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Abstract

This article proposes a new method to inject backdoors in RSA and other cryptographic primitives based on
the Integer Factorization problem for balanced semi-primes. The method relies on mathematical congruences
among the factors of the semi-primes modulo a large prime number, which acts as a “designer key” or “escrow
key”. In particular, two different backdoors are proposed, one targeting a single semi-prime and the other one
a pair of semi-primes. The article also describes the results of tests performed on a SageMath implementation
of the backdoors.
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1. Introduction

Impairing the robustness of cryptographic appli-
cations is a sensitive topic. The interest on direct
attacks, vulnerabilities, and backdoors for all cur-
rently used ciphers is certainly justified by economic
or geopolitical reasons. If a vulnerable implementa-
tion of a cryptographic algorithm is surreptitiously
distributed, an “evil” actor or a national security
agency might get easy access to any sort of sensi-
tive and precious information. On the other hand,
there could be “legal” actors that openly mandate
or encourage the adoption of cryptographic imple-
mentations that include backdoors in order to re-
alize “key escrow” mechanisms. For instance, a na-
tional country might legislate that judiciary repre-
sentatives should always be able to recover any kind
of encrypted communication involved in a criminal
case.

Up to a few years ago, it was only conjectured [1]
that major security agencies were able to decrypt
a large portion of the world’s encrypted traffic,
mainly thanks to vulnerabilities hidden in pseudo-
random generators or major cryptographic algo-
rithms and applications. Some examples of this
practice might be the Hans Bühler case in 1994
[2], the Dual-EC algorithm proposed in 2004 by
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US National Institute of Standards and Technolo-
gies [3, 4], and perhaps the OpenBSD backdoor
incident emerged in 2010 [5, 6]. However, in the
last few years many government bodies openly talk
about enforcing by law “responsible encryption” or
“exceptional access to encrypted documents” [7, 8],
which are essentially more palatable words for “es-
crow key” and “backdoors”.

Moreover, even the approach to backdoor con-
struction is changed in the last years. While in
the past the focus was mainly on weaknesses in
pseudo-random generators or software implementa-
tions that might allow an attacker to predict some
secret data of the target users, nowadays the em-
phasis is on theoretical backdoors based on mathe-
matical properties of the cryptographic primitives.
Perhaps, the main reason for this new approach is
that it is very difficult to discover a mathematical
backdoor by just looking at the cryptographic algo-
rithm: for example, Bannier and Filiol [9] showed in
2017 how a block cipher similar to AES can be de-
vised so that it includes, by design, a hidden mathe-
matical backdoor that allows a knowledged attacker
to effectively break the cipher and recover the key.

Evil actors and legal actors pursue very differ-
ent goals, which justify the adoption of very differ-
ent backdoor mechanisms. An evil actor is primar-
ily concerned with how convenient is triggering the
backdoor, and secondarily with how well the back-
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door mechanism is hidden to the final user; if that
mechanism also impairs the security of the cipher
is not crucially important. Thus, a backdoor intro-
duced by an evil actor might even be a vulnerability
hidden in a cipher implementation such that any-
one knowing about its existence could easily break
the cipher and recover the encrypted messages. For
instance, a mechanism that can be easily exploited
might be based on a semi-prime generator that se-
lect just one of the primes at random, while the
other prime is fixed. The Euclidean algorithm ap-
plied to two different vulnerable semi-primes out-
puts the fixed prime, thus anyone can easily break
the cipher even if the fixed prime is not known in
advance. Perhaps not surprisingly, there are in In-
ternet a lot of very weak public keys [10, 11]. On
the other hand, a legal actor does not want to signif-
icantly impair the security of a cryptographic algo-
rithm, because the final users might just refuse to
adopt an insecure cipher. A backdoor introduced
by a legal actors is likely a vulnerability embedded
in a cryptographic implementation that allows only
“authorized” actors to decipher the encrypted mes-
sages without knowing the private keys of the final
users. Usually, this means that the retrieval of the
encrypted messages can be done only if the actor
knows a secret escrow key related to the backdoor
itself.

Among the most widespread cryptographic algo-
rithms, RSA [12] likely deserves special considera-
tion, because it is conveniently used to protect any
kind of sensitive data transmitted over the Inter-
net. While it is commonly believed that RSA has
been properly designed and that, by itself, it does
not contain hidden vulnerabilities, a large number
of attacks to RSA have been proposed since its in-
vention. These attacks span from directly factoring
the semi-prime in the public key to exploiting weak-
nesses in the generation algorithm for the prime
factors; for a survey, see [13]. Furthermore, several
RSA’s backdoors have been proposed: they are spe-
cially crafted values in RSA parameters that allow
a knowledged attacker to recover the private key
from publicly available information. For a in-depth
discussion of several RSA’s backdoors see [14].

In this work we propose a new idea to inject back-
doors in RSA key generators, which was loosely in-
spired by the concept of “implicit hints” of May and
Ritzenhofen [15] in pairs of semi-primes. On the
other hand, our idea differs significantly from the

backdoors based on implicit hints and, as far as we
know, from any other published backdoor proposal.

More specifically, May and Ritzenhofen proposed
the Implicit Factorization Problem (IFP), which is
based on the premise that two or more semi-primes
having factors sharing some common bits can be
factored with some variants of the Coppersmith’s
algorithm [16, 17]. The authors stated that “[. . . ]
one application of our result is malicious key gener-
ation of RSA moduli, i.e. the construction of back-
doored RSA moduli”. In our opinion, however, a
backdoor based on shared bits, as described in [15],
is not really effective for RSA. In fact, it is practi-
cally not possible to exploit this backdoor in large
“balanced” semi-primes, such as those used in cur-
rently used RSA moduli, because the time required
by the Coppersmith’s algorithm to factor a semi-
prime grows exponentially when the difference in
the size of the factors becomes smaller. Moreover,
this vulnerability is self-evident to anyone looking
at the factors, because there would be a long run
of identical bits in the two values, which means
that the backdoor cannot be easily concealed to the
owner of the private keys.

Our new idea is the following: rather than pre-
scribing that the bit-expansions of the factors in-
clude a long run of identical bits, we impose that
the bit-expansions include portions of correlated
bits, where the correlation is bound to a secret de-
signer key not known to the owner of the keys. In
practice, we impose some mathematical conditions
on the values of the factors as congruences modulo a
large prime (of nearly the same size of the factors),
which acts as the designer key.

Following the IFP approach in [15], we firstly
devised a backdoor (named TSB) based on mu-
tual correlations between the factors of two dis-
tinct semi-primes. Afterwards we devised a simpler
backdoor (named SSB) based on the same idea but
suitable for injecting a backdoor in a single semi-
prime. The backdoors can be applied to RSA or
to any other cipher whose security is based on the
difficulty of the integer factorization of the semi-
primes.

A key difference with the IFP approach is that in
order to trigger the backdoors, that is, in order to
factor the semi-prime(s) by exploiting the designer
key, there is no need to apply some variant of the
Coppersmith’s algorithm. Therefore, if the value
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of the designer key is known, factoring the semi-
prime(s) is easy and efficient. On the other hand, if
the designer key is not known, there seems to be no
efficient way to factor the semi-prime(s). Moreover,
without the designer key, there seems to be no ef-
ficient way to detect the existence of the backdoor,
even when looking at the distinct prime factors of
the semi-prime(s).

The rest of the article is organized as follows.
In Section 2 we define some mathematical notation
and introduce the basic RSA algorithm. In Sec-
tion 3 we present the prior works related to RSA
backdoors and the Implicit Factorization Problem
(IFP). In Sections 4 we discuss our simpler back-
door, SSB, while in Section 5 we discuss the more
sophisticated backdoor for a pair of semi-primes,
TSB. Finally, in Section 6 we draw some conclu-
sions from this work.

2. Preliminaries

Let us establish some notations: a ≡ b (mod c)
denotes the relation in which a−b is a multiple of c;
often we will use the shorter notation a ≡

c
b. The

notation a mod b denotes the operation remainder
of the division a/b; hence, a ≡

c
(a mod c) and 0 ≤

a mod c < c.

If N ≥ 0 is an integer, its size in bits is defined as
`(N) = max {1, dlog2(N + 1)e}. We write x ' y if
x and y are equal or differ by at most one, while we
write x ≈ y if x and y differs by a value negligible
with respect to the sizes of x and y. If N ≈ 2n,
with n large, then `(N) ' log2N , that is, we may
consider both `(N) and log2N to be approximately
equal to n, ignoring a ±1 difference in size.

If h is an integer, hek denotes the k most signifi-
cant bits of h (a value from 0 to 2k − 1), while hck
denotes the k less significant bits.

A semi-prime is a number N such that N = p q
where p and q are primes. Therefore, `(N) ' `(p)+
`(q). If `(p) ' `(q), then the semi-prime is said to
be balanced. In the following we consider also se-
quences of semi-primes Ni = pi qi (i = 1, 2, . . .)
having common size n = `(Ni), for every i; further-
more, the primes qi have common size `(qi) = α; it
follows that all primes pi have the same size n−α.

The RSA public key cryptosystem has been in-
vented by Rivest, Shamir, and Adleman [12] in
1977. In its simplest form, the algorithm is based
on a balanced semi-prime N = p q and a couple
of exponents e, d such that gcd(e, φ(N)) = 1 and
ed ≡ 1 (mod φ(N)). Here φ(N) denotes the Euler’s
totient function, which can be easily computed as
(p−1)(q−1) if the prime factors p and q are known.
Theoretically, the value of e could be random, while
the value of d can be computed from e and φ(N) by
using the Extended Euclidean algorithm. The pair
(N, e) is the “public key” of RSA, and the encryp-
tion function is Me mod N . Either the pair (p, q)
or the pair (N, d) is the “private key”, and the de-
cryption function is (Me)d mod N ≡ Msφ(N)+1 ≡
M(Msφ(N)) ≡ M(1s) ≡ M (mod N). Of course,
factoringN allows an attacker to recover the private
key from the public key, because from p and q we
can compute φ(N) and then d ≡ e−1 (mod φ(N)).

3. Related work

Many authors proposed to classify backdoors em-
bedded in cryptographic applications according to
several, different criteria. Following [18], we con-
sider three types of backdoors: (1) weak backdoors,
(2) information transfer via subliminal channels,
and (3) SETUP mechanisms. Weak backdoors are
based on modifications of the cryptographic pro-
tocol such that it would be possible to anyone to
break the cipher and recover the secret data. Vul-
nerabilities falling under the information transfer
via subliminal channels category allow an attacker
to exploit the cryptographic protocol in such a way
to create a hidden communication channel that can-
not be intercepted or unambiguously detected. Fi-
nally, SETUP (Secretly Embedded Trapdoor with
Universal Protection) mechanisms create vulnera-
bilities in the cryptographic protocols that cannot
easily exploited by third-party attackers.

SETUP mechanisms have been firstly proposed
by Young and Yung [19, 20] in 1996: they coined the
term “kleptography” to denote the usage of crypto-
graphic primitives in order to design “safe” back-
doors in other cryptographic protocols. Following
the classical distinction between asymmetric and
symmetric cryptography, SETUP mechanisms can
lead to asymmetric backdoors and symmetric back-
doors.
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In an asymmetric backdoor the information re-
quired to recover the encrypted messages is pro-
tected by an asymmetric cipher. Usually, this
means that some data that allows an actor to re-
cover any user private key are encrypted with the
public key of the designer of the RSA implementa-
tion and stored inside the corresponding user public
key. Any actor that knows the corresponding de-
signer private key may extract the data from the
user public key and decipher them to recover the
user private key. Observe that in this case the RSA
implementation is “tamper resistant”: even reverse
engineering cannot reveal the designer private key.

In a symmetric backdoor, on the other hand, the
designer key that allows an actor to recover the user
private key from the user public key is stored in
some form inside the RSA implementation itself.
To be secure and undetected, the RSA implemen-
tation (perhaps, a physical device) must be “tamper
proof”.

Existing RSA backdoors may also be categorized
according to the place where the backdoor’s specific
data are stored: either in the semi-prime N alone,
or also in the exponent e of any public key (N, e).
“Exponent-based” backdoors are somewhat easier
to devise, because e could theoretically be any ran-
dom value coprime with φ(N). However, most RSA
implementations make use of special fixed values
for the public exponent, such as small values or
values having small Hamming weight, in order to
improve the efficiency of the RSA algorithm. Thus,
exponent-based backdoors cannot be easily hidden
to the final user, and can be perceptively slower
than honest RSA implementations. Backdoors em-
bedded in the public key’s semi-prime does not limit
the choice of the public exponent, however they
must address a crucial problem: how to encode in-
formation about the factorization of the semi-prime
in the semi-prime itself, in such a way that the in-
formation is encrypted with a secret key and, pos-
sibly, the pair (p, q) is indistinguishable by a pair of
primes generated by a honest RSA implementation.

In this work we propose two backdoors embed-
ded in the semi-primes of the RSA’s public keys;
as a matter of fact, the backdoors apply to any
cryptographic protocol based on the integer factor-
ization of semi-primes. Therefore, we don’t discuss
at length related work concerning exponent-based
backdoors; examples can be found, for example, in
[21, 22, 14, 23]

3.1. Symmetric backdoors

The proposed SSB algorithm implements a sym-
metric backdoor, because the escrow key is fixed
and hard-cabled in the hardware or software device
that generates the vulnerable semi-primes. As we
shall see, TSB might be considered both a symmet-
ric or an asymmetric backdoor.

The first RSA backdoor has been proposed by
Anderson [24] in 1993. It is a symmetric backdoor
embedded in the public key’s semi-prime: let β be
a m-bit secret prime (the “backdoor key”), and let
πβ and π′β be pseudo-random functions that, given
a seed in argument, produce a (n−m)-bit value (in
the original article, n = 256 and m = 200). For any
vulnerable 2n-bit semi-prime N = pq, let t, t′ <

√
β

be (m/2)-bit random numbers coprime with β, and
let p = πβ(t) · β + t and q = π′β(t′) · β + t′. Given
N and β, it is possible to compute tt′ = N mod β,
then factor the m-bit number tt′, and finally com-
pute p and q. Kaliski [25] proves that it is pos-
sible to discover the backdoor by either comput-
ing the continued fraction p/q, because the expan-
sion likely contains an approximation of the frac-
tion πβ(t)/π′β(t′), or by finding a reduced basis of
a suitable lattice built on the primes of two vul-
nerable moduli. He also shows that the backdoor
can be detected by the lattice method when 14 or
more non-factored vulnerable moduli are available.
It is easy to observe that Kaliski’s detection algo-
rithm can be easily defeated by introducing a “dy-
namic backdoor key” whose exact value depends,
for instance, on an incremental counter. However,
another drawback of Anderson’s backdoor is that
m ≈ 3/4 · n, hence triggering the backdoor for cur-
rently used public key sizes might require factoring
a too large integer.

Our first proposed backdoor, SSB, is similar
to Anderson’s construction, in that triggering the
backdoor involves as first step computing the re-
mainder of the integer division of the semi-prime
and the designer (escrow) key. However, a key
difference with Anderson’s idea is the form of the
primes p and q, which allows SSB to escape detec-
tion by Kaliski’s algorithms and to avoid factoring
a large integer when exploiting the backdoor.

In 2003, Crepéau and Slakmon [22] presented,
among several others exponent-based backdoors, a
semi-prime-based backdoor that relies on Copper-
smith’s attack [17] and encrypts the factor p in the
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RSA modulus N = pq in such a way that the bits in
Nen/8 have the correct distribution for a random
semi-prime, while the middle n/4 bits of N are an
encryption, via a pseudo-random function πβ , of
pen/4. Our proposed backdoors use a entirely dif-
ferent mechanism and do not rely on Coppersmith’s
attack, which means that they can be efficiently ex-
ploited even on very large balanced semi-primes.

In 2008, Joye [26] studied the performances of
generating a semi-prime N in which some bits are
prescribed; he developed as an example a RSA sym-
metric backdoor based on the Coppersmith’s at-
tack in which some of the bits of p are encrypted
in q. While this study is relevant when analyzing
the generation times of any semi-prime backdoor,
their proposal is entirely different than the present
one.

The symmetric backdoor proposed by Patsakis
[27] in 2012 is based on yet another idea: the pa-
rameterized, randomized backdoor algorithm de-
composes an integer as sum of squares in a way
depending on a designer’s secret parameter. The
backdoor consists in imposing that the semi-prime,
once decomposed by using the secret parameter,
can be easily solved by a nonlinear system whose
solutions are properly bounded.

In 2017, Nemec, Sys, and others [28] exposed
a critical vulnerability (perhaps unintentional) in
the key generation algorithm of the RSALib li-
brary, which is written, adopted, and distributed
to third parties by Infineon, one of the top produc-
ers of cryptographic hardware devices. This work
raised much interest because the flaw was already
present in devices produced in 2012 and the total
number of affected devices, and consequently vul-
nerable keys, is huge. In any N = pq generated
by the flawed RSALib, all primes p and q have the
form k · Mt + (65537a mod Mt), where Mt is the
primorial number composed by the product of the
first t primes, and k, a are random integers. The
values of t for semi-primes of bit length n = 512,
1024, 2048, and 4096 are, respectively, t = 39, 71,
126, and 225. This means that the number of truly
random bits in each of the primes is reduced, re-
spectively, to 98, 171, 308, and 519. In order to
find the factors of a vulnerable semi-prime, a vari-
ant of the Coppersmith’s attack is used: it is pos-
sible to efficiently factor N = pq when the value
p mod M is known. Hence, the recovering proce-
dure determines a suitable divisor M of Mt of size

`(M) ≥ n/4 (to reduce the search space for a),
guesses an exponent a, computes 67537a mod M ,
and factors N . It is also easy to verify whether a
given key is flawed: N is likely vulnerable if the
discrete logarithm log65537N mod Mt exists. Actu-
ally, this logarithm can be easily computed by the
Pohlig-Hellman algorithm [29] because Mt is the
product of many small consecutive primes. Hence,
ROCA belongs arguably to the weak backdoor cat-
egory.

3.2. Asymmetric backdoors

The proposed TSB algorithm can be used to
implement both symmetric and asymmetric back-
doors. In fact, TSB makes use of an embedded
designer key, but also generates two distinct semi-
primes. If both semi-primes are used to build two
distinct public keys, both available to a third-party
attacker, then tampering with the TSB device may
expose the designer key and break the keys. On the
other hand, TSB can be used to generate a public
key (from one of the generated semi-primes) and a
dedicated escrow key composed by the hard-coded
large prime inside the device and the second semi-
prime, which must be considered as the designer’s
secret key. This is a reasonable scenario for crypto-
graphic keys used in a highly-secure work environ-
ment. In this second case, TSB must be considered
an asymmetric backdoor, because tampering with
the device is not enough to break any key already
generated.

The first examples of asymmetric backdoors pro-
posed by Young and Yung [19] in 1996 were
exponent-based. However, that article also includes
the description of a asymmetric semi-prime-based
backdoor named PAP, for “Pretty Awful Privacy”.
The backdoor designer defines a designer’s RSA
public key (N ′ = p′q′, e′) and private key (p′, q′, d′),
where `(N ′) = n/2. Let FK and GK be invertible
functions depending on a fixed key K that trans-
form a seed of n/2 bits in a pseudo-random value
of n/2 bits. In order to create a backdoor in a RSA
moduli, the designer first chooses a prime p of bit
length n/2 at random, then searches the smallest
value K such that ρ = FK(p) < N ′. ρ is then en-
crypted as ρ2 = GK(ρe

′
mod N ′). The RSA semi-

prime N results from the search of a prime q such
that the n/2 most significant bits of N = pq co-
incide with ρ2. The attacker can easily break the
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public key by extracting ρ2 from N , then starting
an exhaustive search of the value for K that, when
applied to the inverse permutations G−1K and F−1K ,
permits to extract the proper factor p using the
RSA private key (p′, q′, d′).

In a series of articles published between 1997 and
2008, Young and Yung [20, 30, 31, 32] proposed
several kleptographic backdoors for RSA using dif-
ferent cryptographic algorithms for embedding the
factor p in N .

In 2010, Patsakis [33, 27] proposed yet another
kleptographic mechanism that relies on Copper-
smith’s attack and forges p and q so that the most
significant bits of both of them are of the form
(a + r)e

′
mod N ′, where a is a secret design pa-

rameter, r is a random value, and (N ′, e′) is the
designer’s asymmetric public key.

In 2016, Wüller, Kühnel, and Meyer [34] pro-
posed a RSA backdoor called PHP, for “Prime Hid-
ing Prime”, in which the information required to
factor N is hidden in N itself. The idea is to se-
lect a prime p such that q = (pe

′ · p−1) mod N ′ is a
prime, where (N ′, e′) is the RSA public key of the
designer. To factor N = pq, the actor computes
Nd′ ≡

N ′ (p · pe′ · p−1)d
′ ≡

N ′ p. An improvement of
PHP, called PHP’, is also described in [34]: here
q = (se

′ · p−1) mod N ′, where s is the concatena-
tion of n/4 random bits and pcn/4. Half of the bits
of p are enough to recover the factorization of N
thanks to the Coppersmith’s attack.

Markelova [18] revisited Anderson’s idea for a
symmetrical backdoor and devised SETUP mecha-
nisms that protect the backdoor by means of some
public-key algorithms, in particular based on dis-
crete logarithm problems on both finite fields and
elliptic curves. The author also presented a SETUP
backdoor exploiting the Chinese Remainder theo-
rem. The article [18] also includes a discussion of
the similarities of these SETUP backdoors with the
ROCA backdoor.

3.3. The Implicit Factorization Problem

In 1985, Rivest and Shamir [35] introduced the
oracle complexity as a new way to look at the com-
plexity of the factorization problem (and the related
RSA attack): they showed that the semi-prime N

can be factored in polynomial time if an oracle pro-
vides 3/5 of the bits of p. In 1996, Coppersmith
[16, 17] improved the oracle complexity by showing
that an explicit “hint” about the top half bits of p
are sufficient for factoring N in polynomial time. In
particular, Coppersmith described some algorithms
based on lattice reduction and the LLL procedure
[36] to find small integer roots of univariate mod-
ular polynomials or bivariate integer polynomials.
Later [37, 38], these algorithms have been reformu-
lated in simpler ways and heuristically extended to
the multivariate polynomial case.

The seminal article [15] focusing on “implicit
hints” has been published in 2009 and it is due to
May and Ritzenhofen. An oracle gives an implicit
hint when it does not output the value of some bits
of one of the factors of the semi-prime; rather, the
oracle outputs another semi-prime whose primes
share some bits with the primes of original semi-
prime. The authors formally introduced the Im-
plicit Factorization Problem (IFP), and showed
that two semi-primes N1 and N2 can be factored
in time O(n2) if p1ct = p2ct, with t ≥ 2α + 3.
The algorithm is based on a lattice reduction: the
search for the unknown primes qi is reduced to a
search for a basis of a suitable lattice by means of
the quadratic Gaussian reduction algorithm. This
result implies that only highly imbalanced semi-
primes can be factored, because `(q1) = `(q2) = α,
hence `(pi) > 2 `(qi). The authors also extended
this result to k > 2 semi-primes, and showed that a
polynomial algorithm based on the LLL algorithm
[36] exists if t ≥ αk/(k − 1). For the balanced case
this result is not useful, because it means that all
pi primes are identical, hence they can be easily
recovered by the Euclidean algorithm. However,
the authors also showed that their method can be
used to factor k balanced semi-primes when some
additional conditions are satisfied and n/4 bits are
discovered by brute force.

In the following years many articles improved and
extended the results of May and Ritzenhofen [39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55]. See also a survey [56] published in 2018.

All attacks and vulnerabilities based on these re-
sults assume that the factors of vulnerable semi-
primes share some identical bits. From a practical
point of view, backdoors relying on shared identical
bits cannot be easily concealed to anyone looking at
the factors, that is, the private key. Furthermore,
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all the results cited in this section are based on some
variants of Coppersmith’s algorithms [16, 17]. On
the other hand, our proposed backdoors generate
semi-primes with factors without common shared
bits and do not require Coppersmith’s algorithm.
Therefore, they are difficult to be detected and are
much more efficient when applied to semi-prime
having large size, such as those used in the cur-
rently used RSA public keys.

4. SSB: a backdoor embedded in a single
semi-prime

In this section we introduce SSB (Single Semi-
prime Backdoor), our proposal for a backdoor en-
coded in the value of a semi-prime N . We first
describe the vulnerability and how the semi-prime
is generated; then, we describe the procedure to ef-
ficiently factor it, provided that the corresponding
“escrow key” is known. Finally, we analyze the the-
oretical and practical “efficiency” of the backdoor.

4.1. Generation of a vulnerable semi-prime

The first step of the generation of a vulnerable
semi-prime is choosing a “escrow key”, namely a se-
cret value that must be known in order to detect
and exploit the backdoor. The escrow key is a prime
T of size slightly smaller than the size of the primes
in the semi-prime. Thus, if α is the reference bit
length of the primes (e.g., α = 512 for RSA-1024),
then `(T ) ' α − c, where typically 4 ≤ c ≤ 10 for
α ≤ 2048; a good value for α = 512, 1024, and 2048
appears to be c = 7. The backdoor designer must
also choose the value of a constant K, which must
be related to the value of α, as discussed later; in
particular, we will show that a good practical choice
may be K ≈ α.

In order to create a vulnerable semi-prime, two
distinct primes p and q, each of them having bit
length roughly α, must be generated. The backdoor
exists whenever the following condition holds:

(H0) There exists a positive integer k with 1 < k ≤
K such that p ≡

T
k q.

GetCorrelPrimes :
Input : α , T , K
Output : p , k

whi le t rue
generate random primes q and r

o f s i z e α
f o r k := 2 to K :

p := r + (k ∗ q − r) mod T
i f p i s prime : re turn p , q

end f o r
end whi l e

Figure 1: Generation of a vulnerable semi-prime with escrow
key T

The algorithm in Figure 1 can be used to generate
the two primes p and q satisfying the condition H0
above. It is based on Dirichlet’s theorem stating
that there are infinitely many primes of the form
a + b c if gcd(a, b) = 1 (consider b = T and a =
k · (q mod T )). The semi-prime is then computed
as N = p q.

4.2. Recovering procedure

The key idea of SSB, and also the proof that it
works as expected, is its recovering procedure. For-
mally, the factors of N can be efficiently recovered
by knowing in advance only the semi-prime N and
the escrow key T . The values of the parameters α,
K, and c may affect the running time of the recov-
ering procedure, however there is no need to know
them to recover the factors.

The recovering procedure can be split in three
phases:

1. Recovering “low-level” coefficient.
2. Recovering “high-level” coefficients.
3. Recovering the factors.

Generally speaking, in a practical implementa-
tion of the recovering procedure it might be con-
venient to interleave the executions of these three
phases. However, we discuss the phases indepen-
dently to simplify the description of the whole pro-
cedure.
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4.2.1. Recovering “low-level” coefficients

At the beginning we only know N and T . The
equation N = p q and the equation in condition H0
imply:

N mod T ≡
T

(p mod T ) · (q mod T ) (1)

p mod T ≡T (k q) mod T (2)

By combining them we get:

N mod T ≡
T

(k q2) mod T (3)

Because k ∈ [2,K], whereK is a reasonably small
constant, we can exhaustively test every possible
value for k and discard any value for which N · k−1
in the Galois field GF(T ) is a quadratic non-residue,
that is, discard any value k such that for all inte-
gers γ ∈ [0, T ), (N mod T ) (k−1 mod T ) 6≡

T
γ2.

Here k−1 denotes the value in GF(T ) such that
k · k−1 ≡T 1.

At the end of this phase we have a list containing
candidate values for the “low-level” coefficient k and
the corresponding quadratic residue γ2 in GF(T ).
The correct value of k yields γ2 ≡

T
q2.

4.2.2. Recovering “high-level” coefficients

Let us assume that we start this phase by know-
ing N , T , k, and q2 mod T . Actually, we execute
this phase for any candidate in the list built in the
previous phase and discard any candidate as soon
as it yields inconsistent results.

As first step, we compute the square root of
γ2 = q2 mod T in GF(T ), that is, we find the values
whose square is congruent to γ2 modulo T , typically
by means of the Tonelli-Shanks algorithm [57, 58].
Because in general any square root has two distinct
values in GF(T ), we get two possible values γ1 and
γ2 for q mod T , where γ1 ≡T T − γ2. In the fol-
lowing, let γ be either γ1 or γ2; we have to perform
this phase with both values and discard the one
that yields inconsistent results.

We can easily compute the value p mod T from
equation (2), so we may now assume to know the
values N , T , q mod T , and p mod T .

The semi-prime N can be written as:

p q = (π T + (p mod T )) · (ν T + (q mod T )) , (4)

that is, if δ = (N − (p mod T ) (q mod T )) /T :

δ = π ν T + π (q mod T ) + ν (p mod T ). (5)

From the last equation we easily get the following
bounds:

π ν ≤
⌈
N/T 2

⌉
(6)

(π + 1) (ν + 1) ≥
⌊
N/T 2

⌋
(7)

Therefore, `(π) + `(ν) ' `(π ν) ' `(N/T 2) '
2α − 2(α − c) = 2c. Because by construction c is
a small constant, we can adopt a brute force ap-
proach to discover the missing “high-level” coeffi-
cients π and ν. The brute force search guesses the
value of the sum π + ν, starting from the lower
bound

⌊√
2 (bN/T 2c − 1)

⌋
(from equation (7)) and

ending at the upper bound
⌈
N/T 2

⌉
≈ 22c (from

equation (6)).

For any candidate value of the sum π + ν, let us
transform equation (5) by introducing an unknown
x = π, C = π + ν = x + ν, a = q mod T , b =
p mod T :

x (C − x)T + a x+ b (C − x) = δ,

that is,

T x2 + (b− a− C T )x+ δ − bC = 0.

Because we are looking for integer solutions for x
and C−x, the brute force attack just try all values
for C, in increasing order, and immediately discard
any value such that

∆ = (b− a− C T )2 − 4T (δ − bC)

is not a square. If the value of C survives, the
solutions (

C T + a− b±
√

∆
)
/(2T )

are computed; if either one of the solutions is an
integral number, the pair (x,C − x) = (π, ν) is
recorded as a candidate solution.

4.2.3. Recovering the factors

When this phase starts, we know N , T , p mod T ,
q mod T , and a list of candidate solutions (π, ν).

For any candidate solution (π, ν), we compute
the corresponding

p = π T + (p mod T ) and q = ν T + (q mod T ),

then we simply verify whether p ·q = N . One of the
candidate solutions certainly yields a factorization
of the semi-prime.
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4.3. Analysis

We briefly describe here the time complexity of
the SSB’s recovering procedure. As explained in
the previous subsection, the procedure starts by
recovering the “low-level” coefficients by means of
an exhaustive search among O(K) possible values
for k. For every candidate value we must exe-
cute some operations in GF(T ) whose cost is in
O((log T )2) = O(α2), and also the Tonelli-Shanks
algorithm to determine if a value < T is a quadratic
residue, which costs O((log T )3) = O(α3) [59]. The
list of candidate values for k has expected length
K/2, because in a finite field with an odd number
of elements any quadratic residue has two square
roots, thus half of the elements of the field are not
square of another element. Therefore, the “high-
level” coefficients recovery phase is executed on
O(K) candidate values for k and includes an ex-
haustive search in an interval of size O(22c); in ev-
ery iteration we execute a few integer operations on
values of bit length ≈ 2(α+ c); hence, every execu-
tion of this phase has a cost in O(22c (α+ c)2). Fi-
nally, the cost of every execution of the third phase
is dominated by two multiplications of values of bit
length ≈ α − c, hence it is in O(α2). Summing
all up, the worst-case cost of the whole recovering
procedure is in O(K (α+ c)3 22c).

The values of the parameters K and c are chosen
by the backdoor designer. We would expect that
larger values of K and c yield smaller running times
for the search algorithm in Figure 1 and longer run-
ning times for the recovery procedure; this intuition
is confirmed by the experiments. Anyway, the value
of c cannot be made too large, or it would be pos-
sible to discover the backdoor by just guessing the
design key T of bit length `(T ) = α− c. By letting
K ∈ O(α) and c ∈ O(logα), for instance K ≈ α
and c = 7 as suggested in subsection 4.1, we obtain
a running time for the recovery procedure in O(α4),
that is, polynomial in the size of the semi-prime.

4.3.1. Experimental results

In order to confirm that the backdoor works as
expected and to assess the execution times with
respect to the designer’s parameters, we imple-
mented SSB in SageMath [60] and performed ex-
tensive tests.2

2The code is open-source and available at https://
gitlab.com/cesati/ssb-and-tsb-backdoors.git.

In particular, we considered three values for α:
512 (the size of factors for RSA-1024), 1024 (RSA-
2048), and 2048 (RSA-4096). All tests have been
performed by choosing c = 7. This means that the
escrow keys have sizes 505, 1017, and 2041, respec-
tively. The value of c is so small that detecting
the existence of the backdoor by simply guessing
the value of the escrow key does not appear to be
significantly easier than guessing one of the factors
of the corresponding semi-primes. Every test trial
involves choosing a value for the parameter K, gen-
erating a escrow key T and a vulnerable semi-prime,
then recovering the factors of the semi-prime by just
using the values of the semi-prime and the escrow
key. We basically executed the tests by varying
the parameter K so as to determine a value yield-
ing both fast generations of vulnerable semi-primes
and reasonably quick recovery of the factors.

The tests have been executed on three computa-
tional nodes with 16 physical cores Intel Xeon E5-
2620 v4 running at 2.1 GHz with 64 GiB of RAM.
The nodes are based on the Slackware 14.2 software
distribution with a Linux kernel version 5.4.78 and
SageMath version 9.1. All tests have properly re-
covered the factors of the vulnerable semi-primes.
Each value of K ∈ {100 · i | i = 1, . . . , 50} has been
tested 20 times. The SageMath code is sequential,
that is, each test trial runs on a single computation
core. We report in Table 1 and Figure 2 averages
and standard deviations of the running times.

The experimental results confirm that the value
of K is crucial in determining both the time re-
quired to generate a vulnerable semi-prime and
the time required to recover the factors. Even if
the code has not been optimized at all, the recov-
ery time is reasonably small for all tested values
of K, hence SSB is a practically effective back-
door. However, generation time is also very im-
portant whenever the backdoor mechanism has to
be hidden in hardware devices or software programs
that are supposed to yield robust, legit semi-primes.
While in general larger values of K are associated
to smaller generation times, there seems to be a
threshold value for K above which the generation
times are essentially constants and near the min-
imum observed value. From the values shown in
Table 1 and Figure 2 we may safely set K to values
near 500, 1000, and 2000 for α = 512, 1024, and
2048, respectively, that is, K ≈ α.
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α=512 Generation Recovering
K avg. st.dev. avg. st.dev.

100 4.9 4.8 2.6 1.8
500 1.7 0.6 7.8 6.9

1,000 1.5 0.2 12.2 9.6
1,500 1.5 0.1 18.0 17.1
2,000 1.4 0.1 10.0 9.0
2,500 1.6 0.1 15.3 11.2
3,000 1.7 0.1 15.7 15.7
3,500 1.7 0.1 26.1 30.3
4,000 1.7 0.1 14.6 18.8
4,500 1.6 0.2 19.0 16.6
5,000 1.6 0.3 24.8 19.0

α=1024 Generation Recovering
K avg. st.dev. avg. st.dev.

100 51.0 60.3 5.4 1.9
500 17.9 7.4 18.3 13.5

1,000 11.6 3.2 34.9 30.7
1,500 11.2 1.6 33.9 37.8
2,000 11.5 1.8 28.6 23.0
2,500 10.6 1.3 61.2 60.0
3,000 11.4 1.7 45.4 63.7
3,500 10.8 0.9 72.0 63.4
4,000 10.7 1.5 56.0 49.0
4,500 10.8 1.0 42.7 41.9
5,000 11.1 1.2 44.4 38.4

α=2048 Generation Recovering
K avg. st.dev. avg. st.dev.

100 466.4 375.1 27.1 6.9
500 214.0 134.7 47.4 18.6

1,000 151.2 61.3 71.6 37.4
1,500 122.3 35.0 101.2 70.0
2,000 102.7 20.3 95.8 51.7
2,500 112.7 25.4 113.2 84.8
3,000 107.6 23.0 130.7 84.1
3,500 99.5 22.6 95.5 54.8
4,000 90.4 9.1 143.1 104.4
4,500 91.5 13.5 152.8 136.6
5,000 97.3 16.9 94.5 91.5

Table 1: SSB: running times (in seconds, average and stan-
dard deviations on 20 trials) for α = 512, 1024, 2048.

Figure 2: SSB: average running times for α = 512, 1024, 2048
(20 trials for each value of K). Magnitudes of the standard
deviations are shown as vertical bars.
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5. TSB: a backdoor embedded in a pair of
semi-primes

In this section we describe TSB (Twin Semi-
prime Backdoor), our proposal for a backdoor em-
bedded in the values of a pair of semi-primes N1

and N2. These semi-primes are typically to be gen-
erated on the same device but can be used indepen-
dently. For instance, the two semi-primes might be
used in two different RSA keys.3 Alternatively, one
of the semi-prime can be used to build a RSA key
while the other one would be separately stored as
an escrow key for the RSA key.

We first describe how the two semi-primes are
generated. Then we describe the procedure to effi-
ciently factor both semi-primes, provided that the
corresponding “designer key” is known.

5.1. Generation of the vulnerable pair of semi-
primes

The first step of the generation of a vulnerable
pair is choosing a “designer key”, namely a secret
value that must be known in order to detect and
exploit the backdoor. The designer key is a prime
T of size slightly smaller than the size of the primes
in each semi-prime. Thus, if α is the reference bit
length of the primes (e.g., α = 512 for RSA-1024),
then `(T ) ' α − c, where typically 4 ≤ c ≤ 10 for
α ≤ 2048; a good value for α = 512, 1024, and
2048 appears to be c = 7. The backdoor designer
must also choose the values of two constants K and
B. The value of K is related to the value of α,
as discussed later; typically, we may set K ≈ α/5,
e.g., K = 100, 200, and 400 for α = 512, 1024, and
2048, respectively. The constant B < T acts as a
detection threshold, so any value for B such that
`(B) ' α− 2c is valid.

In order to create a vulnerable pair, four distinct
primes p1, q1, p2, q2, each of them having bit length
roughly α, must be generated. The backdoor exists
whenever the following conditions hold:

(H1) There exists a positive integer h with 1 < h ≤
K such that q2 ≡T h

2 q1.

3It is not hard to justify the generation of two different
RSA keys. For instance, the user might be told that one
RSA key is for business or work usage and the other one is
for personal usage.

(H2) There exists a positive integer k1 with 1 < k1 ≤
K such that p1 ≡T h k1 q2.

(H3) There exists a positive integer k2 with 1 < k2 ≤
K such that p2 ≡T k2 q1.

(H4) The integers h, k1, and k2 are all coprime, that
is, gcd(h, k1) = gcd(h, k2) = gcd(k1, k2) = 1.

(H5) k2 is not a divisor of h k1 modulo T , that is,
h k1 6≡T k2.

(H6) Finally, (h q1)2 mod T > B.

The algorithm in Figure 3 can be used to generate
the four primes p1, q1, p2, and q2 satisfying the
conditions H1–H6 above. Once more, the algorithm
is implicitly based on Dirichlet’s theorem stating
that there are infinitely many primes of the form
a+ b c when gcd(a, b) = 1.

Finally, the semi-primes are computed as N1 =
p1 q1 and N2 = p2 q2. Observe that N1 and N2 are
coprime, because all factors are necessarily different
by construction.

5.2. Recovering procedure

The key idea of TSB, and also the proof that
it works as expected, is its recovering procedure.
Formally, the factors of N1 and N2 can be efficiently
recovered by knowing in advance only the pair of
semi-primes (N1, N2) and the designer key T . The
values of the parameters α, K, and c may affect the
running time of the recovering procedure, however
there is no need to know them to recover the factors.

The recovering procedure can be split in four
phases:

1. Recovering “medium-level” coefficients.
2. Recovering “low-level” coefficients.
3. Recovering “high-level” coefficients.
4. Recovering the factors.

Generally speaking, in a practical implementa-
tion of the recovering procedure it might be con-
venient to interleave the executions of these three
phases. However, we discuss the phases indepen-
dently to simplify the description of the whole pro-
cedure.
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GeneratePair :
Input : α , c , K , T
Output : p1 , q1 , p2 , q2

do
generate random primes q1 , p o f s i z e α
f o r h := 2 to K

q2 := p+ ((h2 q1 − p) mod T )
i f q2 i s prime then

break f o r loop
end i f

end f o r
whi l e q2 i s not prime

do
p1 , k1 := GetCorrelPrime (α ,q2 ,h ,T ,K ,c)

whi l e gcd (k1 ,h) == 1

do
p2 , k2 := GetCorrelPrime (α ,q1 ,1 ,T ,K ,c)

whi l e gcd (k1 ,k2 ) == 1 or gcd (k2 ,h) == 1
return p1 , q1 , p2 , q2

GetCorrelPrime :
Input : α , q , j , T , K , c
Output : p , k

whi le t rue
k := random value between 2 and K
t1 := (k j q) mod T
f o r p := t1 + 2c−3 to t1 + 22 c−2

i f p ≡T t1 and p i s prime then
return p , k

end i f
end whi l e

Figure 3: Generation of a vulnerable pair of semi-primes
with designer key T

5.2.1. Recovering “medium-level” coefficients

When starting the recovering procedure we as-
sume to know the following data: N1, N2, and the
“secret” prime T .

Equations in conditions H1, H2, and H3 enforce
the following congruences of N1 and N2 modulo T :

N1 ≡T p1 q1 ≡T h k1 q2 q1 ≡T h
3 k1 q

2
1 (8)

N2 ≡T p2 q2 ≡T k2 q1 q2 ≡T h
2 k2 q

2
1 (9)

It turns out that N1 and N2 are congruent mod-
ulo T to two values that have a big common fac-
tor, h2 q21 . However, the Euclidean algorithm on

N1 mod T and N2 mod T does not really help here:

gcd(N1 mod T,N2 mod T ) =

gcd((h3 k1 q
2
1) mod T, (h2 k2 q

2
1) mod T ).

The point is that the greatest common divisor is
relative to the lifted images of the products in the
Galois field GF(T ), and it is not related to the
greatest common divisor of the products h3 k1 q21
and h2 k2 q21 in Z.

To overcome this problem, observe that equations
(8) and (9) also imply the following ones:

N1 mod T ≡
T

(h k1) ·
[
(h2 q21) mod T

]
(10)

N2 mod T ≡
T
k2 ·

[
(h2 q21) mod T

]
(11)

and therefore there exist two integers k̃1, k̃2 such
that

(N1 mod T )+k̃1 ·T = (h k1)·
[
(h2 q21) mod T

]
(12)

(N2 mod T ) + k̃2 · T = k2 ·
[
(h2 q21) mod T

]
(13)

From the last two equations we derive:

gcd((N1 mod T ) + k̃1 · T,

(N2 mod T ) + k̃2 · T )

=
[
(h2 q21) mod T

] (14)

Observe that dropping N1 mod T from equa-
tion (12) yields

k̃1 ≤ (h k1) · (h2 q21) mod T

T
< K2.

Similarly, from equation (13):

k̃2 ≤ k2 ·
(h2 q21) mod T

T
< K.

Hence, the sizes of the “medium” coefficients k̃1 and
k̃2 is so small that they can be quickly recovered by
a brute force approach as in Figure 4.

It is possible to recognize the proper values of
k̃1 and k̃2 because the size of

[
(h2 q21) mod T

]
pro-

duced by the gcd with the right values is usually
much higher than the average value resulting from
a gcd with random wrong values. In fact, by con-
dition H6, (h2 q21) mod T > B; hence we select any
candidate pair of medium-level coefficients (k̃1, k̃2)
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RecoveryMedCoeff :
Input : N1 , N2 , T

Output : a l i s t o f p a i r s (k̃1 , k̃2)

f o r s := 0 to ∞
f o r k̃1 := 0 to s
k̃2 := s − k̃1
gg := gcd ( k̃1 · T +N1 mod T ,

k̃2 · T +N2 mod T )
i f (B <gg< T ) and

(gg ≡T γ2 f o r some γ ) then
add (k̃1 , k̃2) to the l i s t o f c o e f f .

end i f
end f o r

end f o r

Figure 4: Brute-force search of the medium-level coefficients

for which the greatest common divisor in equation
(14) is between B and T . Moreover, the value re-
turned by the Euclidean algorithm with the right
values must be a square in the Galois field GF(T ),
hence we may use this condition to filter some false
positives. In all our test cases, the first value found
by this brute force procedure yields a proper fac-
torization result.

5.2.2. Recovering “low-level” coefficients

The previous phase might determine several can-
didate pairs of medium-level coefficients, and the
current phase must be applied to each of them.

Let us assume at this point to know the fol-
lowing data: N1, N2, T , k̃1, k̃2, and the value
γ2 =

[
(h2 q21) mod T

]
derived from equation (14).

The value of the “low-level” coefficient k2 can be
immediately computed by using equation 13:

k2 =
(

(N2 mod T ) + k̃2 · T
)
/γ2, (15)

or, assuming K < T , k2 = (N2 · (γ2)−1) mod T
where γ2 · (γ2)−1 ≡

T
1.

On the other hand, by inverting equation 12 we
get the value of the product h k1:

(h k1) =
(

(N1 mod T ) + k̃1 · T
)
/γ2, (16)

or, assuming K < T , (h k1) = (N1 · (γ2)−1) mod T .

Since both h and k1 are not greater than K, their
product is below K2. Moreover, by condition H4,
gcd(h, k1) = 1. Because the number of multiplica-
tive partitions of this product does not exceed K2

[61, 62], we may exhaustively generate all possible
candidate pairs (h, k1) and apply the forthcoming
phases to each of them. When these phases are
performed on the true pair (h, k1), a proper factor-
ization of N1 and N2 is computed.

5.2.3. Recovering “high-level” coefficients

Let us assume that we start this phase by know-
ing the following data: N1, N2, T , h, k1, k2, and
γ2.

As first step, we compute the square root of
γ2 = (h2 q21) mod T in GF(T ), that is, we find the
values whose square is congruent to γ2 modulo T ,
typically by means of the Tonelli-Shanks algorithm
[57, 58]. Because in general any square root has two
distinct values in GF(T ), we get two possible values
γ1 and γ2 for (h q1) mod T , where γ1 ≡T T − γ2. In
the following, let γ be either γ1 or γ2; we have to
perform this phase with both values and discard the
one that yields inconsistent results.

We can now compute the value q1 mod T , be-
cause γ = (h q1) mod T means:

q1 mod T = (γ h−1) mod T (17)

where obviously h−1 is computed in GF(T ), that
is, hh−1 ≡

T
1.

From equation in condition H1 we can now infer
the value q2 mod T , because:

q2 mod T =
(
(q1 mod T ) · h2

)
mod T (18)

Also, from equations in conditions H2 and H3 we
compute p1 mod T and p2 mod T :

p1 mod T = (h k1 (q2 mod T )) mod T,

p2 mod T = (k2 (q1 mod T )) mod T .
(19)

At this point we know the values N1, N2, T ,
q1 mod T , q2 mod T , p1 mod T , and p2 mod T .

The semi-prime Ni (i ∈ {1, 2}) can be written as:

Ni = pi qi =

(πi T + (pi mod T )) · (νi T + (qi mod T )) ,
(20)
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that is, if δi = (Ni − (pi mod T ) (qi mod T )) /T :

δi = πi νi T + πi (qi mod T ) + νi (pi mod T ). (21)

From the last equation we easily get the following
bounds:

πi νi ≤
⌈
Ni/T

2
⌉

(22)

(πi + 1) (νi + 1) ≥
⌊
Ni/T

2
⌋

(23)

Therefore, `(πi)+`(νi) ' 2α−2(α−c) = 2c. Be-
cause by construction c is a small constant, we can
adopt a brute force approach to discover the miss-
ing “high-level” coefficients πi and νi. The brute
force search guesses the value of the sum πi + νi,
starting from the lower bound

⌊√
2(bNi/T 2c − 1)

⌋
(from equation (23)) and ending at the upper bound⌈
Ni/T

2
⌉
≈ 22c (from equation (22)).

For any candidate value of the sum πi+νi, let us
transform equation (21) by introducing an unknown
x = πi, C = πi + νi = x + νi, ai = qi mod T ,
bi = pi mod T :

x (C − x)T + ai x+ bi (C − x) = δi,

that is,

T x2 + (bi − ai − C T )x+ δi − bi C = 0.

Because we are looking for integer solutions for x
and C−x, the brute force attack just try all values
for C, in increasing order, and immediately discard
any value such that

∆ = (bi − ai − C T )2 − 4T (δi − bi C)

is not a square. If the value of C survives, the
solutions (

C T + ai − bi ±
√

∆
)
/(2T )

are computed; if either one of the solutions is an
integral number, the pair (x,C − x) = (πi, νi) is
recorded as a candidate solution.

5.2.4. Recovering the factors

When this phase starts, we know Ni, T , pi mod
T , qi mod T , and a list of candidate solutions
(πi, νi), for i = 1, 2. We work on every semi-prime
separately.

For any candidate solution (πi, νi), we compute
the corresponding pi = πi T + (pi mod T ) and
qi = νi T + (qi mod T ), then we simply verify
whether pi ·qi = Ni. One of the candidate solutions
certainly yields a factorization of the semi-prime.

5.3. Analysis

We briefly describe here the time complexity of
the TSB’s recovering procedure. As already ex-
plained, the procedure starts by recovering the
“medium-level” coefficients by means of an exhaus-
tive search among K3 possible values for the pair
(k̃1, k̃2). For every candidate pair we must ex-
ecute the Euclidean algorithm on values of bit
length up to ≈ `(k̃1 T ), which costs O(log(k̃1 T )) =
O(`(k̃1) + `(T )) = O(logK + α − c). We may also
use the Tonelli-Shanks algorithm to determine if
a value < T is a quadratic residue, which costs
O((log T )3) = O(α3) [59]. The “low-level” coeffi-
cients recovery phase involves a couple of integer
divisions on values ≈ k̃1 T , a factorization of a value
< K2, and the generation of up to K2 candidate
pairs (h, k1); hence, each execution of this recovery
phase has a cost in O(α2 + K2). The “high-level”
coefficients recovery phase includes an exhaustive
search in an interval of size O(22c); in every itera-
tion we execute a few integer operations on values
of bit length ≈ 2(α + c); hence, every execution of
this phase has a cost in O(22c (α+c)2). Finally, the
cost of every execution of the fourth phase is domi-
nated by four multiplications of values of bit length
≈ α− c, hence it is in O(α2). Summing all up, the
worst-case cost of the whole recovering procedure is
in O(K5 (α+ c)2 22c).

The values of the parameters K and c are chosen
by the backdoor designer. It is easy to observe that
larger values of K and c yield shorter running time
for the search algorithm in Figure 3 and longer run-
ning time for the recovery procedure. Anyway, the
value of c cannot be made too large, or it would be
possible to discover the vulnerability by just guess-
ing the design key T of bit length `(T ) = α − c.
On the other hand, experimental results show that
larger values of c do not necessarily yield shorter
times for the generation phase. By letting K ≈ α/5
and c = 7, as suggested in subsection 5.1, we obtain
a running time for the recovery procedure in O(α7),
that is, polynomial in the size of the semi-primes.

5.3.1. Experimental results

In order to confirm that the backdoor works as
expected and to assess the execution times with re-
spect to the designer’s parameters, we implemented
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TSB in SageMath [60] and performed extensive
tests.4

In particular, we considered three values for α:
512 (the size of factors for RSA-1024), 1024 (RSA-
2048), and 2048 (RSA-4096). All tests have been
performed by choosing c = 7. This means that the
designer keys have sizes 505, 1017, and 2041, re-
spectively. The value of c is so small that detecting
the existence of the backdoor by simply guessing
the value of the designer key does not appear to
be significantly easier than guessing one of the fac-
tors of the corresponding semi-primes. Every test
trial involves choosing a value for the parameter K,
generating a designer key T and a pair of vulnera-
ble semi-primes, then recovering the factors of the
semi-primes by just using the values of the semi-
primes and the designer key. We basically executed
the tests by varying the parameterK so as to deter-
mine a value yielding both fast generations of vul-
nerable semi-primes and reasonably quick recovery
of the factors.

The tests have been executed on the same com-
putational nodes described in Section 4. All
tests have properly recovered the factors of the
vulnerable semi-primes. Each value of K ∈
{10 · i | i = 1, . . . , 40} has been tested 20 times. The
SageMath code is sequential, that is, each test trial
runs on a single computation core. We report in
Table 2 and Figure 5 averages and standard devia-
tions of the running times.

The value of K is crucial in determining both the
time required to generate a pair of semi-primes and
the time required to recover the factors. The ex-
perimental results show that, even if the SageMath
code is not optimzed, the recovery time is reason-
ably small for all tested values of K, hence TSB
is a practically effective backdoor. However, gen-
eration time is also very important whenever the
backdoor mechanism has to be hidden in hardware
devices or software programs that are supposed to
yield robust, legit semi-primes. While in general
larger values of K are associated to smaller genera-
tion times, there seems to be a threshold value for
K above which the generation times are essentially
constants and near the minimum observed value.
From the values shown in Figure 5 we may safely
set K to values near 100, 200, and 400 for α = 512,
1024, and 2048, respectively, that is, K ≈ α/5.

4The code is open-source and available at https://
gitlab.com/cesati/ssb-and-tsb-backdoors.git.

α=512 Generation Recovering
K avg. st.dev. avg. st.dev.

10 26.6 31.8 2.7 2.7
50 7.8 4.7 6.4 6.6

100 6.9 2.7 23.5 24.0
150 5 1.5 151.9 237.0
200 5.6 2.6 270.8 612.9
250 3.9 1.3 811.9 1277.7
300 3.9 1.3 1309.1 2681.1
350 4.2 1.2 1598.7 3494.7
400 4.5 2.3 2946.3 5371.8

α=1024 Generation Recovering
K avg. st.dev. avg. st.dev.

10 454.7 402.5 9.8 8.0
50 95.3 69.7 23.2 20.1

100 59.3 34.4 75.1 81.3
150 57.8 35.2 133.2 286.4
200 43.5 23.9 315.6 641.3
250 45.8 21.8 981.4 2810.1
300 38.2 16.3 1905.0 3161.7
350 38.1 26.1 2388.7 5378.7
400 35.9 12.7 5695.4 11449.7

α=2048 Generation Recovering
K avg. st.dev. avg. st.dev.

10 6353.2 3759.4 31.1 9.3
50 1785.4 1429.4 43.1 12.5

100 1086.0 887.3 104.4 108.7
150 647.1 376.5 236.3 290.4
200 544.3 277.6 619.9 729.6
250 456.8 305.3 1976.0 3493.5
300 395.4 236.6 1910.5 4716.5
350 407.6 155.3 2537.8 5460.6
400 321.1 140.0 4541.4 6038.2

Table 2: TSB: running times (in seconds, average and stan-
dard deviations on 20 trials) for α = 512, 1024, 2048.
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Figure 5: TSB: average running times for α =
512, 1024, 2048 (20 trials for each value of K). Magnitudes
of the standard deviations are shown as vertical bars.

6. Conclusions

We presented a new idea for designing backdoors
in cryptographic systems based on the integer fac-
torization problem. The idea consists in introduc-
ing some mathematical relations among the factors
of the semi-primes based on congruences modulo a
large prime chosen by the designer. A first algo-
rithm, SSB, can be used to implement a symmetric
backdoor, hence the designer key acts as a pure es-
crow key that must be kept hidden to the owner of
the generated keys (in order to hide the vulnerabil-
ity) and to third-party attackers. Another proposed
algorithm, TSB, injects a vulnerability in a pair of
distinct semi-primes and may be used to implement
both a symmetric backdoor and an asymmetric one.
It is interesting to observe, however, that it does
not seem to be hard to plug an asymmetric cipher
in both SSB and TSB, similarly to the mechanism
implemented in [18] for the Anderson’s backdoor;
this may be a future evolution of the present work.

We implemented both SSB and TSB in SageMath
and conducted extensive experiments to determine
optimal values for a crucial parameter of the algo-
rithms, which basically sets a trade-off between the
generation time of the vulnerable semi-primes and
the recovery time when exploiting the backdoors.
The SageMath code has not been optimized at all,
however even for large RSA-4096 keys the recovery
time is reasonably small (a few hours, at worst, on
a single computation core).

A crucial point is minimizing the generation time
of the vulnerable semi-primes. Our generation algo-
rithms are not very sophisticated or optimized, be-
cause basically they generate random values in the
hope to find the proper primes satisfying the math-
ematical conditions of the backdoors. We would
like to get generation times similar to those of le-
git public key generators. However, an analysis of
the performances of semi-prime generators likely
depends on the characteristics of the underlining
pseudo-random number generators, which also may
depend on external factors such as the amount of
entropy collected by the system (see for example
Linux’s PRNG). Such analysis is not simple, hence
it has to be deferred to a future work.
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[38] Jean-Sébastien Coron. Finding small roots of bivari-
ate integer polynomial equations revisited. In Chris-
tian Cachin and Jan L. Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 492–505.
Springer Verlag, 2004.

[39] Santanu Sarkar and Subhamoy Maitra. Further results
on implicit factoring in polynomial time. Adv. in Math.
of Comm., 3(2):205–217, 2009.

[40] Jean-Charles Faugère, Raphaël Marinier, and Guénaël
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