
RESEARCH ARTICLE
www.small-journal.com

Neural Network-Enabled Multiparametric Impedance Signal
Templating for High throughput Single-Cell Deformability
Cytometry Under Viscoelastic Extensional Flows

Javad Jarmoshti, Abdullah-Bin Siddique, Aditya Rane, Shaghayegh Mirhosseini,
Sara J. Adair, Todd W. Bauer, Federica Caselli,* and Nathan S. Swami*

Cellular biophysical metrics exhibit systematic alterations during processes,
such as metastasis and immune cell activation, which can be used to identify
and separate live cell subpopulations for targeting drug screening.
Image-based biophysical cytometry under extensional flows can accurately
quantify cell deformability based on cell shape alterations but needs extensive
image reconstruction, which limits its inline utilization to activate cell sorting.
Impedance cytometry can measure these cell shape alterations based on
electric field screening, while its frequency response offers functional
information on cell viability and interior structure, which are difficult to
discern by imaging. Furthermore, 1-D temporal impedance signal trains
exhibit characteristic shapes that can be rapidly templated in near real-time to
extract single-cell biophysical metrics to activate sorting. We present a
multilayer perceptron neural network signal templating approach that utilizes
raw impedance signals from cells under extensional flow, alongside its
training with image metrics from corresponding cells to derive net electrical
anisotropy metrics that quantify cell deformability over wide anisotropy
ranges and with minimal errors from cell size distributions. Deformability and
electrical physiology metrics are applied in conjunction on the same cell for
multiparametric classification of live pancreatic cancer cells versus cancer
associated fibroblasts using the support vector machine model.

1. Introduction

The phenotypic heterogeneity of cancer, immune and stem cell
systems[1] that exhibit subpopulations to serve their multiple
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functions,[2] highlights the need for tools
capable of quantifying and separating such
subpopulations.[3] Cell surface markers
enable phenotypic quantification by flow
cytometry after binding to fluorescently
labeled antibodies. However, markers are
not available for many cell phenotypes,
while the sample preparation steps are
time consuming, require costly chemicals,
introduce a degree of selection bias, and
can adversely affect maintenance of cell
viability within longitudinal studies.[4]

Cellular biophysical properties,[5] such
as their size distribution, deformability,
membrane morphology, and nucleus to
cell size are correlated in many contexts
to cell function. Since they do not require
labeling, they present a complementary
set of metrics to identify and separate live
cell subpopulations, with minimal sample
preparation. Biomechanical properties of
cancer cells are particularly of interest for
identifying metastatic subpopulations,[6]

since the early-stage in the metastasis of
solid tumors is associated with stiffening
of the tumor microenvironment (TME),[7]

which is detected by cell mechano-sensing
pathways[8] to cause systematic alterations in cellular
deformability.[9] Hence, these metrics can potentially be used
to identify and sort metastatic cells for targeting the screening
of drugs that inhibit metastasis.[10] This is especially relevant in
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pancreatic cancer (from pancreatic ductal adenocarcinoma or
PDAC) that is the third leading cause of cancer deaths,[11] due
to its propensity for tumor metastasis.[12] Mechanical properties
are essential to PDAC cell metastasis[13] due to its highly fibrotic
and poorly vascularized TME.

Contactless single-cell deformability cytometry is often con-
ducted under microfluidic viscoelastic flows that cause shear,[14]

extensional[15] or compressive forces,[16] using high-speed imag-
ing to measure alterations in cell anisotropy.[17–19] While high-
speed imaging provides accurate spatial information on cells,
it is not well-associated with their functional attributes, such
as cell viability. Furthermore, due to the size, interior shape,
and compositional diversity of cellular subpopulations, it is chal-
lenging to acquire focused single-cell images at high through-
put for quantification of cell deformability. Hence, extensive im-
age reconstruction is required,[20,21] which is often conducted
offline, thereby limiting its utilization in near real-time to ac-
tivate sorting.[22] Impedance cytometry for single-cell biophysi-
cal analysis,[23–25] has been associated with cell function within
many contexts, such as immune cell activation,[26,27] red blood
cell infection[28,29] cell health,[30] classification of apoptotic states
of cancer cells[31,32] altered nucleus to cell size to monitor
stem cell cycle characteristics,[33] and cancer cell subpopula-
tions after co-culture with associated fibroblasts.[34] Prior work
on deformability-based classification by impedance analysis has
used constrictions to cause cell deformation[35,36] which is lim-
ited by the broad cell size distributions in typical samples and
the associated clogging that limits throughput. Viscoelastic cross-
flows address this limitation,[37] but the cell deformation is in-
stantaneous and the dynamic range for anisotropy modulation
is limited, which motivates this work on impedance cytome-
try under hyperbolic extensional flows for contactless and pro-
gressive single-cell deformation to high shape anisotropies (≈3-
fold). Furthermore, unlike 2D image information that requires
extensive signal processing, 1D temporal impedance signals ex-
hibit characteristic shapes[38] that can be rapidly templated using
neural networks to extract single-cell metrics[39,40] such as size,
anisotropy, velocity, membrane capacitance and cytoplasmic con-
ductivity for enabling high throughput biophysical measurement
and selection.

In this work, using viscoelastic hyperbolic extensional
flows[41–43] that cause high throughput (≈100 cells s−1 at 1–
2×106 cells mL−1), contactless and clog-free cell focusing, spac-
ing and progressively greater cell deformation over the exten-
sional flow length,[44] the shape anisotropy of pancreatic cancer
cells and cancer associated fibroblasts (CAFs) are measured by
impedance and image cytometry over their wide cell size dis-
tributions. While neural networks have been used on thresh-
olded impedance signals to identify relationships between cellu-
lar biophysical metrics[45,46] our innovation is the utilization of a
multilayer perceptron (MLP) neural network for processing raw
impedance signals of diverse shapes after its training with im-
age cytometry data from the same cell for accurate and rapid sig-
nal templating to quantify cell deformability. The interrelation-
ship between impedance signal metrics for quantifying cell shape
anisotropy under microfluidic deformation is first elucidated us-
ing simulations of electric field screening and then optimized us-
ing the MLP network to fit measured impedance data, alongside
training of the network with image cytometry data from the same

cell to extract a net electrical anisotropy index (EAI) that quanti-
fies cell deformability over a wide range of anisotropies (1-3-fold)
and with minimal errors from their wide size distributions (10–
25 μm), as validated against image metrics using cancer cells and
CAFs. Since cellular electrical physiology from the impedance
frequency response of its magnitude (|Z|) and phase (ϕZ) of-
fers orthogonal metrics for cell phenotypic recognition based on
apoptosis, membrane folding and interior structure, the EAI met-
ric is applied in a multiparametric manner with cell electrical
physiology using the support vector machine (SVM) model to
distinguish live cancer cells versus CAFs derived from the same
metastatic patient. This is significant for identifying drug resis-
tant cancer cell subpopulations that arise due to interaction with
CAFs under drug treatment.[47,48] Given the potential of neural
networks for rapid impedance signal templating[39] and speci-
ficity of impedance spectra to cell phenotypes,[40] this work ad-
vances its coupling with image data for the accurate extraction of
cellular biophysical metrics in a multiparametric manner to acti-
vate sorting for isolation of rare cell subpopulations from dilute
samples with unknown phenotypes.[49]

2. Results

2.1. Dependence of Cell Anisotropy Measurement Under
Deformation on Cell Size

Clinically relevant samples of cancer,[50] immune,[51] and stem
cells[33] that exhibit phenotypic plasticity show wide cell size dis-
tributions (10–25 μm), which makes it challenging to measure
cell biomechanical metrics in microchannels.[52] To illustrate the
effect of cell size distributions on impedance metrics for mea-
surement of deformation-induced cell anisotropy alterations over
a wide range (1-3-fold), we use electric field simulations to obtain
impedance signals. This is simulated based on sets of coplanar
electrodes that are patterned at the floor of the pre-deformation,
deformation and recovery zones of a microfluidic hyperbolic ex-
tensional flow to create progressively higher levels of deforma-
tion along its length (Figure 1A), with sufficient length avail-
able for single-cell correspondence to imaging cytometry. Since
impedance signal trains show a typical bipolar signal shape un-
der differential amplification, we focus on the metrics of sig-
nal amplitude and width in the respective zones (Figure 1B). It
is noteworthy that the utilization of viscoelastic flows (2% poly-
ethylene-oxide or PEO with 1x phosphate buffered saline or PBS)
enables elasto-inertial particle focusing across the microchannel
cross-sectional depth,[53] thereby minimizing positional depen-
dence for measurement by coplanar electrodes. This is apparent
from the widely dispersed multiple data clusters of impedance
phase versus particle size in 1x PBS (Figure S1A, Supporting In-
formation) that become narrow single data clusters correspond-
ing to 12 μm and 15 μm particles (Figure S1B, Supporting Infor-
mation). Using electric field screening simulations (Figure 1C) of
model spherical particles with a unitary image-based anisotropy
index or AI in the pre-deformation zone (i.e., A1 = B1), a rel-
atively higher anisotropy index at the end of the deformation
zone (AI = A2/B2>1) and returning to unity in the recovery zone,
we plot the simulated impedance signal amplitude (M1, M2 in
Figure 1Di) and signal width (2𝜎 levels in Figure 1Dii) as a func-
tion of varying anisotropies (1-3-fold) and over wide cell size
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Figure 1. Overview of device simulations to compute impedance signal metrics. A) Progressive deformation of cells under viscoelastic hyperbolic
extensional flow causes alterations to their anisotropy index (AI), as defined by ratio of its length (A) to width (B) in the flow direction, which is measured
in the region prior to deformation (zone 1), during deformation (zone 2) and post-recovery (zone 3) using co-planar electrodes at channel floor, as well
as by imaging (dashed box). B) Impedance signals of particles over the respective zones shows that the non-deformable particle (blue) exhibits invariant
signals, while elongation of the deformable particle (red) along its length and width causes systematic alterations in impedance signal amplitude and
width. C) Simulated electric potential distribution inside the channel (25 × 30 μm) with coplanar electrodes (25 μm width and 15 μm spacing) for:
(i) non-deformable, and (ii) deformable particles,(iii) using 3D simulations. D) Impedance signal metrics for particles with anisotropies of 1 to 3 as a
function of electrical size: (i) Signal amplitude, and (ii) Signal width.

distributions (10-20 μm). While the metrics of signal amplitude
ratio and width increase as expected with particle anisotropy,
their strong dependence on particle size is apparent, making
it challenging to attribute the alterations in their metrics to
anisotropy ratios versus to particle sizes. Hence, we subsequently
utilize fitting methods on simulation data to identify functions
of the respective impedance metrics that reduce the error from
the wide cell size distributions and then optimize this approach
using neural network-based signal templating on simulated and
experimental data.

2.2. Electrical Anisotropy Metric for Deformation Under Wide
Cell Size Distributions

We seek to develop a composite metric for transducing deformed
cell shape anisotropy over a wide range (1-3-fold), with mini-
mal errors from the wide cell size distributions observed in typ-
ical biological samples. For particle dimensions of A, B, and C
along the channel length (x-axis), width (y-axis), and depth (z-
axis) that start out as spherical within the pre-deformation zone
(Figure 2Ai) and become ellipsoidal in the deformation zone
(Figure 2Aii), we assume that its projected area in the xy plane
(i.e., 𝜋

4
AB) and its volume do not change during deformation (i.e.,

volume conservation). This is justified based on our image cy-
tometry results (Figure S2, Supporting Information) that show a

linear plot of unity slope for the data clusters in the deforma-
tion zone (A2B2) versus in the pre-deformation zone (A1B1 in
Figure S2A, Supporting Information) and versus in the recovery
zone (A3B3 in Figure S2B, Supporting Information), with com-
parison in Figure S2E (Supporting Information). Plots of the ratio
of A1B1 to A2B2 in Figure S2C (Supporting Information), and that
of A3B3 to A2B2 in Figure S2D (Supporting Information) yield a
linear data cluster of zero slope that is centered at unity. Hence,
combining the volume conservation assumption (Equation (1))
with observations on the ratio of the product of A and B in the
respective deformation zones (Equation (2)), we can infer that all
particle deformations occur only along the channel length and
width, with minimal alterations along the depth (Equation (3)).
Recalling that A1 = B1, the anisotropy index (AI that depends on
particle length to width ratios in the deformation zone) can be
rewritten solely in terms of particle length, per Equation (4).

A1.B1.C1 = A2.B2.C2 = A3.B3.C3 (1)

A1.B1

A2.B2
= 1; and

A3.B3

A2.B2
= 1 (2)

⇒ C1 = C2 = C3 (3)

AI =
A2

B2
⇒ AI =

(
A2

A1

)2

(4)
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Figure 2. Using impedance signal magnitude and width to compute a composite metric to predict anisotropy: A) (i) initial and (ii) deformed particle
dimensions, B) Fitting method applied to: (i) Pre-deformation zone to compute initial length of spherical particle,(ii) Deformation zone to compute
elongated length of ellipsoidal particle,(iii) Comparing predicted versus real particle anisotropy over a range of particle sizes. C).(i) Multilayer perceptron
(MLP) neural network with an input of signal amplitudes and widths and an output of predicted anisotropies that is optimized for fitting such functions
(ii).

To compute a composite metric for the particle shape
anisotropy under deformation, with minimal errors from par-
ticle size variations, we start with computing a fitting function
between the elongated particle length (A2), using exponentials
of impedance signal amplitudes (M1, M2) and width (2𝜎) to fit
impedance signal simulations (Figure 2B), and then generalize
this approach using a multilayer perceptron (MLP) neural net-
work that is optimized for fitting (Figure 2C). From prior work,[54]

it is known that the initial particle length in the pre-deformation
zone (A1) exhibits a cube-root dependence on impedance magni-
tude (i.e., M1

1/3), per Equation (5), to obtain a fitted linear plot in
Figure 2Bi. Using the logarithmic regression method (see equa-
tion in caption of Figure S3, Supporting Information) to find the
non-linear relationship between impedance signal parameters in
the pre-deformation and deformation zones, a relationship be-
tween signal amplitudes (M1 and M2), width (2𝜎) and particle
length (A2) in the respective zones can be written per Equation (6)
(see, Figures S3,S4, Supporting Information), which can also be
computed as a fitted linear plot in Figure 2Bii to reduce errors
from size variations (Figure 2Biii).

A1 ∼ Y1 = m1X1 + c1; wherein : X1 = M1∕3
1 (5)

A2 ∼ Y2 = m2X2 + c2; wherein : X2 =
(
𝜎

0.75 ∗ M0.24
1 ∗ M−0.20

2

)
(6)

A more generalized approach can be followed by using a
multilayer perceptron (MLP) neural network that is optimized
for fitting such functions (Figure 2Ci; Figure S4A, Support-
ing Information). Using inputs of the X-axes from the plots
in Figure 2Bi,ii, the output of predicted anisotropies is com-
puted based on simulated (Figure S4B, Supporting Information)
and experimental data (Figure S4C,D, Supporting Information).
In fact, the utilization of signal amplitude and width metrics
is essential for obtaining higher R2 values (Figure S4D, Sup-
porting Information) than using signal amplitude metrics only
(Figure S4C, Supporting Information). In this manner, the com-
posite metric determined using the MLP network can predict
the anisotropy over a wide range (1-3-fold), with minimal de-
pendence on cell sizes (Figure 2Cii). While the fitting method
(Figure 2B) is limited when the relationship between (Y2/Y1)2

and the cell shape anisotropy deviates from a linear model, the
MLP network (Figure 2C) can learn the non-linear relationship
between the inputs and output using multiple hidden layers, with
a non-linear activation function, thereby achieving a higher R2

value, due to its inherent complexity and flexibility.
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Figure 3. Device operation and signal analysis. A) Fluidics for sample and sheath flows showing the impedance and image analysis region. B) Analysis
region with hyperbolic extensional flow and the electrical wiring for signal acquisition. C) Time-lapse high-speed images of deformation of: (i) 12 μm
beads (green),(ii) small cells (≈12 μm –red), and (iii) large cells (≈20 μm – blue). D) Impedance signal trains indicating the respective amplitudes (M),
widths (2𝜎) and transit times (𝛿) of the particle in the pre-deformation, deformation, and recovery zones to measure anisotropy based on input metrics
of amplitude (M1, M2, M3) and shape parameter (𝜎2/𝛿2). E) A Multilayer perceptron (MLP) neural network trained with impedance and image cytometry
data is used to derive a net electrical anisotropy index (EAI) for signal templating to extract cell shape anisotropy in the deformation zone. The EAI can
be combined with electrical physiology metrics of the corresponding cells to classify live cancer cells versus CAFs, using the SVM model.

2.3. Electrical Anisotropy Index of Deformability by Coupling with
Image Metrics

Using the MLP neural network, the impedance-based anisotropy
determined from the input of composite metrics (X1 from
Figure 2Bi and X2 from Figure 2Bi) is coupled with the image
anisotropy index (AI of Figure 1A computed by fitting an ellipse
to calculate A and B in each zone) from cytometry data with
single-cell correspondence between the respective metrics, to
derive a net electrical anisotropy index (EAI) for deformability.
This is implemented using a microfluidic chip (Figure 3A,B)
with sheath and sample flows that lead to a hyperbolic profile
for measurement of cell shape anisotropy under viscoelastic ex-
tensional flow using single-cell impedance and image cytometry
of corresponding cells. The analysis region under hyperbolic
extensional flow (Figure 3B) shows the voltage application and
current measurement points in the pre-deformation, defor-
mation, and recovery zones. Image acquisition occurs over
the pre-deformation to the recovery zones (per dashed box in
Figure 1A), with cross-correlation of image and impedance sig-
nal trains used for data synchronization (Figure S5A, Supporting
Information). Typical image cytometry results (Figure 3C) are
indicated as time-lapse measurements of non-deformable 12 μm
polystyrene beads (green), equivalently sized small cancer cells
(red) and larger sized (≈20 μm) cancer cells (blue) in the respec-
tive zones. The impedance signal measured at 0.5 MHz from
currents: I1, I2, I3 and I4, is shown in Figure 3D for particles in
the pre-deformation, deformation, and recovery zones, alongside
their respective signal metrics of amplitudes (M1, M2, M3), signal

widths (2𝜎1, 2𝜎2, 2𝜎3) and transit times (𝛿1, 𝛿2, 𝛿3). Since the
cell electrical size is proportional to image size over the cell size
distribution in the sample (Figure S6A, Supporting Information)
and the cell velocity determined from impedance signals de-
creases with cell size (Figure S6B (Supporting Information), per
velocity profile simulations in Figure S6E,F, Supporting Infor-
mation), the impedance signal trains can be aligned by velocity
normalization to convert them from time domain (Figure S5B,
Supporting Information) to position domain, along the length
or X-axis (Figure S5C, Supporting Information). In this manner,
signal templating can extract the respective signal metrics based
on the amplitude ratios (AR = M1/M2) and shape parameters
(SP = 𝜎2/𝛿2) for neural network-based implementation after
training with image metrics (including back to spherical shape
in recovery zone), for computing the EAI to measure cell shape
anisotropy (Figure 3E) for deformability-based distinction (e.g.,
untreated vs fixed cells). For image-based classification using the
SVM model (e.g., cancer cells vs CAFs), the metrics of single-cell
size and anisotropy (A and B per Figure 1A) were used. How-
ever, due to presence of some dead cells in typical cancer cell
samples that broaden the deformability distributions (discussed
later in Figure 6; Figure S9, Supporting Information), only live
cells were gated in, using ϕZ metrics. For impedance-based
classification, the neural network derived EAI was used for
deformability and combined with electrical physiology from the
impedance frequency response (size or 3

√|Z|0.5 MHz,ϕZ0.5 MHz
& ϕZ18 MHz, and magnitude opacity or |Z|18 MHz/|Z|0.5 MHz)
for distinction based on cell viability and interior
structure.
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Figure 4. Validation of impedance versus image metrics for cell shape anisotropy under hyperbolic extensional flow using untreated and fixed cancer
associated fibroblasts (CAFs), with beads as black symbols. A) Plateauing of impedance amplitude ratio at high image anisotropies,B) Linear rise in
impedance shape parameter with image anisotropy over measured range,C) The neural network derived impedance signal templating to extract electrical
anisotropy index (EAI) after training with image cytometry data shows near-equivalent cell anisotropy levels based on comparison of shape anisotropy
from image cytometry D) to EAI from impedance cytometry E), with comparison of their significance F): *** p < 0.001 (≈2000 events per sample type
for image data and ≈8000 events per sample type for impedance data).

2.4. Validation of Deformed Electrical Anisotropy Index Versus
Image Metrics

The net electrical anisotropy index (EAI) under hyperbolic
extensional flow deformation obtained from the neural net-
work is validated against image-based anisotropy metrics us-
ing cancer associated fibroblasts (CAFs) obtained from a
metastatic patient-derived tumor (T608),[55] measured in un-
treated and fixed states. It is apparent from Figure 4A that the
metric of impedance signal amplitude ratio distinguishes un-
treated versus fixed fibroblasts, but the signal plateaus off at
higher image anisotropy levels, whereas the impedance sig-
nal shape metric rises linearly with image anisotropy over
the entire measured range (Figure 4B). The neural network-
based electrical anisotropy index (EAI) after training with im-
age metrics is able to obtain near-equivalent cell anisotropy
levels, as apparent from the unity slope of the comparison
plot in Figure 4C (R2 = 0.9). Per the image cytometry re-
sults (Figure 4D), fibroblasts shows a broad size range (≈11–
18 μm) and exhibit a broad range of cell shape anisotropies
under hyperbolic extensional flow deformation (1-3-fold) in
the untreated state, while fixed cells show only a mild in-
crease in cell shape anisotropy. The cell shape anisotropy
measured from the respective impedance signals after neural
network templating to extract the composite metric shows a

similar trend (Figure 4E), as summarized in the violin plot
of Figure 4F. Impedance metrics are also able to measure
cell anisotropy alterations from deformation to the recovery
zones (Figure S7B, Supporting Information), based on similar-
ity of their trends to image cytometry (Figure S7A, Supporting
Information).

To illustrate merits of the respective deformability metrics
based on the impedance amplitude ratio (M1/M2), shape
parameter (𝜎2/𝛿2) and the neural network-derived EAI,
we compare data from CAFs (Figure 5A) to cancer cells
that exhibit even broader size distributions (12–21 μm in
Figure 5B). While the amplitude ratio metric does not
exhibit the expected steady increase with cell size for fi-
broblasts (Figure 5Ai) and cancer cells (Figure 5Bi), as ex-
pected from simulations Figure 1Di, this trend is apparent
for the shape parameter (Figure 5Aii) and the EAI metrics
(Figure 5Aiii, as expected from the simulations (Figure 1Dii),
thereby improving distinction of the untreated versus
fixed cell populations for fibroblasts (Figure 5Aii) and
cancer cells (Figure 5Bii). The respective cell popula-
tions exhibit a further improvement in distinction based
on the neural network-derived EAI that shows a wider
range of anisotropies, resembling the data from image
metrics for fibroblasts (Figure 5Aiii) and cancer cells
(Figure 5Biii).
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Figure 5. Impedance metrics for measurement of deformed cell shape anisotropy based on impedance signal amplitude ratio (M1/M2) in column
(i), shape parameter (𝜎/𝛿) in column (ii), and the neural network-derived electrical anisotropy index (EAI) in column (iii) for A) Cancer associated
fibroblasts (CAFs), and B) Cancer cells. The ellipses around the respective data clusters illustrate the Gaussian distribution for polystyrene beads (black
– 50% density plots), untreated (blue – 90% density plots), and fixed cells (red – 90% density plots), with ≈7000–8000 events per sample type.

2.5. Combining Deformability and Electrical Physiology Metrics
for Cell Distinction

Electrical physiology from the impedance frequency response
(electrical size or 3

√|Z|0.5 MHz, impedance phase or ϕZ0.5 MHz
& ϕZ18 MHz, and magnitude opacity or |Z|18 MHz/|Z|0.5 MHz) can
provide an orthogonal set of metrics for identifying cellular
phenotype that is often not reflected within their deformabil-
ity properties (e.g., EAI metric), thereby motivating our con-
sideration of combination of these metrics for cell recogni-
tion using impedance cytometry. A prime example is cell via-
bility, which is significant to detect for quantifying drug resis-
tant subpopulations, since cultures of patient-derived cancer cells
that are enlarged within xenograft models often exhibit a back-
ground of apoptotic cells in their untreated state, which fur-
ther increases under drug-treatment. Our prior work with pan-
creatic cancer cells has shown that the ratio of the impedance
phase at low (ϕZ0.5 MHz) to high frequency (ϕZ18 MHz) can be
used to quantify apoptotic cells,[31] as validated by flow cytome-
try after staining for Annexin V, since these metrics are highly
sensitive to alterations in dielectric polarization of the plasma
membrane of apoptotic cells.[56] Using this metric, we can in-
fer that cell viability is not altered under viscoelastic exten-
sional flows, since the number of non-viable cancer cells is un-
changed between the pre-deformation, deformation and recovery
regions (Figure S8, Supporting Information). It is apparent that

cancer cells in the untreated state include some apoptotic cells
(Figure 6Ai), which substantially increase in their drug-treated
state (Figure 6Bi) due to apoptotic cells released from their adher-
ent culture (Figure 6Ci). Apoptotic cells, in general, show lower
deformability (Figure 6Aii,Bii,Cii), but their wide size distribu-
tion broadens their cell deformability distribution, as apparent
in Figure S9 (Supporting Information). Hence, impedance phase
metrics (ϕZ0.5 MHz & ϕZ18 MHz per Figure 6Ai,Bi,Ci) were used
to gate in live cell events only, and exclude apoptotic events for
SVM classification of cancer cells versus CAFs based on image
and impedance based metrics. For live cells, these impedance
metrics also contain information on interior structure for distinc-
tion of pancreatic cancer cells versus CAFs. At lower frequencies
(0.5 MHz) wherein cell membrane induced field screening dom-
inates the impedance response, CAFs exhibit lower electrical size
and lower ϕZ in comparison to cancer cells (Figure S10, Support-
ing Information), while CAFs exhibit higher magnitude opacity
and ϕZ levels at higher frequencies (18 MHz) due to passage of
electric fields to the cell interior. Using only live cells events, the
image metric (Figure 7A) and the EAI metric (Figure 7B) can dis-
tinguish the higher deformability of CAFs versus cancer cells.
The SVM model classification results (Figure 7C) with positive
predictive values or PPV and negative predictive values or NPV
in Figure S11 (Supporting Information) show that the neural
network-derived EAI metric performs better than the component
impedance amplitude ratio and shape parameter metrics, and is
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Figure 6. Impedance phase (ϕZ) at 18 MHz versus 0.5 MHz is used to classify live versus apoptotic cells based on: A) (i) untreated, and B) (i)
gemcitabine-treated (1μg mL−1) cultures that include the apoptotic cells released from the adherent culture in C) (i). Cell deformability measured
through the EAI metric exhibits broader distributions upon inclusion of apoptotic cells with live cells, as apparent after gating the live versus apoptotic
events (Figure Aii, Bii, Cii) using their respective ϕZ data (Figure Ai,Bi,Ci), with ≈7000 events per sample type and the gate outlines for each sample
type enclosing >90% of the data.

comparable to the combined image metrics obtained after gating
in live cells. The combined electrical metrics from the EAI and
electrical physiology perform better than the EAI only, and the
classification is on par with the combined image metrics used to
train the neural network.

3. Conclusion

Impedance signal templating strategies advance the vision of
rapid inline extraction of cellular biophysical metrics from single-
cell signal trains to quantify cell deformability and electrical phys-
iology, as well as utilize this information to activate sorting. How-
ever, the wide cell size distributions within typical samples make
it challenging to attribute the alterations in impedance metrics to
deformed cell anisotropies versus to cell size variations. Hence,
based on simulated data obtained from electric field screening
in the microfluidic device, a fitting method and a neural net-
work model are used to learn the non-linear relationships be-
tween the single-cell deformed particle width and length with the
impedance signal amplitudes and widths in the pre-deformed,
deformed and recovery regions for measuring cell deformation
under viscoelastic extensional flow. In this manner, a compos-
ite impedance metric can be derived for measuring deformed
cell shape over a wide range of anisotropies (1-3-fold) and with
minimal errors from their wide cell size distribution (10–25 μm).
This composite metric is then implemented with impedance sig-
nal trains from experimental data of cells deformed under vis-
coelastic hyperbolic extensional flows and trained with image

anisotropy data on corresponding cells using a multilayer per-
ceptron neural network to enable computation of a net electri-
cal anisotropy index or EAI that exhibits equivalent sensitivities
to image cytometry data, after gating in live cell events only, as
validated with pancreatic cancer cells and cancer associated fi-
broblasts. We chose the MLP network for training with image
data to improve the accuracy for cell shape anisotropy quantifica-
tion by impedance signal templating, since this network reduces
computational time and enables near-sensor signal analysis for
near real-time extraction of cell metrics to activate downstream
sorting. In fact, coupling of the impedance signal amplitudes,
widths, and transit times of cells in pre-deformation, deforma-
tion and recovery regions of the extension flow, as obtained by
the net electrical anisotropy index, offers improved distinction
ability between cell phenotypes of wide size distributions (10–25
μm), with cell shape recovery after deformation possibly offering
information on the cytoskeleton viscosity.[57] However, electrical
physiology based on impedance frequency response (|Z|, ϕZ at
0.5 and 18 MHz) can offer orthogonal metrics for identification
of cell phenotype. For instance, the inclusion of apoptotic with
live cancer cell events broadens their deformability distributions
to limit their distinction, leading us to gate in live cell events for
improving phenotypic distinction. Hence, while the EAI metric
can distinguish the higher deformability of CAFs versus cancer
cells, its application in conjunction with electrical physiology in-
formation from impedance frequency response on the same cell
improves SVM-based classification, with performance parame-
ters for the combined electrical metrics (Figure S11, Supporting
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Figure 7. Distinction of pancreatic cancer cells versus cancer associated fibroblasts (CAFs) derived from the same metastatic patient using: A) image-
based deformability metrics (≈2000 events per sample type), B) neural network-derived electrical anisotropy index (EAI) (≈7000–8000 events per sample
type), C) SVM classifier based on: (i) electrical physiology (electrical size or 3

√|Z|0.5 MHz, impedance phase or ϕZ0.5 MHz & ϕZ18 MHz, and magnitude opac-
ity or |Z|18 MHz/|Z|0.5 MHz),(ii) EAI from deformability,(iii) Combined electrical metrics from (i) and (ii). The confusion matrix for all metrics (impedance
and image) shows the event numbers in brackets and the % values, with the respective sensitivity, positive predictive value (PPV), negative predictive
value (NPV) and accuracy reported for each metric in Figure S11 and Table S1 (Supporting Information). To quantify efficiency of this classification, the
ROC (receiver operating characteristic) curve and the AUC (area under curve) are presented in Figure S12 (Supporting Information).

Information) that are on par with the combined image metrics
after gating in live cell events. The SVM model,[58] which can
be extended for multi-class classification by using approaches
such as “one-versus-one” or “one-versus-all”, was chosen since
it works well with smaller datasets to find the optimal separat-
ing hyperplane between classes, rather than classification meth-
ods that are better suited to larger datasets, which require more
intensive computation. Given the potential of neural networks
for rapid impedance signal templating and the specificity of the
impedance frequency response to cell viability and interior struc-
ture, we envision that the reported image-based training method
can improve taccuracy of cell deformability quantification and
combined with multiparametric electrical physiology informa-
tion for near real-time extraction of biophysical metrics to activate
sorting of rare cell subpopulations with unknown phenotypes.

4. Experimental Section
Impedance Signal Simulations: The electric fields and currents were

simulated by using COMSOL electric current module, using a rectangu-
lar channel design of 25 μm by 30 μm cross section, and three coplanar
electrodes of 25 μm in width and 15 μm in spacing. A voltage signal of
3Vpp at 0.5MHz was applied to the middle electrode, while the voltage of
the adjoining electrodes was maintained at ground level (0 V) for simu-
lating the differential current. To simulate a deformable particle, a sphere

was passed across the electrodes in the pre-deformed region, followed by
the same measurement in the deformed region as an ellipse of same vol-
ume and diameter in the z-axis, but differing anisotropy in image plane
(xy-plane). The generated signal was fitted to a bipolar Gaussian function
to determine its peak amplitude and signal width in MATLAB (R2022a,
MathWorks). Separately, the shear rate and velocity within the hyperbolic
channel was modeled in COMSOL laminar flow module.

Device Design and Integration: The microfluidic device with a hyper-
bolic extensional flow profile (Figure 3A,B) that constricts to 25 μm (> cell
size) was fabricated by standard SU8 lithography (EVG 620) for PDMS mi-
cromolding and then aligned to gold electrodes that were patterned on a
glass coverslip for bonding under an O2 plasma (Tergeo Cleaner, PIE Sci-
entific). A 3D printed holder was used to establish electrical contacts using
a pogo pin assembly, with an open area to enable high speed imaging for
image cytometry.

PDAC Cell Sample Preparation: PDAC tumor and CAFs samples from
the anonymized patient, labeled MAD 08–608, were generated from rem-
nant human tumor surgical pathology specimens in collaboration with
the University of Virginia Biorepository and Tissue Research Facility. The
protocol was approved through the University of Virginia Institutional Re-
view Board (IRB) for Health Sciences Research (approval IRB-HSR number
13 529), and as part of the protocol, informed written consent of each par-
ticipant was obtained for utilization of the tissue samples in this research.
The tumor was propagated orthotopically in the pancreata of immuno-
compromised mice, which was conducted in strict accordance with the
Guide for the Care and Use of Laboratory Animals of the United States Na-
tional Institutes of Health, per protocol 4078, approved by the Animal Care
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and Use Committee of the University of Virginia. The cells were transduced
with firefly luciferase lentivirus (KeraFAST), selected using puromycin and
maintained in RPMI 1640 with 10% FBS and 2 mM glutamine (complete
medium), with fresh aliquots used for the reported experiments. For cell
culture, cancer cells and CAFs were plated at an initial density of ≈500000
cells per 6 well plate and maintained using a media containing Dulbecco’s
Modified Eagle Medium (DMEM, Thermo Fisher Scientific), 10% Fetal
Bovine Serum (Thermo Fisher), and 1% penicillin streptomycin (Thermo
Fisher). The respective samples of fixed cells were prepared by suspending
cells in 4% methanol-free formaldehyde for 8 min, followed by addition of
0.127 M glycine for 5 min to terminate the fixation.

PDAC Cell Drug Treatment: PDAC T608 cancer cells in monoculture
were exposed to 1 μg mL−1 of gemcitabine (University of Virginia clinical
pharmacy) for 48 h in complete medium. This drug condition was known
to drive the cells under monoculture towards apoptosis.[31] Untreated
control samples were kept under the same culture conditions and period
as treated samples, for comparative analysis. Cells were trypsinized and
analyzed by flow cytometry after fluorescent staining, and by impedance
cytometry. Cell culture media was aspirated and stored to recover float-
ing cells. The remaining adherent cells were washed in 1× PBS (Thermo
Fisher) and enzymatically detached from the plate using 0.05% trypsin in
1× PBS for 10 min at 37 °C. The cells fractions were resuspended into a
total volume of 5 mL DMEM with 10% FBS and 1% pen-strep (Thermo
Fisher) and centrifuged at 300 g for 10 min. DMEM was then aspirated,
and the cell pellet was resuspended in 1xPBS, 500 mM EDTA (Fisher Sci-
entific), and 0.5% Bovine Serum Albumin (Sigma Aldrich) and filtered
through a 100 μm cell strainer.

Measurement Set-Up for Impedance and Image Cytometry: To measure
cell deformation in the microfluidic device under hyperbolic extensional
flow, cells (concentration of ≈1−2 × 106 /mL) with co-flowing polystyrene
beads (12 μm at a concentration of ≈1.2 × 105 /mL) were suspended in
2% (w/w) PEO solution and introduced via a syringe pump (neMESYS,
Cetoni) into the sample inlet at a flow rate of 6 μL min−1, accompanied
by a sheath flow of 2% (w/w) PEO solution at the same flow rate from
the sheath inlet, per Figure 3A. Single-cell impedance signals were mea-
sured at the pre-deformation, deformation, and recovery zones of the mi-
crofluidic channel using an impedance spectroscope (HF2IS, Zurich In-
struments). In the deformation zone, the conventional differential mea-
surement method was conducted by applying a voltage signal (at 0.5MHz
and 18MHz, each with a magnitude of 3Vpp) to the middle electrode and
measuring the differential current from the side electrodes via a differen-
tial current amplifier (HF2TA, Zurich Instruments). Electrode wiring in the
pre-deformation and recovery zones was adjusted to enable impedance
measurement using fewer channels by using two voltage signals of equal
magnitude and frequency, but with opposite phases (0 and 180°) that
were applied to the side electrodes, with currents at the middle electrodes
measured using the same differential current amplifier. The signals were
recorded for subsequent processing.

Signal Processing: The recorded impedance data were processed and
analyzed utilizing MATLAB (R2022a, MathWorks). Initially, raw signals un-
derwent filtering with a high pass filter to eliminate baseline and power
line noise, along with a low pass filter for signal smoothing. Subsequently,
a peak detection algorithm was implemented to identify events associ-
ated with cell passage through the electrodes. Each corresponding sig-
nal was then fitted to a bipolar Gaussian function to extract peak and sig-
nal width values across each zone (pre-deformation, deformation and re-
covery). Peak values were normalized against the mean peak value of 12
μm polystyrene beads, while signal width was normalized against particle
transit time to determine the shape parameter that accounts for particle
velocity. Following this, the shape parameter values were divided by the
mean shape parameter of the 12 μm polystyrene beads. The amplitude
and shape parameter values of the beads were scaled to unity. Typically,
6000–7200 events were detected over a 1-minute period in samples with
1–2×106 cells mL−1, giving a measurement throughput of ≈100–120 par-
ticles s−1. Of these 6000–7200 events, ≈5% were discarded during sig-
nal processing because they were not well fitted by a bi-polar Gaussian
(R-square < 0.95), suggesting the occurrence of coincidences. The oc-
currence of coincidences depends on the expected number of particles

in the sensing zone[44] (𝝁 = cv, wherein c was the sample concentra-
tion and v was the sensing zone volume). Plots of coincidences as a
function of the cell concentration were computed in Figure S13A (Sup-
porting Information) and measured in Figure S13B (Supporting Informa-
tion), with the hyperbolic extensional flow spacing out coinciding events
(Figure S13C, Supporting Information), which can be processed to im-
prove their resolution.[44]

Image processing: A Phantom S210 camera connected to the Eurosys
frame grabber card was utilized to capture video images in bright field
mode. The recording utilized a resolution of 1280 by 256 pixels, a frame
rate of 4000 fps, and an exposure time of 10 μs. Subsequently, custom
Python code was utilized to process the frames, involving the subtraction
of each frame from the reference frame, followed by the application of a
weighted average kernel filter to enhance image quality. An event detec-
tion algorithm was then applied to identify particles passing through the
channel, alongside an edge detection algorithm to measure anisotropy,
achieved by fitting ellipses around the particles. Synchronization of im-
age events with the impedance signal trains was accomplished using the
cross-correlation method to align impedance and image events.

Neural Network and Machine Learning Implementation: A Multilayer
Perceptron (MLP) neural network, configured with 30 hidden layers was
implemented in MATLAB to train the network using the impedance
metrics of electrical size, amplitude values, and the composite index
that includes signal widths. Supervised learning was utilized with image
anisotropy data to predict the electrical anisotropy index. Initially, 70% of
the dataset, comprising 7930 events corresponding untreated and fixed fi-
broblast and cancer cells, was allocated for training, while the remaining
30% was reserved for testing the network’s performance. Subsequently,
another data set containing impedance metrics was utilized to evaluate
the network’s performance. Following the MLP neural network training, a
Support Vector Machine (SVM) was employed to classify fibroblast and
cancer cells according to their impedance metrics and deformability in-
dexes. The SVM classification model underwent training utilizing 70% of
a dataset, randomly selected from approximately 8000 fibroblast cells and
7000 cancer cells, with the remaining portion reserved for testing model
accuracy. Prediction accuracy was evaluated by comparing the percentage
of true classes against the predicted classes in total events.

Statistical Analysis: All data were presented as mean ± standard devi-
ation (SD). Outliers were removed by considering data points that were
farther than ±3 SD from the mean. To compare differences between two
groups, a two-sample t-test was performed using MATLAB. The test was
two-sided, with an alpha value set at 0.05. P-values less than this threshold
were considered statistically significant, with significance levels reported
as *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Error bars between cell types
indicate the standard deviation between sample triplicates, with shape
anisotropy correlation of impedance to image cytometry computed based
on R2 values.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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