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Abstract
We provide foundations for a characteristic free study of foliated varieties in terms of
infinitesimal actions of formal groupoids. The ultimate goal is the bi-rational geometry
of the same, and to this end we prove a cone theorem for foliations in curves, together
with structure theorems for extremal rays, and, of course, a minimal model theorem
for surfaces. All possible wild ramification effects of Deligne–Mumford champ are
built in, along with the occasional use of Artin champ to address the Q-Gorenstein
condition.

Keyword Positive characteristic differential geometry

Mathematics Subject Classification 14E30 · 14B20 · 14G17

0 Introduction

Formal groups have been crucial to the development of arithmetic for over half a
century. There is, however, here a question of whether the chicken or the egg comes
first, since the natural definition of a group is a groupoid with one object. Thus, for
example, on identifying discrete groupoids with 1-homotopy types, groups are the
1-homotopy types of connected spaces. In any case, in characteristic zero, the only
1-dimensional formal group is ̂Ga and in any characteristic an action, A, by it on a
space X may be written as a power series,
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S630 M. McQuillan

OX
A∗−−→ OX [[T ]] : f �→

∑

n�0

T n�n( f ), �0 = id (0.1)

and from additivity of the action, cf. Notation/Revision 1.6, resp. A∗ multiplicative,
we conclude, cf. (1.8), resp. (1.11),

�m�n =
(

m + n

m n

)

�m+n, resp., �n( f g) =
∑

i+ j=n

�i ( f )� j (g). (0.2)

In particular, therefore, the latter implies that �1 is a vector field, ∂ , while, if we’re in
characteristic zero, the former gives �n = ∂n

n! , and conversely. As such a ̂Ga-action
in characteristic zero is, locally, identical with a foliation by curves, and it’s plain that
once we find ourselves in positive, p > 0, characteristic with p | n in (0.1) that the
situation will be very different. Indeed, already the formal group ̂Gm acts on A1

k by,

k[X ] A∗−−→ k[X ][[T ]] : f (X) �→ f (X(1 + T )) (0.3)

which, if it were given by a vector field, then, from (0.2), it would be �1 = X ∂
∂X , but

then �
p
1 would be �1 in characteristic p rather than 0 as required of ̂Ga-actions in

op. cit., and, quite generally, there are infinitely many 1-dimensional formal groups in
positive characteristic, with corresponding possibilities for their infinitesimal actions.
All of which, in turn, may be globalised to a formal groupoid,

F
t

⇒
s

X (0.4)

acting on an algebraic space, or Deligne–Mumford champ1 X such that the source s,
equivalently the sink t , is a representable smooth map F → X of relative dimension 1.
The generality of Deligne–Mumford champ is only relevant to the global questions of
minimal model theory since the representability condition ensures, as the local model
(0.1) suggests, that, most of the time, X might as well be an affine variety, while
the condition of smooth source and sink is the strict analogue of the characteristic
zero condition of being defined by a global vector field, so, it is actually a regularity
condition that we call absolutely Gorenstein, or absolutely regular in the higher rank
case, Definition 1.5. Irrespectively, over a field k of positive characteristic, or, indeed
ring of mixed characteristic, Definition 1.1 of a foliation is subtly different from its
immediate predecessors, namely [17, 3.6] & [4, §1]. Specifically, the former supposes
some liftability to characteristic zero, so, locally the emphasis remains on vector fields
and the algebra of operators it generates, whereas the latter concentrates on positive
characteristic and prefers not just to replace the resulting exhaustion Fn ⇒ X , Remark
3.3, of (0.4) by infinitesimal schematic relations, but, usually, even to fix n = 1, i.e.
vector fields, ∂ , such that ∂ p, which by Leibniz’s rule is again a vector field, is parallel
to ∂ . However, once one pays less attention to the 1st order data, the critical new

1 The mistranslation stack will be eschewed.
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Formal groupoids S631

phenomenon emerges, to wit: for an absolutely regular foliation in characteristic 0
if, Fact 2.5, at a point x , s× t : F → X × X is finite, then it’s an embedding, and in
the complete local ring at x , the foliation is a smooth fibration, whereas, Remark 2.8,
this fails in positive characteristic. Consequently, we distinguish absolutely singular
points where s× t isn’t finite, Definition 2.3, from those where it simply fails to be
an embedding, where, in fact, the behaviour is closer to that of smooth points than
absolutely singular ones. In particular, these simple observations tend to explain a
wealth of pathology which may occur even under our blanket,

Convention 0.1 For ease of exposition, and even though many things are true more
generally, throughout the article: all champs, algebraic spaces etc., are “geometric”,
i.e. separated and of finite type (or, formally so if that is our context) over a base ring
k, further properties of which (e.g. being a field) may be specified, but it is always
quasi-excellent.

With these standing hypothesis in mind, we may proceed to a summary of §1–§4,
via:

§1 An important technical point is to replace X ×k X by the infinitesimalisation,
JX/k ⇒ X , of the relation all points are equivalent, i.e. Grothendieck jets, Definition
1.1, which cleanly skips technical issues like the diagonal is an embedding iff X is a
separated algebraic space. Otherwise, the principal point is to observe that seemingly
characteristic 0 specific theorems such as the components of an invariant sub-scheme
are themselves invariant are actually true, Lemma 1.9, in the presence of absolute
regularity. Hence, it’s important to guarantee it, and the main theorem of this section
is Fact/Definition 1.12 which, for foliations by curves, glues together index 1-covers
associated to the canonical bundle of F/X to the Gorenstein covering champ. In
characteristic p this will only be Artin rather than Deligne–Mumford. Nevertheless,
we have an explicit presentation of it as the quotient of a Gm-action on a punctured
cone, and the resulting theory is highly satisfactory.

§2 Contains the aforesaid distinctions about singularities, and examples thereof.
§3 Having recalled the relation of the definitions of §1 to the inseparable scheme

quotients of [4, §3], we come to the elephant in the room which op. cit. didn’t address,
namely: can we have the absolutely Gorenstein condition and avoid absolute singular-
ities, or more generally absolute log singularities, in codimension 1. In characteristic
zero this just amounts to working with saturated sub-sheaves of the tangent, or more
generally log tangent, bundle, and whence we call what we’re after absolutely satu-
rated, Fact/Definition 3.5. Irrespectively, in positive characteristic there are multiple
issues. The first is that (s× t)(F) ↪→ JX/k might even fail to be coherent in codimen-
sion 1, Fact 3.4. Such issues already occur in characteristic zero at the singular points of
foliated surfaces because, codimension 2 notwithstanding, punctured formal schemes
can have large Picard groups, whereas here coherence in codimension 1 is equivalent
to finiteness of the transverse ramification, (3.15) et seq., of Ekedahl’s inseparable
scheme quotients. Further, even once things are coherent, it may still be necessary,
Scholion 3.6, to make an inseparable covering to obtain an absolutely saturated foli-
ation. Equally, the coherence condition is trivial for foliations arising from algebraic
families of curves, and we prove, Scholion 3.6, that if the fibres have multiplicity p�,
(�, p) = 1, or even p2�, then there is an absolute saturation. This is ample evidence

123



S632 M. McQuillan

that all algebraic examples of foliations in curves admit an absolute saturation, and
once one has an absolute saturation on every bi-rational model it would make sense
to talk about canonical singularities, and whence a motivating future goal that semi-
stable reduction of curves should follow from the existence of an absolutely saturated
model with canonical singularities.

§4 Proves, over a perfect field, a series of adjunction formulae relating the canonical
bundle, KF , of a foliation by curves, F ⇒ X , i.e. the restriction to the diagonal of
the relative canonical bundle of F/X and not some random (as it would be in positive
characteristic) rank 1 quotient of the cotangent bundle, and the canonical bundle of
the normalisation f : L → X of invariant curves on X . The only hypotheses are
that the foliation should be absolutely Q-Gorenstein, Definition/Revision 1.11, and
not absolutely singular along the curve. The final statement, Fact 4.5, taking account
of all p-effects is a bit of a mouthful, whereas the essential new feature that such
formulae hold along singular curves which aren’t absolutely singular is evidenced by
the cleaner formula, Fact 4.4, in the absolutely Gorenstein (as opposed to absolutely
Q-Gorenstein) case.

Thefinal two sections apply these considerations to the studyof the canonical bundle
KF of F ⇒ X of an absolutely Q-Gorenstein foliation in curves. In this context all of
[3] works out of the box in a characteristic free way for absolutely regular foliations
of any rank, i.e. the main theorem of op. cit. on the existence of invariant rationally
connected varieties through points of a curve f : C → X with f ∗N�/F ample is valid
mutatis mutandis. However if X is a Deligne–Mumford champ then, a priori, such
rationally connected varieties would be sub-varieties of the moduli, rather than the
champ itself, which, inter alia, we allow to be wildly ramified over the moduli, and
this is without even addressing what is equally necessary for minimal model theory,
i.e. whether they lift to rational objects on the Gorenstein covering champ whenever
the index of KF is divisible by p. As such, we not only concentrate on foliations by
curves, but employ a novel work around to obtain best possible rationality results.
Specifically, we use the algebraisation technique of [3, 2.1.1] to prove the following
cone theorem,

Proposition 0.2 (Fact 5.7) Let F⇒X be an absolutely Q-Gorenstein foliation by
curves, Definition/Revision 1.11, of a (possibly wild) Deligne–Mumford champ over
a field k with projective moduli and Z ↪→ X the absolutely singular locus, Definition
2.3, then there are countably many invariant champs Li ↪→ X not factoring through
Z with KF ·Li < 0 such that,

NE1(X) = NE1(X)KF�0 + NE1(Z)KF<0 +
∑

i

R+[Li ] (0.5)

wherein the rays R+Li are locally discrete in the open complement of NE1(X)KF�0
+ NE1(Z)KF<0 and every extremal ray therein is of this form.

which, a priori, doesn’t even attempt to address whether the KF -negative extremal
rays, which aren’t absolutely singular, are rational. We are, however, studying folia-
tions by curves, so we can employ the adjunction formulae of §4 to conclude,
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Proposition 0.3 (Fact 6.5–Fact 6.6) Let everything be as in Proposition 0.2 with
[E/Gm] → X the Gorenstein covering champ, and suppose further that k is alge-
braically closed, then for any 1-dimensional sub-champL → X which isn’t absolutely
singular with KF ·L < 0 there is a rational curve P1

k → [E/Gm]×X L dominating
L.
wherein, it should be borne in mind that the formula (6.20) for the degree of the
canonical bundle of an inseparable twist of the normalisation of [E/Gm]×X L is
more precise still. Specifically, Frobenius can kill many μp effects in characteristic
p, so, a priori Proposition 0.3 doesn’t exclude many points where the non-generic
relative monodromy of [E/Gm]×X L → L is μpr . However, Fact 6.6, there is at
most one point where this, or, indeed wild ramification of L over its moduli can occur.
Irrespectively, if our plan is to prove 0.3 by adjunction then we a priori need to know
the case where X (which may have both a generic stabiliser and wild ramification over
its moduli) has dimension 1, which is almost the main theorem of [10] but not quite,
so we have an appendix, §A, devoted to the Mori theory of 1-dimensional champ.

Finally we apply all of this to the Mori theory of foliations in curves F ⇒ X of
bi-dimensional normal champ over a field k, Corollary 6.3, while continuing to allow
the possibility of absolute singularities in codimension 1. Of course the Hodge index
theorem alone will ensure a model with KF nef., as soon as it is pseudo effective, but
it doesn’t ensure that a contraction of a curve which isn’t absolutely singular enjoys
the rationality properties of Proposition 0.3 nor does it ensure,

Proposition 0.4 (Corollary 6.8) If the minimal model programme for a proper normal
champ of dimension 2 with an absolutely Gorenstein in codimension 2 foliation in
curves, F ⇒ X, over an algebraically closed field k does not terminate in a model
with KF nef. in Mumford intersection theory, then it terminates in a Mori fibre space,
the induced foliation is algebraic, and, off any absolutely singular curves, there is an
invariant map from P1

k .

Of course one already knows, [15, III.2.1], the theorem in characteristic zero, so we
only prove it in positive characteristic p which permits the pleasing subterfuge of
reducing the question to one over finite fields where the Q-Gorenstein condition is
free by [1, 2.11], albeit that by Proposition 0.3 the only necessity for doing this is a
poor understanding of absolute singularities in codimension 1.

This circle of ideas was employed by Matteo Stacone in his N.Y.U. doctoral thesis,
where, inter alia, there is a particularly useful elaboration of the example (2.17),
and the limits it places on which characteristic zero phenomenon will extend to all
characteristics. It is a pleasure to thank him for the initial typesetting of themanuscript.

1 Foliations and relations

This section is an extension of [4, §2–3]. Specifically the focus of op. cit. is infinitesimal
relations, but even just to blow up necessitates the more general setting of infinitesimal
groupoids, to wit:
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Definition 1.1 Let X/k be an algebraic space, or Deligne–Mumford champ, of essen-
tially finite type over a ring k. As such there is a well defined sheaf of adic algebras
P∞

X/k = lim←− n
P n

X/k [6, 16.3.1] affording the trivial infinitesimal relation (all points
are equivalent) defined by,

JX/k := SpfP∞
X/k

t
⇒
s

X (1.1)

and we define a foliation to be a representable infinitesimal groupoid (s, t) : F ⇒ X ,
i.e. s, t are representable maps from the formal spectrum of an adic algebra satisfying
the groupoid axioms in the formal category, such that,

(1) At every generic point of X , s (equivalently t) is smooth.
(2) At every generic point of X the induced map,

F
s×t−−→ JX/k (1.2)

is an embedding.

Furthermore by way of notation we will write P∞
F = lim←− n

P n
F for the adic OX

algebra which defines F.
Before progressing let us observe some technically pleasing aspects of the definition

by way of,

Remark 1.2 In the first place, and by definition of a groupoid, there is an identity,

Id = � : X ↪→ F (1.3)

which, again by definition of an infinitesimal groupoid, is the trace of the formal space,
or champ F. Better still there is, [6, 16.8.9.1], a unique coproduct on P∞

X/k , which
under the functor Spf is opposite to the groupoid composition,

JX/k t×s JX/k −→ JX/k (1.4)

and whence by item (2) of Definition 1.1 composition in F is unique at every generic
point. In particular F is, even for X/k only a champ, an actual groupoid, and not
some sort of 2-groupoid where composition etc. is only defined up to equivalence of
functors.

Related to this we have the dual notion,

Definition 1.3 Let everything be as in Definition 1.1 and viewP∞
X/k as anOX -module

via s∗ then we define,

D−n
F := Hom X (P n

F ,OX ), D−∞
F := lim−→

n

D−n
F (1.5)

which by 1.2 affords maps,

D−n
F −→ D iff −n

X = Hom X (P n
X/k,OX ), D−∞

F −→ D iff −∞
X . (1.6)
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To which we may adjoin some pertinent observations by way of,

Remark 1.4 Let everything be as in Definition 1.3, then:

(1) If X is reduced or, more generally the 0 ideal inOX is unmixed, the maps of (1.6)
are injections of sheaves.

(2) Composition inF (equivalently coproduct inPF , cf. (1.4) et seq.) affords operator
composition in DF .

(3) The product inPF is opposite to the coproduct in DF .

Proof The only item that might require proof is (1). Plainly the discussion is local, i.e.
we have maps of OX -modules,

PX/k −→ P n
F (1.7)

which are surjective after localising at the set of nonzero divisors by item (2) of
Definition 1.1, so if D ∈ D−n

F goes to zero under (1.6) it’s because f D = 0 where f
is not a zero divisor, so, in fact, D = 0. �	
To this we need to add a series of regularity properties beginning with,

Definition 1.5 Following standard usage we denote by TF the first order operators,
i.e. n = 1 in (1.5), modulo OX , and we say that F is 1-regular if TF is a bundle.
If, however, s : F −→ X (equivalently t) is smooth, then, we say that F is absolutely
regular. In the case of foliations in curves, i.e. when volume coincides with length, we
will say 1-Gorenstein, resp. absolutely Gorenstein, instead of 1-regular, resp. abso-
lutely regular. Irrespectively, regardless of the leaf dimension, 1-regular and absolutely
regular coincide in characteristic zero, Warning 1.7.

With a view to describing absolutely regular foliations let us recall,

Notation/Revision 1.6 For any OX -module, M, we write �(M) for its module of
divided symmetric powers. In particular if F is absolutely regular, Definition 1.5,
then, [6, 16.11.2] (mutatis mutandis) there is a natural isomorphism

γ : �(TF ) −→
∐

n

gr−nDF = D−n
F /D−(n−1)

F . (1.8)

Similarly, and following the notation of op. cit. for s : F −→ X smooth, we can
choose, locally, z1, . . . , zn ∈ OF such that,

OF = OX [[z1, . . . , zn]] (1.9)

so that for I = (i1, . . . , in), ia ∈ Z�0, 1 � a � n, a multi-index we get operators DI

dual to z I , [6, 16.11.2.3], i.e.

DI (z
J ) = δ JI =

∏

1�a�n

δ
ja
ia

(1.10)
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together with Leibniz’s formula for the coproduct, i.e.

D−∞
F −→ D−∞

F ⊗D−∞
F : DK �→

∑

I+J=K

DI ⊗DJ . (1.11)

In particular, by the definition of the left hand side of (1.8) if k has characteristic p the
DI for any non-zero ia a pth power, e.g. 1 = 00 if p = 0, generate the algebra D−∞

F .

To avoid confusion about the notion of absolute regularity let us make,

Warning 1.7 It is important not to read too much into the conditions of Definition 1.5,
and, already in characteristic zero, not to confuse it with Definition 2.1 of a smooth
foliation. Indeed for a Gorenstein foliation by curves in characteristic zero, defined
locally by a vector field ∂ , the algebra of F is given by,

OX
s∗−−→ OX [[∂∨]], t∗ f =

∞
∑

n=0

∂n

n! ( f )⊗∂−n . (1.12)

Indeed this is the clean way, [16, II.a], to define [3, 2.1]’s graphic neighbourhood, and
it is wholly indifferent to whether the vector field is singular, even in codimension 1, or
not. Similarly even in positive characteristic absolutely regularity is reasonably easy
to guarantee. It is, however, much less trivial than in characteristic zero. For example,
if over k = F2 we start from,

X −→ S : (x, y) �→ (xy) (1.13)

F = SpfP∞
X/S and ∂ the field x ∂

∂x + y ∂
∂ y then F is absolutely regular and described

by a somewhat more complicated variant of (0.2), i.e. an infinitesimal Gm , rather
than Ga-action. If, however, ν : ˜X → X is the blow-up in the origin then ∂ lifts to a
field which vanishes everywhere along the exceptional divisor. In particular, although,
Fact/Definition 2.9, there is a lifting,

ν∗D−∞
F −→ D iff −∞

X̃/k
(1.14)

it is not saturated, and if we saturate it to a co-algebraD−∞
F̃ then the resulting foliation

˜F is 1-Gorenstein but not absolutely Gorenstein. Indeed the saturated tangent bundle
TF̃ is given by a non-zero vector field at every point of the exceptional divisor, and
quite generally, Fact 2.2, such a foliation, cf. (2.4), is everywhere locally a smooth
fibration iff it’s absolutely Gorenstein, which is plainly not the case here since not
only does (1.13) have multiplicity 2 along the exceptional divisor, there are also nodes
where the proper transforms of the x , resp. y, axis cross it.

As such the good way to transform this, and many other examples, is logarithmically,
to wit:
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Notation/Revision 1.8 Say X/k is smooth and x1 · · · xn = 0 étale locally a simple
normal crossing boundary B in some (subsystem of) coordinates xi , then we can
define a smooth infinitesimal groupoid,

JX/k(log B)
t

⇒
s

X (1.15)

by the following procedure,

(1) Blow up JX/k in the ideal (s∗x1, t∗x1) to get J1X/k −→ JX/k .
(2) By hypothesis (s∗x1, t∗x1) restricts to a Cartier divisor on the trace of X , so this

lifts to an embedding X ↪→ J1X/k , and we define J1 to be the completion of J1X/k
in X .

(3) Repeat the above but start from blowing up J1 in (s∗x2, t∗x2), etc.

The finale result is (1.15) which as the notation suggests is independent of the order
1, . . . , n. In particular, therefore, we get an adic algebra,

P∞
X (log B) = lim←−

n

P n
X (log B) (1.16)

opposite to (1.15) which we can dualise to obtain,

D iff −n
X (− log B) := Hom X (P n

X (− log B),OX ),

D iff −∞
X (− log B) = lim−→

n

D iff −n
X (− log B). (1.17)

More generally if X/k is only a geometrically normal variety over a field, so that a
priori this discussion only has sense in codimension 2 we will use the notation (1.17)
for meromorphic differential operators which belong to the dual of (1.16) outside a
closed subset of codimension 2. In any case we say that a foliationF is 1-log-saturated
along B, or just 1-log-saturated if B is clear from the context, or indeed just saturated
if B is empty, if for each n the maps of (1.6) factorise as,

D−n
F −→ D iff −n

X (− log B) (1.18)

with torsion free quotient, i.e. (1.18) is saturated.

In any case absolute regularity allows many trivialities from characteristic zero which
fail for 1-regular foliations to generalise, for example,

Lemma 1.9 Let F be an absolutely regular foliation in the sense of Definition 1.5,
then every irreducible component of an F-invariant subspace Z ↪→ X, or champ, is
also F-invariant.

Proof The algebraic definition of invariance,

D(IZ ) ⊆ IZ , for all D ∈ DF , (1.19)
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for IZ the ideal of Z , is equivalent to an identity of the fibres,

s∗Z = t∗Z ⊆ F. (1.20)

By hypothesis, however, F/X is smooth so the irreducible components of s∗Z , resp.
t∗Z , are the pullbacks of the irreducible components of Z under s∗, resp. t∗, which,
in turn, cannot be permuted by an infinitesimal groupoid, so s∗Y = t∗Y for every
component Y of Z . �	
Needless to say, therefore, criteria for absolute regularity are important, and a partic-
ularly practical one is,

Fact 1.10 Let everything be as in Definition 1.1 and suppose moreover that F is
everywhere 1-regular, and absolutely regular in codimension 2, then if X is S2 for
every m � 1 the double dual ˜P m

F of P m
F is a vector bundle, and we have an exact

sequence of bundles,

0 → SymmT∨
F → ˜P m+1

F → ˜P m
F → 0. (1.21)

In particular, therefore, there is an absolutely regular foliation,

Spf
(

lim←−
m

˜P m
F

)

⇒ X . (1.22)

Proof The in particular is clear since the product and co-product are given by limits
of maps between vector bundles which are already defined in codimension 2. As such
we proceed to prove that the ˜P m

F are vector bundles and that (1.21) holds by induction
onm, which form = 1 is just the definition of 1-regular, and the fact that the groupoid
identity splits (1.21). Otherwise, for m � 1, and for I the ideal of the trace we have a
split exact sequence

0 → I ·Pm
F → Pm+1

F → OX → 0 (1.23)

so double dualising is still split exact. However, by the inductive hypothesis, for 
 the
dual of TF , the double dual of the kernel in (1.23) is, for a foliation of rank r , resolved
by the Koszul complex,

0 → �r
⊗OX
˜P m+1−r
F → · · · → 
⊗OX

˜P m
F → (I ·Pm

F )∨∨ → 0 (1.24)

wherein any ˜P with a negative suffix is understood to be zero. Similarly, one gets the
exactness in (1.21) by way of a 9-diagram using (1.24). �	

However, rather than 1-regular what one can guarantee in practice is,

Definition/Revision 1.11 Suppose X is S2 and TF of Definition 1.5 has rank r at every
generic point, then we say that F is Q-Gorenstein at a geometric point x of X if there
is a positive integer n(x) such that,

(

(�r TF )⊗n(x))∨ (1.25)
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is a line bundle in an étale neighbourhood of x . In addition we call the smallest integer
such that this holds the index of KF at x , and we say that F is Q-Gorenstein if this
holds everywhere. Arguably, therefore, we should, cf. Definition 1.5, call this 1 Q-
Gorenstein, but that’s a bit of amouthful, norwill there be any danger for confusion.We
will, however, say thatF is absolutelyQ-Gorenstein if it is everywhereQ-Gorenstein,
and absolutely Gorenstein in codimension 2.

Putting all of this together we arrive to a key,

Fact/Definition 1.12 Let F be a Q-Gorenstein foliation by curves on a normal
Deligne–Mumford champ X over a ring k and E/X the punctured cone,

E := Spec

(

A =
∐

n∈Z
An := (K⊗n

F )∨∨
)

(1.26)

then there is a well defined Artin champ, Y := [E/Gm], the Gorenstein covering
champ, which is Deligne–Mumford wherever the index of KF is invertible in k, and
otherwise admits a fpqf-presentation such that,

(1) The double dual, written slightly abusively as KF |E , of the pullback of KF to E,
and whence, by definition to Y , is a line bundle.

(2) If, moreover, F is absolutely Q-Gorenstein with˜F → F s×X E the normalisation
of the irreducible component containing id× id(E) then ˜F/E is a representable
Gm-equivariant smooth map, equivalently, [˜F/Gm]/Y is a representable smooth
map.

(3) Again supposing F absolutely Q-Gorenstein, double dualising the pullback of F
to E, cf. (1.22), yields, in the notation of (1), an absolutely regularGm-equivariant
foliation FE ⇒ E with cotangent bundle,

0 −→ KF |E −→ 
FE −→ 
Gm −→ 0. (1.27)

Proof Themeaning of the classifier [E/Gm ]when X is itself a champwill be addressed
separately in Scholion 1.13, while the rest of the proposition is étale local on X , i.e.
without loss of generality we may suppose that X is an affine scheme. In any case,
E/X is smooth where the latter is R1 and each An in (1.26) has depth at least 2 so E
is certainly normal, while the tautological maps,

An ⊗TF → An−1, n ∈ Z (1.28)

furnish a section of KF |E , which proves (1). Similarly (2) is just a variation of the
proof of Fact 1.10, i.e. by induction onm � 1with (1) being the initial case, the double
dual ˜P m

F of P m
F ⊗OXA is a vector bundle, fitting into an exact sequence,

0 → Km
F |E → ˜P m+1

F → ˜P m
F → 0, (1.29)

of bundles. As such we have (2), i.e. a smooth fibration,

s : ˜F := Spf
(

lim←−
m

˜P m
F

) −→ E (1.30)
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which in turn we base change via the sink,

E X×t˜F
t

⇒
s

E (1.31)

to get what is the base change of the groupoid F ⇒ X to E . Now observe that the
pullback of F via t to ˜F is the smooth fibration of (1.30), and, so, in particular, the
double dual of t∗KF is a bundle. On the other hand the left hand side of (1.31) is
obtained from pulling back, along t , the algebra 1.26. As such the normalisation of
the left hand side of (1.31) is the Gm-torsor,

V(t∗KF )\{0}

˜F

(1.32)

Now complete (1.32) in the section afforded by the diagonal of E to get FE ⇒ E . Its
source is the composition of the smooth maps (1.30) and (1.32) so FE/E is smooth.
As such it is the normalisation of the base change of F , so it is also an infinitesimal
groupoid. Finally its cotangent bundle is plainly (1.27) in codimension 2, and this is
indeed an exact sequence of bundles everywhere by (1.30) and (1.32).

Now Gm acts onA with weight n onAn , so, irrespectively of Scholion 1.13, for X
affine we can certainly define,

Y := [E/Gm] (1.33)

and it remains to investigate the finiteness of Y/X . To this end let U = Ux be a
sufficiently small étale neighbourhood of a closed point x of X . Thus, by hypothesis,
KF is an index n = n(x) Q-Cartier divisor, and we can form an index n cover, i.e.
if U ′ ↪→ U is the locus where U is regular, then after a choice of trivialisation τ we
have a fibre square,

V(K⊗−n
F )\[0] V(K∨

F )\[0]⊗n

U ′
↓ τ

V ′

(1.34)

wherein [0] is the zero section, so the index n-cover (up to normalisation) is the closure
V of V ′ in Spec(A|U ). However, theGm-orbit of every point in EU meets V , so YU/U
is equivalent to [V /μn], i.e. Y has an fpqf presentation which is Deligne–Mumford
whenever n is invertible in k. �	

The remaining issue to address is, therefore,
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Scholion 1.13 The meaning of the classifier [E/Gm] whenever X is a champ. Given
a presentation [U/R] of X as an étale groupoid we get a presentation of E ,

E1 ⇒ E0 (1.35)

by restricting the punctured cone of 1.26 to R, resp. U . As such for every e ∈ E0 and
arrow f with source s( f ) = π(e) there is a unique arrow,

E1 � ε f (e) : e −→ f∗e ∈ E0
t( f ) (1.36)

and in turn every element of E1 has this form. Further the arrows in (1.36) commute
with the action of Gm on the fibres of π , so we get a groupoid,

E1×Gm ⇒ E0, where the action is given by pairs,

(ε f (e), λ) : e −→ λ f∗e, λ ∈ Gm
(1.37)

and by definition [E/Gm] is the classifier of (1.37). In particular, therefore, there is
a subgroup scheme G −→ U of the stabiliser given by arrows in (1.37) in which ε f

is the identity, which is a normal sub-groupoid in the sense of [12, 7.1] because the
Gm-action commutes with (1.36). On the other hand G/U is finite by (1.34) et seq. so,
for any prime, the p-torsion subgroup scheme P ↪→ G is well defined, and, of course
it’s a normal sub-groupoid of (1.37). Consequently as in [12, 7.4] we get a groupoid,

E1×Gm/P ⇒ E0 (1.38)

which over a ring of characteristic p can be sliced to a Deligne–Mumford champ,

γ : Y −→ Y/P −→ X (1.39)

factoring the Gorenstein covering champ. We did, however, suppose X normal, so
Y/P −→ X is an isomorphism in codimension 2, and whence,

Remark 1.14 Since we will be working with Deligne–Mumford champ it will be pos-
sible, without loss of generality in characteristic p, to replace X by the almost étale
cover Y/P of (1.39), and thus suppose that all the stabilisers of the action (1.37) are
μq ’s for, possibly varying, powers q of the characteristic p.

2 Singularities

In the first place there is an unambiguous definition of smooth, to wit:

Definition 2.1 LetF be an absolutely regular foliation, Definition 1.5, of an algebraic
space or Deligne–Mumford champ over a ring k, then we say that F is smooth at a

point x of X if F
s×t−−→ JX/k is an embedding in a neighbourhood of x× x .

This definition does exactly what it says it should on the packet, i.e.
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Fact 2.2 Let everything be as in Definition 2.1 with ̂X the formal spectrum of the
completion of the local ring of X in x and̂F the induced groupoid

̂F F

s×t

̂X ̂× ̂X JX

(2.1)

wherein the fibre products are taken in the formal category, then F is smooth at x iff
there is a smooth fibration π : ̂X −→ ̂X/̂F such that,

̂F = ̂X ×
̂X/̂F

̂X . (2.2)

Proof Plainly the discussion is local at x , so we may as well say X/k is an affine
scheme and identify F with the formal spectrum of,

OX
s∗−−→ OX [[
F ]]. (2.3)

As such F
s×t−−→ JX/k is an embedding at x× x iff there is a surjection,


X/k −→ 
F −→ 0 (2.4)

which is certainly independent of replacing X by ̂X , so the if direction in Fact 2.2
is clear. Conversely if ̂F is smooth at ̂X in the sense of Definition 2.1 then there are
functions x1, . . . , xn ∈ O

̂X such that,

O
̂X ⊗OX 
F = O

̂X dx1
∐

· · ·
∐

O
̂X dxn (2.5)

wherein we confuse dxi ∈ 
X/k with its image in 
F under (2.4). Now consider the
transversal Y cut out by the x1, . . . , xn , i.e.

0 −→ I := (x1, . . . , xn) −→ O
̂X −→ OY −→ 0 (2.6)

then the fibre F×
̂X Y is the formal spectrum of,

OY [[dx1, . . . , dxn]] (2.7)

so the pullback of this along t of I is just the ideal (dx1, . . . , dxn) and whence there
is a fibre square,

Y

�

̂F

s×t

Y ×Y ̂X × ̂X

(2.8)
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while �(Y ) t×ŝF is the formal spectrum of (2.7) by symmetry in s and t so the top
horizontal is essentially surjective, i.e. ̂X/̂F

∼−→ Y as required. �	
Despite this reassuring start there are competing definitions for a foliation to be singular
which we clarify by way of,

Definition 2.3 Let everything be as in Definition 2.1, then we say that F is singular
at a point x if it is not smooth. We say, however, that F is absolutely singular at x

if, F
s×t−−→ JX/k is not finite at x× x . Similarly if X is geometrically normal with k a

field, and B a Weil divisor such that s× t factors through JX/k(log B), Definition 1.8,
then we say that F is log smooth, resp. log singular, resp. absolutely log singular if

F
s×t−−→ JX/k(log B) is an embedding, resp. not an embedding, resp. not finite. Notice,

in particular,

Remark 2.4 If a Weil divisor, B, is absolutely singular, a lifting F
s×t−−→ JX/k(log B)

necessarily exists by Notation/Revision 1.8 so, under such hypothesis, absolutely log
singular is a strictly stronger condition.

Now to fix ideas, the difference between singular and absolutely singular is a positive
characteristic phenomenon, as is evident from,

Fact 2.5 Again let everything be as in Definition 2.1 then, plainly, and irrespective of
the characteristic, an absolutely singular point is singular, while the converse holds
iff k is a field of characteristic zero.

Proof The initial assertion is trivial while an example showing the necessity of charac-
teristic zero is provided by theWhitney umbrella of (2.15). Otherwise, for sufficiency,
everything is local, so for X affine suppose (2.4) is not a surjection then since F is
absolutely regular,

there exists ∂ ∈ TF = Hom(
F ,OX ) such that ∂(m(x)) ⊆ m(x). (2.9)

Equally ∂ generates a sub-algebra k[∂] of D −∞
F dual to a foliation by curves,

F∂ ↪→ F, OX [[
F ]] � OX [[∂∨]] (2.10)

which in turn is embedded because operators of degree at least −n in k[∂] are in a
sub-vector bundle of D�−n

F . As such, if F is not absolutely singular at x then neither

is F∂ . However at the level of adic rings F∂
s×t−−→ JX/k is,

PX/k −→ OX [[∂∨]] : t∗ f − s∗ f �→
∞
∑

n=1

∂n( f )

n! ∂−n (2.11)

which by (2.9) is the zero map mod m(x), so ∂∨ cannot be integral over PX/k . �	
In a sense, however, the difference is not so dramatic since the appropriate gener-

alisation of Fact 2.2 is,
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Fact 2.6 Let everything be as in Fact 2.2 thenF is not absolutely singular at x iff there
is a transversal Y ↪→ ̂X such that for ̂× the complete tensor product the induced
groupoid,

R Y ̂×Y

̂F ̂X ̂× ̂X

(2.12)

is proper and fpqf. In particular the coarse moduli π : ̂X −→ ̂X/̂F (i.e. Y/R by (2.12))
exists.

Proof Once we know the existence of the coarse moduli Y/R the converse is clear.
The existence, however, is a question in complete local rings so [12, 5.1] works just as
well in our formal context as it does in the scheme context of op. cit. As such it remains
to produce the transversal Y , or, more accurately check that op. cit. 3.3 continues to
hold which it does since F/X is smooth, whence, a fortiori Cohen–Macaulay, so we
don’t need step 1 of op. cit. while step 2 works as stated. �	
Consequently the easier situation in characteristic zero is simply amanifestation of the
fact that in characteristic zero any zero-dimensional infinitesimal group is a point since
as soon as R ⇒ Y in (2.12) has no stabiliser the coarse moduli π in Fact 2.6 is also
fine. Irrespectively observe a useful characteristic-free description of the absolutely
singular points, to wit:

Fact 2.7 Let everything be as in Definition 2.1 and suppose in addition that F ⇒ X is
a foliation in curves over a field k then a closed point x is absolutely singular iff the
maximal ideal is invariant.

Proof By the definition of invariant, (1.20),

(s× t)−1(x× x) = Fx (2.13)

so, irrespective of the rankofF , such points are always absolutely singular.Conversely,
s−1(x) is isomorphic to,

Spf(k[[T ]]). (2.14)

So either (s× t)−1(x× x) is too, or s× t is finite at x× x . �	
We may also usefully observe,

Remark 2.8 Even for an absolutely Gorenstein foliation by curves, it is perfectly pos-
sible that Fact 2.6 holds, but the foliation is not smooth. For example, over a field of
characteristic p > 0 there is an infinitesimal action of Ga � T given by,

x �→ x + T y, y �→ y, z �→ z + T pz, on X = Spf k[[x, y, z]] (2.15)
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of which the map to the coarse moduli is,

X → X/Ga : (x, y, z) �→ (x p − y pz, y). (2.16)

Similarly in dimension 2, one can start with a perfectly smooth example such as a
product of curves C×C such that Z/p acts on C , then take X to be the quotient by
the diagonal action with F the first projection. It’s plain that such an example isn’t
smooth in the sense of Definition 2.1, but this is equally true of a tame diagonal μ�

action, (p, �) = 1, however, the difference between the two is that the Z/p quotient
can be made absolutely Gorenstein. For example, following [2] for p = 2 and e even,
we can take C to be,

u2 + xeu + x = 0, (u + uσ ) = xe, uuσ = x, σ ∈ Z/2 (2.17)

then by op. cit. if we take the foliation to be projection to u, with v a coordinate in the
other direction, X is given by,

z2 + (xy)ez + x2e y + y2ex = 0; x = uuσ, y = vvσ, z = uvσ + vuσ (2.18)

so the foliation is certainly 1-Gorenstein with generator,

xe
∂

∂z
+ ye

∂

∂ y
(2.19)

and whence absolutely Gorenstein by Fact 1.10.

Closely related to these considerations are how a foliation transforms under bi-rational
modifications, for example,

Fact/Definition 2.9 Let (s, t) : F ⇒ X be an absolutely regular foliation, Definition
1.5, of a Deligne–Mumford champ over a ring k, and M an invariant ideal with
ν : ˜X −→ X the blow-up in the same, then, we have a fibre square,

F

s

ν∗F := Bls∗M (F) = Blt∗M (F)

s

X ˜X
ν

(2.20)

thus by the universal property of fibre products we get a map,

ν∗F → (ν ×ν)∗F (2.21)

to the induced groupoid (ν ×ν)∗F ⇒ ˜X, and ν∗F is a sub-groupoid, independent of
the choice of the first projection in (2.20), which by construction defines an absolutely
regular foliation. In particular, operators lift, i.e. we have a map,

ν∗D−∞
F −→ D iff −∞

X/k . (2.22)
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Proof The only thing that isn’t wholly automatic from the definitions is that ν∗F is
closed under groupoid composition. Observe, however, that if we start from,

F t×s F
c

F

p1× p4

X × X × X × X F×F
p1×t×s×p4 p1×p4

X × X

(2.23)

then no matter what choices of projections to X we make, we always get the same
ideal on the top left, resp. right, entry of (2.23), so,

ν∗F t×s ν
∗F = Blc∗p∗

1M=c∗p∗
4M

(F t×s F) → (F t×s F) c×Fν∗F → ν∗F (2.24)

and composition lifts. �	
Contractions, even on surfaces in characteristic zero, are less satisfactory, to wit:

Fact/Definition 2.10 LetF ⇒ X bea foliationof anormal algebraic spaceorDeligne–
Mumford champ over a ring k; c : X → X0 a contraction with X0 normal; and
j : U ↪→ X0 the locus where c is an isomorphism, then we define,

ν∗F := Spf
(

lim←−
n

ν∗Pn
F

)

(2.25)

which although a well defined formal scheme mapping to JX0/k , may very well fail,
even ifF is absolutely regular, to be a groupoid. As such, in an abus de language, by the
contracted foliation we a priori only mean its restriction to U and we extend this to a
foliation on X0, or its Gorenstein covering champ, when we can by Fact 1.10, or, much
more likely in practice Fact/Definition 1.12. Consequently if these latter conditions
aren’t verified then KF , TF etc. may only mean j∗(KF |U ), j∗(TF |U ) etc.

3 Inseparable quotients

In positive characteristic, foliations determine inseparable scheme quotients,

Notation/Revision 3.1 ([4, §3])Let (s, t) : F ⇒ X be a foliation as inDefinition1.1 but
over an algebraically closed field k of positive characteristic p. As such base change
by r fold iteration, r ∈ Z�0, of the inverse Frobenius of k determines a conjugate
variety X (−r) to which the r -fold geometric Frobenius,

FrX/k : X −→ X (−r) (3.1)

maps. Better still the relation,

JrX/k := X ×X (−r) X ⇒ X (3.2)
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together with F generates a relation,

Fr ⊆ JrX/k ⇒ X (3.3)

which following [4, 3.1] we refer to as the height r foliation (or just r -foliation)
associated to F. In particular the coarse moduli of (3.3) determines a factorisation,

X
ρr

FrrX/k

X/Fr

σr

X (−r)

(3.4)

of the geometric Frobenius.

For differential operators, the situation is as follows: the pullback of jets,

P∞
X (−r)/k −→ P∞

X/k, q = pr (3.5)

takes the ideal of the trace on the left to a sub-ideal of the qth power of the trace on
the right, so:

D( f ) = 0, f ∈ OX (−r) , D ∈ D iff >−q
X modOX . (3.6)

In particular therefore the non-constant operators, D>−q
F modOX , of Definition 1.3

of order greater than −q operate trivially on X (−r) while,

OX/Fr = {

f ∈ OX | Df = 0, D ∈ D
>−q
F modOX

}

(3.7)

where, because of the saturation issues of (1.18) et seq., the correspondence,

F �→ {X/Fr }r>0 (3.8)

only determines F generically. If however X were irreducible and F were saturated
along a Weil divisor, (1.18), then the correspondence implied by (3.8) is, on fixing B,
1-1. Similarly if X is normal then X/Fr is too since, from (3.7),

OX/Fr = k(X/Fr ) ∩ OX . (3.9)

We also have from (3.7) a chain,

X = X0
ρ10:=ϕ1−−−−−→ X1 := X/F1 ρ21−−→ · · · −→ Xr := X/Fr (3.10)

factorising ρr , so many questions can be reduced to the study of ρ1, of which a
particularly pertinent invariant is,
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Definition 3.2 Let everything be as in Notation/Revision 3.1 but with X normal, and
B a reducedWeil divisor. In particular [4, 3.2] holds in codimension 2, so, off a closed
subset of the said codimension, we have an exact sequence of bundles,

0 −→ Fr∗X/k

(−1)
F −→ ρ∗

1
X/F1(log B) −→ 
X (log B) −→ 
F −→ 0 (3.11)

where 
F is the dual of TF of Definition 1.5 provided the latter is saturated along the
divisor, B is confused with its image in X/F1, and everything else is defined by the
exact sequence (3.11). Equally, for any r there is an exact sequence,

0 −→ 
Xr /F (log B) −→ 
Xr (log B) −→ 
Fr −→ 0 (3.12)

which, also, serves as the definition of the kernel in (3.12), and whence there is a
natural map,

ρ∗
1
X1/F (log B) −→ 
X/F (log B). (3.13)

It does not however follow from the definition of Notation/Revision 3.1, unlike that
of [4, 3.1], of height r -foliation that (3.13) is an isomorphism, and indeed it may
not be, e.g. the blow-up post (1.13) in characteristic 2 with B empty (rather than the
exceptional divisor) is a counter-example. Nevertheless we can take the first Chern
class of everything in (3.11)–(3.12) as a Weil divisor, i.e.

KF = c1(
F ), KX/F (log B) = c1(
X/F (log B)), etc. (3.14)

So that (3.13) defines a (transverse) ramification divisor R by way of,

KX/F (log B) = ρ∗
1KX1/F (log B) + R (3.15)

which in turn by (3.11) equally satisfies,

pKF = ρ∗
1KF1 − R (3.16)

while for the avoidance of confusion we observe,

KX/F (log B) =
{

KX/F + B, B → X1 inseparable

KX/F , otherwise
(3.17)

where KX/F is defined via (3.14) with B empty.

All of which provides a rather convenient way to do calculations, i.e.

Remark/Definition 3.3 Let IF be the ideal of the trace for a foliation F ⇒ X , then for
q = pr, r � 1, we have an inclusion,

I (q)

F := (T q | T ∈ IF) ⊆ I qF. (3.18)
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Conversely if q ′ is the largest pth power less than dim(X)−1q then,

I qF ⊆ I (q ′)
F (3.19)

so as q → ∞ they define the same topology and we have the convenient formula,

P∞
F = lim←−

r

PF/Fr := P∞
F /I (q)

F (3.20)

together with an alternative filtration on differential operators,

lim−→
r

D iffF/Fr
= D iff −∞

F . (3.21)

As such, in the particular case of the trivial foliation JX/k ⇒ X ,

PJX/k/Jr = PX/X (−r) , and, D iffJX/k/Jr
= D iffX/X (−r) (3.22)

and so in the presence of a divisor we extend Notation/Revision 1.8 by way of,

PX/X (−r) (log B) := PJX/k (log B)/Jr (log B), and,

D iffX/X (−r) (− log B) := D iffJX/k(log B)/Jr (log B).
(3.23)

Finally to tie this up with the inseparable quotients of Notation/Revision 3.1 observe
that the operators of (3.6) generate those of (3.21) with as ever q = pr, so we get a
factorisation,

PX/X (−r) � PX/Xr ↪→ PF/Fr . (3.24)

Indeed, a priori the rightmost arrow in (3.24)maynot be injective, its image is, however,
some infinitesimal algebra OR which is flat over OX in codimension 2. As such, its
spectrum defines a groupoid R ⇒ X with flat source and sink over an open whose
complement has codimension 2. On the other hand, étale locally, R → X ×Xr X
is a generic isomorphism, thus there is a bi-rational map Xr → X/R between R1
varieties, so an isomorphism in codimension 2, and whence the the middle term in
(3.24) is torsion free, so the rightmost arrow in op. cit. is injective because it is so
generically. Similarly, if F factors through JX/k(log B) we take,

PX/X (−r) (log B) � PX/Xr (log B) ↪→ PF/Fr (3.25)

as the definition of the middle term. As such,

Spec(PX/X (−r) (log B)) ⇒ X (3.26)

also defines a groupoid flat in codimension 2, and we define D iffX/Xr
(− log B) to be

the dual of (3.26).
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With this in mind we come to the key intervention of the ramification,

Fact 3.4 Let everything be as in Definition 3.2 and Remark 3.3 (so, inter alia X nor-
mal) then there exists r0 ∈ Z�0 such that for all r � r0 the map Xr −→ Xr+1 has
no ramification, in the sense of (3.15)–(3.16), iff there is a Zariski U ↪→ X with
codimension 2 complement such that the restriction to U of the inverse system (3.25)
is defined by a coherent sheaf of ideals on JX/k(log B).

Proof The proposition is local, and k is algebraically closed, so wemay suppose X is a
smooth affine k-schemewith B simple normal crossing. Now consider first sufficiency
in the case that r0 = 0, then, for I� the ideal of the trace of P∞

X/k(log B) and Ir the
kernel of the rightmost arrow in (3.25) we have, by hypothesis,

Ir+1 = Ir mod (I 2�) (3.27)

so that for Jr the ideal of the diagonal of the middle term in (3.25)

Jr+1/J
2
r+1 = I� + Ir+1/I

2
� + Ir+1 = I� + Ir/I

2
� + Ir = Jr/J

2
r . (3.28)

Consequently if we further restrict attention to the locus where J1/J 21 is locally free
then for any r the graded algebra of the middle term in (3.25) is the algebra,

k[zt11 · · · ztdd | 0 � ti � q], z1, . . . , zd a basis of J1/J
2
1 . (3.29)

Indeed the map from (3.29) to the graded is always surjective, while it’s injective
because it’s so generically, and thus we get,

Ir+1 = Ir mod (I (q)
� ) (3.30)

which is what we required to prove. Now, say r0 is arbitrary, and consider

P∞
X (−r)/k(log B) → P∞

X/k(log B), (3.31)

then the map of the latter, resp. the former, to (3.20), defines a sheaf of ideals, I, resp.
J , on JX (log B), resp. JX (−r) (log B). Now, we’ve proved J is coherent overU ↪→ X
with codimension 2 complement, i.e. for W ⊆ V affines in U ,

�(W (−r),J ) = �(V (−r),J )̂⊗OVOW . (3.32)

On the other hand (3.31) is a finite inseparable map, so �(W , I) is the unique prime
of the rightmost term in (3.31) lying over the leftmost term in (3.32) after restricting
to W , and since we may argue similarly on V , �(V , I)̂⊗OVOW also lies over the
same prime, so these are equal and I is coherent. Necessity is easier, since,

Ir + I 2�/I 2� ⊇ I + I 2�/I 2�, (3.33)
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in the above notations, so, around every codimension 1 point, the sequence on the left
of (3.33) is a decreasing sequence in the Artinian module I1 + I 2�/I + I 2�. �	
This motivates the following,

Fact/Definition 3.5 LetF ⇒ X be an absolutely Gorenstein foliation in curves satisfy-
ing the equivalent conditions of Fact 3.4 and observe byDefinition 2.3, of an absolutely
singular divisor D,F factors throughJX (log D), sowithout loss of generality, we insist
that B contains all codimension one points where F is absolutely singular. Further-
more by (3.29) then there is a smallest 0 � r � r0 such that there exists an open
U ↪→ X with codimension 2 complement over which the normalisation, ˜Fr , of the
image of FU in JUr (log B) defines an absolutely Gorenstein foliation ˜Fr ⇒ Ur , the
debugging of F , which is not absolutely log singular, Definition 2.3. In particular if
the tangent bundle of the resulting foliation onUr satisfies theQ-Gorenstein condition
of Definition/Revision 1.11, then˜Fr ⇒ Ur may be completed to an absolutely regular
foliation on the Gorenstein covering champ Yr → Xr of Fact/Definition 1.12 which
is not absolutely log-singular, and, irrespectively, we say that F ⇒ X is absolutely
saturated if r = 0 and F equals˜F in codimension 2.

Proof Fr → JXr (log B) embeds at every generic and F is normal, so we always have
a map Fr → ˜Fr . Similarly ˜Fr is equally the normalisation of the base change to Ur

of˜Fr0 ⇒ Ur0 , so the only issue is whether˜Fr ⇒ Ur inherits a groupoid structure. We
can, of course, shrinkU as necessary, and since˜Fr is finite over its image in JXr (log B)

and equal to it at every generic point of Xr , the diagonal lifts to˜Fr in codimension 2,
while, even without shrinking U , transposition lifts to ˜Fr so the latter is a groupoid
whenever composition lifts which is automatic as soon as ˜Fr t×s ˜Fr is normal, which
in turn follows from absolutely Gorenstein. �	
This raises the question to whether every foliation is absolutely saturated in the sense
of Fact/Definition 3.5, which we address by way of,

Scholion 3.6 In general a foliation will not be equal to its debugging. Proceeding
by decreasing induction from r0, the problem occurs when one tries to go from an
absolutely saturated example F1 ⇒ X1 by normalisation of the base change groupoid
along the quotient ρ : X → X1 of (3.10), and what has to be verified is that at every
codimension one point β ↪→ X where F is absolutely singular the fibre ˜F s×X β

of the normalisation is smooth and equal to ˜F t×X β. Now, for β1 = ρ(β), if β =
ρ∗β1 this is already true for the base change groupoid, which must, therefore, equal
the normalisation. If, however, β = p ·ρ∗β1 then there is an issue. To describe the
normalisation in this case, we have, away from a closed set of codimension 2, for G
the 1-foliation corresponding to X (1)

1 → X , an exact diagram,

123



S652 M. McQuillan

0
⏐

⏐

�

0 −−−−→ s∗
G −−−−→ s∗
G
∐

t∗
G −−−−→ t∗
G −−−−→ 0
⏐

⏐

�

⏐

⏐

�

⏐

⏐

�

0 −−−−→ s∗

X (1)
1 /k

−−−−→ 

F

(1)
1 /k

−−−−→ 

F

(1)
1 /X (1)

1
−−−−→ 0

⏐

⏐

�

s∗

X (1)
1 /X

⏐

⏐

�

0
(3.34)

so the saturation of the middle vertical defines a 1-foliation, E , on F
(1)
1 such that˜F is

the quotient F(1)
1 /E . As such the original foliation on X admits an absolute saturation

iff E isn’t singular at�(β), i.e. around β, the saturation of the middle vertical in (3.34)
surjects onto the saturation of the rightmost vertical around β

(1)
1 . There is, however, no

restriction on X → X1 except that it’s purely inseparable of degree p. Indeed starting
from an absolutely saturated foliation F1 ⇒ X1, the base change to any such X → X1
affords a foliation by curves F ⇒ X such that, in the notation of (3.10), X1 = X/F1,
so the failure of E to be smooth at codimension 1-points where we have the generic
behaviour ρ∗β1 = p ·β is rather common.

As such, further hypothesis is required to deduce an absolutely Gorenstein foliation
in codimension 2 on X from one on X1. An example is provided by fibrations in curves
which plainly satisfy the second of the equivalent conditions of Fact 3.4, and once there
is no ramification all fibres have multiplicity one, so, say, over an algebraically closed
field, π : X1 → S a map from a normal surface to a smooth curve with all fibres

reduced. Now if the restriction of X
ρ−→ X1 to a curve B = β̄ ↪→ X in a fibre of π

is not inseparable, there is x = 0, resp. z = 0, a local equation for B, resp. π(B)red,
with y a coordinate along B, such that, around B, ρ is given by,

x p = zu(y, x p),
∂

∂ y
u(y, x p) �= 0 (3.35)

wherein u is a unit, and the resulting 1-foliation, dy = 0, is the saturation of du, so all
of z, y and ξ = x p are coordinate functions on X1, whence 
G of (3.34) is dξ = 0.
As such the 1-foliation defined by the middle arrow in (3.34) is given by,

s∗dξ, and, t∗dξ = d

(

s∗ξ
(

1 + 1

u
·
∑

n>0

∂n

n!∂n y (u)T n
))

, T = t∗y − s∗y

(3.36)
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with divided power operators understood in the coordinate system z, y. Now, the order
of vanishing at B = t∗B along the rightmost vertical in (3.34) is,

1 + ordB

(

∂

∂ y
(u)

)

, while, ordB

(

∂

∂ y
(u)

)

= ordB

(

dz

z
− dξ

ξ

)

(3.37)

so to calculate t∗dξ modulo s∗dξ and terms of order (3.37) is already modulo s∗dz.
Thus, modulo s∗dξ the order of vanishing of t∗dξ is the min of (3.37) and

1 + min
n

{

ordB

(

∂

∂ y

∂n

n!∂n y (u)

)}

(3.38)

which is at least (3.37). Consequently the middle and rightmost verticals in (3.34)
saturate to the same order along B, so the saturation of the middle vertical is a smooth
1-foliation at every point of the fibre of F(1)

1 over β
(1)
1 . Thus,˜F is regular at �(β), so

the diagonal is a Cartier divisor there, and s is smooth over β.

4 Adjunction formulae

The presence of singular points which aren’t absolutely singular gives rise to new
relations between the canonical bundle of the foliation and that of invariant sub-
varieties which we investigate by way of,

Set Up 4.1 Let F ⇒ X be an absolutely regular foliation, Definition 2.1, of a Deligne–
Mumford champ, X , over a filed k, with λ : L −→ X a map from a connected k-smooth
Deligne–Mumford champ such that:

(1) λ is an embedding at its generic point.
(2) F is not absolutely singular at the generic point of L .
(3) The image of the generic point is invariant by F .

In such circumstances we have,

Fact 4.2 Let everything be according to Set Up 4.1 then there is a unique map

F s×λ L
�−→ JL/k rendering commutative

F s×λ L
�

JL/k

JX/k s×λ L

λ∗ (4.1)

Proof Let L ↪→ X be the image of L with I its ideal, then, by item (3) of Set Up 4.1,
t∗ I is zero over the generic point of F s×λ L . The latter is however smooth over L ,
which in turn is irreducible, thus t∗ I is, in fact, zero everywhere, i.e. I is invariant in
the sense of (1.20), and so we have a fibre square,
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F s×λ L JL/k s×λ L

F s×λ L JL/k

(4.2)

Now étale locally JL/k , resp. JL/k , is L×k L , resp. L×k L , completed in the diagonal,
so JL/k is the normalisation of the irreducible component of the trace of the top right
corner in (4.2), and F s×λ L/L is smooth, whence (4.1). �	
This allows us to relate the geometry of L to that of F , for example,

Fact 4.3 Again let everything be as in Set Up 4.1 and suppose moreover that F is
smooth at the generic point of L then the horizontal arrow in (4.1) at the level of the
ideal of the trace modulo its square furnishes a generic isomorphism,

dλ : 
L/k −→ λ∗
F . (4.3)

Proof Let �, resp. ˜�, be the trace in JL , resp. F s×λ L with ideal I�, resp. I�̃, then
�−1 I� ⊂ I�̃ which gives (4.3). �	
In general, however, there is nomore reason for (4.3) to be a generic isomorphism than
there is for a dominant equidimensional map to be separable, and since in dimension
1 any inseparable map is generically a power of Frobenius we can, for foliations in
curves, be rather precise about the problem, to wit:

Fact 4.4 Let everything be as in Set Up 4.1 and suppose moreover thatF is a foliation
in curves, with ρr : F → Fr the inseparable scheme quotient defined by r-iterations
of Frobenius along the fibres of the first projection, i.e. the factorisation of r iterates
of the geometric Frobenius FrF/k , (3.1), in which each square is fibred,

Frr : F −−−−→
ρr

Fr −−−−→ F(−r)

s

⏐

⏐

�

⏐

⏐

�
sr

⏐

⏐

�s(−r)

X X
FrrX/k−−−−→ X (−r)

(4.4)

then there is a maximal r such that (4.1) factors as

� : F s×λ L
ρr×id−−−−→ Fr s×λ L

�r−−→ JLr (4.5)

and for q = pr, r aforesaid maximal, there is a generic isomorphism,

dλ : 
L/k −→ λ∗
⊗q
F , (4.6)

which vanishes at every point x ∈ L such that λ(x) is absolutely singular. Furthermore
at any other point x ∈ L where (4.6) vanishes, the map of fibres
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F
(−r)
λ(x) → Lx (4.7)

is generically étale with wild ramification at �(x) to order the vanishing of (4.6).

Proof By item (2) of Set Up 4.1, � of (4.1) is finite, so there is a maximal r such that
(4.5) holds, and (4.6) is a generic isomorphism iff it is so after completing in the image
λ(x) of a generic closed point x . After completion, however, we can appeal to Fact
2.6 and identify L with a fibre of the coarse moduli, and r with the maximal power of
Frobenius such that we have a factorisation,

Fλ(x)
Frr−−→ F

(−r)
λ(x) → L. (4.8)

Consequently, for r maximal, the rightmost arrow in (4.8) is generically étale, and
whence (4.6) is generically an isomorphism. Similarly, �−1� contains all the fibres
over absolutely singular points by (2.13), while all maps in (4.5) are finite, so this is
equally true of �−1

r �, and thus (4.6) vanishes at such points. As to the final item we
complete around such a point and retake the notations of Fact 2.6, so that we have a
diagram of fibre squares,

̂X Lx Fλ(x)

[̂X/̂F]
μ

μ−1(x) x

̂X/̂F x

(4.9)

wherein the moduli map μ cannot be an isomorphism since otherwise F would be
smooth at x . It is, however, the case that Fλ(x) is given by (2.14) thus the fibre of
̂X over the coarse moduli has at most one branch, so it must be exactly Lx . Now,
irrespectively of whether its reduced or not there must be an embedding

BG ↪→ μ−1(x) (4.10)

where the infinitesimal stabiliser group scheme G is non-zero since μ isn’t an iso-
morphism by [12, 6.5]. Equally Lx×μ−1(x)BG ↪→ Lx is a formal sub-scheme of an
irreducible with the same reduced structure so they’re the same. As such,

Fλ(x)
∼−−→ x×BG Lx (4.11)

which has degree over Lx the degree of G, thus Fλ(x) −→ Lx has degree a power of
the necessarily positive characteristic p, while both Fλ(x) and Lx are isomorphic to
(2.14) so after we’ve eliminated the inseparable part by way of the factorisation (4.8)
what we’re left with is the rightmost map in (4.8) wildly ramifying at �(x) which, in
turn, is the order of vanishing of dλ in (4.3). �	
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Observe that post (4.2) we used Set Up 4.1’s standing hypothesis of absolute reg-
ularity in a fairly essential way in the proof of Fact 4.2. We will, however, need
such a result for absolutely Q-Gorenstein foliations by curves. Consequently, with
such a hypothesis, for γ : Y = [E/Gm] → X the Gorenstein covering champ of
Fact/Definition 1.12, let f : L −→ X be the normalisation of a curve on X and form
the fibre squares,

E f ∗E L

[E/Gm] [ f ∗E/Gm]

X L
f

(4.12)

then take the normalisation, L , of the component of the generic point. This gives us
a curve [L/Gm] on [E/Gm]. On the other hand, and quite generally, whenever we
have a Gm-action, completion in the identity afford an action of the formal group
̂Gm , which, in turn, is a foliation by curves, and whence, the sequence of infinitesimal
scheme quotients of Notation/Revision 3.1, or, equivalently, the quotients by the action
of μpr ↪→ Gm , r > 0. In particular, the action of μpr on L , resp. on the fibres of
s : JL/k → L , resp. s : FE → E , affords sequences of infinitesimal scheme quotients,

L
gr−−→ L(r), resp. JL/k

gr−−→ JL(r), resp. FE
gr−−→ FE (r) (4.13)

and we have the following generalisation of Fact 4.3,

Fact 4.5 Let F ⇒ X be an absolutely Q-Gorenstein foliation by curves of a normal
Deligne–Mumford champ over a perfect field k with f : L −→ X as above satisfying
items (1)–(3) of Set Up 4.1 then the Gm-equivariant map λ : L −→ E, from the nec-
essarily smooth k-champ L, of (4.12) with generic stabiliser μQ, Q = pR, in the
presence of the simplifying Remark 1.14, also satisfies items (1)–(3) of Set Up 4.1 but
for the absolutely regular foliation FE ⇒ E. Further, there is a maximal r such that
étale locally the coarse moduli of (4.1) factors, cf. Scholion 1.13, as

|�| : FE s×λ L/Gm
ρr×id−−−−→ (FE )r s×λ L/Gm

�r−→ JL(r)/Gm (4.14)

wherein ρr is exactly as per (4.4), albeit for FE , while for q := pr, should q � Q,
resp. Q � q, there is a generic isomorphism,


JL/k/L
dλ−−→ λ∗
(FE )r (R−r)/E , resp. 
JL (r−R)/L

dλ−−→ λ∗
(FE )r /E . (4.15)

In particular (4.15) furnishes nonzero maps of line bundles over [L(r)/Gm],

KL −→ λ∗K⊗q
FE

(R − r), resp. KL(r−R) −→ λ∗K⊗q
FE

(4.16)
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which vanishes along the absolutely singular points (whether of F or FE since these
loci coincide) while at any other point x ∈ L where (4.16) vanishes, the map of fibres

(

F
(−r)
E (R − r)

)

λ(x) → Lx , resp.
(

F
(−r)
E

)

λ(x) → L(r − R)x (4.17)

is generically étale wildly ramifying at �(x) to order that of the vanishing of (4.16).

Proof We put ourselves in the situation of Fact 4.3 but for the foliation FE ⇒ E of
Fact/Definition 1.12, and of course invariant map λ : L −→ E . Now k is perfect and L
is normal with a transitive Gm-action, thus L/k is smooth, so the hypotheses of Fact
4.2 are verified, and whence we have the map (4.1), while, again by item (2) of our Set
Up 4.1, (4.14) is a factorisation of a finite map so, once more r exists. Now, exactly as
in Fact 4.3, take a generic closed point x , identify Lx with fibre of the coarse moduli,
and, observe that by item (3) of Fact/Definition 1.12 there are coordinates s, t with
the former in the Gm-direction such that,

(

FE
)

λ(x) → Lx : (s, t) �→ (sQ, tq) (4.18)

so, for Q � q, resp. q � Q the maps in (4.17) are generically étale, which gives
us the generic isomorphisms (4.15) & (4.16). It is, however, clear that (4.16) isn’t an
isomorphism at absolutely singular points since (4.1) isn’t even finite there. As to any
other singular points the top line of (4.9) becomes,

̂E ←↩ Lx ←− (

FE
)

λ(x) (4.19)

wherein everything admits an infinitesimalGm -action, and for exactly the same reason,
(4.11) et seq., the rightmost map in (4.19) is a covering of order a power of the
characteristic, so, as soon as we eliminate the inseparable effects via the twists of
(4.17), any ramification that remains is wild. �	

Notice, en passant, a not inconsiderable bonus,

Fact 4.6 Let everything be as in Fact 4.5 with x ∈ L a point where (4.15) is an
isomorphism, then, supposing the simplification of Remark 1.14, for q � Q, resp.
Q � q, [L/Gm], resp. [L(r − R)/Gm] is isomorphic to L in a neighbourhood of x.

Proof By [8, Exposé VII, 4.1], for q � Q, resp. Q � q there are coordinates s, t on
L , resp. L(r − R) such that modulo generic stabilisers λ ∈ Gm acts by,

sλ = λas, tλ = λbt, a, b ∈ Z (4.20)

where s �= 0 and t = 0 is the orbit of x . As such the stabiliser of our point is that of
t = 0, i.e. μa , so if a is prime to p we’re done by the simplifying Remark 1.14, while
otherwise, for Fx equal to

(

F
(−r)
E (R − r)

)

λ(x), resp.
(

F
(−r)
E

)

λ(x),

TFx ←↩ TGm � λ
∂

∂λ
�→ as

∂

∂s
+ bt

∂

∂t
(4.21)

and a = 0 modulo p implies this is zero at s, so (4.15) cannot be an isomorphism. �	
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5 The cone theorem

With Definition 1.5 in place, the algebraisation theorem of [3, 2.1–2.2] works, cf.
Warning 1.7, in a characteristic free way, beginning with,

Basic Construction 5.1 (cf. [3, 2.1]) Let (s, t) : F ⇒ X be an absolutely Gorenstein,
Definition 1.5, foliation by curves of an algebraic space, or Deligne–Mumford champ,
over a field k, then for f : C −→ X a projective curve, the complete fibre product,

F

s

FC

X

id

C
f

id (5.1)

is a formal scheme with trace, C = id(C), and,

NC/FC

∼−−→ f ∗TF . (5.2)

More generally for an absolutely Q-Gorenstein foliation on a normal algebraic space
or Deligne–Mumford champ X over k with γ : Y = [E/Gm] → X the Gorenstein
covering champ of Fact/Definition 1.12 and f : C → Y a map from a curve, the
complete fibre product,

[FE/Gm]
s

FC

Y = [E/Gm]

id

C
f

id

(5.3)

where FE ⇒ E is the absolutely regular foliation in item (3) of Fact/Definition 1.12,
is a formal scheme with regularly embedded trace, C = id(C), such that,

NC/FC

∼−−→ ( f ∗KF |E )∨ modulo torsion in Pic(C). (5.4)

Proof The normality assumption in the second part is only to guarantee that the Goren-
stein covering champ has sense, whence, it is, an otherwise more general assertion,
and we confine our attention to it. As such, in the first place, given the map f we have,
in the notation of (1.26), a punctured cone,

(γ f )∗E = Spec

(

∐

n∈Z
(γ f )∗An

)

(5.5)

and a section of [(γ f )∗E/Gm], so, a fortiori, a series of local sections of (5.5). A
priori such sections are in the smooth topology of C , but every smooth map has étale
local sections, so on an étale cover Cα of C we have a quotient,
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∑

n

wα
n :

∐

n∈Z
(γ f )∗An|Cα → OCα (5.6)

of OC algebras, which can equally be identified with a Gm-equivariant map,

∐

n∈Z
(γ f )∗An|Cα → OCα [Tα, T−1

α ] : an �→ wα
n (an)T

n
α (5.7)

in some indeterminate Tα . Now, by hypothesis, these maps must patch up to the action
of Gm , i.e. there is a multiplicative co-cycle gα

β such that,

wα
n = (gα

β )nwβ
n (5.8)

so for L the bundle defined by Tβ = gα
βTα , we can rewrite (5.7) as the graded map,

∐

n∈Z
(γ f )∗An →

∐

n∈Z
Ln : an �→ wn(an). (5.9)

Now since both positive and negative integers occur in (5.9), this is an isomorphism
in sufficiently divisible degree’s, so L certainly has the same degree as the pullback
of the Q-Cartier divisor KF . However we even have a bundle f ∗(KF |E ) obtained by
pulling back (1) of Fact/Definition 1.12, and for every n a natural map,

νn : (γ f )∗An → f ∗(KF |E )⊗n (5.10)

while if wn(x) = 0 then for d sufficiently divisible wnd(xd) = 0 so xd = 0, which
is iff νd(xd) = 0, and whence ν1(x) = 0. Consequently, the image of (5.9) factors
through (5.10), and since L has the same degree as f ∗(KF |E ) these are the same mod
torsion. Finally, by Definition 1.1, the source and sink of FE are representable, and
curve means curve, not orbifold, so f ∗FE is a Gm-equivariant formal scheme over the
punctured cone,

V
(

f ∗(KF |E )
)\{0}. (5.11)

Better, this action is free, so taking the quotient we get (5.3)–(5.4) by (1.27). �	
At this point we have the fundamental observation of [3],

Fact 5.2 ([3, 2.1.1]) If F ⇒ X is absolutely Q-Gorenestien and KF · f C < 0, then
for any line bundle L on F there is a constant C = C(L) such that,

h0(FC , L⊗n) � Cn2, n ∈ Z>0. (5.12)

Proof For I the ideal of the trace id(C) in (5.3), and Fm the mth thickening of F we
have an exact sequence,

0 −→ Im/Im+1⊗ Ln −→ OFm+1(nL) −→ OFm (nL) −→ 0 (5.13)
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wherein the leftmost bundle is dual to Symm(NC/FC ) of (5.4), so,

H0(C, Im/Im+1⊗ Ln) �= 0 �⇒ m � M := n · L ·C
− KF · f C (5.14)

since −KF · f C was supposed positive, and whence,

H0(FC , Ln) = lim←−
m

H0(OFm (nL)) ↪→ H0(OFM (nL)) (5.15)

from which (5.12) by taking, as per op. cit., H0 of (5.13) for m � M . �	
Continuing to follow op. cit. we apply this in the obvious way, i.e.

Fact 5.3 Letμ : X −→ |X | be the Keel–Mori moduli space, [12, 1.3], of X (so X = |X |
if X is just an algebraic space and not a champ) and otherwise everything as in the
general Q-Gorenstein case of the Basic Construction 5.1, then if, KF · f C < 0 and,

(a) A Zariski open neighbourhood of (μ f )(C) embeds into a projective space PN
k ,

(b) The foliation is not absolutely singular at the generic point of f (C),
there is an algebraic surface,

S ↪→ C×|X | (5.16)

such that every fibre is invariant by the induced action of F on |X |.
Proof Define S to be the Zariski closure of the image of FC in C×|X |. Applying Fact
5.2 with L the pullback of the tautological bundle on PN

k , it’s clear that the dimension

of S is at most 2, while by hypothesis (b) at a generic point, FC
s×t−−→ C×|X | is finite

onto its (a priori formal) image, so, in fact, the dimension of S is exactly 2, while, by
construction, every fibre is invariant. �	

This leads to a variant ofMiyaoka–Mori’s bend and break estimate, cf. [18, Theorem
5], to wit:

Fact 5.4 ([16, II.c.2–5]) LetF ⇒ X be an absolutelyQ-Gorenstein foliation by curves
on a Deligne–Mumford champ over a field k then for a map f : C −→ X from a curve
satisfying (a), (b) of Fact 5.3, and TF · f C > 0 through every closed point c ∈ C there
is a 1-dimensional F-invariant champ Lc, such that if M is any nef R divisor on X,

M ·Lc � 2(M ·C)

TF · f C . (5.17)

In light of the Basic Construction 5.1 and Fact 5.3, the remaining issues are the degree
estimate (5.17), which is the wholly general Sub-Fact 5.6 below, and the applicability
of Basic Construction 5.1 which merits,
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Warning 5.5 Large chunks of the theory of theGorenstein covering champ [E/Gm ] →
X are valid without supposing that KF is a Q-divisor, e.g. if we just defined KF ·C to
be the degree of the bundle L of (5.8) et seq. then the Basic Construction 5.1 would
remain valid. However, cf. (1.33) et seq., by definition, KF is a Q-divisor iff [E/Gm]
admits an fpqf presentation, and this is exactly what guarantees, cf. [14, 16.6], that

starting from a curve f : C → X there is at worst a finite cover C ′ g−→ C
f−→ X

such that the composition, f g, lifts to [E/Gm], i.e. we can always apply the Basic
Construction 5.1.

Consequently we can conclude to Fact 5.4 by way of,

Sub-Fact 5.6 ([16, II.c.7]) Let S −→ C be a normal surface fibred over a curve with a
section σ such that σ(C)2 > 0, then for M a nef R-divisor on S a generic fibre Lc

satisfies,

M · Lc � 2M ·σ C
σ(C)2

. (5.18)

Proof of Sub-Fact 5.6 Say x ∈ R>0 to be chosen, then theHodge index theorem, affords
the inequality,

((Lc + xM) ·σ C)2 � (σC)2
(

L2
c + 2xLc ·M + M2) � 2x(σC)2Lc ·M (5.19)

so choosing x = (M ·C)−1 yields (5.18). �	
Putting everything together we therefore obtain,

Fact 5.7 Let F ⇒ X be an absolutely Q-Gorenstein foliation by curves of a Deligne–
Mumford champ over a field k with projective moduli and Z ↪→ X the absolutely
singular locus of Definition 2.3, then there are countably many invariant champs
Li ↪→ X not factoring through Z with KF · Li < 0 such that,

NE1(X) = NE1(X)KF�0 + NE1(Z)KF<0 +
∑

i

R+[Li ] (5.20)

wherein the rays R+Li are locally discrete in the open complement of NE1(X)KF�0
+ NE1(Z)KF<0 and every extremal ray therein is of this form.

Proof This is purely formal consequence of Fact 5.4, i.e. [13, III.1.2] goes through
mutatis mutandis. �	

6 Fine structure of extremal rays andminimal models of surfaces

In the particular case of surfaces we can do better, to wit:

Fact 6.1 Let F ⇒ X be a foliation by curves of a proper bi-dimensional normal
Deligne–Mumford champ over a field k of positive characteristic which is absolutely
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Gorenstein in codimension 2, with Z ↪→ X the possibly empty (but certainly finite)
set of curves where the foliation is absolutely log singular, Definition 2.3, then under-
standing KF in the worst case scenario of Fact/Definition 2.10 and the Néron–Severi
group in the sense of Mumford intersection theory, [19, II.b], there are countably many
invariant champs Li ↪→ X not in Z with KF ·Li < 0 such that,

NE1(X) = NE1(X)KF�0 +
∑

i

R+[Li ] +
∑

C⊆Z

R+[C]KF ·C<0 (6.1)

wherein the rays R+[Li ] are locally discrete in the open half space NE(X)KF<0 and
every extremal ray therein is of this form or belongs to Z.

Proof We first do the case of k a finite field, so by [11, 0.3] or [1, 2.11] X isQ-factorial
with projective moduli. Consequently (6.1) will follow from (5.20) if we prove that
the negative curves in Z must be absolutely log singular, or equivalently,

Claim 6.2 Let F ⇒ X be an absolutely Q-Gorenstein foliation by curves of a proper
normal bi-dimensional Deligne–Mumford champ over a field k of characteristic p > 0
which is absolutely singular but not absolutely log singular along an irreducible Q-
Cartier divisor C then,

KF ·C � 0. (6.2)

Proof of Claim 6.2 Let γ : [E/Gm] → X be the Gorenstein covering champ of
Fact/Definition 1.12, with EC the fibre over C then for FE as in item (3) of op.
cit., absolutely singular around C is the same thing as,

D−∞
FE

(OE ) ⊆ OE (−C) (6.3)

while not absolutely log singularmeans, Notation/Revision 1.6 post (1.11), there exists
q = pr such that generically along C ,

Dz

z
�= 0, mod (z) D ∈ D

(−q)

F , OX (−C) = (z). (6.4)

To profit from this, observe that for any positive integer n, we have a pairing,

D−∞
FE

×OE (−nC) → OE (−nC). (6.5)

Indeed for the nth power of OE (−C), rather than it’s double dual, we just apply
the co-product formula (1.11) and (5.20), and then one does the double dual case by
induction on the order of the operator by way of (1.11) again. Similarly the co-product
formula and (6.3) imply that (6.5) is linear mod OE (−C), so we get an OE linear
map,

D−∞
FE

→ EndOEC

(OEC (−nC)
) = OEC , n sufficiently divisible. (6.6)
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Assuchfixa sufficiently divisiblen, so that by (6.4) there is a biggest−1 � −m > −∞
such that (6.6) is non-zero on non-constant operators of order −m, and whence we
get a non-zero map,

SymmTFE

∼−−→ gr−mD−∞
FE

→ OEC . (6.7)

The left hand side of (6.7) is, however, filtered by the dual of the exact sequence
(1.27), while operators in the Gm-direction act trivially on functions pulled back from
the base, so that, finally, we get a non-zero map,

(KF |E )−m → OEC (6.8)

which is plainly Gm-equivariant, and we conclude. �	
Returning to the proof of 6.1, it remains to address the case of an arbitrary field of

positive characteristic. To this end we make a model FS ⇒ XS of our foliated champ
over an affine scheme S of finite type over Fp and proceed as follows,

(1) First prove (6.2) inMumford intersection theory at the generic point σ of S. Indeed
for closed points s ∈ S outside of a closed set Mumford intersection numbers of any
two Weil divisors are constant and equal to their value at σ , so 6.2 over a finite field
implies the same in general.

(2) Prove Fact 5.4, but, again, with intersection numbers understood in the Mumford
sense. As such the only subtly is that the moduli, |X |, may only be an algebraic space.
It does, however, admit classes h in Mumford’s Néron–Severi group which are strictly
positive on NE1, and every component of the Hilbert scheme of curves on |X | with
bounded h degree is of finite type because bounded h degree implies bounded degree
on a projective resolution.

Consequently one concludes formally to (5.20), understood in the Mumford sense,
from (2), after which we can use (1) to replace absolutely singular by absolutely
log-singular , and whence arrive to (6.1). �	

Unsurprisingly, therefore, we may apply Fact 6.1 to obtain

Corollary 6.3 Let F ⇒ X be an absolutely Gorenstein in codimension 2 foliation by
curves of a proper bi-dimensional normal Deligne–Mumford champ over a field k of
positive characteristic, then there is a contraction,

c : X −→ X0 (6.9)

of an invariant Weil divisor E ↪→ X such that for F0 ⇒ X0 the resulting foliation,
understood in the sense of Fact/Definition 2.10, exactly one of the following occurs,

(1) KF0 is nef in Mumford intersection theory.
(2) There exists a map π : X0 −→ X0/F0 to a curve such that every fibre of π is

supported on an invariant irreducible champs Lx , x ∈ X0/F0, with KF0 ·Lx < 0.
In particular π is a Mori fibre space.
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(3) The rank of Néron–Severi of X0, in the Mumford sense, is 1, and X0 is covered by
an invariant family of champs Lx , with KF0 ·Lx < 0. In particular X0 −→ pt is
itself a Mori fibre space.

Proof By hypothesis X satisfies (6.1). As such either there is an extremal ray repre-
sented by an invariantWeil divisor in the half spaceNE1(X)KF<0 with negative square,
or there isn’t. If there is such a ray we contract it. The resulting normal champ still
satisfies (6.1), so without loss of generality there are no extremal rays in NE1(X)KF<0
with negative square, and exactly one of the following occurs,

(1) There are no extremal rays in NE1(X)KF<0 so, by (6.1), KF is nef.
(2) There is such an extremal ray R, and R2 = 0.
(3) Again there is an extremal ray but R2 > 0.

Now observe that it’s formal that the rank of Néron–Severi in (3) is 1. Indeed for
any class α, there is some large m, depending on α, such that,

(mR − α)2 > 0 and (mR − α) · R > 0 (6.10)

thus mR − α ∈ NE1(X), and R is extremal so α is parallel to R. In case (2), however,
although R is effective by (6.1), it may not even move. We may, however, find a
sequence of maps fn : Cn −→ X from smooth projective curves whose cycles are
ample such that the rays, but not the cycles, R+[Cn], converge to R. In particular for
n � 0, KF ·Cn < 0 and Fact 5.4 applies to produce for every x ∈ Cn an invariant
sub-champ Ln

x satisfying (5.18), the right hand side of which limits on,

− 2(M · R)

(KF · R)
, M ∈ NE

1
(X) nef. (6.11)

As such the families Ln
x are bounded independently of n, and there is at most one

invariant curve through the generic point, so, altogether, they cut out a curve H in
the Hilbert scheme independently of n. Now drop the suffix n and apply (6.11) with
M = R, to get for x ∈ H generic,

R · Lx � 0 (6.12)

and since both R and Lx are nef they’re parallel by Hodge. To conclude, therefore,
observe that for x �= y any 2-closed points in H ,

Lx ·Ly = 0 (6.13)

so H is indeed the coarsemoduli X/F and since R is extremal everyfibre is irreducible.
The outstanding item of covering X by invariant curves in (3) is similar, and strictly
easier, since we can take the above sequence Cn to be constant. �	
To address the fine structure of the extremal rays in Fact 5.7, so, a fortiori, of those in
Fact 6.1 and those contracted in Corollary 6.3, we require,
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Fact 6.4 Let L → L be a representable map between normal champ over a perfect
field k withL one-dimensional and L admitting aGm-actionwith finite stabilisers such
that étale locally, L is the coarse moduli L/Gm, cf. Scholion 1.13, then the canonical
bundle KL of L is a line bundle on [L/Gm] whose degree is given by,

Q ·deg(KL) = deg(KL) +
∑

x

(

1 − 1

qx

)

deg(x) (6.14)

wherein Q is the cardinality of the stabiliser of the generic point, and deg(x) is
understood to be the, possibly fractional, degree of the point x in L over which the
stabiliser of the Gm-orbit is μQqx .

Proof By hypothesis k is perfect, thus regular coincides with smooth and the action
of Gm is transitive so L/k is smooth as soon as L is normal. Plainly Gm acts on the
canonical bundle KL thus it is a bundle on the 1-dimensional champ [L/Gm], so it
only remains to compute its degree. To this end observe that the effect of the generic
stabiliser is built into the left hand side of (6.14), so without loss of generality the
action is generically free, while by Remark 1.14 we’re reduced to qx a power of the
characteristic. Irrespectively, the Gm-action affords an exact sequence,

0 −→ KL(D) −→ 
L � 
Gm (−D) ↪→ 
Gm (6.15)

wherein the Gm-equivariant divisor D is defined via the image of 
L in (6.15). Now
the formula (6.14) is unchanged by passing to the algebraic closure so we may as well
do this so that the function field of a component Dx of D is rational. Moreover Gm is a
diagonalisable group, so on completing in Dx we can, [8, Exposé VIII, 4.1], linearise
the action in the ring of formal functions, ̂O, at the generic point of Dx by way of,

s �→ λ−qx s, t �→ λ�x t, k(Dx ) = k(s), ̂O = k(s)[[t]] (6.16)

for some positive integer �x prime to p. In addition,L is étale locally the coarsemoduli
of the action of Gm on L so from (6.15) we have a map,

KL|L −→ KL(D) (6.17)

whose Gm-equivariant image we may perfectly well calculate in an étale neighbour-
hood of Dx . Thus we may take an �x th root of s in (6.16) to conclude that a coordinate
in the complete local ring of OL at x is given by,

z = tqx s1/�x . (6.18)

Putting all of this together, by (6.15) and (6.16), KL(D) is generated by ds and
D = Dx is reduced while from (6.18), the order of vanishing of (6.17) along Dx is
qx so altogether, the local additive form of (6.17) around x is,

KL = KL|L + (qx − 1)Dx . (6.19)
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Finally Lx = qx Dx by (6.18) and off D (6.17) is an isomorphism, whence
(6.14). �	
Putting this together with Fact 4.5 we have therefore,

Fact 6.5 Let F ⇒ X be an absolutely Q-Gorenstein foliation by curves of a Deligne–
Mumford champ over a perfect field k, with f : L −→ X an invariant map from a
connected smooth 1-dimensional k-champ which is bi-rational at its generic point and
does not factor through the absolutely singular locus Z ↪→ X, with f : [L/Gm] −→
Y = [E/Gm] the lifting of (4.12) to the Gorenstein covering champ γ : Y → X, for
Q = pR, q = pr , as encountered in Fact 4.5, and r+ := max{0, r − R},

deg KL(r+) + deg f −1(Z)red + W � (qQ) · KF · f L, (6.20)

with degrees understood in [L(r+)/Gm] after correction for the generic stabiliser, so
if Qqx is the cardinality of the stabiliser at x in L relative toL, then the corresponding
point in [L(r+)/Gm] has a stabiliser of cardinality max {1, qx Q/q}.
Proof This is just a recapitulation of Fact 4.5 and Fact 6.4. �	
Finally we can, therefore, deduce

Fact 6.6 Let everything be as in Fact 5.7 with X normal over a prefect field k. As such
wemay apply the simplifying Remark 1.14 to suppose that the relative stabilisers of the
Gorenstein covering champ Y = [E/Gm] −→ X are all powers of the characteristic
(so Y = X in characteristic zero) then the normalisation, f : L −→ X, of a KF
negative 1-dimensional champ which is not absolutely singular lifts, in the notation
of (6.20), to a curve,

[L(r+)(r+)/Gm] −→ [E/Gm] (6.21)

such that deg(KL(r+)) < 0. Moreover there is at most one point, ∞ ∈ L where any of
the following might occur,

(a) (4.15) is not an isomorphism;
(b) The ramification of L over its moduli |L| is wild;
(c) Supposing the simplification of Remark 1.14, modulo the generic stabaliser,

[L(r+)/Gm] �= L in a neighbourhood of ∞.

Thus if oneof these occurs, thenanyother that occurs happens at the sameuniquepoint.
Further continuing to suppose the simplification ofRemark1.14, let q+ := max{q, Q},
then we have a (possibly non-trivial) fibration,

Bμq+ [L(r+)/Gm]

L
(6.22)

and if none of (a), (b) or (c) occur, resp. one such does occur, modulo its generic
stabiliser L, resp. L\∞ is a prime to p-orbifold of positive Euler characteristic, resp.
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[A1/μ�] for some integer � prime to the characteristic, and, in either case, [L(r+)/Gm]
is covered by P1

k if k is algebraically closed.

Proof By way of notation let m be the cardinality of the generic stabiliser of L, Gx

the stabiliser of a point x of L modulo the generic one, qx the order of the relative
stabiliser of [L(r+)/Gm] over L, with Zx , respectively Wx , the contribution, if any at
x , of the absolute, resp. wild ramification of (4.17), and wx any excess ramification
should L over |L| be wild there; then by (6.20),

mqQKF · f L = − 2 +
∑

x

(

1 + 1

qx |Gx | (qxwx + Zx + Wx − 1)

)

(6.23)

wherein −2 is the degree of the canonical bundle of the necessarily rational moduli.
As such if either (a) or (b) occur at x then they contribute at least one to the right
hand side of (6.23), so they can happen at most once and in the same point. Similarly
by Fact 4.6 if (c) occurs at x , then so does (a), which proves the first part. As to the
second part, the diagram (6.22) is automatic since everything is normal, while should
neither (b) nor (c) occur then modulo the generic stabiliser L is certainly a prime to
p orbifold. Consequently, without loss of generality there is a point ∞ where at least
one of (a), (b), (c) has occurred, so |L| ∼−→ P1

k , while for x �= ∞, qx = 1, |Gx | is
prime to p, and,

0 > mqQKF · f L � − 1 +
∑

x �=∞

(

1 − 1

|Gx |
)

(6.24)

so either everyGx has cardinality 1, or there is a unique point x �= ∞where |Gx | > 1,
thus modulo its generic stabiliser L\∞ is [A1

k/μ�] with μ� = Gx . Finally if k is
algebraically closed, we can apply Corollary A.4 in the former case, and Corollary
A.6 to find a map from P1

k to [L(r+)/Gm]. �	
A priori this doesn’t apply to normal surfaces since in the proof of Fact 6.1 we took
refuge in the subterfuge of working over finite fields, nevertheless,

Fact 6.7 Again, let F ⇒ X be a foliation by curves of a normal bi-dimensional proper
champover a perfect field k of positive characteristicwhich is absolutelyQ-Gorenstein
in codimension 2, with f : L → X the normalisation of a KF -negative invariant
sub-champ which is not absolutely singular, then eitherF is Q-Gorenstein in a neigh-
bourhood of L, and Fact 6.6 applies as stated, or there is a unique point ∞ whose
image under f does not admit a Q-Gorenstein neighbourhood, and the description of
(6.22) et seq. outwith ∞ applies.

Proof Let XS/S be a model over a finite type affine scheme over the prime field, then
at a closed point s ∈ S with k(s) of finite cardinality the right hand side of (6.23) is at
least −2, which bounds the generic stabiliser independently of s. Thus if none of (a),
(b), (c) occur we have,

0 > mqQKF · f L = − 2 +
∑

x

(

1 − 1

|Gx |
)

(6.25)
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with bounded left hand side, which in turn bounds the cardinalities |Gx | independently
of s. Otherwise, (6.24) applies to bound |Gx | independently of s for x �= ∞s , which,
a priori depends on s, but any normal surface has at most finitely many points which
aren’t Gorenstein, so, in fact, ∞s is the specialisation to k(s) of a unique point ∞
independent of s. �	
This in turn has some attractive corollaries, to wit:

Corollary 6.8 Let everything be as in Fact 6.7 with X ′ the Q-Gorenstein locus, and

Y ′ γ−→ X ′ the Gorenstein covering champ in the presence of the simplification of
Remark 1.14, and suppose moreover that X is a Mori fibre space, i.e. either (b) or (c)
of Corollary 6.3, occur with Z the absolutely singular locus then if,

(a) NS1(X) has rank 1, all invariant curves which aren’t absolutely singular meet Z
in a unique point ∞, which, in turn is the only point where irreducible invariant
curves (even the absolutely singular ones) can meet, X ′ coincides with X off Z,
and the foliation defines a map Y\∞ → Y/F to a curve, every non-absolutely
singular fibre of which is described by Fact 6.6–Fact 6.7 so, in particular, covered
by A1

k .
(b) NS1(X) has rank 2, so the KF -invariant curves are the fibres of π : X −→ X/F,

while there is a finite (possibly empty) subset F ⊆ Z of absolutely singular fibres,
and we denote by ζ the closure of the locus where any of (a), (b), or (c) occur at
a fibre of π in Y ′ which is not absolutely singular, with ζ ′ the locus (of dimension
at most 0) where X ′ �= X, then off ζ ′ every closed geometric fibre is covered by
P1, while if the dimension of ζ is,

(1) One, it is a section, of π , and ζ ⊃ ζ ′. Furthermore, if it is singular, then it
is absolutely singular, and the fibres of π | Y\ζ ∪ F are described by Fact
6.6–Fact 6.7 so, again, are covered by A1

k .
(2) At most 0, then π | Y\π−1π(ζ ∪ ζ ′) ∪ F is (modulo the generic stabiliser) a

fibration in prime to p orbifolds while A1
k covers π−1(π(ζ ∪ ζ ′))\ζ ∪ ζ ′.

Proof In case (a) all the invariant curves must meet which is already a singularity if
any two meet, and since, by Fact 6.6, there is at most one singularity on any given
not absolutely singular curve, all other such curves must meet a given one in the same
point, which, in turn, must be an absolutely singular point, ∞, by Fact 2.6 as well as
being the only point where an invariant curve which isn’t absolutely singular might,
by Fact 6.7, not lie in Q-Gorenstein locus. Equally, the restriction of the groupoid to
X\Z has a quasi projective normal coarse moduli space, S, say, which by [9, Theorem
2] we can complete in the Hilbert scheme of Y (i.e. extend Y ′ over ∞ by identifying
it there with X ) and normalise to a family Y/S such that Y → Y only contracts the
points, C , over ∞, so by Zariski’s main theorem Y\C ∼−→ Y\{∞}, and S = Y/F.

As to case (b), Fact 6.6 applies as stated at the generic fibre of π , so if ζ meets a
generic fibre, it’s certainly a section, while on taking a model X/S with, again, S of
finite type over the prime field; at the specialisation to a finite field k(s) the criteria (a),
(b), (c) of Fact 6.6 are upper semi-continuous in Xk(s) so ζ ′ ⊂ ζ by Fact 6.7. In item
(1) it remains, therefore to check what happens if ζ is singular. Should this happen,
and it weren’t absolutely singular then Fact 2.6 would apply so π of op. cit. would
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be the current π of Corollary 6.8.(b), with ζ a fibre and transverse to the fibres at the
same time, which is nonsense. Finally (2) is just a restatement of Fact 6.6 for fibres
missing ζ ∪ ζ ′, and Fact 6.7 otherwise. �	

A Appendix: One-dimensional Mori theory

To avoid some technicalities we’ll confine ourselves to the following,

Set Up A.1 We denote byL /k a connected proper 1-dimensional Deligne–Mumford
champ smooth over an algebraically closed field k. As such there exists a finite group
�, the generic stabiliser, such that L is a fibration,

B� L

λ

L
(A.1)

where L/k is again a proper 1-dimensional Deligne–Mumford champ smooth over k,
but without generic monodromy. Similarly by [12, 1.3], there is a moduli map, which
is a generic isomorphism, to a smooth k-curve

L μ−→ |L| (A.2)

and we write Gx for the stabilisers of (A.2). Consequently, we have the formulae,

deg(KL) = deg(K|L|) +
∑

x

(

1 + wx − 1

|Gx |
)

, deg(KL ) = |�|−1deg(KL)

(A.3)

where wx is any excess ramification occasioned by wild effects in positive character-
istic, and we say that L is tame if all the wx are zero, or, equivalently every |Gx | is
prime to the characteristic.

To set the scene let us recall,

Revision A.2 If deg(KL ) < 0 and L is tame, then L has finite fundamental group
with universal cover a weighted projective champ, i.e. the classifier of the action,

Gm ×A2
k\{0} : λ×(x, y) �→ (λmx, λn y) (A.4)

for m, n relatively prime to themselves and the characteristic. Furthermore there is a
non-trivial map P1

k → L .

Proof From (A.3), |L| ∼−→ P1
k and at most 3 points have |Gx | �= 1, while everything

is tame so by [7, Exposé XIII, 5.1] the fundamental group of L is the same as the
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characteristic zero orbifold fundamental group. As such, if there is at most one such
point thenL is simply connected, while if there are two, |G0|, |G∞| then the universal
cover is the fibre of (A.2) over multiplication in |L| by their greatest common divisor,
and otherwise L has P1 as its universal cover. Thus, without loss of generality, we
may suppose that L is the classifier of (A.4). In particular, it’s simply connected, and
whence for Z = Z ′⊕ Z ′′ the decomposition of the centre of G into its prime to, resp.
divisible by, the characteristic parts the isomorphism classes of gerbes satisfying (A.1)
are, by [5, 3.3.3],

H2(L, Z) = H2(L, Z ′)
∏

H2(L, Z ′′). (A.5)

Now for characteristic p > 0, we can address the p-divisible part inductively via the
Artin–Schreier sequence,

0 → Z/p → OL
x p−x−−−→ OL → 0 (A.6)

and since μ is tame, it’s acyclic, so,

Hi (L,OL) = Hi (|L|, μ∗OL) = Hi (|L|,O|L|) = 0, i > 0 (A.7)

thus the only possibility for a non-trivial gerbe is the prime to p part which we put in
its proper context, to wit:

Claim A.3 Let d be an integer, not necessarily prime to the characteristic, and L the
weighted projective champ of (A.4), then, there is a canonical isomorphism,

H2(L, μd)
∼−−→ Z/d (A.8)

and the isomorphism class of a gerbeL → L in the left hand side of (A.8) trivialises
after pulling back along the endomorphism of (A.4) defined by,

d : L → L : (x, y) → (xd, yd). (A.9)

Proof of Claim A.3 Instead of (A.6) we use the Kummer sequence,

0 → μd → Gm
d−→ Gm → 0 (A.10)

and since L is generically |L| there is no Brauer group by Tsen’s theorem, whence
there is an exact sequence,

Pic(L)
d−→ Pic(L) → H2(L, μd) → 0. (A.11)

On the other hand a line bundle on L is, by (A.4), a line bundle on A2 with Gm-action.
The former, however, must be trivial, so we have a canonical isomorphism,

Pic(L)
∼−−→ Z (A.12)
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which proves (A.8), while d∗ of (A.9) is multiplication by d on the Picard group, so
the gerbe trivialises after pulling back along the same. �
Consequently our original gerbe, (A.1), restricted to the universal cover trivialises
after pulling back along (A.9) with d = |Z ′|. �	

Notice en passant a bonus thatwe used in Fact 6.6whenever theGorenstein covering
champ has non-trivial μp monodromy at the generic point of our curve, to wit:

Corollary A.4 Suppose in addition that L → L is as in Fact 6.4, with deg(KL) < 0
and L tame, then there is a non-trivial map P1

k → [L/Gm].
Proof As usual we suppose the simplification of Remark 1.14 so that all relative
stabilisers of the Gm-action on L are powers of the necessarily positive characteristic,
p. In any case, by (6.14), deg(KL ) < 0 so, Revision A.2 applies to yield a map
P1
k → L along which we can pull back [L/Gm], so, without loss of generality L

is P1
k . Equally for Q as in Fact 6.4 we can factor [L/Gm] → L as a fibration in

BμQ ’s over a gerbeL
′ → L which is a generic isomorphism with relative stabilisers

the μqx of (6.14), and quite generally for pr � maxx qx , the r th iterate of Frobenius
L (r) → L factors through L ′. Thus, without loss of generality L ′ = P1

k too, and
there are no twisted forms of μQ over P1

k so Claim A.3 applies with d = Q. �	
Now we have to do the same in the wild case, starting with,

Fact A.5 Suppose the characteristic is p > 0, and let K be the fraction field of
k[[T−1]], then there is a pro p-group, P, such that:

π1(K )
∼−→ P×

∏

� �=p

Z�(1), � prime. (A.13)

Better still on identifying k[[T−1]] with the completion at ∞ of P1
k any étale covering

of Spec(K ) extends to an étale cover of A1
k

∼−→ P1
k\{∞}.

Proof Most of this is in [10], including the better still which is the key case of the main
theorem 1.4.1 of op. cit.. However, op. cit. 1.4.12 only asserts that (A.13) is a semi
direct product, which is a priori weaker if � | p − 1. In any case, since p-groups are
soluble, and the smallest Galois covering of a covering with fibre of cardinality n has
group a sub-group of Sn it will suffice to start with a Galois extension L whose group,
G, is a semi-direct product Z/p�μn for n prime to p and to show that it’s actually a
product. To this end, apply the main theorem of op. cit. to extend this to a G-covering
g : C → P1 which is étale over Gm and factors as an étale cover of T �→ T n at
the origin, 0. As such g−1(0), counted without multiplicity, has cardinality p. Now
choose a point c in the fibre over zero, then its stabiliser in G is a copy of μn whose
orbit under conjugation is either itself or p copies of it. In the first case we’re done,
and should the latter case occur no two stabilisers of points over 0 are the same, so we
get a cover g′ : C ′ := C/μn → P1 with 1 + (p − 1)/n points over the origin where,
apart from the image of c, g′ is ramified to order n everywhere else. If, however, we
appeal again to Katz’s main theorem, g′ must be the extension over P1 of the not a
priori Galois, p-extension K ↪→ Lμn , whence the absurdity, op. cit. 1.4.2, that this is
un-ramified at 0. �	
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At which juncture we can conclude,

Corollary A.6 Let everything be as in Set Up A.1, and suppose that deg(KL ) < 0,
then even if L → |L| is wild, then it still has finite fundamental group with universal
cover (A.4) for some m, n prime to p. In particular Corollary A.4 holds without the
tameness assumption.

Proof The in particular is clear since all we used in the proof of Corollary A.4 was
that (A.4) defined the universal cover. Irrespectively, on identifying |L| with P1

k , by
(A.3) there can be at most one non-tame point, ∞, say, and at most one other with
non-trivial monodromy, say, 0 with monodromy μm , (m, p) = 1, where, for obvious
notational reasons m = 1 is allowed. Now, by Fact A.5 the monodromy, G, splits as
a product of μn , (n, p) = 1 with a p-group, P , and the latter extends to a Galois P
cover g : C → P1 ramified only in∞. As such if we replace a neighbourhood of every
point in g−1(0), resp. the point in g−1(∞), by the classifier of the action of μm , resp.
μn , on a sufficiently small étale neighbourhood of 0, resp. ∞, then we get an étale
P-covering C → L. In particular deg(KC) < 0 while, by construction, C → |C| is
tame so we conclude by Revision A.2. �	
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