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A B S T R A C T

This study delves into the crucial aspect of network topology in artificial neural networks (NNs) and its
impact on model performance. Addressing the need to comprehend how network structures influence learning
capabilities, the research contrasts traditional multilayer perceptrons (MLPs) with models built on various
complex topologies using novel network generation techniques. Drawing insights from synthetic datasets, the
study reveals the remarkable accuracy of complex NNs, particularly in high-difficulty scenarios, outperforming
MLPs. Our exploration extends to real-world datasets, highlighting the task-specific nature of optimal network
topologies and unveiling trade-offs, including increased computational demands and reduced robustness to
graph damage in complex NNs compared to MLPs. This research underscores the pivotal role of complex
topologies in addressing challenging learning tasks. However, it also signals the necessity for deeper insights
into the complex interplay among topological attributes influencing NN performance. By shedding light on the
advantages and limitations of complex topologies, this study provides valuable guidance for practitioners and
paves the way for future endeavors to design more efficient and adaptable neural architectures across various
applications.
1. Introduction

Modern neural architectures are widely believed to draw significant
design inspiration from biological neuronal networks. The artificial
neuron, the fundamental functional unit of neural networks (NNs), is
based on the McCulloch–Pitts unit (Fitch, 1944), sharing conceptual
similarities with its biological counterpart. Additionally, state-of-the-art
convolutional NNs incorporate several operations directly inspired by
the mammalian primary visual cortex, such as nonlinear transduction,
divisive normalization, and maximum-based pooling of inputs. How-
ever, these architectures may be among the few examples where the
evolutionary structural and functional properties of neuronal systems
have been genuinely relevant for NN design. Indeed, the topology of
biological connectomes has not yet been translated into deep learning
model engineering.

Due to the ease of implementation and deployment, widely-used
neural architectures predominantly feature a regular structure resem-
bling a sequence of functional blocks (e.g., neuronal layers). The under-
lying multipartite graph of a multilayer perceptron (MLP) is typically
controlled by two hyperparameters that define its basic topological
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properties: depth and width. Only recently have computer vision engi-
neers transitioned from chain-like structures (Simonyan & Zisserman,
2014) to more elaborate connectivity patterns (He, Zhang, Ren, & Sun,
2016; Huang, Liu, Van Der Maaten, & Weinberger, 2017; Xie, Kirillov,
Girshick, & He, 2019) (e.g., skip connections, complete graphs). Nev-
ertheless, biological neuronal networks display much richer and less
templated wirings at both the micro- and macro-scale (Fornito, Zalesky,
& Breakspear, 2013; Xiao, Chen, & Bogdan, 2021; Yang, Sala, & Bogdan,
2021; Yin et al., 2020). For example, considering synaptic connections
between individual neurons, the C. elegans nematode features a hier-
archical modular (Bassett et al., 2010) connectome, wherein hubs with
high betweenness centrality are efficiently interconnected (Barthelemy,
2004; Towlson, Vértes, Ahnert, Schafer, & Bullmore, 2013). Moreover,
the strength distribution of the adult Drosophila central brain closely
follows a power law with an exponential cutoff (Scheffer et al., 2020).

As a result, the relationship between the graph structure of a NN
and its predictive abilities remains unclear. In the literature, there
is evidence that complex networks can be advantageous in terms of
predictive accuracy and parameter efficiency (Kaviani & Sohn, 2021).
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Fig. 1. Overview of the topology exploration process. Top: feedforward neural network (NN) generation. All studied models are constructed using the same three-step procedure.
First, we generate an undirected graph with a predetermined degree distribution. Then, we set edge directions and map computational operations to the network nodes. Bottom:
experiments. For each investigated topology, we sample multiple graphs from the same degree distribution. The corresponding NNs are trained on one of the benchmark datasets.
The resulting test accuracies are collected and stored for subsequent analyses.
However, past attempts to investigate this connection have yielded
conflicting results that are difficult to generalize outside the investi-
gated context. The first experiment on complex NNs was performed
in 2005 by Simard et al. who trained a randomly rewired MLP on
random binary patterns (Simard, Nadeau, & Kröger, 2005). Nearly a
decade later, Erkaymaz and his collaborators employed the same exper-
imental setup on various real-life problems (Erkaymaz & Ozer, 2016;
Erkaymaz, Ozer, & Perc, 2017; Erkaymaz, Özer, & Yumuşak, 2012,
2014) (e.g., diabetes diagnosis, performance prediction of solar air
collectors). The best-performing models featured a number of rewirings
consistent with the small-world regime. However, all assessed topolo-
gies were constrained by MLP-random interpolation. In Annunziato,
Bertini, De Felice, and Pizzuti (2007), an MLP and a NN generated
following the Barabási–Albert (BA) procedure were compared on a
chemical process modeling problem. Both models were trained with
an evolutionary algorithm, but the MLP achieved a lower RMSE. The
learning matrix (Monteiro et al., 2016), a sequential algorithm for the
forward/backward pass of arbitrary directed acyclic graphs (DAGs),
enabled the evaluation of several well-known complex networks on
classification (Monteiro et al., 2016) and regression (Platt, Yang, &
Silva Neto, 2019) tasks. The experiments included random and small-
world networks, two topologies based on ‘‘preferential attachment’’, a
complete graph and a C. elegans subnetwork (Dunn, Lockery, Pierce-
Shimomura, & Conery, 2004). Nevertheless, the learning matrix’s time
complexity limited the network sizes (i.e., 26 nodes) and, for each task,
a different winning topology emerged, including the MLP. Also Stier
et al. successfully trained BA- and WS-based (Watts–Strogatz) NNs with
backpropagation (Stier & Granitzer, 2019) on the MNIST classification
task (Lecun, Bottou, Bengio, & Haffner, 1998) by placing the generated
networks between two fully-connected layers. While this design choice
was made in order to adapt the architecture to the dimensionalities
of the input/output, it may represent a confound when disentangling
the contributions of the different network modules to the overall clas-
sification performance. Some recent works have instead focused on
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multipartite sparse graphs (Mocanu et al., 2018; You, Leskovec, He,
& Xie, 2020). While these architectures outperformed the complete
baselines, their topological complexity was entirely encoded within
the connections between adjacent layers. Another area of research
that explores NNs characterized by complex graphs is the Lottery
Ticket Hypothesis (LTH) (Frankle & Carbin, 2018). The LTH posits
that deep NNs contain subnetworks, often referred to as ‘‘winning
tickets’’, with optimized initial weights. When trained in isolation, these
subnetworks can achieve high performance on specific tasks. However,
it is important to note that these subnetworks are restricted to the
‘‘mother’’ architectures, which typically consist of multipartite graphs
or chain-like macro-scale networks.

We propose the hypothesis that, given the same number of nodes
(i.e., neurons) and edges (i.e., parameters), a complex NN might ex-
hibit superior predictive abilities compared to classical, more regularly
structured MLPs. Unlike previous studies, we conduct a systematic ex-
ploration (of which we have reported an overview in Fig. 1) of random,
scale-free, and small-world graphs (Fig. 2) on synthetic classification
tasks,2 with particular emphasis on the following:

• Network size. The defining properties of a complex topology
often emerge in large-scale networks. For example, the second
moment of a power-law degree distribution diverges only in the
𝑁 → ∞ limit (Barabási, 2016), where 𝑁 is the network size.3
The networks in Monteiro et al. (2016), Platt et al. (2019) have
15 and 26 nodes, respectively. We trained models with up to 128
neurons.

• Dataset size. The estimation error achieved by a predictor de-
pends on the training set size: the greater the number of samples,
the lower the error (Shalev-Shwartz & Ben-David, 2014). Except

2 The source code for our experiments is available at https://github.com/
BoCtrl-C.

3 The proposition holds when the degree exponent is smaller than 3.
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Fig. 2. Example feedforward NNs (128 neurons, 732 synaptic connections) based on complex topologies: scale-free (BA), random (ER), and small-world (WS). All graphs are
directed and acyclic. Information flows from top to bottom. Input, hidden, and output units are denoted in dark pink, green, and light pink, respectively. Since networks are
defined at the micro-scale, hidden and output nodes implement weighted sums over the incoming edges. In the hidden units, the computational operation is followed by an
activation function. The activations of nodes located on the same horizontal layer can be computed in parallel.
for studies based on multipartite graphs, all previous research
works in a small-data regime. Our synthetic datasets are three
times larger than those used before.

• Hyperparameter optimization. Learning rate and batch size are
crucial in minimizing the loss function. Monteiro et al. (2016)
is the only one that considers finding the optimal learning rate.
The role of batch size has never been investigated. Each DAG,
however, could be characterized by its optimal combination of
hyperparameters. Hence, we optimized the learning rate and
batch size for each topology.

Further, we present a series of supplementary experiments aimed at ex-
ploring the suitability of non-standard topologies and the applicability
of our results to real-world data.

2. Theory

In this section, we briefly report on the network science theory be-
hind graph generators. These graph models are involved in generating
the NNs employed in our investigations, as discussed in Section 3.

Erdős–Rényi (ER). An ER graph (Erdős, Rényi, et al., 1960), or random
network, is uniformly sampled from the set of all graphs with 𝑁 nodes
and 𝐿 edges. For 𝑁 ≫ ⟨𝑘⟩, the degree distribution of a random graph is
well approximated by a Poisson distribution: 𝑝𝑘 = 𝑒−⟨𝑘⟩ ⟨𝑘⟩

𝑘

𝑘! ; 𝑘 and ⟨𝑘⟩
represent node degree and average degree, respectively.

Watts–Strogatz (WS). The WS generator (Watts & Strogatz, 1998) aims
to create graphs that exhibit both high clustering and the small-world
property; this is achieved by interpolating lattices with random net-
works. The generation starts from a ring in which nodes are connected
to their immediate neighbors, and the links are then randomly rewired
with probability 𝑝.

Barabási–Albert (BA). The well-known BA model (Albert & Barabási,
2002) can be used to generate networks characterized by the 𝑝𝑘 ∝ 𝑘−3

scale-free degree distribution. Given that the model is inspired by the
growth of real networks, the generative procedure iteratively attaches
nodes with 𝑚 stubs to a graph that evolves from an initial star of
𝑚 + 1 nodes. Node additions respond to the preferential attachment
mechanism: the probability that a stub reaches a node is proportional
to the degree of the latter.

Multilayer Perceptron (MLP). The networks underlying MLPs are
called multipartite graphs. In a multipartite graph (i.e., a sequence
of bipartite graphs) nodes are partitioned into layers, and each layer
can only be connected with the adjacent ones; no intra-layer link is
allowed. Additionally, inter-layer connections have to form bicliques
(i.e., fully-connected bipartite graphs).

We have also reported a comprehensive description of the Stochastic
Block Model (SBM) in Appendix C.
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3. Methods

The following sections present our methodology. Section 3.1 de-
scribes how our synthetic benchmark datasets are constructed. In Sec-
tion 3.2, we provide details on the proposed NN generation pipeline.
Finally, Section 3.3 details out the experimental protocols.

3.1. Datasets

The foundation of the datasets developed, as displayed in Fig. 3,
is established by the manifold learning generators4 provided by the
scikit-learn machine learning (ML) library (Pedregosa et al.,
2011). To modify the generators for classification purposes, 3D points
sampled from one of the available curves (s curve and swiss roll)
are segmented into n_classes × n_reps portions based on their
univariate position relative to the primary dimension of the manifold
samples. As the term implies, n_classes refers to the number of
classes involved in the considered classification. Each segment is then
arbitrarily allocated to a class, maintaining task balance (i.e., precisely
n_reps segments have the same label). We define n_reps as the task
difficulty. An additional aspect of our datasets is the standard deviation
𝜎 of the Gaussian noise that can be added to the points. The generation
procedure is finalized with a min–max normalization.

3.2. Feedforward neural networks

All trainable models are produced following the same 3-step pro-
cedure and, in the context of a specific experiment, share 𝑁 and 𝐿.
Consequently, NNs exhibit identical density and parameter counts.

Undirected Graph Generation. The initial step in creating a NN
involves sampling an undirected graph using the generators detailed in
Section 2. Once 𝑁 and 𝐿 are established, all models exhibit a single
parameter configuration compatible with the required density.5 The
WS generator is the sole exception: the probability 𝑝 is allowed to
vary between 0 and 1. If the generator is limited to sample networks
with a number of links from a finite set (e.g., 𝐿 = 𝑚 + (𝑁 − 𝑚 − 1)𝑚
according to the BA model), we first generate a graph with slightly
higher density than the target before randomly eliminating excess
edges. After obtaining the graph, we confirm the existence of a single
connected component.

Directed Acyclic Graph (DAG) Conversion. Before performing any
calculations, the direction for information propagation through the
network links must be determined; this is accomplished by randomly
assigning, without replacement, an integer index from {1,… , 𝑁} to the

4 https://scikit-learn.org/stable/datasets/sample_generators.html
5 This statement is accurate if the number of MLP layers is predetermined.

https://scikit-learn.org/stable/datasets/sample_generators.html
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Fig. 3. Benchmark classification datasets. Top: the swiss roll. Bottom: the s curve. Each dataset is composed of 3D points divided into multiple segments. Classes are color-coded.
Datasets differ in terms of difficulty (𝑥 axis) and noise (𝑦 axis).
h

network nodes. It can be shown that the directed graph obtained by
setting the direction of each edge from the node with a lower index to
the node with a higher index is free of cycles (Bondy & Murty, 1976).
However, this conversion results in an unpredictable number of sources
and sinks. Since classification tasks typically involve a pre-defined
number of input features and output classes, it is necessary to resolve
such network-task discrepancies. To address this issue, we developed
a straightforward heuristic capable of adjusting DAGs without altering
the underlying undirected graphs.

Mapping of Functional Roles. The last step of the presented proce-
dure consists in mapping computational operations to the DAG nodes.
Working at the micro-scale (i.e., connections between single neurons),
the operations allowed are two. Source nodes implement constant
functions; their role, indeed, is to feed the network with the initial
conditions for computations. Hidden and sink nodes, instead, perform
a weighted sum over the incoming edges, followed by an activation
function:

𝑎𝑣 = 𝜎

(

∑

𝑢
𝑤𝑢𝑣𝑎𝑢 + 𝑏

)

(1)

where 𝑎𝑣 is the activation of node 𝑣, 𝜎 denotes the activation function6

(SELU (Klambauer, Unterthiner, Mayr, & Hochreiter, 2017) for hidden
nodes and the identity function for sinks), 𝑢 represents the generic
predecessor of 𝑣, 𝑤𝑢𝑣 is the weight associated with edge (𝑢, 𝑣) and 𝑏 the
bias. In order to implement the map of functional roles, we made use
of the 4Ward library,7 (Boccato, Ferrante, Duggento, & Toschi, 2023)
developed for the purpose. Starting from a DAG, the package returns a
working NN deployable as a PyTorch Module.

3.3. Experiments

In this section, we outline the experimental protocols designed
to evaluate the performance of the diverse graph topologies under
scrutiny. In the first paragraphs, we delve into our core experiment
— the exploration conducted on synthetic datasets (Protocol 1). Then,

6 Depending on the context, we use the same 𝜎 notation for both the
standard deviation of the dataset noise and the activation function.

7 https://github.com/BoCtrl-C/forward
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we detail our approach to assessing the robustness of the models,
previously trained in the aforementioned setup, against node removal
(Protocol 2). Shifting focus, in the last paragraphs we discuss our
investigation into the influence of network size and density on the
overall model performance (Protocol 3) and present our study on the
feasibility of employing the investigated computational graphs with
real-world data (Protocol 4).

Dataset Partitioning. Each generated dataset is randomly divided into
3 non-overlapping subsets: the train, validation and test splits. All
model trainings are performed over the train split while the validation
split is exploited in validation epochs and hyperparameter optimiza-
tion. Test samples, instead, are accessed only in the evaluation of the
final models.

Model Training. Models are trained by minimizing cross entropy with
the Adam (Kingma & Ba, 2015) optimizer (𝛽1 = 0.9, 𝛽2 = 0.999). A
scheduler reduces the learning rate by a factor of 0.5 if no improvement
is seen on the validation loss for 10 epochs. The training procedure ends
when learning stagnates (w.r.t. the validation loss) for 15 epochs, and
the model weights corresponding to the epoch in which the minimum
validation loss has been achieved are saved.

Hyperparameter Optimization. Hyperparameters are optimized throug
a grid search over a predefined 2D space (i.e., learning rate/batch size).
We generate networks of the same topological family starting from
5 different random seeds. In the MLP case, models differ only in the
weight initialization. For each parameter pair, the 5 models are trained
accordingly, and the resulting best validation losses are collected. Then,
the learning rate and batch size that minimize the median validation
loss computed across the generation seeds are selected as the optimal
hyperparameters of the considered graph family.

Topology Evaluation. Once the optimal learning rate and batch size
are found, we train 15 new models characterized by the considered
topology and compute mean classification accuracy and standard de-
viation on the dataset test split. The procedure is repeated for each
investigated graph family and a Kruskal–Wallis (H-test) (Kruskal &
Wallis, 1952) is performed in order to test the null hypothesis that the
medians of all accuracy populations are equal. If the null hypothesis is

https://github.com/BoCtrl-C/forward
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Fig. 4. Mean test accuracy as a function of the task difficulty. Confidence intervals (± standard deviation) are reported as well. Different subplots correspond to different datasets.
Each curve denotes the trend of a specific network topology.
rejected, a Mann–Whitney (U-test) (Mann & Whitney, 1947) post hoc
analysis follows.

Robustness Analysis. We use the final trained models in a graph
damage study to investigate their functional robustness (accuracy vs.
fraction of removed nodes). The topological robustness (giant compo-
nent vs. fraction of removed nodes) is already well-studied in network
science. We randomly remove a fixed fraction of nodes, 𝑓 , from a
neural network and compute the accuracy achieved by the resulting
model on the test dataset. Practically, node removal is implemented
using PyTorch’s Dropout,8 which zeroes some network activations
by sampling from i.i.d. Bernoulli distributions. As each batch element
is associated with specific random variables, activations produced by
different dataset samples are processed by differently pruned neural
networks. Therefore, the figure of interest is averaged over the dataset
and the 15 generation seeds. In a typical topological analysis, when 𝑓 =
0, the giant components of all tested graphs have the same size (i.e., 𝑁).
We adopt this convention in our experimental setup by replacing test
accuracy with accuracy gain: (𝑓 ). The metric is defined as the ratio
between the accuracy obtained by a pruned network and the accuracy
obtained by the original one (i.e., 𝑓 = 0). An accuracy gain < 1 indicates
a decline in model performance. Consequently, the figure of merit for
our analysis is the mean accuracy gain, with the expectation taken over
the generation seeds.

The Role of Size and Density. Size and density are two of the most
crucial attributes in a network. In order to explore the influence of
these properties on our results, in an additional set of experiments
we allow 𝑁 and 𝐿 to vary. This adjustment allows us to reveal the
impact of these two properties on the performance of the models. For

8 https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
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clarification, in this context, the size of a network is defined as the
number of neurons it contains. Density, on the other hand, refers to the
ratio between the actual number of edges and the maximum number
of edges an equivalent undirected network with the same 𝑁 can have:
𝜌 = 2𝐿

𝑁(𝑁−1) . As a result, here computational graphs are generated
based on a predetermined size/density grid; NNs are then trained and
validated using the same synthetic datasets as above, focusing on the
four with the highest level of classification difficulty.

Real-World Data. Synthetic data is valuable for characterizing a
model’s behavior under varying controllable parameters. However, it is
equally pivotal to assess whether the results obtained from the inves-
tigated architecture can translate to real-world scenarios. To achieve
this goal, we conduct additional experiments using the same ‘‘fair
comparison’’ framework as outlined in Protocol 1. This framework
involves conducting hyperparameter optimization and topology eval-
uation under consistent conditions, with the same values for 𝑁 and
𝐿. We perform these experiments on six datasets sourced from the
UCI suite.9 Specifically, we handpicked the top-6 classification datasets
with fewer than 10 numerical attributes, based on their popular-
ity (i.e., number of views). The resulting list, arranged in descend-
ing order, comprises: Iris (Fisher, 1988), Glass Identification (Ger-
man, 1987), Ecoli (Nakai, 1996), Rice (Rice (Cammeo and Osmancik),
2019), Breast Cancer Wisconsin Wolberg (1992), and Haberman’s
Survival (Haberman, 1999).

4. Results

The first results presented have been obtained by following Protocol
1, outlined in Section 3, and using the specified topologies (i.e., BA,

9 https://archive.ics.uci.edu/datasets

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://archive.ics.uci.edu/datasets
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Fig. 5. Accuracy distributions (test split) at the highest difficulty levels. Left: difficulty = 9. Right: difficulty = 12. Each violin corresponds to a specific network topology and is
represented by a consistent color across all plots (following the color scheme from Fig. 4). Statistical annotations appear above the plots, with each segment indicating a significant
difference between two medians. Violins in the plots are sorted by mean test accuracy, from left to right in decreasing order.
ER, MLP and WS — further topologies are presented in Appendices B
and C) and synthetic datasets. We set n_classes = 3 and n_reps
∈ {3, 6, 9, 12}; for the swiss roll dataset, 𝜎 ∈ 0.0, 1.0, while for the s
curve, 𝜎 ∈ {0.0, 0.3}. The train, validation, and test split sizes were
1350, 675, and 675, respectively. Given that in a 1-hidden layer MLP
(h1 notation) the number of synaptic connections depends solely on 𝑁
(i.e., 𝐿 = 3 ×𝐻 +𝐻 × 3, with 𝐻 = 𝑁 − 3 − 3), we chose an MLP with
128 neurons as a reference model and calculated the hyperparameters
for the complex networks to achieve graphs with 𝐿 = 732 edges.10

The additional degree of freedom in the WS generator enabled us to
separate the small-world topology into three distinct graph families:
p.5 (𝑝 = 0.5), p.7 (𝑝 = 0.7), and p.9 (𝑝 = 0.9). The hyperparameter
optimization searched for learning rates in {0.03, 0.01, 0.003, 0.001}
and batch sizes in {32, 64}.

Fig. 4 displays the mean test accuracy achieved by each group of
models as a function of task difficulty. All manifolds, noise levels, and
difficulties are represented. Excluding difficulty level 9 in the swiss roll
dataset, the accuracy curves exhibit a clear decreasing trend. Specifi-
cally, as the difficulty increases, the performance of the MLPs degrades
more rapidly than that of complex networks. Confidence intervals,
on the other hand, are wider in the high-difficulty plot regions. As
expected, noisy tasks were more challenging to learn.

In Fig. 5, the results obtained by the models for the two highest
levels of task difficulty are shown in detail. The H-test null hypothesis
is rejected for all experiments, and the U-test statistical annotations are
displayed. Regardless of the scenario considered, a complex topology
consistently holds the top spot in the mean accuracy ranking. MLPs, in
contrast, are always the worst-performing models. Moreover, the MLP
performance differs significantly from that of the complex networks, in
a statistical sense.

Fig. 6 presents the results of the robustness analysis (Protocol 2).
We investigated 𝑓 ∈ {0.0, 0.1,… , 0.5} and removed nodes from the
models trained on the datasets characterized by the lowest level of

10 With this particular dataset hyperparameter selection, the neural net-
work’s output will consist of a 3-dimensional vector. It is important to note
that the input, which represents the 3D coordinates of a sample point on the
curve, must also maintain a dimensionality of 3.
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difficulty. On these tasks, indeed, all models behave approximately
the same (see Fig. 4), hinting at a fair comparison. Unsurprisingly,
node removal has the same effect on all topologies: the accuracy gain
decreases as 𝑓 increases. MLPs, however, show enhanced robustness to
random deletions. Confidence intervals of the complex graph families
overlap. It is worth noting that the chance level (i.e., accuracy of 1∕3)
could be reached by different accuracy gains depending on the task; the
best accuracy under 𝑓 = 0, indeed, varies between the manifold/noise
pairs.

The results obtained from the experiments conducted to investigate
the influence of size and density on the approximation capabilities of
complex NNs (Protocol 3) are presented in Fig. 7. It is worth noting
that the surfaces displayed, which depict test accuracy points linked to
different values for the number of neurons and parameters, exhibit a
consistent monotonically increasing pattern for both variables, except
for a few outliers. Moreover, in nearly all cases, accuracy saturates as
the network size approaches 𝑁 = 128. It is important to clarify that
in this series of experiments, each data point represents an average
computed over 5 training sessions. Learning rate and batch size were
held constant at 0.03 and 64, respectively.

Finally, Table 1 presents the performance of the studied models on
the UCI real-world data (Protocol 4). For each dataset-model pair, we
provide the average test accuracy, computed over 5 runs, along with the
associated standard deviation. It is worth noting that these experiments
were conducted following the ‘‘fair comparison’’ setup (refer to Protocol
1, Section 3.3), wherein models trained on the same dataset possess
an equal number of neurons (128) and parameters. Across different
datasets, the number of parameters varies as it is determined by the
number of hidden neurons, which is set as 𝑁 - the number of features
- the number of classes. The number of edges, L, follows the equations
introduced at the beginning of this section. Hyperparameters were opti-
mized as previously described for the experiments in line with Protocol
1. In 4 out of 6 datasets, complex NNs outperformed MLPs, whereas
in the remaining cases, MLPs exhibited comparable performance to
complex NNs.

5. Discussion

In this paper, the most significant finding is the performance, in
terms of accuracy, attained by the architectures built on complex
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Fig. 6. Robustness analysis. The horizontal axis reports the fraction of removed nodes (i.e., 𝑓 ) while the vertical one the accuracy gain (i.e., (𝑓 )). Each curve refers to a different
network topology. Confidence intervals (± standard deviation) are reported.
Table 1
Performance of various graph families on the UCI datasets. For each entry, mean test accuracy and standard deviation are reported. On each
row, the best result is highlighted in bold.

Dataset ba er ws-p.5 ws-p.7 ws-p.9 mlp-h1

Breast 97.31% (±0.27) 96.82% (±0.27) 97.21% (±0.44) 97.11% (±0.42) 97.21% (±1.25) 96.72% (±0.44)
Ecoli 84.95% (±4.61) 87.72% (±1.50) 81.78% (±3.33) 87.52% (±1.93) 86.53% (±2.49) 87.92% (±0.83)
Glass 69.23% (±4.21) 63.38% (±5.03) 68.00% (±5.48) 69.23% (±2.88) 62.77% (±9.32) 64.00% (±2.06)
Haberman 70.45% (±1.97) 72.05% (±1.90) 72.05% (±1.72) 70.00% (±1.90) 71.14% (±0.62) 69.09% (±0.95)
Iris 93.04% (±0.97) 92.61% (±1.94) 92.61% (±1.19) 92.61% (±1.19) 92.17% (±1.94) 92.17% (±1.19)
Rice 92.66% (±0.25) 92.47% (±0.07) 92.41% (±0.34) 92.45% (±0.18) 92.47% (±0.27) 92.88% (±0.30)
topologies both in high-difficulty scenarios using synthetic data and
in classification problems defined within the UCI dataset suite. In this
context, and in light of the statistical tests carried out, the complex
models prove to be a solid alternative to MLPs.

Formally justifying the observed phenomenon is challenging. Fortu-
nately, in 2017, Poggio et al. discussed two theorems (Poggio, Mhaskar,
Rosasco, Miranda, & Liao, 2017) that guided our explanation. Ac-
cording to the first theorem,11 a shallow network (e.g., an MLP h1)
equipped with infinitely differentiable activation functions requires
𝑁 = (𝜖−𝑛) units to approximate a continuous function 𝑓 of 𝑛 vari-
ables12 with an approximation error of at most 𝜖 > 0. This exponential
dependency is technically called the curse of dimensionality. On the

11 We invite the reader to consult Poggio et al. (2017) for a complete
formulation of the theorems.

12 Depending on the context, we use the same 𝑓 notation for both the
fraction of removed nodes and the function to be approximated.
221
other hand, the second theorem states that if 𝑓 is compositional and the
network presents its same architecture, we can escape the ‘‘curse’’. It
is important to remember that a compositional function is defined as a
composition of ‘‘local’’ constituent functions, ℎ ∈  (e.g., 𝑓 (𝑥1, 𝑥2, 𝑥3) =
ℎ2(ℎ1(𝑥1, 𝑥2), 𝑥3), where 𝑥1, 𝑥2, 𝑥3 are the input variables and ℎ1, ℎ2 the
constituent functions). In other words, the structure of a compositional
function can be represented by a DAG. In this approximation scenario,
the required number of units depends on 𝑁 = (

∑

ℎ 𝜖
−𝑛ℎ ), where 𝑛ℎ is

the input dimensionality of function ℎ. If maxℎ 𝑛ℎ = 𝑑, then ∑

ℎ 𝜖
−𝑛ℎ ≤

∑

ℎ 𝜖
−𝑑 = ||𝜖−𝑑 .

The primary advantage of complex networks is their potential to
avoid the curse of dimensionality when relevant graphs for the function
to be learned are present. Under the assumption that the function
linking the swiss roll and s curve points to the ground truth labels is
compositional (intuitively, in non-noisy datasets, each class is a union
of various segments), we conjecture that our complex NNs can exploit
this compositionality. In the high-difficulty regime, the necessary net-
work size for MLP h1 to achieve the same accuracy as complex models
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Fig. 7. Mean test accuracy as function of size (𝑁) and density (𝜌). From top to bottom: swiss roll, noisy swiss roll, s curve and noisy s curve.
likely exceeds the size set for experiments. While one could argue
that the datasets employed were compositionally sparse by chance,
according to Poggio (2022), all efficiently computable functions must be
compositionally sparse (i.e., their constituent functions have ‘‘small’’ 𝑑).
Performance differences on noisy datasets are less noticeable, possibly
due to the minimal overlap between the functions to be approximated
and the studied topologies. Notably, our setup does not precisely match
the theorem formulations in Poggio et al. (2017) (e.g., SELUs are not
infinitely differentiable), but Poggio et al. argue that the hypotheses
can likely be relaxed. No statistically significant differences emerged
between the complex graph families from the results of Section 4.
Various explanations exist for this outcome: all tested topologies could
be complex enough to include relevant subgraphs of the target 𝑓
functions; the random DAG conversion heuristic might have perturbed
hidden topological properties of the original undirected networks; or
the degree distribution of a network may not be the most relevant topo-
logical feature in a model’s approximation capabilities. Additionally,
the results in Table 1 demonstrate that the optimal topology of a NN
is task-specific. This suggests the need for future advancements in the
state-of-the-art of neural architecture search, potentially formulating
the creation of computational graphs through data-driven approaches.

The higher accuracy in complex networks, however, comes with
trade-offs. Although the methodology in Boccato et al. (2023) improves
the scalability of complex NNs and enables experimentation with arbi-
trary DAGs, it is important to note that 1-hidden layer MLPs typically
222
have faster forward pass computation. In these models, the forward
pass requires only two matrix multiplications, whereas, in NNs built
using 4Ward, the number of operations depends on the DAG height.
However, we believe that, in the future, the computational efficiency
of tools like 4Ward will be enhanced through the integration of ML
frameworks optimized for sparse tensor processing (Nikdan, Pegolotti,
Iofinova, Kurtic, & Alistarh, 2023) and specialized hardware (Le Gallo
et al., 2022). Moreover, the analyses in Fig. 6 demonstrate the MLPs’
superiority in a graph damage scenario. We speculate that the hidden
units in an MLP h1 contribute equally to the approximation of the
target function. In contrast, the ability of complex networks to exploit
the compositionality of the function to be learned might lead to high
specialization of some hidden units.

6. Conclusions

Our study explores the impact of network topology on the perfor-
mance of artificial NNs, juxtaposing conventional MLPs against an array
of models based on complex topologies. Through comprehensive exper-
iments conducted on synthetic datasets, we observed a distinct perfor-
mance superiority of complex NNs, particularly excelling in addressing
high-difficulty learning scenarios, surpassing MLPs in accuracy. This
finding was further reinforced by experiments conducted on real-world



Neural Networks 171 (2024) 215–228T. Boccato et al.

s
M
C
t
E
1
H
E
s
c
C

A

e
i
2
a
m
b
A

b
m
u

e
w
c

i
m
a
e
i

A

e
o
b
t
o
d
e
a
l
t

1
c
s
a
f
i
g
b
R
d
f
t
d
o
r
e

A

u
d
S
m
b
a
v
E

e
C
r

datasets from the UCI suite, wherein complex networks exhibited en-
hanced performance in most cases, while in certain instances, MLPs
displayed comparable performance.

However, the observed performance in complex NNs was counter-
balanced by increased computational demands and reduced robustness
to graph damage when compared to MLPs. The intricate relationship
observed between topological attributes and model performance under-
scores a multifaceted interplay, indicating the complex nature of their
impact on NN efficiency.

The findings discussed offer guidance for practitioners and re-
searchers, emphasizing the need to consider both the advantages and
limitations of employing complex network structures when devising
adaptable neural architectures across diverse applications. Further-
more, this study lays the groundwork for future investigations aimed at
uncovering optimal topological features, refining construction method-
ologies, and enhancing the understanding of intricate relationships
among topological attributes to engineer more efficient and robust
neural architectures.
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ppendix A. Graph attributes

Inspired by the works in Janik and Nowak (2020) and Znaidi
t al. (2023), we delved deeper into the role of network topology
n the models’ approximation capabilities by calculating a total of
7 topological graph attributes for each trained neural network. Our
im was to ascertain if any specific attributes could account for the
odels’ performance. The correlation plots that display the relationship

etween test accuracy and graph attribute can be found in Figs. A.8 and
.9.

To compute these metrics, we employed the NetworkX library (Hag-
erg, Schult, & Swart, 2008) when feasible, and devised custom imple-
entations for the remaining attributes. We conducted the experiments
sing noise-free datasets with the highest difficulty levels.

After analyzing the experimental data, no evident relationship
merged between the attributes and the models’ performance. In other
ords, when examined individually, none of the attributes could ac-

ount for the achieved accuracies. This outcome implies that the
223
mpact of network topology on the approximation capabilities of the
odels might be more intricate than a straightforward correlation with

ny single topological attribute. Further investigation is necessary to
xplore the potential interplay among multiple attributes and their
nfluence on the models’ performance.

ppendix B. Hub-based topological orderings

When creating an undirected BA graph, a significant number of hubs
merge alongside numerous low-degree nodes. This raises the question
f what happens when, during the DAG conversion, nodes are arranged
ased on their degree. To investigate this, we have chosen to focus on
hree key topological orderings: sorting nodes by degree in descending
rder, sorting nodes by degree in ascending order, and sorting nodes in
escending order but starting from the center of the node sequence and
xtending towards the edges. In other words, the input features can be
ssigned to the largest hubs, the output logits can be extracted from the
argest hubs, or high-degree nodes can be positioned in the middle of
he information flow.

For each new topological ordering, we trained 5 models, each with
28 neurons and 732 parameters, on the swiss roll and s curve datasets
haracterized by the highest level of difficulty. The hyperparameter
earch and training procedures followed the same methodology as in
ll other experiments in this paper. The accuracy distributions resulting
rom evaluating these models on the respective test splits are depicted
n Fig. B.10. Here the group labeled as ‘‘ba’’ represents computational
raphs that served as a baseline. These baseline graphs were obtained
y converting them through a standard random topological sorting.
egrettably, our experiments did not reveal any statistically significant
ifferences between the various model families. This outcome allows
or two distinct interpretations: either the placement of hubs within the
opological orderings, which determine the direction of connections,
oes not significantly impact the models’ approximation capabilities,
r the NNs employed do not possess a sufficient number of nodes to
ender hubs a critical factor during the training process. Scaling these
xperiments in the future would potentially address this ambiguity.

ppendix C. The stochastic block model

The ER, BA, and WS models are among the most well-known tools
sed for generating undirected networks that exhibit non-trivial degree
istributions; however, this is not an exhaustive list. For instance, the
tochastic Block Model (SBM) is another widely recognized generative
odel for random graphs. It establishes connections between nodes

ased on their membership in specific communities. The generative
lgorithm for the SBM requires two key parameters: a partition of the
ertex set and a symmetric matrix 𝑃 , which contains edge probabilities.
ach element 𝑃𝑖𝑗 in the matrix defines the probability of nodes from

community 𝑖 connecting with nodes from community 𝑗. When all
ntries in matrix 𝑃 are constant, the model reverts to the ER one.
onversely, if both the diagonal and off-diagonal entries are equal, we
efer to it as the planted partition model. In this case, if we denote the

intra-community probability as 𝑝 and the inter-community probability
as 𝑞, the model is categorized as assortative when 𝑝 > 𝑞 and disassortative
when 𝑝 < 𝑞.

Due to the numerous parameters involved in the generation pro-
cess, we conducted an experiment focused on the planted partition
model. The objective was to investigate whether this topology could
effectively serve as the basis for a neural network and to evaluate the
impact of partition size, intra- and inter-community probabilities on
the overall performance of the generated architectures. We set two
different partition sizes, namely 4 and 8, with 𝑁 = 128 and E[𝐿] = 732.
For each number of communities, we examined two distinct scenarios:
the assortative model characterized by the highest possible 𝑝, and the
disassortative one with the highest possible 𝑞, in an effort to explore as
diverse configurations as possible. In the first scenario, we can observe

https://github.com/BoCtrl-C
https://github.com/BoCtrl-C
https://github.com/BoCtrl-C
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Fig. A.8. Correlation plots (accuracy vs. attribute) computed on the swiss roll dataset (n_reps = 12, 𝜎 = 0.0). Each network topology is denoted with a different color, which can
be found in the legend (last subplot).
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Fig. A.9. Correlation plots (accuracy vs. attribute) computed on the s curve dataset (n_reps = 12, 𝜎 = 0.0). Each network topology is denoted with a different color, which can
be found in the legend (last subplot).
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Fig. B.10. Accuracy distributions (test split) for BA NNs generated through different degree-aware topological sortings. Violins in the plots are sorted by mean test accuracy (from
left to right).
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Fig. C.11. Accuracy distributions (test split) for various SBM NNs. Model names follow the following coding: sbm𝑥-p𝑦-q𝑧 where 𝑥, 𝑦 and 𝑧 represent the number of communities,
the intra-community and the inter-community probability, respectively. Violins in the plots are sorted by mean test accuracy (from left to right).
highly dense clusters with sparse inter-cluster connections, while in the
second scenario, sparse bipartite graphs within a fully-connected meta-
graph. For each configuration, we trained 5 models after conducting a
preliminary hyperparameter search. Results are reported in Fig. C.11.
While optimization have converged in all experiments, differences in
accuracy distributions among the models are not statistically signif-
icant. Nevertheless, it is worth noting that the 4-community graphs
consistently exhibit the highest average test accuracy across most of
the tested tasks.

Appendix D. Glossary

• Artificial Neural Network (ANN)
• Barabási–Albert (BA)
• Directed Acyclic Graph (DAG)
• Erdős–Rényi (ER)
• Lottery Ticket Hypothesis (LTH)
• Multilayer Perceptron (MLP)
• Neural Network (NN)
• Root Mean Square Error (RMSE)
• Watts–Strogatz (WS)
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