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Abstract. – The growing global epidemic 
of obesity and type 2 diabetes mellitus has de-
termined an increased prevalence of NAFLD 
(non-alcoholic fatty liver disease), making it the 
most common chronic liver disease in the West-
ern world and a leading cause of liver transplan-
tation. In the last few years, a rising number of 
studies conducted both on animal and human 
models have shown the existence of a close as-
sociation between insulin resistance (IR), dys-
biosis, and steatosis. However, all the mecha-
nisms that lead to impaired permeability, inflam-
mation, and fibrosis have not been fully clari-
fied. Recently, new possible treatment modali-
ties have received much attention.

To reach the review purpose, a broad-ranging 
literature search on multidisciplinary research 
databases was performed using the following 
terms alone or in combination: “NAFLD”, “gut 
dysbiosis”, “insulin resistance”, “inflammation”, 
“probiotics”, “Chinese herbs”.

The use of probiotics, prebiotics, symbiotics, 
postbiotics, fecal microbiota transplant (FMT), 
Chinese herbal medicine, antibiotics, diet (poly-
phenols and fasting diets), and minor therapies 
such as carbon nanoparticles, the MCJ protein, 
water rich in molecular hydrogen, seems to be 

able to improve the phenotypic pattern in NA-
FLD patients.

In this review, we provide an overview of how 
IR and dysbiosis contribute to the development 
and progression of NAFLD, as well as the thera-
peutic strategies currently in use.

Key Words:
NAFLD, Insulin resistance, Gut dysbiosis, Probiot-

ics, Polyphenols, Endocannabinoid system, FMT, MCJ, 
Chinese herbs.
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fructooligosaccharides; FXR: farnesoid X receptor; Gal-
NAc: N-acetylgalactosamine; GLA: gut-liver axis; GOS: 
galacto-oligosaccharides; GPx: glutathione peroxidase; 
GRd: glutathione reductase; GSH: glutathione; HCC: 
hepatocellular carcinoma; HMGCR: HMG-CoA reduc-
tase; HSC: hepatic stellate cell; IMO: isomaltooligosac-
charides; IR: insulin resistance; LPL: lipoprotein lipase; 
LPS: lipopolysaccharide; MAMPs: microbe-associated 
molecular pattern; MetS: metabolic syndrome; MMP: 
matrix metalloproteinase; NAC: N-acetyl-cysteine; NA-
FL: non-alcoholic fatty liver; NAFLD: non-alcoholic 
fatty liver disease; NAPE-PLD: N-acylphosphatidyleth-
anolamine phospholipase-D; NASH: non-alcoholic ste-
atohepatitis; NEFA: non esterified fatty acid; NRL: 
Nod-Like Receptors; OEA: oleoylethanolamine; OSAS: 
obstructive sleep apnea syndrome; PAMP: pathogen 
Associated Molecular Pattern; PCOS: polycystic ovary 
syndrome; PEA: palmitoylethanolamine; POS: pectic 
oligosaccharides; PUFA: polyunsatured fatty acid; ROS: 
reactive oxygen species; RS: resistant starch; SAM: 
S-adenosylmethionine; SBOS: soy oligosaccharides; SC-
FA: short chain fatty acid; SFA: long chain fatty acid; 
SOD: superoxide dismutase; SREBP1: sterol response 
element binding protein 1; T2DM: type 2 diabetes mel-
litus; TGF-β: transforming Growth Factor β; TMA: 
trimethylamine; TMAO: trimethylamine-N-oxide; TMP: 
tissue inhibitors of metalloproteinase; TOS: trans-galac-
tooligosaccharides; TRL: Toll-like receptor; UDCA: ur-
sodoxycholic acid; VLDL: very low density lipoprotein; 
XOS: xylooligosaccharides..

Introduction

Non-alcoholic fatty liver disease (NAFLD) 
refers to a spectrum of histological liver altera-
tions resulting from hepatic steatosis, without 
any sign of secondary hepatic fat accumulation 
due to alcohol intake, hereditary conditions, or 
steatogenic medications1,2. It ranges from simple 
non-alcoholic fatty liver (NAFL) to its progres-
sive form non-alcoholic steatohepatitis (NASH)3. 
NAFLD pathophysiology can evolve from hepa-
tocyte ballooning, lobular inflammation, and/or 
fibrosis4 up to cirrhosis, hepatocellular carcinoma 
(HCC)5, and/or ultimately to death6. First descri-
bed in 19807, it has gone from being defined as 
“a poorly understood and hitherto unnamed liver 
disease”8 to being recognized as the most com-
mon chronic progressive liver disorder in Western 
countries9, and the second leading cause of liver 
transplantation in the US and Europe10. NAFLD is 
a multisystem disease closely associated with the 
metabolic syndrome (MetS) and its components 
[obesity, insulin resistance (IR), hyperlipidemia, 
and hypertension]11, as well as with a wide range 
of further chronic extrahepatic conditions, such as 
type 2 diabetes (T2DM), cardiovascular diseases 

(CVD), chronic kidney disease (CDK), Polycy-
stic Ovary Syndrome (PCOS), hypothyroidism, 
Obstructive Sleep Apnea Syndrome  (OSAS), 
osteoporosis, colorectal cancer12,13. Among these, 
T2DM represents an emerging risk factor for the 
development and progression of NAFLD towards 
NASH, fibrosis, cirrhosis, and HCC14. Recent stu-
dies15,16 have shown that the association between 
T2DM and NAFLD is bidirectional: as diabetes 
increases NAFLD severity, NAFLD is linked to a 
greater risk of T2DM. NAFLD improvement, on 
the contrary, is associated with a reduction of the 
risk of T2DM onset16. To further emphasize this 
strong connection between NAFLD and T2DM, 
the term MAFLD, or “fatty liver disease associa-
ted with metabolic dysfunction” was proposed 
in 202017. In addition, therapeutic strategies used 
in T2DM have been suggested to improve hepa-
tic steatosis, and it seems to be suitable for trea-
ting NASH and NAFLD subjects as well. Among 
them, Capuani et al18 interestingly reported how 
glucagon-like peptide-1 receptor agonists (GLP-1 
RAs) emerged as novel drug able to ameliorate 
liver steatosis. GLP-1 RAs are commonly used 
to regulate glycemic metabolism19, owever, they 
have also been associated with improvements 
in lipid profile. NAFLD worldwide prevalence 
is estimated to be 25%20 with remarkable diffe-
rences due to age, gender and ethnicity21,22. Only 
55.5% of this percentage is found in patients with 
T2DM23 and there are some discrepancies based 
on the study population (75%) and the diagnostic 
tools used (18-33% with H-NMR spectroscopy 
and 72.8% with magnetic resonance spectro-
scopy)24. NAFLD pathogenesis, about which still 
little is known, is complex and multifactorial. It 
can currently be explained with the “multiple hit” 
model25: different genetic susceptibility varian-
ts such as Snps of Pnpla3, Tm6sf2, Ncan, Gckr, 
Lyplal1, Ppp1r3b genes26 and environmental fac-
tors such as MetS, IR, Western diet, poor quality 
of sleep, sedentary lifestyle, and drug abuse make 
the liver more vulnerable and susceptible to ste-
atosis27,28. As a consequence, lipotoxicity, liver 
damage, intestinal permeability impairment, en-
dotoxemia, gut dysbiosis and an abnormal syste-
mic immune response result in NASH, fibrosis, 
cirrhosis, and HCC29. Consequently, traditional 
treatment for NAFLD is merely palliative be-
cause of this complexity30. In the last few years, 
however, new potential therapies targeting the gut 
microbiota have been identified, the outcomes of 
which, i.e., improvement of steatosis, inflamma-
tion, dysbiosis, and liver function are promising 
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but still unsatisfying31. In this review, we firstly 
aim to summarize what we know about the role of 
IR as a promoter of gut dysbiosis, and then focus 
on the role and the dysbiosis-dependent modu-
lation of the main molecular pathways involved 
in the development, progression and severity of 
NAFLD. Furthermore, we intend to illustrate new 
therapeutic approaches targeting dysbiosis, which 
aim to improve steatosis development and its pro-
gression to NASH.

IR – Gut Dysbiosis – NAFLD: 
the Relationship

Among the environmental factors, IR, i.e., the 
inability of insulin to perform its normal functions 
in skeletal muscle, adipose tissue, and liver32, seems 
to have a close relationship with both dysbiosis and 
NAFLD development and progression33 (Figure 1). 
IR development is strongly linked to excessive fat 
accumulation, nutrient overload and obesity34,35. IR 
and the consequent hyperinsulinemia are responsi-
ble for the increase in circulating free FFAs and TG 
levels, respectively, which is due to reduced lipo-
genesis and enhanced lipolysis in adipose tissue36, 
decreased hepatic glycogen accumulation and in-
creased gluconeogenesis37. All of these events re-
sult in higher hepatic FFA levels and hepatocyte 
exposure to lipotoxicity38, or oxidative stress, ER 
stress39, and lipotoxic lipids (saturated NEFA, 

SFA40, LPC glycerophospholipids, FC, sphingoli-
pids41,42 and sphingosine 1-phosphate (S1P), PUFA 
and their derivatives, and oxysterols). These fur-
ther exacerbate IR29 and determine the release of 
pro-inflammatory cytokines such as IL-1β, IL-6, 
TNF-α43,44, and/or chemokines in turn responsi-
ble for the onset of an inflammatory state45 and an 
altered innate and adaptive immune response46. 
This is reflected in intracellular and tissue damage 
amplification, and in the progression from NAFL 
to NASH. The growing interest and the advanced 
knowledge in the gut-liver axis (GLA)47,48 led to no-
ticing the pro-inflammatory role of gut dysbiosis in 
NAFLD patients49.

Gut dysbiosis is defined as the alteration of the 
composition, or loss of beneficial commensal such 
as Odoribacter genus (family Porphyromonadace-
ae), Oscillibacter, Ruminococcus, Flavonifractora-
ceae (family Ruminococcipaceae), Rikenellaceae, 
Copococcus (family Lachnospiraceae)50, Prevotel-
la, Anaerosporobacter, Faecalibacterium, and the 
overgrowth of pathogens51 such as Proteobacteria 
(E. Coli and Enterobacter)52, Bacteroidetes (Bacte-
roides)53, Lentisphaerae, Firmicutes (Clostridium 
XI, Lactobacillus and Anaerobacter)54, Streptococ-
cus (S. bovis and S. faecalis), Allisonella and Pa-
rabacteroides. Gut dysbiosis leads to an impaired 
function (metabolic, trophic, and protective) of the 
entire intestinal ecosystem55, and can feed hepatic 
and systemic inflammation by increasing intestinal 
permeability and endotoxemia and by exacerbating 

Figure 1. Genetic and environmental “multiple hits” impact on NAFLD. Created by using Biorender.com.
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innate and adaptive immune responses56. Inflamma-
tion, together with injured or stressed hepatocytes 
and activated Kupffer cells (liver macrophages) 
activates hepatic stellate cells (HSCs) as myofibro-
blasts, which begin to secrete an excessive amount 
of extracellular matrix (collagen, glycoproteins, and 
glycans) faster than they degrade57. This results in 
the transition from NASH to the stage of fibrosis, 
which can, as the liver damage progresses, worsens 
to advanced fibrosis, characterized by the formation 
of fibrotic scars first and of regeneration nodules 
then, up to compensated liver cirrhosis, and even-
tually manifest liver failure, HCC, and death58,59.

The Gut Dysbiosis

However, how does dysbiosis contribute to 
NAFLD pathogenesis? Recent findings60,61  have 
found that it acts by modulating intestinal perme-
ability and endotoxemia (a); energy homeostasis 
and fats storage (b); bile acids homeostasis (c); 

choline metabolism and toxic derivative TMAO 
production (d); endogenous ethanol and other 
toxic products such as acetaldehyde (e) synthe-
sis; the production of other metabolites, such as 
phenylacetate and branched chain amino acids 
(BCAAs) (f); the endocannabinoid system (g), re-
sponsible for activating the pro-inflammatory and 
pro-fibrogenic pathways that determine their pro-
gression to NASH (Figure 2). Recently, Le Roy et 
al62, De Minicis et al63, and Wieland et al64 have 
also hypothesized that NAFLD may be a commu-
nicable disease through the gut microbiota. 

Altered Intestinal Permeability 
and Endotoxemia

Dysbiosis is responsible for the impairment of the 
intestinal mucosal barrier structure (intestinal TJ pro-
teins such as ZO-1 and occludin) and function, and 
therefore for its affected permeability (“leaky gut”)65 
and metabolic endotoxemia (i.e., increased LPS le-

Figure 2. Recent hypothesis on the gut dysbiosis contribution to NAFLD pathogenesis and progression. Created by using 
Biorender.com.
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vels)66,67. Irregular microvilli and spaced tight jun-
ctions allow the different exogenous and endogenous 
antigens, such as MAMP and PAMP, or their meta-
bolic products68 to reach the liver and recognize the 
PRR receptors NF-kβ (nuclear factor β), TRL-2/4/9 
and NodLike Receptors (NRL) present on Kupffer 
cells/infiltrating macrophages and HSCs69,70. This 
link stimulates NF-kB activation, production and 
release of pro-inflammatory cytokines, chemoki-
nes, NO, ROS and protease71, the down-regulation 
of bone morphogenic protein (BMP), and activation 
membrane-bound inhibitor homolog (BAMBI)72. 
This results in hepatic morpho-functional change, IR 
onset, oxidative stress and RE stress73, the activation 
of an abnormal acute systemic inflammatory and 
immune response74, characterized by an early accu-
mulation of polymorphonuclear cells (CD4+ T cells, 
neutrophils, and monocytes)75,76, and it is responsible 
for hepatocyte apoptosis and necrosis77, the activa-
tion and proliferation of HSC and the production of 
TGF-β57. Simultaneously an overexpression of both 
matrix metalloproteinase (MMPs) and tissue inhibi-
tors of metalloproteinases (TMPs) also occurs. These 
enzymes are respectively responsible for an intensi-
fied destruction of liver tissue, and for inhibiting - in 
particular TMP-1, collagen fibrogenesis degradation 
in the liver78,79.

Energy Homeostasis and Fat Storage 

Dysbiosis is able to influence both energy ho-
meostasis and hepatic fat storage enhancing he-
patic lipogenesis de novo and inhibiting FIAF 
(fasting-induced adipose factor) production and 
secretion in intestinal epithelial tissue80. Lipoge-
nesis de novo, induced by ChREBP (carbohydrate 
response element binding protein) and SREBP-1c 
(Sterol response element binding protein 1c)81,82, 
determines higher monosaccharide and TG he-
patic content (approximately 2/3 times) which, 
however, are exported in the form of fat from the 
liver to ectopic storage (or futile cycle). The lack 
of FIAF expression, a member of the angiopoie-
tin-like protein family that acts as a suppressor of 
LPL, induces a greater activity of the latter with 
a consequent increase and perpetuation of the in-
trahepatic accumulation of TG83.

Microbiota Metabolites

Numerous studies84,85,90 have observed a bidi-
rectional relationship between the microbiota and 

the bile acids (Bas). Bile acids are known as the 
amphipathic molecules’ steroid-derivative com-
ponents of bile84. The microbiota modulates the 
size and composition of the BAs pool by acting 
on the expression of genes involved in synthesis, 
conjugation and reabsorption, while BAs main-
tain intestinal homeostasis by preventing bacte-
rial overgrowth. However, an altered biliary ho-
meostasis can determine a retention of bile salts 
and dysbiosis85, characterized by reduced levels 
of Bacteroidetes, Actinobacteria, Ruminococca-
ceae, Lachnospiraceae and Blautia and of the 
genera Sutterella and Allobaculum86 and eleva-
ted of Enterobacteriaceae87. Dysbiosis negatively 
affects serum concentrations of primary and se-
condary BAs and their ratio88,89, hepatic bile acids 
synthesis and total fecal bile acids90. Hence, seve-
ral studies87 in patients with NAFLD91,92, NASH 
and observed a perpetuation of the alteration of 
BAs homeostasis cirrhosis. These increases are 
reflected in the enhanced intestinal permeabili-
ty associated with endotoxemia93, metabolic al-
terations (IR) and inflammation94, characterized 
by the release of pro-inflammatory cytokines, 
metabolic stress95, activation of the cell death pa-
thway96, and a cascade of host immune responses 
that promote disease progression97.

Gut dysbiosis can negatively modulate the me-
tabolism of the amine choline first hydrolyzing it 
into trimethylamine (TMA), thanks to the enzyme 
choline TMA lyase, and subsequently oxidizing it 
into the toxic compound trimethylamine N-oxide 
(TMAO) by the FMO 1/3, with consequent stea-
togenic effects98,99. TMAO is able to alter the me-
tabolism of bile acids100 and to block hepatic insu-
lin signaling pathway, exacerbating IR101, hepatic 
steatosis102 and its progression towards cirrho-
sis103. In patients with NAFLD/NASH, the close 
association between gut dysbiosis and endoge-
nous ethanol (EE)104 has long been known. Etha-
nol causes a dysbiosis in favor of the overgrowth 
of alcohol-producing bacteria105, which in turn 
negatively induces an overexpression of hepatic 
ethanol metabolic enzymes required for the pro-
duction or degradation of ethanol106 and its toxic 
metabolites acetaldehyde and acetate107. The three 
metabolites (ethanol, acetaldehyde and acetate) 
act as hepatotoxins and have been independently 
linked with liver injury108. They are responsible 
for the activation of macrophages, the weakening 
of tight junctions with consequent increase in per-
meability and translocation of endotoxins into the 
portal circulation109,110, as well as the down-regu-
lation of intestinal AMP expression111, the inhibi-
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tion of TCA cycle with subsequent rising levels 
of acetate and intrahepatic accumulation of tri-
glycerides112, an exaggerated liver inflammatory 
response following the secretion of pro-inflam-
matory cytokines113 and an enhanced activity of 
cytochrome P450 2E1 (CYP2E1)114. CYP2E1 is 
known as a powerful pro-fibrotic signal responsi-
ble for the oxidation of ethanol into acetaldehyde 
and the production of ROS and, therefore, for the 
oxidative liver injury, mitochondrial dysfunction, 
and hepatocyte necrosis115. 

Finally, the products of bacterial metaboli-
sm of phenylalanine, such as phenylacetate and 
branched chain amino acids (BCAA) are invol-
ved in NAFLD, NASH, and fibrosis pathogene-
sis116,117. Phenylacetate is related to an increased 
expression of genes coding for fats (Lpl, Fas), to 
higher hepatic TG levels and also to hepatic ste-
atosis development. BCAAs are associated with 
mitochondrial dysfunction118, and therefore with 
higher level of disease severity119, and IR related 
to obesity and T2DM120.

Endocannabinoid System (eCB)

The eCB endocannabinoid system is an inter-
cellular lipid mediator with pleiotropic functions; 
it is composed of the cannabinoid receptor CB1, 
expressed in hepatocytes and endothelial cells of 
the liver, and CB2, expressed in Kupffer cells121. 
Microbiota-host interaction studies122 in the colon 
of germ-free mice models have highlighted a ti-
ght association between gut dysbiosis, eCB, and 
NAFLD development and progression. Dysbiosis 
is associated with eCB hyperactivation in terms 
of high levels of eCB in plasma and adipocytes, 
and altered expression of eCB1 receptor. This is 
reflected in a change in the composition of the 
microbiota, an increase in intestinal permeabili-
ty, endotoxemia, inflammatory states and body 
fat123. Indeed, hyperactivated CB1 promotes both 
hepatic expression of SREBP-1 and its target en-
zymes ACC1 and FAS, and de novo synthesis of 
fatty acids in the liver, or isolated hepatocytes 
expressing CB1124. Moreover, it inhibits adipo-
nectin secretion, influencing the onset of MetS, 
which predisposes to the onset of NAFLD125. It 
also promotes energy conservation by stimula-
ting its intake and inhibiting its expenditure with 
central and peripheral mechanisms, increases 
TNF-α, and reduces the synthesis of N-arachi-
donoylethanolamine (AEA), a close derivative 
of N-acylphosphatidylethanolamine phospholi-

pase-D (NAPE-PLD) involved in the regulation 
of energy homeostasis, inflammation, obesity, 
IR, intestinal permeability, and dysbiosis126. The 
pharmacological inhibition of eCB-1 receptor, or 
the restoration of the microflora have been shown 
to reduce the tone of the peripheral eCB system, 
and consequently to improve the barrier function; 
endotoxemia seems to reduce IR and TNF-α le-
vels, to delay the progression from steatosis to fi-
brosis and cirrhosis, and even to reverse hepatic 
steatosis127. 

Therapeutic Approaches: 
Current and Future

There are not currently specific therapeutic 
approaches for NAFLD and NASH treatment. 
Traditional therapy represents an effective line 
of intervention for the long-term (24 months) 
improvement of NAFLD histology128, and it is 
commonly based on lifestyle modification, i.e. a 
combination of calorie-restricted diet and incre-
ased physical activity, administration of antidia-
betic and lipid-lowering drugs, antioxidants and 
cytoprotective agents, such as vitamin E, vitamin 
C, betaine, SAM (S-adenosylmethionine), NAC 
(N-acetyl-cysteine) and UDCA (ursodoxycholic 
acid), vitamin D, vitamin J, and/or bariatric sur-
gery2,129,130. However, it exhibits frequent failure 
rates due to reduced or absent compliance. The 
new knowledge on pathogenesis mechanisms and 
the poor compliance rates have led, in recent ti-
mes, to the development of new potential thera-
peutic approaches, in particular those targeting 
the gut-liver axis and dysbiosis, such as probio-
tics, prebiotics, symbiotics, postbiotics, fecal mi-
crobiota transplantation (FMT), dietary appro-
aches, antibiotics, Chinese herbal medicine, and 
other minor therapies (carbon nanoparticles, MCJ 
protein, and H2- rich water) (Figure 3).

Probiotics, Prebiotics and Symbiotics

Probiotics, or “live microorganisms which, if 
taken in appropriate quantities, bring benefits for 
the host health”131 (FAO/WHO) present in foods, 
dietary supplements, or drugs, represent a poten-
tial therapeutic strategy for NAFLD and NASH. 
Clinical and basic studies132,137 have shown how 
a single probiotic, such as Lactobacillus rhamno-
sus GG (LGG), Lactobacillus acidophilus L., L. 
plantarum WCFS1 and Lactococcus lactis subsp. 
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cremori  is able to improve liver function and re-
lated ALT and AST parameters, lipid (reducing 
hepatic β-oxidation of fatty acids), carbohydrate 
(insulin-sensitizing effect), bile acids, cholesterol, 
choline and ethanol metabolism, inflammatory 
status, intestinal barrier integrity and function, 
liver enzyme profile, as well as weight and body 
composition by reverting gut dysbiosis to eubio-
sis. In the same way, positive results on inflam-
mation, steatosis, intestinal permeability and 
endotoxemia, serum lipid levels, liver damage 
biomarkers, and gut microbiota composition have 
been associated with combinations of multiple 
probiotic strains. In this contest, four RCTs, who-
se main characteristics and results are reported in 
meta-analysis by Ma et al133, showed a significant 
reduction in aminotransferases ALT, AST and 
γ-GT levels, total cholesterol (TC), and TNF-α 
(Table I). Similar results were obtained with the 
8-weeks integration of a formulation of multi-pro-
biotic (14 probiotic bacteria Bifidobacterium, Lac-
tobacillus, Lactococcus and Propionibacterium) 
(p < 0.001)134 and after one year of a multi-strain 
oral probiotics (L. paracasei, L. plantarum, L. 
acidophilus, L. delbrueckii subsp. bulgaricus, 
Bifidobacterium, B. infantis, B. short and S. ther-
mophiles)135,136. The probiotic formula based on 

LGG, L. plantarum WCFS1 and anthraquinone 
from Cassia obtusifolia L. significantly reduced 
steatosis, TNF-α, endotoxemia (p < 0.05), impro-
ved permeability and attenuated gut dysbiosis, by 
increasing Bacteroidetes (Bacteroides, Lactoba-
cillus and Parabacteroides) and reducing Firmi-
cutes (Oscillospira)137. The use of probiotics also 
improves IR, in terms of fasting glucose, insulin, 
and HOMA-IR. A significant reduction of these 
parameters was actually observed after the inte-
gration of multi-strain probiotics (Lactobacillus, 
Bifidobacterium and S. thermophilus), and after 
the consumption of 220 gr of probiotic yogurt 
with L. delbrueckii subsp. Bulgaricus, and S. 
thermophilus for 24 weeks138.

Prebiotics are defined as “a selectively fermen-
ted ingredient that allows specific changes, both 
in the composition and/or activity of the benefi-
cial gastrointestinal microbiota that gives bene-
fits”139. They are represented by oligosaccharides 
fructooligosaccharides (FOS), galacto-oligosac-
charides (GOS), xylooligosaccharides (XOS), 
isomaltooligosaccharides (IMO), trans- TOS 
(galactooligosaccharides), SBOS (soy oligosac-
charides) and POS (pectic oligosaccharides), 
lactulose, fructans (inulin), resistant starch (RS) 
and alginate. All prebiotics are able to selectively 

Figure 3. Schematic representation of the action, both in the liver and in the intestine, of three polyphenols silymarin, 
resveratrol and berberine in NAFLD pathogenesis. Created by using Biorender.com.
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Table I. Characteristic and results of four RCTs reported in meta-analysis. 

 Type of studies Population Treatments Time of treatments Follow-up Results

RCT in  28 NAFLD  Mixture with 500 mln 3 months Yes ALT: 67.7 +/- 25.1 vs. 60.4 +/- 30.4 UI/L (p < 0.05)
double blind  patients of Lactobacillus bulgaricus   AST: 41.3 +/- 15.5 vs. 35.6 +/- 10,4 UI/L (p < 0.05)
  and Streptococcus    ɣ-GT: 118.2 +/- 63.1 vs. 107.7 +/- 60.8 UI/L (p < 0.05
  thermophilus per day  
  vs. placebo (120 mg of starch) 

RCT in Children with  2 billion CFU LGG/ 8 weeks Yes ALT: 61.6+/-31.80 vs. 40.1+/-22.37 UI/L (p =0.03)
double blind  obesity-related  1 day vs. placebo   
 liver disease    

RCT in 66 NASH patients Bifidobacterium  24 weeks Yes AST: -69.6 vs. -45.9 UI/mL (p <0.05)
double blind   longum + Fos + lifestyle   LDL: - 0.84 vs. -0.18 mmol/L (p < 0.001) 
  modification vs. placebo   TNF-α: -0.45 vs. -0.12 ng/mL (p < 0.001)
     HOMA-IR: -1.1 vs. -0.6 (p < 0.001)
     Steatosis: p < 0.05

RCT in 20 NASH Lepicol formula  6 months Yes IHTG (intrahepatic triglyceride): 16.0 +/- 6.6% vs. 14.9 +/-
double blind  patients (L. plantarum,    7.0% (p = 0.034)
  L. deslbrueckii,    AST: 37 +/- 40 vs. -16+/-39 IU/L (p = 0.008)
  L.acidophilus,    
  L. rhamnosus and   
  B. bifidum) vs. usual care   

Modified by Ma et al133.
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stimulate the growth and activity of specific be-
neficial bacterial strains, to reduce intestinal pH, 
to resist to hydrolysis and gastrointestinal enzy-
mes, to not be absorbed in the upper GI tract, to 
represent a selective substrate for one or more 
beneficial bacterial species in the colon, and to 
remain stable during food processing140. The few 
human studies141 show how prebiotics are an ef-
fective adjuvant therapy for NAFLD and NASH 
by restoring dysbiosis. Among these, lactulose 
is able to stimulate the growth of Lactobacilli, 
Bifidobacteria and Gram-positive bacteria, and 
to protect from endotoxemia; the fungal prebio-
tic chitin-glucan (CG) (10%) has been proved 
to restore the number of bacteria from the clo-
stridial cluster XIV including Roseburia spp142. 
Studies143,144 on mice reported a reduction of in-
flammation, steatosis and an antidiabetic effect 
after administration, for 4 weeks, of oligofruc-
tose143, and an improvement of liver function 
and reduction of BMI, AST, ALT, TC, TG, fat-
ty liver, LPS-induced metabolic disturbances, 
inflammation, and steatosis in NASH after 1.5 
gr of oat β-glucans for 12 weeks144. Akbarzadeh 
et al145 observed a significant reduction in ALT 
(- 18.64 IU/L, p = 0.006), waist circumference 
(-4.6 cm, p=0.006) BMI (-1.3 Kg/m2, p=0.006), 
weight (-3.5 Kg, p=0.03), body fat percentage 
(-2%, p=0.03), and caloric intake (-433.45 Kcal, 
p=0.02) in obese NAFLD patients after intake of 
10 gr of psyllium (FOS)145. Resistant starch (RS) 
generally increases the turnover and laxation of 
bile salts and reduces postprandial blood gluco-
se and blood fat levels146. However, the different 
beneficial effects on the metabolism and on the 
group of intestinal bacteria capable of respon-
ding to resistant starch are related to the diffe-
rent types of RS147. RS 4, for example, increases 
Bacteroides and Parabacteroides spp.148, RS 2 
Ruminococcus bromii and Eubacterium recta-
le spp.149, and RS 3 the most resistant form150 E. 
rectale, Roseburia spp. and R. bromii151. Algi-
nate, a viscous algal polysaccharide used as a 
thickener, stabilizer or emulsifier thanks to its 
chemical-physical properties, was able to impro-
ve intestinal barrier function, and modify micro-
biota composition in favor of Roseburia, Rumi-
nococcus and Lachnospira152.

Symbiotics are a combination of prebiotics 
and probiotics in one formulation. Eslamparast 
et al153 and Mofidi et al154 observed improve-
ment in inflammation, fibrosis score, and liver 
function, after lifestyle modification and simul-
taneous administration of symbiotic, containing 

200 millions of seven different bacterial strains 
(Lactobacillus casei, Lactobacillus rhamnosus, 
Streptococcus thermophilus, Bifidobacterium 
breve, Lactobacillus acidophilus, Bifidobacte-
rium longum, and Lactobacillus bulgaricus), 
FOS, probiotics (magnesium stearate), and a 
vegetable capsule (hydroxypropyl methyl cellu-
lose) over 28 weeks153,154. Scorletti et al155 have 
shown an increase of Bifidobacteria and Faeca-
libacterium fecal and reduction of Oscillibacter 
and Alistipes with the symbiotic composed of 
FOS and Bifidobacterium lactis, while Bakhshi-
moghaddam et al156 an improvement of the hepa-
tic imaging ultrasound with the administration 
for 24 weeks of 300 gr/day of symbiotic yogurt, 
consisting of 108 CFU/Ml of Bifidobacterium 
animalis and 1.5 gr of inulin. The treatment with 
symbiotic Bifidobacterium longum and FOS as-
sociated with lifestyle modifications determined 
significant differences in the AST (- 23.7 IU/
mL), LDL-C (- 0.66 mmol/L), TNF-α (-0.33 ng/
mL), HOMA-IR (-0.5), steatosis, and the NASH 
activity index (p<0.05) after 24 weeks138. Re-
cently, several other meta-analyses157-158 have 
shown the efficacy of symbiotic therapy in im-
proving LDL-C (-5 mg/dL), TC (-10.1 mg/dL) 
TAG (-10.1 mg/dL)157, aminotransferases AST 
(-4.6 U/L), ALT (-6.9 U/L), γ-GT (-7.9 U/L), and 
TNF-α (-2.0 ng/mL) associated with reduced he-
patic steatosis and hepatic rigidity, but no change 
in LPS levels and intestinal permeability158.

Postbiotics 

Postbiotics, defined as “any substance released 
or produced through the metabolic activity of the 
microorganism, which directly or indirectly exer-
ts a beneficial effect on the host”159, represent a 
new potential alternative therapeutic approach to 
probiotics, prebiotics, and FMT for the treatment 
of NAFLD160. Their composition is variable and 
depends on the strain and their metabolic sta-
te; it includes SCFA, secondary bile acids, p40, 
HM0539 proteins, enzymes, peptides, bacterio-
cins, endo and exo-polysaccharides, bacterial 
lysates, cell wall fragments, cells-free superna-
tants, and branched-chain fatty acids. All play 
a role in gut microbiota modulation and homeo-
stasis maintenance, where they act as inhibitors 
of growth and activity of pathogens161, as signal 
molecules or as inducers of resilience. Postbiotics 
such as acetate, propionate and butyrate, alone or 
in combination162 or p40163 and HM0539 proteins 
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of the supernatant of L. rhamnosus GG164 protect, 
maintain and enhance intestinal barrier function. 
Bifidobacterium exopolysaccharides act as local 
and systemic immunomodulators by increasing 
the secretion of anti-inflammatory cytokines165. 
Studies166-168 have shown a role of postbiotic BSH 
(bacterial enzyme bile salt hydrolase), butyrate 
and propionate as modulators of systemic meta-
bolic responses. BSH diversifies the bile acid pool 
as demonstrated in the filtered supernatant of the 
probiotic Lactobacillus johnsonii166, butyrate re-
duces oxidative stress in the colon167, and propio-
nate inhibits the condensation of cholesterol pre-
cursors, and reduces total and intrahepatocellular 
adipose lipid content168.

Antibiotics 

Several studies141 have confirmed a positive 
and therapeutic effect of short-term antibiotic 
treatment in NAFLD by promoting the growth 
of beneficial bacteria such as Bifidobacteria and 
Lactobacilli and by eliminating pathogens (“eu-
biotic” effect)141. This action, together with their 
properties (side effects, resistance, etc.) and pos-
sible failure to restore the microbiota after long-
term treatment with antibiotics such as amoxi-
cillin, metronidazole, bismuth, and vancomycin, 
makes their clinical use for NAFLD treatment 
cautious169. Non-absorbable antibiotics such as 
neomycin, cidomycin, and rifaximin are cur-
rently being tested. Neomycin, combined with 
polymyxin B, prevents fructose-induced intrahe-
patic fat accumulation by decreasing the translo-
cation of intestinal toxins170. Cidomycin alleviates 
NASH severity, increases the rate of intestinal 
transit, and reduces serum levels of ALT, AST, 
and TNF-α when administered orally171. Rifaxi-
min, a broad spectrum antibiotic insoluble in wa-
ter and non-absorbable (<0.4%), with bactericidal 
and bacteriostatic activity against Streptococcus, 
Bacteroides and Citrobacter, significantly im-
proves the clinical conditions of NAFLD patien-
ts by reducing inflammation172, ALT, circulating 
endotoxins, IR, and NAFLD-fat score173. Oppo-
site results on intrahepatic lipid content and in-
sulin sensitivity were found in Cobbold et al174 
’s open-label pilot study, probably due to either 
the small sample size or the relatively low dose, 
or the short duration of the clinical study, or the 
influence of the antibiotic on both harmful and 
beneficial bacteria141. A multicenter, double-blind, 
placebo-controlled, phase III RCT study obser-

ved how the rifaximin-simvastatin combination, 
by modulating the gut microbiota, reduces the sy-
stemic inflammatory response, endotoxemia and 
plasma levels of secondary bile acids and fatty 
acids in patients with decompensated cirrhosis, 
preventing the development of high liver toxicity 
and/or chronic acute liver failure175.

Fecal Microbial Transplantation

Considered a valid alternative to antibiotics, 
prebiotics and probiotics, fecal microbial tran-
splantation (FMT) is a therapeutic approach that 
consists in the elaboration, standardization and 
transplantation of a fecal suspension of the entire 
gut microbial community of a healthy donor into 
the GI tract of a receiving patient176. Following 
FMT, a restoration of healthy gut environment 
occurs in these patients; it is characterized by a 
higher number of healthy gut bacteria and their 
metabolites, pathogenic factors reduction, and re-
storation of intestinal barrier structure and fun-
ction177. Different studies62,177,178,205 conducted on 
mice and humans have shown that FMT is able 
to attenuate liver disease through a beneficial ef-
fect on the gut microbiota. For example, NAFLD 
mice receiving the microbiota of donors fed with 
HDF, showed reduced fasting blood glucose, 
HOMA-IR, and NAS score62, while mice with 
HFD-induced NASH and receiving FMT showed 
an increase of beneficial bacteria Christensenel-
laceae, Lactobacillus and Prevotellaceae, and a 
reduction of Odoribacter and Oscillibacter after 8 
weeks. FMT also significantly increases the con-
centration of butyrate in cecal contents, reduces 
body weight, NAS score (from 6.90± 0.233 to 4.58 
± 0.260), transaminases, mRNA levels of TNF-α, 
MCP-1, IL-1β, IL-2, IL-6, IFN-γ e IL-17, and re-
stores intestinal barrier function with consequent 
attenuation of endotoxemia, steatosis, lobular in-
flammation, and balloning178. In humans, Bajaj et 
al179 showed a restoration of microbial diversity 
and function with consequent improvement of 
dysbiosis and reduction of liver-related hospitali-
zations after oral administration in FMT capsu-
les, while Craven et al180 observed a reduction in 
small intestine permeability in NAFLD patients 
undergoing 6 weeks of allogeneic FMT, with no 
improvement in IR or hepatic fat fraction. Despite 
these different effects, safety, duration of effect, 
how FMT affects the GI microbial community 
and relative consequences, its physiological inte-
ractions with the patient and how long the modi-
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fied microbiota is maintained in patients, remain 
to be clarified181. 

Dietary Approaches

Polyphenols 
Polyphenols are water-soluble bioactive com-

pounds of vegetable origin present in foods as 
fruit, tea, dark chocolate, coffee, red wine, and 
red berries182,183. Their anticoagulant, lipid-lowe-
ring, hypotensive, antioxidant, anti-inflamma-
tory properties and their ability to interact bi-
directionally with the gut microbiota184, make 
them a great therapeutic strategy for NAFLD 
treatment185.

Resveratrol (RSV; 3, 5 4′-trihydroxystilbene) 
is a natural phenolic compound present in grapes 
and wine with lipid-lowering, insulin-sensitizing, 
antioxidant, and anti-inflammatory properties. It 
can maintain the integrity of the intestinal barrier 
function, and reduce blood glucose, LDL-C, ALT 
significantly, BMI, and waist circumference186,187, 
to modulate microbiota composition in favor of 
Bacteroidetes/Firmicutes ratio, Lactobacilli and 
Bifidobacteria188 and a member of the nicotina-
mide adenine dinucleotide (NAD +) - dependent 
deacetylase family, known as SIRT1189. Once acti-
vated by resveratrol, SIRT1 plays a beneficial role 
in the liver against oxidative stress and inflamma-
tion, by promoting the deacetylation of PGC-1α 
and reducing the production of pro-inflammatory 
cytokines through the deacetylation of NF-κB. 
SIRT1 is also able to improve fat metabolism by 
inhibiting de novo lipogenesis via the deacetyla-
tion of SREBP-1c and ChREBP, and by increa-
sing the β-oxidation of fatty acids via PPARα/
PGC-1α deacetylation (transcriptional co-activa-
tor), rebalancing the hepatic lipid homeostasis190. 
Resveratrol is currently considered as an excellent 
candidate for NAFLD prevention, even if there 
are conflicting data on its efficacy. 

The silymarin, a complex mixture of seven fla-
vonoglignans (silibinin, isosilibinin, silychristin, 
isosilychristin and silydianin) and a flavonoid ta-
xifolin from milk-thistle Silybum marianum, with 
antioxidant, anti-inflammatory, direct and indirect 
antifibrotic, and hepatoprotective properties191, 
has also been shown to be helpful in improving 
NAFLD by reducing liver fibrosis and stiffness, 
oxidative stress, IR, steatosis, and mitochondrial 
disfunction, especially if associated with physical 
activity and a healthy diet192. However, studies on 
silymarin effect on gut dysbiosis are lacking.

In recent years, berberine (BBR), an isoquinine 
alkaloid present in various plants such as Berbe-
ridaceae, Ranunculaceae and Papaveraceae has 
aroused great interest. BBR is well-known for its 
numerous actions, such as inhibiting gluconeo-
genesis, IR and hepatic lipogenesis193, regulating 
the MAPK pathway, improving mitochondrial 
function, and reducing the protein convertase 
subtilisin/kexin 9 (PCSK9) and the expression 
and methylation of DNA194. Moreover, BBR is 
able to improve NAFLD development and pro-
gression thanks to its hepatoprotective properties 
against different chemical insults, its influence on 
the composition and diversity of the gut microbio-
ta, on the reduction of endotoxemia, and on the 
maintenance of integrity of the mucosal barrier195.

 
Fasting-Mimicking Diet and Modified 

Intermittent Fasting 

Recent studies196 suggest how diets based on 
intermittent fasting DI (FMD and ADFM), i.e., 
regimes based on strong caloric restrictions for a 
limited period to a few days of the week or speci-
fic times of the day (CREA), have a positive effect 
on NAFLD dysbiosis and pathogenesis. The fa-
sting-mimicking diet (FMD) is a cyclical nutri-
tional approach consisting of mimicking the me-
tabolic state of the host during fasting and aims 
to reduce the disadvantages of the more restricti-
ve fasting diets, limited to the consumption of li-
quids only. A randomized and controlled clinical 
trial197, divided into 2 phases of 3 months each 
on 100 patients, reported a significant reduction 
in weight (-2.6 ± 2.5 kg, p<0.0001), total body 
fat (−1.393 ± 1.786, p=0.0002), waist circumfe-
rence (-4.1 ± 5.2 cm, p=0.0035), and IGF-1 levels 
(-21.7 ± 46.2 ng/ml, p=0.0017). Modified inter-
mittent fasting (ADFM) consists of alternating 
between fasting days, in which a single midday 
meal is consumed with an intake of 25% of the 
daily energy requirement and an ad libitum diet. 
Johari et al198 observed, after eight weeks of 
ADFM, a significant reduction in weight (-2.01 
kg, p=0.003), BMI (-0.78 Kg/m2, p=0.003), AST 
(-8.63 IU L, p=0.004), ALT (-25.16 IU/L, p=0.001), 
steatosis degree (-0.5, p=0.001) and fasting blood 
glucose (-0.75 mmol/L, p=0.006) in NAFLD pa-
tients. However, neither of the two diets led to a 
variation in total cholesterol, LDL-C, HDL, TG, 
and PRC. Further studies are necessary to under-
stand all the mechanisms through which these 
diets work.
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Chinese Phytotherapy

Chinese phytotherapy represents another po-
tential therapeutic approach for NAFLD treat-
ment. Herbs (246 of its common identified) and/
or traditional Chinese formulas, taken as sup-
plements and characterized by a multilevel and 
multitarget pharmacological activity, act through 
different molecular pathways (PPAR-α, SREBP 
-1c, NF-κB, PI3K, SIRT1, AMPK, p53, and Nrf2) 
on the pathogenic mechanisms, underlying the 
disease such as inflammation, lipogenesis, IR, 
mitochondrial disfunction, autophagy, oxidative 
stress, and gut microbiota199,200.

Chinese Herbs
Almost all herbs [i.e., garlic, ginger, green tea, 

ulva prolifera, ginko biloba, Damask rose, Antro-
dia (antrodan), Sesame, Plumbago, Swertia, and 
loquat] reduce blood and hepatic TG, TC, AST, 
and ALT aminotransferases, except for sesame, 
citral (ginger) and diallyl disulfide (garlic) which 
also promote FFA blood levels reduction and their 
translocation to the liver. Many of these herbs 
improve insulin, body weight (ginger, green tea, 
anthrodia, sesame, plumbago, and loquat), fatty 
liver weight, and Fatty Liver Score (garlic, ginger, 
grape, psoralea, ginko biloba, antrodia, sesame, 
plumbago, swertia, and loquat). Only some of the-
se reduce hepatic lipogenesis by down-regulating 
the expression of transcriptional factor SREBP-

1c and lipogenic enzymes Fatty Acid Synthase 
(FAS), Acetyl-CoA Carboxylase (ACC), and Ste-
aroyl-CoA desaturase (SCD), responsible for lipid 
storage under physiological conditions. The same 
herbs promote mitochondrial β-oxidation of long-
chain fatty acids by up-regulating the expression 
of PPAR-α (peroxisome proliferator-activated re-
ceptor α) and the enzyme CPT-1 (carnitine pal-
mitoyltransferase-1), which catalyzes the tran-
sfer of FFA from acyl -CoA to carnitine forming 
acyl-carnitine, subsequently translocated across 
mitochondrial membranes by CACT (carnitine 
acyl-carnitine translocase)201. Herbs such as gar-
lic, ginger, psoralea, and swertia reduce pro-in-
flammatory cytokines expression (TNF-α, IL-1β, 
and IL-6); in particular, garlic, ginger, swertia, 
along with herbs such as sesame, plumbago, and 
loquat ameliorate oxidative function by reducing 
lipid peroxidation and CYP2E1 expression and by 
enhancing the activity of the antioxidant enzymes 
such as SOD, GSH, CAT, GPx, and GRd. Final-
ly, only green tea catechins reduce endotoxemia 
and increase Firmicutes/Bacteroidetes ratio and 
SCFA-producing bacteria number202,203 (Table II).

Carbon Nanoparticle 

A synthetic porous carbon nanoparticle204, hi-
ghly absorbent, non-absorbable or degradable in 
the GI tract, excreted unaltered in feces and with 

Table II. Most common Chinese herbs used for NAFLD treatment, their compounds and mechanism of action. 

    Fatty liver
 Chinese herbs compounds Glucose Insulin score FFA Inflammation

Garlic Essential oil X X X X X
 Diallyl disulfide (essential oil) X X X X X
Ginger Citral  X X X X
 Essential oil  X X X X
 Zingerone X  X  
Green tea Polyphenols X X   X
Ulva prolifera Sulfated polysaccharides   X  
Ginko Ginkgolide A   X  
Damask rose Ethanol extracts   X  
Antrodia cinnamomea Antrodan X X X  
fungus 
Sesame Seeds ethanol extract X X X X 
Ceylon leadwort Plumbagin  X X X X
Swertia bimaculata Swertiamarin X  X  X
Loquat Fruit extract X  X  
Babchi Seeds extract X  X  X

Modified by Panyod et al203.
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a high absorption capacity, represents a new, safe, 
and non-antibiotic potential strategy for the tre-
atment of NAFLD. Evidence has shown that this 
compound can counteract dysbiosis in vivo, redu-
cing steatosis and liver inflammation and translo-
cation, in vitro, of both hydrophobic and PM up to 
about 70kDa substances, such as intestinal toxins 
(ammonia, asymmetric dimethylarginine, acetal-
dehyde), cytokines (TNF-α and IL-6), hydropho-
bic bile acid, bacterial products (LPS, ROS) and 
exotoxins preventing their flow into the liver and 
systemic circulation205. 

MCJ 

MCJ (or DNAJC15) is a small insoluble tran-
smembrane protein of 147 amino acids encoded 
by the nuclear gene Dnajc15, mainly located in 
the internal mitochondrial membrane of hepa-
tocytes. Recent studies206,207,208 showed as MCJ, 
present at high levels in patients with steatosis, 
acts on gut dysbiosis affecting NAFLD/NASH 
severity, as an essential endogenous negative re-
gulator of mitochondrial metabolism. MCJ is in-
volved in the formation of respirasomes, super-
complexes responsible for triggering apoptosis, 
inflammation and fibrosis. Therefore, the inhi-
bition of its expression and/or function could 
represent a potential safe alternative strategy to 
treat NAFLD. Hatle et al206 observed how the loss 
of MCJ leads to increased activity of complex I 
and in the membrane potential and, therefore, in 
mitochondrial respiration. The absence of MCJ, 
prevent the pathological accumulation of lipids 
in the liver in altered metabolic conditions, such 
as fasting and high cholesterol diet. The same 
result was observed by Barbier-Torres et al207 
using si-MCJ (silencing MCJ) combined with li-
pid nanoparticles and with two GalNAc-siRNA 
sequences (si381 e si393). In addition to both 
increased mitochondrial respiration and hepatic 
catabolism and the expression of genes involved 
in hepatic mitochondrial β-oxidation of fatty 
acids (Cpt1, Acadm, Acadl, Fatp2, Abcd1, Pgc1α, 
and Nrf2), si-MCJ is able to enhance glycolysis, 
hepatic glycogenesis and insulin response and to 
reduce weight gain, with no increase in ROS208 or 
ketosis after treatment. This results in decreased 
apoptosis rates, steatosis and inflammation of the 
liver, which in turn results in a milder liver dama-
ge (as demonstrated by the lower levels of serum 
AST), fibrosis, NASH development, and progres-
sion to cirrhosis or HCC.

H2-rich Water 

The liver is an organ that shows a high capacity to 
accumulate exogenous H2, supplied through several 
routes of administration. Among these, Otha209 de-
scribed oral intake with water, obtained by dissolving 
a concentration up to 0.8 mM (1.6 mg/L) of H2 in wa-
ter (HRW, H2-rich water) at atmospheric pressure and 
room temperature or by reacting metallic magnesium 
and water. Thanks to its antioxidant, anti-inflamma-
tory and anti-apoptotic properties, H2 represents an 
essential regulator of hepatic homeostasis and there-
fore, a potential therapeutic mean to protect the liver 
from acute or chronic damage, and to prevent and 
treat NAFLD210. H2 is able to directly and selectively 
remove the highly oxidizing compounds OH and 
ONOO– in the mitochondria of cultured cells, sup-
press lipid peroxidation associated with free radical 
chain reactions, and regulate negatively NF-κB and 
pro-inflammatory cytokines211,212. In mouse models, 
Kawai et al213 observed ALT, TNF-α, IL-6, oxidative 
stress, balloning, fibrosis, apoptosis, FFA absorption 
and β-oxidation reduction (p<0.05), while Lin et al214 
TNF-α (-6.4%, p<0.05), IL-6 (-10%, p>0.05), ALT 
(-11.5%, p<0.05), AST (-10.9%, p>0.05), TG (-13.9%, 
p<0.05), TC (10.3%, p<0.01), and ROS reduction. In 
humans, intake of 900 mL/day of HRW for 8 weeks 
significantly reduced small and dense LDL by 15.5% 
(p<0.01), oxidized LDL, and FFA, and increased 
plasma SOD levels in patients with T2DM215; the in-
take of 1.2 ppm HRW for 28 days reduced steatosis 
(p<0.05) and AST (-10%) in twelve overweight pa-
tients with NAFLD216. H2 also seems to be able to 
protect intestinal barrier integrity, modulate the mi-
crobiota, and ameliorate clinical characteristics of gut 
microbiota disorders including diarrhea, weight, and 
fluid loss217. A relatively small quantity of HRW ef-
fectively determines an increase in the abundance of 
hydrogenotrophic bacteria (methanogens, acetogens, 
and sulfate-reducing bacteria) and their metabolites 
(methane, acetate, and H2S) and a growth of anaero-
bic and butyrate-producing bacteria. In 2019, Sha et 
al218 confirmed such beneficial effect on gut microbio-
ta on thirty-eight youth soccer players, who showed a 
greater abundance and diversity of the intestinal flora 
after taking 1.5-2.0 l/day of HRW for 2 months131.

Conclusions

NAFLD is the most common chronic liver di-
sease in the Western world and a leading cause 
of liver transplantation. The pathophysiological 
mechanisms underlying NAFLD, and related 
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therapeutic strategies are currently the subject 
of worldwide research; new knowledge on these 
is still growing. NAFLD mechanism of pathoge-
nesis is complex and growing evidence indicates 
that both different genetic and environmental 
factors (such as T2DM, IR, metabolic syndrome, 
Western diet, poor quality of sleep, sedentary li-
festyle, and drugs) contribute to its development 
and progression. IR plays a predominant role sin-
ce it firstly exposes hepatocytes to steatosis and 
lipotoxicity. Hence, a worsening of IR and the 
release of pro-inflammatory cytokines such as 
IL-1β, IL-6, TNF-α, and/or chemokines, resulting 
in inflammation and an impaired immune respon-
se. Moreover, the amplification of cell and tissue 
damage and in the progression to NASH occurs. 
Recently, the hypothesis that the gut-liver axis, 
particularly the dysbiosis, is involved in NAFLD 
development and progression, is increasingly ac-
cepted. This can exacerbate immune responses, 
and both hepatic and systemic inflammation by 
modulating intestinal permeability, endotoxemia, 
energy and BAs homeostasis, choline metaboli-
sm, its toxic derivative TMAO, endogenous etha-
nol and its derivatives acetaldehyde and acetate, 
phenylacetate and BCAAs and the endocanna-
binoid system. Inflammation, along with injured 
hepatocytes and activated Kupffer cells, leads 
HSCs with myofibroblastic activity to secrete an 
excessive amount of extracellular matrix, thus 
determining the transition to fibrosis. Continuous 
liver damage promotes progression to advanced 
fibrosis, liver cirrhosis, and HCC. Despite this, 
further studies are needed to fully understand all 
the molecular targets and signaling pathways in-
volved. The absence of a gold standard treatment 
for NAFLD has led research towards new poten-
tial therapeutic strategies aimed above all to re-
store the condition of eubiosis. In this review, we 
have examined different approaches for NAFLD 
treatment like probiotics, prebiotics, symbiotics, 
postbiotics, non-absorbable antibiotics (neomycin, 
cidomycin, and rifaximin), dietary approaches 
(polyphenols and diets based on intermittent fa-
sting DI), Chinese herbs, FMT, and minor the-
rapies such as carbon nanoparticle, MCJ protein 
and H2-rich water. Several studies132,141,184,205 on 
animal and cellular models have shown how the-
se therapies are able to improve the pathological 
condition by modulating the gut microbiota, or by 
reverting the condition of dysbiosis into eubiosis. 
In general, mentioned therapies are able to impro-
ve IR, steatosis, permeability, endotoxemia, and 
oxidative function, and reduce the levels of serum 

transaminases ALT and AST, pro-inflammatory 
cytokines TNF-α, IL-6 and the lipid profile (TC, 
TG) inhibiting hepatic lipogenesis. Many of these 
approaches also result in a significant reduction in 
body weight, body fat and waist circumference. 
Among the minor therapies, carbon nanoparticle 
can prevent the translocation of toxins, cytokines, 
bile acids, bacterial products and exotoxins into 
the liver and systemic circulation in vitro, while 
the inhibition of MCJ expression and/or function 
is essential to improve mitochondrial respiration 
and insulin response, and induce hepatic mito-
chondrial β-oxidation, glycolysis, and glycogene-
sis. Finally, hydrogen-rich water is able to directly 
and selectively remove the highly oxidizing com-
pounds OH and ONOO− in the mitochondria, to 
suppress lipid peroxidation associated with free 
radical chain reactions, and to modulate the mi-
crobiota and consequently conditions such as 
diarrhea, weight gain, and fluid loss. Therefore, 
cited therapies determine in different ways an im-
provement in steatosis, lipotoxicity, inflammation 
and apoptosis, which in turn result in a reduction 
in liver damage and in the progression to NASH, 
fibrosis, cirrhosis, and HCC, and in an improve-
ment in symptomatology. However, their applica-
tion in clinical practice requires further investi-
gation due to the small number of clinical studies 
on humans.
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