and 10 mM). The percentage of CD19+/CFSE-
low cells of total PBMCs at 14 days postinfection are plotted. The data shown are the average values from two different donors ± SEM. These data are represen-

tative of more than five independent experiments.

(D) Dot plots show CFSE- and CD19-stained PBMCs that were treated with DMSO, 5 mM ATMi, or 5 mM Chk2i or infected with EBV for 6 days.

(E) This table summarizes when ATM and Chk2 suppressed EBV-mediated proliferation at different times following infection. CFSE-stained PBMCs were infected

withEBVatday0.ATMi orChk2i (5mM)wasaddedatdifferent timesafter infection (topbars) or atday0andwashedoutatdifferent timesafter infection (bottombars).

EBV-mediated B cell proliferation was detected by FACS at day 14 postinfection using CD19-PE and CFSE as in (C). A more than 2-fold increase in treated cells

versus DMSO is represented by a green plus, a less than 2-fold increase is represented by a yellow plus, and no increase is represented by a red dash. The lines

indicate the period of incubation and are colored with the proliferation phenotype after ATMi and Chk2i treatment. Average values from two independent donors

are shown.

(F) EBV-induced outgrowth following PBMC infectionwasmeasured as in (A) in the presence of 5 mMChk2i (blue), 5 mMATMi (red), or DMSO (black) added at day 0,

day 4, or day 12 after EBV infection. Results shown are the average of four independent normal donors ± SEM.

(G)EfficiencyofEBVoutgrowth from (F)wascalculated, and theaverage ratio of inhibitor-treated toDMSO-treated infections±SEM for four normaldonors isplotted.
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signaling pathway that limited initial B cell proliferation and,

consequently, long-term outgrowth into LCLs.

EBV Latent Gene Expression Changes and
Consequences in Early Infected Cell Divisions
The dynamic changes in proliferation and DDR-associated gene

expression support our cell-based assays indicating an early

period of ATM/Chk2-mediated growth suppression that is
516 Cell Host & Microbe 8, 510–522, December 16, 2010 ª2010 Else
attenuated in later divisions enabling long-term LCL outgrowth.

However, to determine whether these changes correlated with

viral gene expression, we queried viral transcripts and proteins

associated with the latency III growth program in sorted PDs after

infection (Figure6andFigureS5).Wp-associated transcriptswere

expressed at a markedly higher level than Cp transcripts prior to

the first infected cell division (PD0) (Figure 6A). However, this ratio

shifted such that Cp levels were greater after three to four cell
vier Inc.



Figure 6. EBV Latency and Consequential

Host Gene Expression Changes from Initial

B Cell Proliferation through LCL Outgrowth

(A) Expression of Wp (filled triangles)- and Cp

(open circles)-derived mRNAs in EBV-infected

cells sorted by PD and monoclonal LCLs. Relative

mRNA abundance normalized to a b-actin control

is plotted versus PD. These data are representa-

tive of two normal donors and consistent with pub-

lished time course experiments (Woisetschlaeger

et al., 1989, 1990).

(B) The ratio of Wp to Cp mRNA expression levels

from (A) is plotted versus division and through LCL

outgrowth.

(C) Protein expression of EBNA-LP, EBNA2,

EBNA3A, and EBNA3C are shown from sorted

infected PDs and a polyclonal LCL from the

same donor.

(D) Proteins detected by western blotting from

three independent normal donors similar to those

in (C) were quantified. The average ratio of total

EBNA-LP protein (i.e., all isoforms) relative to total

EBNA3A or EBNA3C ± SEM is plotted versus PD

through LCL.

(E) Average CD23 surface expression as mean

fluorescence intensity (MFI) is plotted versus

PD ± SEM for two donors.

(F) (Left) The expression level of c-Myc mRNA is

plotted versus sorted PD. (Right) The activity of

the c-Myc target gene expression signature (Bild

et al., 2006) is plotted from the average expression

of targets in microarray samples from four inde-

pendent donors of resting B cells (B), early prolifer-

ating B cells (Prolif), and monoclonal LCLs. Error

bars represent SEM.
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divisions and through LCL outgrowth consistent with previous

observations (Figure 6B and Schlager et al., 1996; Woisets-

chlaeger et al., 1989; Woisetschlaeger et al., 1990). The con-

sequence of the high Wp/Cp ratio was heightened levels of

EBNA-LP protein as well as a heightened EBNA-LP to EBNA3A

and -3C protein ratio in early divisions that waned through LCL

outgrowth (Figures 6C and 6D). Thus, the initial cell divisions char-

acterized by hyperproliferation display a distinct EBNA gene

expression equilibrium that may affect EBNA2 target gene

expression.

To more rigorously assess this, we analyzed EBNA2 targets

including CD23 (Wang et al., 1991) and c-Myc (Kaiser et al.,

1999). In both cases, these EBNA2 targets were highly induced

in early cell divisions and then attenuated through LCL

outgrowth, still remaining significantly higher than resting B cell

levels (Figures 6E and 6F). The consequences of the transient

increase in c-Myc mRNA was manifested in an increase of the

c-Myc target gene expression signature (Bild et al., 2006) during

early proliferation that was attenuated in LCLs, though still

greater than resting B cell levels (Figure 6F). Given the impor-

tance in titrating this potentially genotoxic oncoprotein and the

known role of ATM in suppressing c-Myc oncogenesis (Hong

et al., 2006; Murphy et al., 2008; Pusapati et al., 2006), these

findings strongly support a model of acute oncogenic stress

early after EBV infection that is modulated through the well-

describedWp to Cp switch enabling modest EBNA2 activity crit-

ical for indefinite EBV-infected cell outgrowth.
Cell Host &
EBNA3C Is Required to Attenuate the EBV-Induced DNA
Damage Response
While the induction of the DDR after EBV infection requires

latent gene expression and proliferation, a definitive role for viral

latent genes in attenuating this response was not demonstrated.

In order to determine which latent genes are critical for DDR

attenuation during late divisions after infection, we chose to

interrogate the EBNA3 proteins, EBNA3A and EBNA3C, as

they are known to modulate EBNA2 activity. Infection of primary

B cells with EBV B95-8, EBNA3A knockout (KO), or EBNA3C KO

virus (Anderton et al., 2008) supported early B cell proliferation

(Figures S6A–S6C). However, upon sorting these early prolifer-

ating cells we observed that EBNA3C KO virus-infected cells

displayed increased activation of the DDR,while EBNA3AKO-in-

fected cells were similar to WT B95-8 infection in DDR activation

(Figures 7A and 7B). Indeed, greater than 80% of EBNA3C

KO-infected cells were g-H2AX positive relative to �50% of

WT or EBNA3A KO-infected cells (Figure 7C). Similarly, EBNA3C

KO-infected cells accumulated 53BP1 DDR foci to a greater

extent than WT or EBNA3A KO-infected cells (p < 0.001, 3C

KO versus WT; p > 0.1, 3A KO versus WT). Thus, while B cells

infected with either EBNA3A KO or EBNA3C KO virus were crip-

pled for long-term outgrowth (Figures S6B and S6C), these

experiments define a critical role for EBNA3C in attenuating

the host DDR to EBV infection early after infection. These data

strongly support our model of a latent gene expression-triggered

hyperproliferation-induced DDR, followed by proper expression
Microbe 8, 510–522, December 16, 2010 ª2010 Elsevier Inc. 517



Figure 7. EBNA3C Attenuates the EBV-Induced DNA Damage Response

(A) Representative IF images are shown of g-H2AX staining (red) from WT, EBNA3A KO (D3A), and EBNA3C KO (D3C) infected and sorted PD1-4 B cells. DAPI

DNA stained (blue) and DAPI/g-H2AX merged images are also shown.

(B) Representative IF images are shown of 53BP1 staining (red) from WT, D3A, and D3C infected and sorted PD1-4 B cells.

(C) Quantification of IF data from (A) is plotted as percentage g-H2AX-positive cells. Average values are plotted for infected cells, uninfected B cells, and 5 Gy

g-irradiated B cells.

(D) Model for EBV-induced DDR/hyperproliferative period and attenuation during LCL outgrowth. Early in infection EBNA2 and EBNA-LP associate with cellular

transcription factors (TF) to potently upregulate expression of growth control genes and B cell activation markers, including c-Myc and CD23, activating the host

DDR (left). Later in infection, the activity of the EBNA3 proteins, in particular EBNA3C, downregulate EBNA2 function, as LMP1 and LMP2 are upregulated and

may cooperate in the constitutive but attenuated expression of host growth control genes and enhanced cell survival (right).
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of the EBNA3 proteins, in particular EBNA-3C, in order to atten-

uate a potentially genotoxic and growth-suppressive signaling

pathway (Figure 7D).

DISCUSSION

It has long been recognized that EBV transformation efficiency is

on the order of 1%–10% of infected primary human B cells

(Henderson et al., 1977; Sugden andMark, 1977). However, little

is known about the molecular mechanism responsible for this

low efficiency. We hypothesize that a robust innate tumor

suppressor response is activated by latent viral oncoproteins

and blocks outgrowth of the majority of infected cells. Recent

evidence suggests that activated oncogene expression is suffi-

cient to trigger a growth-suppressive DNA damage responsive
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signaling pathway (Halazonetis et al., 2008), and other onco-

genic viruses, including the Kaposi’s sarcoma-associated

herpesvirus, have been shown to induce the DDR after infection

or when viral oncoproteins are expressed in primary cells (Dahl

et al., 2005; Koopal et al., 2007). Therefore, in this study we

asked whether EBV was capable of inducing a DDR in primary

B cells and, importantly, whether this response resulted in the

low transformation efficiency. We observed that as EBV-infected

cells initiated proliferation, a transient DDR was activated as

evidenced by phosphorylation of ATM Ser1981, H2AX Ser139

(g-H2AX), Chk2 Thr68, and accumulation of 53BP1 in nuclear

foci. Modulation of this signaling pathway by chemical antago-

nism of ATM and its downstream target Chk2 markedly

increased EBV-mediated B cell polyclonal expansion and trans-

formation efficiency, thereby demonstrating that the DDR
vier Inc.
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contributes to an EBV-induced innate tumor suppressor

pathway. This study identifies a molecular pathway that restricts

EBV transformation.

The Source of DNA Damage
Toward characterizing the EBV-induced DNA damage signal, we

reasoned that either viral or cellular DNA was important for ATM

activation. In addition to oncogenic stress, replication intermedi-

ates of DNA viruses and retroviruses contain double-stranded

DNA ends that activate ATM (Lilley et al., 2007). In fact, EBV lytic

replication induces a DDR which is suppressed by inhibition of

downstream transcriptional activation of p53 (Kudoh et al.,

2005; Mauser et al., 2002). In our studies of primary B cell infec-

tion, however, we found no evidence of viral lytic DNA replication

or viral DNA associated with DDR activation. First, we did not

observe DDR activation within the first 3 days after EBV infection,

nor did we observe activation using UV-inactivated virus or

the nontransforming EBV variant P3HR1, suggesting that the

incoming linear DNA genome and tegument proteins within the

virion were not responsible for this signal. Second, lytic viral

DNA was not responsible for DDR activation, as less than 1%

of infected cells were undergoing lytic DNA replication when

greater than 50% of infected cells were g-H2AX positive. Third,

we askedwhether the DNA damage signal was derived from viral

episomes since DNA repair factors are recruited to the episome

to ensure proper resolution of Holliday junctions following

episome replication (Deng et al., 2002; Dheekollu et al., 2007).

We observed little increase in episome number per cell and

found that viral episomes and g-H2AX did not colocalize during

the period of DDR activation. These data collectively demon-

strate that viral DNA is not the source of DNA damage. Our

experiments cannot rule out the possibility, however, that viral

lytic gene expression downstream of BZLF1 in the absence of

lytic DNA replication (Kalla et al., 2010) plays a role in the tran-

sient DDR early after infection. Despite this possibility, we

inferred from our data that viral latent gene expression causes

an oncogenic stress response leading to cellular DNA damage.

The initiation of cell proliferation defines the period after EBV

infection when ATM and Chk2 were active in suppressing trans-

formation. Rigorous analysis of infected cell division rates

uncovered a period of hyperproliferation where early population

doublings (PDs) were every 8–12 hr leading to DDR activation,

while later divisions displayed an attenuated rate of �24–30 hr

per division, similar to LCLs, and had little evidence of DDR acti-

vation. Microarray analysis of gene expression during the transi-

tion from resting B cell to early EBV-induced hyperproliferation

and through LCL outgrowth strongly supported our cell-based

observations. Specifically, genes involved in proliferation and

the DDR, including ATM/p53-dependent targets (Elkon et al.,

2005), were highly induced early after infection and then attenu-

ated during the transition to LCL. We propose that aberrant

induction of cellular DNA replication early after EBV infection

activates a DDR that is dependent on EBNA2- and EBNA-LP-

mediated upregulation of S phase promoting oncoproteins

including c-Myc, cyclin D2, and E2F1 (Kaiser et al., 1999; Sinclair

et al., 1994; and Figure 6). Indeed, we observed increased

expression of c-Myc and its gene activation signature in hyper-

proliferating cells relative to LCLs. Furthermore, EBNA-LP

protein levels and Wp-derived transcripts were heightened
Cell Host &
during this early period relative to EBNA3 proteins and Cp tran-

scripts, consistent with previous analysis of the initial cascade of

viral latent gene expression at different days postinfection

(Schlager et al., 1996; Woisetschlaeger et al., 1989, 1990).

Finally, EBNA3C- but not EBNA3A-deleted virus-infected cells

displayed a significantly stronger DDR during early proliferation.

Thus, while both EBNA3A and EBNA3C likely mitigate growth

arrest in LCLs through p16 suppression (Hertle et al., 2009; Skal-

ska et al., 2010), during early outgrowth EBNA3C is also required

to modulate the DDR. Collectively, our data support a model in

which initial EBV-driven hyperproliferation leads to an oncogenic

stress that is ultimately attenuated as EBNA3 proteins moderate

EBNA2 driven c-Myc expression and its genotoxic and growth

suppressive consequences. This ultimate balance in viral and

host gene expression enables constitutive S phase induction

without driving selection of cells with genomic instability.

In Vivo Implications
Our findings have implications pertaining to the germinal center

model for EBV infection (Roughan and Thorley-Lawson, 2009) in

the context of B cell lymphomagenesis. In particular, our

observed hyperproliferative phase early after infection in vitro

may be similarly induced by EBV in vivo and is reminiscent of

B cell proliferation rates in the germinal center (MacLennan,

1994). Bcl-6 downregulation of the DDR mitigates the conse-

quences of centroblast hyperproliferation in the germinal center

(Ranuncolo et al., 2007), while EBV potently suppresses Bcl-6

early after infection, leaving DDR checkpoints intact (Siemer

et al., 2008). In vivo, an EBV-induced hyperproliferative period

after primary infection may promote extrafollicular B cell matura-

tion or drive EBV-infected naive B cells into GCs. However, a

critical balance must be struck between the aberrant latent

oncoprotein-driven proliferation early after infection and the

stable proliferative signals found in LCLs to maintain an acti-

vated, immortalized state. Perturbations in this balance in vivo

may select for mutations driving lymphomagenesis. For exam-

ple, the IgH/c-myc translocation common in BL may be the

consequence of such an event. Given our findings, it is plausible

that imbalances in EBV latent gene expression may provide

a milieu of cells with an increased potential for genomic insta-

bility. Recent work in BL cell lines suggests that this is likely

the case.

EBV infection of BL cell lines or heterologous expression of

EBNA1, EBNA3C, or LMP1 in BL cell lines increased the

frequency of nonclonal chromosomal aberrations (Gruhne

et al., 2009a, 2009b). EBNA1 increased reactive oxygen species

(ROS) through transcriptional upregulation of NOX2, EBNA3C

perturbed mitotic spindle checkpoints through BubR1 down-

regulation, and LMP1 attenuated ATM protein levels and

decreased DNA repair. EBNA3C has also been shown to modu-

late the activity of Chk2 (Choudhuri et al., 2007). However, these

three viral proteins are constitutively expressed in LCLs in the

absence of overt genomic aberrations. Therefore, we expect

that these findings unmask activities that may link the aforemen-

tioned potential for imbalanced gene expression to tumorigen-

esis. In our system, we did not observe increased transformation

in the presence of antioxidants including N-acetyl cysteine or

citric acid (data not shown), suggesting that EBNA1-induced

ROS was not responsible for the EBV-induced DDR. We also
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did not observe changes in BubR1 or ATM expression through

LCL outgrowth (data not shown). However, we anticipate that

genomic instability may ensue in the setting of aberrant latent

oncoprotein expression that may exist in BL and other EBV-

associated tumors. Consistent with this notion and our findings,

a recent report suggests that while LCLsmaintain a stable karyo-

type, early DNA damaging events may lead to nonclonal chro-

mosomal aberrations including telomere fusions (Lacoste

et al., 2009). This report supports our findings of an early hyper-

proliferation-associated oncogenic stress that may induce such

structures leading to ATM activation (Karlseder et al., 1999) and

suppression of long-term outgrowth. Thus, only cells with the

ability to maintain a stable karyotype emerge as LCLs.
Summary
Our study provides the characterization of an innate tumor

suppressor pathway that regulates EBV immortalization of B

cells. This pathway depends on ATM and Chk2, which are acti-

vated early after infection during a period of hyperproliferation.

The initial high level expression of EBNA2 and EBNA-LP target

genes such as c-Myc leads to DDR activation. Following this

initial period, the activity of additional viral latent proteins,

including EBNA3C and possibly LMP1 and LMP2, is important

for attenuating early gene expression targets, limiting activation

of the DDR, and ensuring cell survival. The end result of these

dynamic changes in viral and cellular gene expression is

outgrowth of a constitutively activated LCL harboring a stable

karyotype. However, perturbations in this gene expression

program through loss of upstream control by viral latent proteins

may lead to the progression of EBV-associated lymphomas. Our

studies provide a model for the study of EBV transformation

accounting for dynamic viral and host changes during the early

period following primary B cell infection.
EXPERIMENTAL PROCEDURES

Antibodies

Primary antibodies to gH2AX, pATM Ser1981, and 53BP1 (Cell Signaling

#2577, #4526, and #4937) were used for IF at 1:50. Alexa488 goat a-mouse

and Alexa 568 goat a-rabbit were used as secondary antibodies (Molecular

Probes #A-11029 and #A-11011). Rabbit a-human Chk2 or pChk2 Thr68

(Cell Signaling #2662 or #2661) and mouse a- EBNA-LP (JF-186, 1:250),

EBNA2 (PE2, 1:100), EBNA3A (Exalpha #F115P, 1:500), and EBNA3C (A10,

gift of E. Johannsen 1:2500) were used for western blotting.
Fluorescence Microscopy

Immunofluorescence

3 3 105 B cells were pelleted, washed in PBS, resuspended in 25 ml of PBS,

spread on a microscope slide and dried at 37�C for 20 min then fixed in 4%

PFA in PBS for 15 min, permeabilized in PBS containing 0.5% Tween-20 for

20 min then blocked in PBS with 0.2% Tween-20 containing 5% normal

goat serum for 1 hr. Indirect IF was performed as described in Bridger and

Lichter (1999). Slides were mounted in Vectashield containing DAPI (Vector

Laboratories).

Fluorescence In Situ Hybridization

Cells were fixed in methanol acetic acid as described previously (Sullivan and

Warburton, 1999). The EBV genome containing bacterial artificial chromosome

MD-1 (kindly provided by F. Wang, Harvard Medical School) was labeled with

fluorescent green-dUTP using a nick translation kit (Abbott Molecular)

following the manufacturer’s instructions. Slides were denatured in 70%

formamide, hybridized, and washed as described previously (Sullivan and
520 Cell Host & Microbe 8, 510–522, December 16, 2010 ª2010 Else
Warburton, 1999) except with using fluorescent probes, slides were not

blocked then incubated with a fluorescent secondary antibody.

IF/FISH

Slides were fixed for IF in 2% paraformaldehyde in PBS. Antibodies were

added to slides and denatured as previously described (Sullivan and Warbur-

ton, 1999) except that slides were denatured for 6 min. Slides were hybridized

and washed as described above.

Data analysis was performed as described in the Supplemental Experi-

mental Procedures.

Flow Cytometry Analysis

B Cell Proliferation Assays

6-carboxyfluorescein succinimidyl ester (CFSE, Sigma, #21888)-stained or

CellTrace Violet (Invitrogen, #C34557)-stained PBMCs were infected with

EBV and incubated with different concentrations of ATMi, Chk2i, or DMSO

during different periods. Proliferation of CD19+ cells was assayed by flow cy-

tometry as a ratio of CFSElow cells to total PBMCs at 14 days after infection.

Detailed kinetics of EBVproliferationwas determined as described in Figure S3

(Hawkins et al., 2007).
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