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Abstract: The emergence of femtosecond diffractive imaging with
X-ray lasers has enabled pioneering structural studies of isolated parti-
cles, such as viruses, at nanometer length scales. However, the issue of
missing low frequency data significantly limits the potential of X-ray
lasers to reveal sub-nanometer details of micrometer-sized samples. We
have developed a new technique of dark-field coherent diffractive imaging
to simultaneously overcome the missing data issue and enable us to
harness the unique contrast mechanisms available in dark-field microscopy.
Images of airborne particulate matter (soot) up to two microns in length
were obtained using single-shot diffraction patterns obtained at the Linac
Coherent Light Source, four times the size of objects previously imaged
in similar experiments. This technique opens the door to femtosecond
diffractive imaging of a wide range of micrometer-sized materials that
exhibit irreproducible complexity down to the nanoscale, including airborne
particulate matter, small cells, bacteria and gold-labeled biological samples.

© 2012 Optical Society of America
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1. Introduction

Coherent diffractive imaging (CDI) at X-ray free-electron lasers (XFELs) is used to image
viruses [1,2] and airborne particulate matter [3] in conditions close to their native state. Viruses
can be imaged without staining, freezing or crystallization, and particulate matter can be imaged
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in flight. Additionally, CDI is employed at synchrotrons to image materials science [4, 5] and
biological [6, 7] samples as an alternative to full-field and scanning microscopy using X-ray
optics. However, CDI techniques developed to date suffer from the ubiquitous issue of missing
data [8]. Low spatial frequencies are often not recorded, either because the direct beam is too
intense to impact the detector, or because of detector saturation. To reconstruct CDI images
with a contrast comparable to a bright-field image the missing data at low frequencies must be
recovered through the use of additional constraints or prior knowledge. If there are too many
missing speckles, bright-field reconstruction might not be possible.

This issue of missing data is particularly acute for XFEL imaging because the sample is
destroyed by a single shot and the dynamic range cannot be extended by repeated measurements
of the same sample. The advent of segmented detectors [9–11] for XFEL experiments has
further exacerbated the missing data problem. In a recent experiment at the Linac Coherent
Light Source (LCLS), the missing data limited reconstructions to particles less than 500 nm in
diameter [2]. The size limit arises because the diffraction from larger objects contains variation
on finer angular scales than smaller objects. This means the size of the smallest features in
a continuous diffraction pattern, commonly known as “speckles”, decreases as the object size
increases. For a given gap size between detector segments and object-to-detector distance, more
information is missing for larger objects making them more difficult to reconstruct. This limit
on object size could be increased with a longer object-to-detector distance, but resolution would
be sacrificed. Many micrometer-sized samples of high interest, like cells, bacteria and airborne
particulate matter (PM), have yet to be imaged with an XFEL at the maximum nano-scale
resolution that is potentially achievable. For PM, in particular, the missing data issue restricts
the unique opportunities to use XFELs for high spatially and temporally resolved single-particle
aerosol dynamics studies of fine particulates, which the EPA designates as particulate matter
with an aerodynamic diameter less than 2.5 micron (PM2.5). Our goal is to achieve nanoscale
resolution imaging of single particles spanning the entire size range of PM2.5. The upper limit
on particle size is currently set by the missing data problem discussed above and the lower
limit, about 0.08 micron, is set by scattering cross-section and experimental parameters defining
scattered photon detection limits.

Here we show that reconstruction of a dark-field CDI image is a viable route to recovering
structural information about the object even when the amount of missing data is severe. Dark-
field imaging has been used in electron microscopy to improve the contrast for biological sam-
ples without staining [12–14]. Annular dark-field detectors are routinely used in scanning trans-
mission electron microscopy (STEM), where they provide an excellent contrast mechanism for
imaging single atoms and atomic columns [15, 16]. Low-dose STEM is being developed for
atomic resolution imaging of radiation sensitive samples [17]. Dark-field microscopy has been
implemented with X-rays in a scanning transmission X-ray microscope [18] and used for imag-
ing gold-labeled cells [19]. One downside of dark-field imaging is that the image contrast can
have a complicated relationship to the object structure and can be difficult to interpret [20].

In a conventional CDI experiment, shown in Fig. 1(a), a far-field diffraction pattern of the
sample is collected on the detector, except for a central region where the direct beam is either
blocked by a beamstop or passes through a hole. It is commonly assumed that the illumina-
tion is fully coherent. Figure 1(a) shows a simulated diffraction pattern for a fractal aggregate,
analogous to an airborne soot particle. Using real space constraints like the size and shape of
the object (known as a support constraint), the continuous diffraction pattern can be phased
to produce an image of soot particle shown in Fig. 1(b) which has an equivalent contrast to a
bright-field microscope image. In CDI experiments, a measurement of the direct (unscattered)
beam is needed to put the reconstructed transmission of the sample on an absolute scale [21].
Information about the direct beam is usually lost in conventional X-ray CDI experiments be-
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a 

Fig. 1. (a) The CDI experiment at LCLS with a gap between detector halves to prevent the
direct beam impinging on the detector. The diffraction pattern is calculated from a simu-
lated soot fractal aggregate. (b) The bright-field image of the soot particle that is formed
by conventional CDI. (c) The coherent dark-field image and (d) the incoherent dark-field
image.

cause of the beamstop. So conventional CDI reconstructions and bright-field microscopy are not
exactly equivalent. However, since the contrast is equivalent we will refer to a CDI reconstruc-
tion, where the missing data is recovered, as a bright-field CDI image. Regions of missing data
can be uniquely recovered only if there are no unconstrained modes [8]. These modes are func-
tions which are contained within the support and their Fourier transform is contained within the
missing data region. They can characterize the structural information that is not constrained by
the reconstruction. Until now it was widely believed that it is impossible to reconstruct images
from patterns with significant missing central data [22]. Dark field imaging, on the other hand,
achieves contrast precisely by omitting low spatial frequency information. The development of
dark-field CDI reconstruction methods may therefore enable structural information about the
object to be obtained while avoiding the problem of reconstructing the missing data. In prin-
ciple, the upper limit on the object size that can be imaged would no longer be limited by the
missing data region. Dark-field images calculated for coherent (Fig. 1(c)) and incoherent (Fig.
1(d)) illumination of our simulated soot particle suggest that this approach could potentially
provide structural information in the CDI experiment.
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2. Theory of dark-field coherent diffractive imaging

To formulate the theory of dark-field CDI reconstruction, we assume that the illumination is
fully coherent, so that the scattered wave in the far-field ψ(qqq) can be regarded as a 2D Fourier
transform of the scattered wave in the exit surface plane of the object ψ(rrr). The wave recovered
by the dark-field reconstruction ψdark(rrr) is related to the scattered wave by convolution with a
point-spread function P(rrr) as follows

ψdark(rrr) = P(rrr)⊗ψ(rrr) . (1)

The function P(rrr) is determined by the mask M(qqq) that is used multiplicatively to select a subset
of the diffraction pattern. The purpose of the mask M(qqq) is not only to specify the location of
missing data, but also to ensure that the selected subset of data provides a valid reconstruction
problem. It can be easily shown that

P(rrr) = F
[√

M(qqq)
]
, (2)

where F denotes the Fourier transform. The dark-field reconstruction is viable if ψdark(rrr) sat-
isfies a support constraint, which depends on the choice of the mask M(qqq). The largest possible
choice for M(qqq) is a binary function with a value of one where data is measured and zero where
data is missing. However, the sharp edges on such a mask cause P(rrr) to have fringes extending
over a wide area, and ψdark(rrr) would no longer satisfy a support constraint. A better choice
for M(qqq) is a Gaussian mask displaced from the center of the pattern so that it falls to zero in
the missing data region. The corresponding P(rrr) is also Gaussian, limiting its spatial extent.
The resulting ψdark(rrr) is larger than ψ(rrr) but remains of finite size, so a support constraint will
be satisfied. For an off-centered mask the associated P(rrr) is complex, so ψdark(rrr) cannot be
constrained to be real.

By moving the Gaussian mask to different locations, as indicated by the circles in Fig. 2(a),
different dark-field images of the soot particle can be reconstructed, as shown in Fig. 2(b)-
2(e). Although no data is explicitly removed as “missing data” in this simulation, the choice
of mask locations effectively excludes a significant number of central speckles. In this case the
reconstruction was performed with shrinkwrap [23] and the hybrid input-output (HIO) method
[24]. The contrast of the dark-field image is sensitive to the direction of the displaced Gaussian
mask. The square root of the incoherent sum of Fig. 2(b)-2(e) (i.e. the summation of the squares
of the amplitude) is shown in Fig. 2(f). The features, although at lower resolution, match those
shown in the bright-field reconstruction, Fig. 2(g). Only circular regions from one half of the
detector are needed because the diffraction pattern is centrosymmetric.

To ensure the incoherent sum is not biased by the specific directions in which the masks are
displaced, the dark-field masks would ideally cover a continuous circle around the center of
the pattern (or semi-circle for centrosymmetric patterns). This arrangement has similarities to
the annular detectors used in STEM imaging [15]. Practically, there will be limitations on the
directions which masks can be displaced given by the geometry of the detector. In this simula-
tion we have avoided horizontally displaced masks to show a similar case to the experimental
applications shown Section 3. Aside from avoiding directional bias, the number and placement
of masks can be adapted to achieve contrast for the most interesting features of the sample.
Since dark-field imaging uses high-frequency information, it is best at displaying fine details of
the object structure, such as point-like features and edges.

The contrast of the incoherent sum can be understood from a simple partial coherence model.
The off-centered Gaussian mask is written as

M(qqq) = exp
[−(qqq−aaa)2σ2] . (3)
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Fig. 2. (a) The simulated diffraction pattern from the model soot fractal aggregate. (b-e)
The dark-field reconstructions formed by placing Gaussian masks at the locations indicated
by the white circles shown in (a). (f) The incoherent dark-field image formed by adding (b-
e) incoherently (the square root is shown so that the contrast is easier to compare). (g) The
bright-field reconstruction for comparison.

The corresponding point-spread function is

P(rrr) = exp

(
−2π2rrr2

σ2

)
exp(−2πirrr ·aaa) . (4)

By integrating over the displacement vector aaa, the incoherent sum of images can be evaluated

∫
|ψdark(rrr)|2daaa =

∫ ∣∣∣∣
∫

ψ(rrr′)exp

[
−2π2(rrr− rrr′)2

σ2

]
exp

[−2πi(rrr− rrr′) ·aaa]drrr′
∣∣∣∣
2

daaa

=
∫

|ψ(rrr′)|2 exp

[
−4π2(rrr− rrr′)2

σ2

]
drrr′

=|ψ(rrr)|2 ⊗|P(rrr)|2 . (5)

Hence, in this model the incoherently-summed dark-field intensity is equivalent to the bright-
field intensity convolved with a Gaussian point-spread function. Resolution is lost but contrast
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is preserved. Since the width of |P(rrr)|2 in Eq. (5) is a factor of
√

2 smaller than |P(rrr)|, the
resolution of the incoherent image is better than that of a coherent image, a principle that is
well-known in X-ray microscopy [25]. For dark-field CDI, we only use values of aaa that avoid
the beamstop or detector gaps, so Eq. (5) does not apply exactly. The aim is to add enough dark-
field images to approach the contrast of Fig. 1(d), which, as Fig. 2(f) shows, can be achieved
with only a few reconstructions.

A notable advantage of this formulation of dark-field CDI is that it requires no modification
of the experimental set up and can be applied to existing data that has been regarded up until
now as unusable.

3. Experiment

Dark-field CDI was used to study soot particles, which belong to the high-interest PM2.5 cat-
egory of particular matter. The structure and size of these heterogeneous particles determines
their optical and transport properties, which are an important, yet still uncertain, aspect of cli-
mate modeling, and also determines their toxicological effects via respiration [26,27]. However,
transmission electron microscopy (TEM) and scanning transmission microscopy (STM) have
the disadvantages of slow data collection, particle melting, and the need to capture the parti-
cle on a substrate [26]. XFELs have the unique opportunity to study large ensembles of this
heterogeneous sample by taking individual measurements of each particle while still airborne.

The diffraction data was taken at the Atomic, Molecular and Optics beamline at the LCLS.
The sample was a soot particle generated from a Palas GFG1000 spark source generator (Karl-
sruhe, Germany), which was injected into the FEL beam as an aerosol through a differentially
pumped aerodynamic focusing inlet [28]. Individual particles were exposed to vacuum for 1
ms as they traveled at 100-200 m/s to the interaction region. The incident photons had an en-
ergy of 1.24 keV (wavelength of 1.0 nm). The diffraction pattern was recorded on a pnCCD
detector which was installed in the CFEL ASG Multi-Purpose (CAMP) instrument [9]. The
dynamic range of the detector as operated in this experiment was approximately 500 photons
and there is a 3 mm radius hole in the center to allow the direct beam to pass. The detector was
approximately 724 mm from the interaction region. Further parameters and details of the LCLS
experiment are given by Loh et al. [3].

Our aim is to form a dark-field image by taking the incoherent sum of dark-field images as-
sociated with Gaussian masks in different locations. Two different methods were implemented
to form the incoherent dark-field images from the experimental data. Method A is exactly what
was implemented in the simulation already described. It is as follows:

1. Perform a separate reconstruction for each Gaussian mask.

2. Take the incoherent sum of each of these dark-field reconstructions.

Method B involves a single reconstruction from a larger mask:

1. Add the Gaussians to form a single mask.

2. Perform a single reconstruction from data masked with the combined mask.

3. Construct the incoherent dark-field image by post-processing the reconstructed wave.
Each Gaussian mask is applied separately to the reconstructed wave to generate a series
of dark-field images, which are then summed to form the incoherent dark-field image.

In both Methods A and B, the term “reconstruction” can be any standard CDI reconstruction
procedure. The specific details of the procedure that we used is given below, after we discuss
the merits of Methods A and B.
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Fig. 3. On the left are the measured diffraction patterns. The black region is where data
was not recorded due to the central hole, the gap between the two detector halves or satura-
tion. The dark-field reconstructions are shown in the center. The dark-field reconstruction
provided a support and initial starting point which were needed to obtain the bright-field
reconstructions shown on the right.

Method A is how we first conceived dark-field imaging and what we initially implemented.
It was successful on the diffraction patterns for smaller samples and was used to produce the
results for the two bottom particles in Column 2 of Fig. 3. Five Gaussian masks were used
similar to those that were successful in simulation. The radius of the Gaussian masks was 60
pixels or 6× 103 nm−1 and the full-period resolution of the dark-field reconstruction using
Method A was approximately 170 nm.

For larger particles, Method A was found to be more greatly affected by noise and was not
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reliable. We attribute this to the fact that the oversampling of larger particles is less than for
smaller particles, and the effective signal-to-noise ratio per speckle is comparatively greater. To
overcome this problem, Method B was developed. By performing a single reconstruction from
a larger mask, the effective signal-to-noise level in the object plane is reduced (as each pixel
in the estimated image of the object is calculated using more diffraction data). Furthermore,
Method B is faster because it requires fewer reconstructions. Method B was successful at re-
constructing the top three images shown in Fig 3. More Gaussians can be added in Method B
without increasing computational time, and so the number of Gaussians was increased to seven
to use more data. For the reconstructions using method B, the radius of the Gaussian masks
was also 60 pixels. However, in Method B we also have the flexibility to use Gaussian masks
of different widths in steps (1) and (3). Taking advantage of this, the size of the Gaussian mask
in step (3) of Method B was increased to 1×104 nm−1, so the full-period resolution of the final
incoherent image was approximately 100 nm.

The reconstruction step, in Method A or B, can be implemented with any standard CDI re-
construction procedure. We found there were issues with noise sensitivity when using standard
methods like HIO with this data. To overcome this issue, standard hybrid input-output method
(HIO) was modified to improve noise tolerance. The iterative scheme is as follows:

ψ(n+1) =

⎧
⎨
⎩

Pmodψ(n), ∈ S
ψ(n)−βPmodψ(n), /∈ S

⋂ |Pmodψ(n)|> m,

0, /∈ S
⋂ |Pmodψ(n)| ≤ m ,

(6)

where S denotes the support, β is a feedback parameter set to 0.9, and Pmod is the modulus
projection operator given by

Pmodψ = F−1
{√

I exp [iarg(F [ψ])]
}
, (7)

where I is the measured diffraction pattern. The threshold m was set according to the noise
level in the autocorrelation function. A detailed description of the formulation and properties
of this method are to be published in a separate manuscript [29]. Shrinkwrap [23] was used
to dynamically calculate the support using a threshold every 50 iterations. The threshold is
applied after smoothing the current iterate with a Gaussian kernal whose width is gradually re-
duced during reconstruction. The initial width of the kernal was chosen in the range of 2.0–5.0
pixels full-width-half-maximum and the final width was 1.0 pixel full-width-half-maximum.
For reconstructions in Method A the diffraction data was noise filtered after applying the dark-
field mask. Noise filtering involved the application of a support to the autocorrelation function,
calculated by the same method as in Shrinkwrap. For the reconstructions in Method B, this ad-
ditional noise filtering was not required as the the use of a larger mask improved the robustness
to noise.

To ensure reliability of a CDI reconstruction, it is common procedure to take the average
of separate trials made from different random starting points. Each dark-field reconstruction
shown here is an average of ten trials and each trial was set to run for a fixed number of iter-
ations. For these small objects which had the largest speckles, each trial for reconstructions in
Method A converged in a few hundred iterations (300–500). Reconstructions of the larger par-
ticles with the larger mask from Method B were slower and the number of iterations needed for
convergence was within the range 5000–25000 iterations. After a successful reconstruction was
achieved in each case, finding the minimum number of iterations required was not considered
a priority, and so these numbers only represent a rough estimate of what is minimally required.

The reconstructed dark-field images in the central column of Fig. 3 show the shape and size
of the soot particles. In particular, the largest particle in Fig. 3 is longer than 2 micron, more than

#164938 - $15.00 USD Received 23 Mar 2012; revised 21 Apr 2012; accepted 22 Apr 2012; published 31 May 2012
(C) 2012 OSA 4 June 2012 / Vol. 20,  No. 12 / OPTICS EXPRESS  13510



Fig. 4. The bright-field reconstruction of a soot particle shown in Fig. 3 on the fourth row.
(a),(b) Line plots from the locations indicated on the image, which show features on the
scale of 30-40 nm.

four times larger than previous reconstructions from the LCLS data at the same experimental
conditions [1–3].

As a consequence of the experiment geometry, the central speckle is entirely missing in the
central hole for particles larger than around 500 nm diameter. Consequently, bright-field recon-
structions were not successful without the information from the dark-field reconstructions, as
the shrinkwrap algorithm failed to converge to the size and shape of the object. The shrinkwrap
method starts with an overestimate of the size of the object, which, if there is missing data,
increases the number of unconstrained modes, often preventing convergence.

The dark-field image provided a support and an initial wave function which enabled bright-
field reconstructions to be performed, as shown on the right side of Fig. 3. The square root
of the dark-field intensity defined in Eq. (5) is used to define the initial wave function of the
bright-field reconstruction, because it has a contrast closer to the amplitude of the bright-field
reconstruction. The resolution in the bright-field images is higher and reveals finer detail of
the complex structure of the soot. Since the initial wave function was not random, multiple
reconstructions cannot be used to estimate resolution as conventionally done in CDI. The image
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contains many features on the scale 30-40 nm, as shown in Fig. 4, in agreement with resolutions
reported in previous studies [1–3].

As discussed above, bright-field reconstructions are affected by missing modes [8, 22] and
this is still true when they are initialized with information from a dark-field reconstruction.
Measures were taken to minimize any residual effect of missing data in the bright-field re-
constructions shown in Fig. 3. In the upper two reconstructions, overestimated intensity in the
gap at high-resolution was attenuated to agree with the radially averaged intensity in the meas-
ured data region, providing an excellent visual improvement. The number of missing modes
was reduced by the application of a reality constraint, which is appropriate for centrosymmet-
ric diffraction. Loss of centrosymmetry due to Ewald sphere curvature is evident for the two
largest particles beyond 60 nm resolution. For the smaller particles, centrosymmetry persists to
higher resolutions.

X-ray laser pulses provide the opportunity to study the structures of individual PM2.5 par-
ticles in their native airborne state to higher resolutions than optical imaging techniques. Even
taking a conservative view of the resolution obtained in this study, these images are the highest
resolution ever recorded for airborne PM2.5 that is greater than 500 nm in diameter.

The largest particles imaged in this study approach the dimensions of the beam. Spatial
structure in the XFEL pulse can influence the contrast of reconstructed images. Since the spa-
tial structure of the XFEL pulse was not known in this experiment, we are not able to draw
any conclusions on this issue. We raise it here, however, to highlight the importance of beam
characterization for future XFEL imaging of micron-size particles.

4. Conclusion

Dark-field CDI opens a new route to imaging with coherent radiation that greatly increases
the range of particle sizes that can be achieved for a fixed experiment geometry and detector
dynamic range without sacrificing resolution. Dark-field CDI provides structural information
when missing data complicates standard bright-field reconstruction and turns the curse of miss-
ing data into the vehicle for a new contrast mechanism. Besides aerosols, we anticipate dark-
field CDI will find application to larger biological samples like cells, bacteria and immunogold-
labeled samples.

Note that dark-field images can be formed from existing CDI data because no modification
of the experimental set up is required. We expect that using our method, structural information
may be recoverable from data previously disregarded as unusable.
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