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Abstract: To meet the exponentially growing demand for clean and green energy, the solar photo-
voltaic (PV) system’s importance is increasing day by day, for which PV modeling is considered to be
one of the most important work in the current state-of-the-art methods. To effectively model a PV
system, accurate PV parameter estimation is of the utmost importance. In line with this, although
the values of some of the parameters are provided in the manufacturer’s datasheet, the values of
unknown parameters, such as shunt resistance, series resistance, the diode ideality factor, photo-
generated current and diode saturation current, are not provided. To estimate these values a lot
of algorithms are already reported in the literature. After careful observation of all the reported
algorithms, a few best-reported algorithms are identified and their performances are compared with
respect to accuracy, convergence issues, computational complexity and thermal stability. All kind of
algorithms, such as numerical, analytical and evolutionary algorithms, are considered in this study,
and only the best reported algorithms are considered for the comparison.

Keywords: solar photovoltaic; parameter estimation; single-diode model; double-diode model

1. Introduction

Solar photovoltaic (PV) technology is one of the leading renewable energy technologies.
It has the potential to meet the global energy demand without harming the environment.
According to [1], the global solar PV installed capacity is increasing exponentially, and the
total installed capacity had reached 629 GW by 2019. Unlike conventional energy sources,
such as coal, oil, petrol, etc., solar PV has fewer harmful effects on the environment during
operation and maintenance. Again due to the reduction in its cost, solar PV is gaining
a new horizon in the energy industry. As a result, PV is considered one of the highest
power-producing technologies across the globe. Although the solar PV has manifold
advantages compared to all other energy sources, it has a number of demerits too. The
power generation from a PV plant depends on the solar irradiance, which is not reliable.
Moreover, if a part of the PV module or array is shaded (partial shading condition), the
performance of a PV plant decreases drastically. When a solar cell is shaded, it acts as a
reverse biased diode, and it affects the performance of the PV module. In such a condition,
the short-circuit current (Isc) and fill factor (FF) change [2], which in turn affects the output
power of the PV system. Again, to analyse the behaviour of current, voltage and FF in
different atmospheric conditions, it is integral to know the different parameters of the PV
cell/module.

Energies 2022, 15, 7212. https://doi.org/10.3390/en15197212 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197212
https://doi.org/10.3390/en15197212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6382-5294
https://orcid.org/0000-0001-6382-5294
https://orcid.org/0000-0003-0737-3961
https://orcid.org/0000-0003-0737-3961
https://orcid.org/0000-0001-9359-2436
https://orcid.org/0000-0003-1713-6548
https://doi.org/10.3390/en15197212
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197212?type=check_update&version=2


Energies 2022, 15, 7212 2 of 20

To optimise the performance, efficiency, size and cost of the PV systems extensive
studies have been carried out which help the researchers in efficiently modelling a PV
module. For the accurate modelling of a PV cell/module, accurately estimating the PV
system’s parameters is very important. In line with that, although several parameters are
available in the manufacturer’s datasheet, a set of parameters are normally not available.
It creates difficulty in accurately modelling a PV module. Accordingly, the accurate mea-
surement of modelling parameters, such as diode saturation current (I0), series resistance
(Rs), diode ideality factor (n), shunt resistance (Rsh) and photo-genated current (Iph), are
essential. To estimate those unknown parameters, several algorithms are proposed in the
literature, which have been reviewed and analysed carefully in this paper, along with
critical reasoning for all the best-reported models. The existing algorithms can be broadly
divided into three categories: analytical algorithms, non-analytical algorithms and meta-
heuristic approaches. Analytical algorithms comparatively take less time for computation,
and there is no convergence failure problem, whereas numerical or non-analytical methods
consume more time for computation and suffer from convergence issues. However, to
solve a non-linear PV system equation, an analytical algorithm cannot be used singly.
Therefore, in many algorithms, a combination of both analytical and numerical algorithms
is used to optimise the computational time and convergence issues. In the current state
of art, meta-heuristic approaches are also gaining importance among the PV researchers
because of their flexibility in computation time and convergence. However, sometimes, the
meta-heuristic algorithms get stuck at local maxima or local minima, and as a result, they
do not converse [3,4]. In the case of evolutionary algorithms, if the fitness function is not
derived properly, there is a high chance of obtaining the wrong output.

Many reviews on PV parameter estimation have already been published in the litera-
ture. However, after carefully observing the last 5 years of publications, it is noticed that
some critical points are yet to be highlighted precisely. A few observations are given below:

1. The combination of both analytical and numerical techniques (combined technique)
are observed to be less time-consuming compared to other techniques that are used
for parameter estimation of solar PV systems;

2. The combined technique has the highest accuracy compared to others in the existing
literature;

3. In analytical algorithms, the number of non-linear exponential terms can be reduced
by four times compared to the existing literature. Hence, the combined technique is
computationally efficient;

4. The shunt resistance (Rsh) should be considered as one of the iteration parameters,
which makes the approach more realistic;

5. The application of the nominal operating cell temperature (NOCT) value in the PV
parameter estimation strengthens the accuracy in varying temperatures and irradiance
conditions. It is noticed that, on average, a 10% performance degradation (PD) is
present in the MPP obtained at Tcell compared to Tamb.

Solar PV modelling is discussed in the second part of the paper, in which a single-diode
model, double-diode model and three-diode model are discussed with suitable diagrams
and relevant mathematical equations. The algorithms reported so far for the estimation
of PV parameters are discussed in the third part, in which analytical algorithms, non-
analytical algorithms and meta-heuristic algorithms are discussed with suitable examples.
The performance analysis of the reported algorithms are discussed in part four of the paper.
Here, the effect of temperature and radiance on the PV system are discussed with neat
diagrams provided. Finally, the conclusion is written in part five of this paper.

2. Solar PV Modelling

The performance of a PV module depends on the value of irradiance (G) and tempera-
ture (T) at which the module operates. To simulate a solar PV module, accurately modelling
the solar PV cell is very important. Based on the semiconductor PN junction physics, the
equivalent circuit of a solar PV cell is designed, in which there may be one cell, two cells or
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more than two cells. According to the number of diodes present, the nomenclature of the
models are given. In the equivalent circuit, if one diode is present, it is called a single-diode
model (SDM). Accordingly, based on the presence of diodes, they are called a double-diode
model (DDM), three-diode model and so on.

2.1. Single-Diode Model

The equivalent circuit diagram of a single-diode model solar PV cell is shown in
Figure 1. The terminal current (I) of the PV cell is calculated with Equation (1).

I = IP − ID −
V + IRS

RSH
(1)

where IP and ID are the photo-generated current and diode current, respectively; V is the
terminal voltage; RS and RSH are the series and shunt resistances, respectively. ID can be
expressed as given in Equation (2).
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V

(i)

    IP

RS

  RSH

Id

I

   ISH

(ii)

=

Figure 1. Single-diode model PV system: (i) equivalent circuit diagram; (ii) symbolic diagram.

ID = I0

{
e

V+IRS
VT − 1

}
(2)

where VT (= nkT
q ) is the junction thermal voltage. Here n, k, T and q are the diode ideal-

ity factor, Boltzmann’s constant, cell temperature in ◦C and electron charge in coulomb,
respectively. Combining Equations (1) and (2), we can write Equation (3).

I = IP − I0

{
e

V+IRS
VT − 1

}
− V + IRS

RSH
(3)

For the calculation of the terminal current, it is of the utmost importance to estimate
all the parameters involved in Equations (1) and (2). Although the information related to
the open-circuit voltage, short-circuit current and maximum power point is provided in the
manufacturer’s datasheet, the value of the five parameters, namely IP, I0, n, RS and RSH ,
are normally not provided in the manufacturer’s datasheet. Therefore, several algorithms
are developed in the literature to estimate those unknown parameters. A comparative
review was presented in [5] and included almost all the then best-reported algorithms.
After this, a lot of algorithms were developed to estimate the unknown parameters of a
PV cell, which are comparatively better in terms of accuracy, computational complexity,
convergence issues and many other aspects. By analysing all the best-reported algorithms,
a critical review is provided, and the same is reported in this paper.

2.2. Double-Diode Model

The diode ideality factor ‘n’ mainly depends on the voltage between the two terminals
of the device. The value of n approaches 1 when the recombination is dominated by the
bulk region and the surfaces. However, if recombination is the dominant parameter, n
approaches 2, which happens at lower voltages. To introduce this phenomenon, a second
diode is connected in parallel with the diode present in the single-diode model’s equivalent
circuit, and this model is named the double-diode model (DDM) of the PV system. The



Energies 2022, 15, 7212 4 of 20

equivalent circuit of the DDM PV system is shown in Figure 2, and the expression for the
generated current using DDM of a PV system is given in Equation (4).

helo
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  RSH
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Figure 2. Equivalent circuit of double-diode model PV system.

I = IP − I01

{
e
(V+IRS)q

n1kT − 1
}
− I02

{
e
(V+IRS)q

n2kT − 1
}
− V + IRS

RSH
(4)

From Equation (4), it is seen that there are a total of seven unknown parameters whose
values are not provided in the manufacturer’s datasheet. These seven parameters are IP,
I01 ,I02 , n1, n2, RS and RSH . The equations during open-circuit and short-circuit conditions
in the case of DDM are given in Equations (5) and (6):

I = IP − I01

{
e
(IRS)q
n1kT − 1

}
− I02

{
e
(IRS)q
n2kT − 1

}
− IRS

RSH
(5)

0 = IP − I01

{
e

Vq
n1kT − 1

}
− I02

{
e
(V)q
n2kT − 1

}
− V

RSH
(6)

2.3. Three-Diode Model

To address the effects of leakage current and grain boundaries, a three-diode model of
the PV system is introduced. The equivalent diagram of the same is shown in Figure 3, and
the expression for generated current using DDM of a PV system is given in Equation (7).

helo
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Figure 3. Equivalent circuit of the three-diode model PV system.

I = IP − I01

{
e
(V+IRS)q

n1kT − 1
}
− I02

{
e
(V+IRS)q

n2kT − 1
}
−

I03

{
e
(V+IRS)q

n3kT − 1
}
− V + IRS

RSH
(7)

From Equation (7), it is seen that there are a total of nine unknown parameters whose
values are not provided in the manufactures datasheet. These nine parameters are IP, I01 ,I02 ,
I03 , n1, n2, n3, RS and RSH .

3. Algorithms Reported So Far
3.1. Analytical Algorithms

Whenever the number of diodes increases in PV modelling, the unknown parameters
also increase accordingly. With the increase in every diode, at least two unknown parame-
ters increase. Hence, in the already reported literature, it is observed that the researchers
mainly opt for SDM and DDM for parameter estimation work. Again, in SDM, five un-
known parameters need to be calculated, whereas, in DDM, seven unknown parameters are
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present; as a result, the DDM algorithm suffers from more computational complexities [6–8].
In some reported algorithms such as [9,10], DDM is used for parameter estimation, where
the computation is carried out for seven unknown parameters without much improvement
in accuracy. Therefore, the SDM reported model is analysed critically, and the same is
reported below.

To estimate the unknown parameters, several analytical algorithms (AAs) have been
reported. In almost all of the algorithms, the mathematical modelling is conducted with the
help of three strategic points of the I–V characteristics. These points are the open-circuit
point (VOC,0), short-circuit point (0,ISC) and maximum power point (VMP,IMP), as shown
in Figure 4.

0 0.5 1
Voltage (V)

0

2

4

6

8

Cu
rre

nt
 (I

) (0,I
SC

) (V
MP

,I
MP

)

(V
OC

,0)

Figure 4. I–V characteristic of a PV system.

As the value of voltage in short-circuit point is 0 (i.e., V = 0), the current is therefore
calculated as Equation (8). In Equation (8), the short-circuit current is denoted by ISC.

ISC = IP − I0

{
e

ISC RS
NVT − 1

}
− ISCRS

RSH
(8)

Similarly, the generated current at the open-circuit point is 0 (i.e., I = 0) expressions is
written as Equation (9).

0 = IP − I0

{
e

ISC RS
NVT − 1

}
− VOC

RSH
(9)

Simplifying Equation (9) for IP, we obtain

IP = I0

{
e

ISC RS
NVT − 1

}
+

VOC
RSH

(10)

At (VMP, IMP), by putting I = IMP and V = VMP in Equation (2), we obtain Equation (11).

IMP = IP − I0

{
e

VMP+IMP RS
NVT − 1

}
− VMP+IMPRS

RSH
(11)

After simplifying Equation (8) with the help of Equation (10), we obtain

ISC = I0

{
e

ISC RS
NVT − 1

}
− I0e

ISC RS
NVT − ISC RS

RSH
(12)

Further simplifying Equation (12) for I0, we obtain Equation (13),

I0 =

ISC −
{

VOC−ISC RS
RSH

}
e

VOC
NVT − e

ISC RS
NVT

(13)

Simplifying IP and I0 in Equation (11) using the corresponding expression from
Equations (10) and (13), respectively, we obtain Equation (14):



Energies 2022, 15, 7212 6 of 20

IMP = I0

{
e

ISC RS
NVT − 1

}
+

VOC
RSH

−
ISC −

{
VOC−ISC RS

RSH

}
e

VOC
NVT − e

ISC RS
NVT

{
e

VMP+IMP RS
NVT − 1

}
− VMP + IMPRS

RSH
(14)

Equation (14) is used for the estimation of unknown parameters in many of the existing
algorithms [11]. However, Equation (14) comprises four numbers of exponential terms, and
accordingly, it increases non-linearly. Therefore, Equation (14) is not used in the reported
models, such as [12]. Therefore, by neglecting the less significant terms, a different approach
is introduced, which is explained below.

In the case of the PV systems that are made of silicon, the value of NVT is smaller than

(V + IRS) . Therefore, e
V+IRS

NVT � 1. Hence, for simplicity, ‘−1’ is neglected and rewritten as
Equations (3), (8) and (10), as given in Equations (15)–(17), respectively.

I = IP − I0e
V+IRS

VT − V + IRS
RSH

(15)

ISC = IP − I0e
ISC RS
NVT − ISCRS

RSH
(16)

IP = I0e
ISC RS
NVT +

VOC
RSH

(17)

Incorporating Equation (17) into Equation (16) and eliminating the term e
ISC RS
NVT (as e

VOC
NVT �

e
ISC RS
NVT ), we obtain Equation (18).

ISC = I0e
ISC RS
NVT +

VOC − ISCRS
RSH

(18)

Further resolving Equation (18), we obtain an expression for I0 as given in Equation (19).

I0 =

{
ISC −

VOC − ISCRS
RSH

}
e−

VOC
NVT (19)

In Equation (11), IP and I0 are replaced by the corresponding expressions of Equations (10)
and (19), respectively, which results in Equation (20).

ISC = IMP +
VMP + IMPRS − ISCRS

RSH
+{

ISC −
VOC − ISCRS

RSH

}
e

VMP+IMP RS−VOC
NVT (20)

For estimating the unknown parameters, Equation (20) is used, in which only one
non-linear term is present. Therefore, it decreases the issues related to non-linearity and
accordingly minimises the computational complexity.

Except for RS, RSH and VT , the values of all the other parameters in Equation (20) are
provided in the manufacturer’s datasheet. The estimation of these three unknown parame-
ters helps in obtaining the values of I0 and IP using Equations (19) and (10), respectively.
As reported by [13,14], the initial values of shunt (RSH0) and series resistance (RS0) can be
measured from the I–V curve using Equations (21) and (22).

RS0 = −dV
dI

∣∣∣∣∣
V=VOC

(21)
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RSH0 = −dV
dI

∣∣∣∣∣
I=ISC

(22)

Following the same procedure described in [15], the analytical expressions for VT , RS and
RSH are derived, which are mentioned in Equations (23) and (24).

VT = VMP+RS0 IMP−VOC

ln

{
ISC−

VMP
RSH0

−Impp(s)

}
−ln

{
ISC−

VOC
RSH

}
+

IMP

ISC−

{
VOC

RSH0

} (23)


RS = RS0 − VT

I0
e
−VOC

VT

RSH =

{
1

RSH0−RS
− I0

VT
e

ISC RS
VT

}−1 (24)

By solving Equations (20), (23) and (24), all three unknown parameters—RS, RSH and
VT—can be obtained. To solve these equations, several algorithms are adopted in the
existing literature, such as non-linear optimisation algorithms or numerical algorithms
(NAs), evolutionary algorithms (EAs), etc.

3.2. Non-Analytical Algorithms

For parameter estimation, several non-linear optimisation algorithms or EAs are
developed in the existing literature, out of which some of the best-reported algorithms are
highlighted in [5]. Here, it is observed that the result of some of the reported algorithms,
such as [16–19], are very significant. After these, a number of algorithms such as [20–30]
are reported. From the critical observation of all the reported algorithms, it is noticed
that, although a number of reported algorithms are found to be efficient, they show poor
performance in some cases. Again, a comparison of these algorithms is also a tedious job.
In the literature, it is seen that, for the purposes of comparison, the authors have validated
the algorithms with a common PV system. To check the cell level [31] parameter estimation,
they have considered a RTC France silicon solar cell (57 mm diameter) at 1000 W/m2

irradiance and a temperature of 33 ◦C (Case Study 1), and for the module level, they have
considered a solar module comprised of 36 series connected cells (Photowatt-PWP 201) at
1000 W/m2 irradiance and a temperature of 45 ◦C (Case Study 2). In [32]. Finally, 26 data
points are considered from the experimentally obtained I–V characteristics. The same is
implemented in the developed algorithms, and the corresponding values of the estimated
current (Iestdj

; here, j changes from 1 to 26) are calculated. To check the accuracy, the root
mean square error (RMSE), mean absolute error (MAE), deviation, normalised sum of
squared error (NSSE) and mean absolute error in power (MAEP) are calculated, as given in
Equations (25)–(29), respectively.

RMSE =

√√√√∑
p
j=1(Iestdj

− Ij)2

p
(25)

MAE =
∑

p
j=1(Iestdj

− Ij)

p
(26)

Deviation (%) =

( Iestdj

Ij
− 1
)
× 100 (27)

NSSE(%) =
∑

p
j=1(Ij − Iestdj

)2

∑
p
j=1(II)2

(28)

MAEP =
∑

p
j=1 |Pj − Pestdj

|
p

(29)
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Parameter estimation is carried out for both case studies (Case Study 1 and Case Study
2), and the reported results are given in Tables 1 and 2, respectively, as they appeared
in their articles. Recently,a set of algorithms, such as differential algorithm (DE) [33],
success-history based adaptive DE with linear population size reduction (LSHADE) [34],
iLSHADE [35], LSHADE-EpSin [36], LSHADE-SPACMA [37], jSO [38], Gaussian EDA
(GEDA) [39], covariance matrix adaptation evolution strategy (CMA-ES) [40], nuclear
reaction optimisation (NRO) [41], etc., have been developed. According to [37], LSHADE is
quite competitive compared to state-of-the-art EA.

Table 1. Comparison of the parameters obtained in Case Study 1.

Literature Year Algorithm Iph (A) I0 (µA) Rsh (Ω) Rs (Ω) n No. of Steps RMSE

[42] 2019 EA 0.76080000 0.32230000 53.76340000 0.036400000 1.4837000000 - 1.0072×10−2

[43] 2018 NA 0.76074014 0.31285196 55.90738000 0.036615485 1.477729500 - 7.7301×10−4

[44] 2020 EA 0.76038466 0.23082625 53.67788300 0.037991668 1.447929015 - 9.7505×10−4

[45] 2019 EA 0.76080000 0.32300000 53.71850000 0.036400000 1.481200000 - 9.8602×10−4

[46] 2017 EA 0.76080000 0.32280000 53.75950000 0.036400000 1.481100000 - 9.8603×10−4

[47] 2020 EA 0.76077600 0.32302100 53.71852000 0.036377000 1.481184000 - 9.8602×10−4

[48] 2019 NA + EA 0.76078797 0.31068450 52.88979426 0.036546950 1.477267780 - 7.7301×10−4

[49] 2019 EA 0.76077552 0.32302000 53.71852000 0.036370000 1.481108170 - 9.8602×10−4

[50] 2019 EA 0.76079000 0.31062000 52.88500000 0.036548000 1.477100000 - 7.7300×10−4

[51] 2019 EA 0.76080000 0.32300000 53.71850000 0.036400000 1.481200000 - 9.8602×10−4

[52] 2019 EA 0.76077562 0.32301700 53.71821748 0.036377160 1.481182200 - 9.8602×10−4

[53] 2019 EA 0.76078000 0.32302000 53.71852000 0.036380000 1.481180000 - 9.8602×10−4

[54] 2019 EA 0.76080000 0.32300000 53.71850000 0.036400000 1.481200000 - 9.8602×10−4

[55] 2019 EA 0.76077500 0.32302100 53.71867900 0.036377000 1.481108000 - 9.8602×10−4

[56] 2019 EA 0.76077450 0.32300180 53.73000000 0.036377500 1.481177400 - 9.8602×10−4

[57] 2019 EA 0.76078000 0.32302000 53.71852000 0.036380000 1.481180000 - 9.8602×10−4

[58] 2020 EA 0.76076000 0.32314000 53.71489000 0.036370000 1.481140000 - 9.8482×10−4

[59] 2018 EA 0.76077000 0.32320000 53.68360000 0.036300000 1.520800000 - 9.8600×10−5

[60] 2018 EA 0.76078700 0.31068300 52.88971000 0.036546000 1.475262000 - 7.7301×10−4

[61] 2018 EA 0.76077700 0.32262200 53.67840000 0.036381900 1.481060000 - 9.8602×10−4

[62] 2018 EA 0.76077553 0.32302083 53.71852771 0.036377090 1.481183600 - 9.8602×10−4

[63] 2018 EA 0.76069712 0.43244110 53.40180803 0.033410590 1.452456660 - 5.1382×10−4

[64] 2018 EA 0.76078000 0.32302000 53.71636000 0.036380000 1.481180000 - 9.8602×10−4

[65] 2020 NA 0.76870000 9.9414E-07 100.0000000 0.030966000 1.602000000 26 2.7756×10−17

[66] 2017 NA 0.76072000 0.31911000 54.19241000 0.036290000 1.479860000 - 8.1291×10−4

[67] 2018 EA 0.76077600 0.32302100 53.71852400 0.036377000 1.481718000 - 9.8602×10−4

[68] 2019 EA 0.76078000 0.33971000 54.43370000 0.036160000 1.486290000 - 9.9185×10−4

Table 2. Comparison of the parameters obtained in Case Study 2.

Literature Algorithm Iph (A) I0 (µA) Rsh (Ω) Rs (Ω) n No. of Steps RMSE MAE

[69] AA + NA 1.032377 2.517957 745.7122 1.239060 1.3173635 27 2.0465456×10−3 1.6925284×10−3

[43] AA + NA 1.0323823 2.5129059 744.71302 1.3001512 1.3171591 6 2.0465347×10−3 1.6923215×10−3

[70] AA + NA 1 2.3 830 1.3 1.3056 - 3.26×10−2 -
[6] AA + NA 1.033285 1.82 850.7068 1.357607 1.2857 - 5.181×10−3 -
[15] AA + NA 1.0323729 2.5129158 744.713061 1.2456174 1.3248753 4 2.046479×10−3 3.423077×10−4

[44] EA 1.0263 9.5710 6842.2 0.0298 1.5255 - 3.819492×10−3 -
[65] NA 1.0285 4.9614×10−6 1632.5 1.1638 - - 2.6174×10−3 -

3.3. Meta-Heuristic Approach

In order to attain the accurate modelling of the advance photovoltaic solar cell and
module, it is pertinent to identify the optimal value of the corresponding parameters.
Among the various methods to estimate the parameters of the photovoltaic cell model, meta-
heuristic algorithms appear to be a sensible deterministic approach. In order to find the
required parameters to enhance the performance of a solar cell, a range of meta-heuristics
techniques are considered, such as particle swarm optimisation, the gravitational search
algorithm, the flower pollination algorithm, wind-driven optimisation, whale optimisation,
the artificial bee colony algorithm, differential evolution, genetic algorithms and cat swarm
optimisation. Based on the literature of meta-heuristic optimisation techniques, there are
of four types, namely, evolutionary algorithms wherein the genetic algorithm, differential
evolution and shuffled complex evolution are involved; physics-based algorithms wherein
wind-driven optimisation, the flower pollination algorithm and the gravitational search
algorithm are involved; swarm-based algorithms wherein artificial bee colony and particle
swarm optimisation is involved; and human-based algorithms wherein harmony search is
involved. The documented reports on gradient-based methods [71,72] suggest that the meta-
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heuristic algorithms have an edge over parameters, such as accuracy, computational time
and the avoidance of local minima trap. The optimisation function of the PV array using
the meta-heuristic methods is adopted because it uses simple mathematical derivatives.
In the evaluation of the state-of-the-art PV cell design, the non-linearity of the current–
voltage (IV) curves is an evident consideration, which can be satisfied with meta-heuristic
algorithms. The Deterministic methods, including analytical and iterative methods [73],
do not support non-linear equations as the complexity increases with the increase in the
number of unknown parameters in the proposed model. Moreover, in the iterative method,
an erroneous choice during the trial-and-error approach may cause trapping in local optima.
A meta-heuristic method [74] was adopted based on the way a group of hawks would
approach a prey. Here, Harris hawks are considered for their remarkable behaviour of
hunting cooperatively in packs. There exist various stages of chase where the hawks will
adopt different strategies based on the dynamic location and credible escape route of the
prey. The Harris hawks optimisation (HHO) algorithm emulates the chasing strategies of
the Harris hawks using a dynamic pattern. However, it has been observed by Chen, H.
(2020 [75]) that in order to obtain the global optimum solution, the HHO algorithm gets
stuck in local minima.

In order to estimate the model parameter in the single-diode model (SDM), double-
diode model (DDM) and three-diode model (TDM), in 2021, S. Maryam et al. [76] proposed
an efficient optimisation algorithm, namely whippy Harris hawks optimisation (WHHO),
which is an improved version of the HHO algorithm. Whippy Harris hawks optimisation
(WHHO) has higher global search capability, convergence speed and robustness over the
original algorithm.

The inability to derive accurate parameters under the non-linear condition [77] is
the cause for the inaccurate modelling of the solar photovoltaic cell and module. Based
on the documented literature [78], in general, there exist three types of algorithms under
non-linear conditions, namely analytical approaches, numerical methods and evolutionary
algorithms. The analytical approach is not preferred for non-linear conditions as the com-
plexity increases as the parameters of the advanced model of the PV solar cell and module
design increase. Under the various diode-based models [79], to achieve the characteristics
of a PV cell, it has been observed that the unknown parameters increase with the increase in
the numbers of diodes in the model. This results in a compromise between model accuracy
and model simplicity [80]. Another advanced meta-heuristic algorithm [81] adopts the
tunicate swarm optimisation (TSA) to accurately identify the model parameter of a PV
cell and modules. This algorithm is based on the iterative process where the tunicate
is randomly selected within the search area and locates the best tunicate position. The
approach helps in improving the exploring capability and averts premature convergence.
Analytical methods cannot solve non-linear equations as multiple unknowns result in unac-
ceptable assumptions and produce erroneous results. To devise the unknown parameters in
analytical approaches, it is necessary to manipulate model equations mathematically [82].

Due to existence of various characteristic types ranging from multi-modality, non-
linearity and multi-variability in the voltage current curve of the photovoltaic cell, meta-
heuristic algorithms are the finest approach. Sofiane et al. [83] came up with a humming-
bird’s optimisation method termed as artificial hummingbird algorithm (AHA). AHA is a
meta-heuristic bio-inspired optimisation algorithm in which populations of n humming
birds are randomly initialised and placed on n food tables, as in Equation (30).

xi = l + r(u− l) (30)

where i = 1, 2, . . . , n;
xi is the position of the ith foodTable;
l is the lower boundary;
u is the upper boundary;
r is the random vector in (0,1).
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The initialisation of the visit table of food sources is given by Equation (31).

Vti,j =

{
0 ; i f i 6= j
null ; i f i = j

(31)

There exist two conditions: if i 6= j, then ith humming bird obtains the jth food table,
whereas if i = j, then the humming bird obtains its corresponding food table. A guided
foraging behaviour is adopted to obtain direction control in d-dimensional space where the
food source is given by Equation (32).

vi(t + 1) = xi,tar(t) + αD(xi(t)− xi,tar(t)) ; α→ N(0, 1) (32)

where α is the guided factor to reach the desired location, and xi,tar(t) is the target location
of the food table where the ith humming bird is supposed to visit. The cluster probability
of α ranging from 0 to 1 is represented by α→ N(0, 1).

The new position of the ith food source is given by Equation (33).

xi(t + 1) =

{
xi(t) ; f (xi(t)) ≤ f (vi(t + 1))
vi(t + 1) ; f (xi(t)) > f (vi(t + 1))

(33)

In territorial foraging, only specific food sources will be available for the humming birds in
the local search corresponding to Equation (34).

v(t + 1) = xi(t) + bD(xi(t)) ; b→ N(0, 1) (34)

where ‘b’ represents the territorial factor corresponding to the normal distribution N (0,1).
The migration foraging of a humming bird from the source corresponding to the worst

nectar-refilling rate to a randomly produced new one can be expressed by Equation (35).

xwor(t + 1) = L + r(U − L) (35)

where xwor represents the food source corresponding to the worst nectar-refilling rate.
Various meta-heuristic techniques, including CPMPSO [47], EHHO [84], EJADE [85],

ELBA [86], NMSOLMFO [87], GBO [88], RUN [89], GSK [90], RLGBO [91], DSCSE [92],
IMPA [93], CCNMHHO [94], SEDE [95], WLCSODGM [96], SGDE [97], EABOA [98],
MTLBO [99] and WHHO [76], were compared in [83] based on squared statistical error
(SSE), standard deviation (StD) and Root mean square error (RMSE). Based on the following
performance indicator, the proposed AHA stands out as an effective parameter-extraction
algorithm. The AHA results in a satisfactory RMSE under limited iterations compared to
other meta-heuristic techniques, with close matches regarding the experimental dataset.

Another improved algorithm based on flower pollination by [100] has been proposed
for determining the unknown parameters of PV cells and module models. Yang [101]
proposed the flower pollination algorithm (FPA) wherein the concept of cross-pollination
and self-pollination is adopted for pollen transfer and abiotic and biotic pollination for
carriers of pollens. In the conventional PFA, the probability factor was the only controlling
parameter to determine the local or global process of pollination. Under the improved
variant, double exponential based dynamic switch probability is adopted to maintain
equilibrium between the local and global searches, and a dynamic step size function is used
to avoid premature convergence and local optima stagnation by tuning the search speed.

To study the efficacy of the improved algorithm, an objective function has to be
deduced as the root mean square error (RMSE) in Equation (36).

RMSE(X) =

√√√√ 1
M

M

∑
d=1

(error f unction) (36)
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where ‘X’ is the unknown parameter of the model, and ‘M’ is the number of measured
I–V data. The error function of VL and IL denote the measured I–V data acquired from the
PV cell.

In order to attain the global pollination process, the pollinators should fly with biotic
pollination and cross-pollination mechanisms obeying levy flight. Moreover, the rule
based on the probability of reproduction on the percentage of correspondence between the
involved flowers is stated as Equation (37).

Xi
t+1 = Xi

t + L(Xi
t − g∗) (37)

where Xi
t represents the Xi solution at iteration number t, L mimics the Levy flight distri-

bution feature, g∗ represents the best solution from the present population and S represents
the step size of a Levy flight. Using the Mantegna algorithm, the value of L is identified as
Equation (38).

L =
λΓ(λ)sin(Πλ/2)

Π
1

S1+λ
; (S >> S0 > 0) (38)

To attain the local pollination process, the abiotic and self-pollination mechanism
is obeyed. Here, the rule based on the probability of reproduction on the percentage of
correspondence between the involved flowers is stated as Equation (39).

Xi
t+1 = Xi

t + ε(Xj
t − Xk

t) (39)

where Xj
t and Xk

t are two random chosen solutions from a given set of solutions, and ε is
a random number varies from 0 to 1.

The conventional FPA does not support the searching agents to gather around the
optimal value as the value of probability ‘p’ will decide the value of search agents towards
the local and global pollination equation. The higher values of ‘p’, i.e., towards 1, will
update the search agents using the global pollination equation, which in turn is affected by
the Levy fight distribution mechanism. Furthermore, the search agents will be updated
by local pollination if the value of ‘p’ is towards 0, which traps the solution in the local
optimum. This detrimental effect is mitigated by creating a balance between the local and
global pollination models with the advancement of the convergence rate using the dynamic
step function search capability.

In general, the estimation of the model parameter for a photovoltaic cells and modules
do not embrace degradation due to environmental effects. The actual working conditions
should include the changes in the PV cell’s characteristics due to ageing, faults, maintenance
and degradation [102]. With the support of string currents, voltages, irradiance and
temperature data, the model parameters are estimated using an adaptive module string
model. In [103], it is stated that this method supports the estimation of complex module
string parameters. In the estimation algorithm, the four standard test condition parameters
are reset to the initial values based on the module datasheet. The previous value error will
be set to infinity before performing the following steps for each cell and subsequently the
substring: minimise the error by searching the STC parameters and set the minimum value
as Emin. The algorithm is sufficed if the condition Emin < ε holds, where ε is 0.1. Under this
condition, if max((1− δ)Emin,err, Emin,err − ∆) ≤ Emin is not sufficient to achieve minimum
value of error, it is the end of the algorithm. The present parameters are considered as the
estimation result with Emin,err = Emin.

There are a few methods, such as Kohno’s [104], Harrou’s [105] and Mansouri’s
[106] methods, to detect the presence of shading conditions. Ref. [103] has proposed a
method that will exhibit higher detecting accuracy for areas covered by cells larger than
four in number using the true-positive rate (TPR) and the false-positive rate (FPR) [105]
conditions. However, Mansouri’s method is preferred for a module to estimate partial
shade detection accuracy.

The existence of non-linear voltage–current characteristics is evidence for considering
the organic solar photovoltaic cell modelling. This would lead to the estimation of unknown
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parameters under a dynamic irradiation profile pattern. Ref. [107] proposed an adaptive
wind-driven optimisation (WDO) algorithm for a three-diode electrical equivalent model
of an organic solar photovoltaic cell that could emulate the kink effect [108].

In order to test the quality of the solution in the WDO algorithm, the root mean square
error via curve fitting is considered. As per the initial procedure of testing, the absolute
error (actual data – simulated data) of individual datum is formulated as the function of
individual absolute error using Equation (40).

fi(Vm, Im, x) = abs(Iact − Isim) (40)

where Iact is experimental data, and Isim is estimated values from simulation. x is the
function of all nine dimensions (two parallel resistance + three diode reverse saturation
currents + three diode ideality factors + initial photon current) of the three-diode PV model.
The sum of the squared error is written as Equation (41).

Sum o f squared error =
N

∑
n=1

(Individual absolute error)2 (41)

where N is the individual data in the I–V curve. Finally, the root mean square error (RMSE)
is given by Equation (42).

RMSE =

√
1
M

(Sum o f squared error) (42)

The WDO algorithm has four velocity update processes that prevent convergence to local
optima. Hence, the parameter estimation process is more precise. The WDO algorithm
is based on the horizontal imbalance of air pressure in our atmosphere due to various
factors, such as topography, temperature variation and suspended air particles. Under
the Lagrangian function, the mathematical depiction of force acting on the air parcel is
represented as Equation (43).

ρ~α = ∑~Ft (43)

where ~Ft is the algebraic sum of applied force (which includes pressure gradient force,
frictional force, gravitational force and Coriolis force),~α is the acceleration in air parcel and
ρ is the air density. It is difficult to devise an accurate model of an organic solar photovoltaic
cell as the manufacturer uses various active materials and inter-layers that are reactive
to changes in the environment. The adaptive wind-driven optimisation algorithm is a
meta-heuristic optimisation technique that utilises four various velocity update processes
for a single particle [109] for fast computation. This provides control tuning of the model
parameter to obtain the global optimal region using adaptive velocity generation strategy.

4. Performance Analysis of the Reported Algorithms

Although analytical algorithms are very much powerful for estimating any unknown
parameter, it has limited use for non-linear equations. Again, numerical methods have
the potential to solve non-linear equations, but their precision is less, and they suffer from
convergence failure. Compared to the analytical and numerical algorithms, evolutionary
algorithms are observed to be more precise. Keeping that in view, a number of evolutionary
algorithms are developed and reported in the existing literature. However, from our careful
observation, it is noticed that the reported algorithms show poor performance in some of
the vital points, despite showing better performance in some other criteria. Less than ±5%
error is observed in [110], where the genetic algorithm (GA) is used. The artificial immune
system (AIS) algorithm is used in [5] to estimate the parameter of the DDM PV module and
observed that AIS performs better compared to the GA and particle swarm optimisation
(PSO) techniques in terms of convergence speed. In line with the short convergence time,
the pattern search (PS) algorithm is also very useful, which is reported in [27,61]. The
bacterial foraging algorithm (BFA) [5] is useful for high precision, faster convergence
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speed and reliable output compared to GA and AIS. However, the computation of BFA
is a bit challenging. DDM PV module parameter estimation is carried out in [111] using
the differential evaluation (DE) technique, which is also used for thin-film technologies.
However, finding the control parameter in DE is a difficult job. The simulated annealing
(SA) [65,112] technique gives better accuracy compared to other optimisation algorithms,
but accommodating the temperature effect is tough in SA. To overcome the problem of
premature outcome, the fireworks algorithm (FA) shows good performance, as reported
in [113]. However, the computational time is high in the case of FA. For less convergence
time, the flower pollination algorithm (FPA) [114] is a useful algorithm, but accurately
determining the fitness function is a difficult job in FPA. The hybrid flower pollination
algorithm (HFPA) [115,116] shows good performance in convergence speed and reliability,
but it has less precision. The harmony search (HS) [117,118] algorithm shows better accuracy
compared to the PS and SA techniques. HS has better convergence speed compared to
FA. The artificial bee colony (ABC) [64,119,120] algorithm shows better accuracy and
convergence speed compared to HS, GA, BFA and PSO. However, it shows convergence
failure in the case of repeated progression. On the other hand, for fast computation,
PSO [121–123] shows better performance compared to the other EAs. However, the selection
of an initial value of the parameters in PSO is a difficult job.

Effect of Temperature and Irradiance

By applying the estimated values of the unknown parameters, PV modelling is con-
ducted in [15]. Now, to check the performance of the newly modelled PV module, the same
is tested at different temperatures. In much of the literature, it is observed that, although
the reported algorithms work well within a certain ambient temperature range, the perfor-
mance deteriorates in some other range of ambient temperatures. In line with this, applying
a set of best-reported algorithm simulations are performed for a PV module (datasheet
is given in Table 3). The simulated voltage–power (V–P) characteristics of the reported
models are shown in Figure 5 at temperatures of 25 ◦C and 45 ◦C. For the simulation,
irradiance is considered as 888 W/m2 at air-mass 1.5 gobal (AM1.5g). From Figure 5, it is
observed that, although the performance of [124] (mentioned as EA-1 in Figure 5) is near
the tolerance limit at 25 ◦C ambient temperature, it deteriorates at 45 ◦C. On the other hand,
the performance of [58] (mentioned as EA-2 in Figure 5) is good at 45 ◦C , but it degrades at
25 ◦C. Similarly, the performance of the algorithms reported by Toledo [43], Laudani [125],
Changmai [15] and Cardenas [69] are shown in Figure 5, from which it can be stated that
the performance pattern is not linear with the change in temperature. Based on our careful
observation, it is noticed that the nominal operating cell temperature (NOCT) is a vital
component that affects the performance of a PV module. The effect of NOCT in the PV
cell’s temperature is given in Equation (44). As reported by [15], there may be around
a 10% performance error if the NOCT is not considered for comparison purposes. The
specifications of 315 Wp PV modules is presented in Table 3.

Tcell = Tamb + G · NOCT− 20◦

800 W/m2 (44)

When the irradiance increases, the current generation in the PV module also increases.
Moreover, from the voltage and power relationship of a PV module at different irradiance
levels, it is seen that as irradiance increases, the module is able to generate more power
represented by higher peaks on the V–P curve. The effect of temperature and irradiance (G)
in the PV cell are shown in Figure 6a,b, respectively.
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Figure 5. V–P characteristics of 315 Wp PV module applying different algorithms (a) at 25 ◦C and (b)
45 ◦C.
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Figure 6. (a) V–P characteristics when temperature changes at 1000 W/m2 irradiance. (b) V–I
characteristic when irradiance changes at 25 ◦C [15].

Temperature is a vital factor in deciding the efficiency of a photovoltaic cell. Moreover,
the rate of degradation is prominent on the PV panel under higher temperatures. Various
cooling techniques are adopted to improve the efficiency of the solar panel. The force
air stream technique [126,127] and the adoption of phase change materials (PCM) [128]
are some of the latest methods known to cool off the PV module. With the advancement
of composite PCM material embedded with nanoparticles, it has been observed that the
efficiency of the photovoltaic module increases by about 13% [129]. Some of the recent
active cooling systems adopted are based on the surface water cooling and aluminium
heat sink [130]; M.S chips and thermal grease [131,132]; saturated zeolite with water [133];
and the use of palm wax [134] to regulate the temperature of the PV panel to the desired
value. An approach for cooling the PV module on both the front and rear surface using a
cotton wick mesh has been developed [135–137]. Based on the capillary action, water is
allowed to spread along the cotton wick mesh throughout the rear surface of the panel. A
perforated aluminium sheet is designed along the back of the PV panel to trap the evading
vapour. An overall improvement of 10.89% in voltage is observed in the PV module
considering the mentioned arrangement. This results in an enhancement of 11.9% in the
efficiency of the suggested cooled panel. Agyekum et al. [138] assessed the viability of
combining aluminium fins and paraffin wax to cool a PV module. A combination of both
active and passive cooling was adopted [138] to cool a PV system wherein an ultrasonic
humidifier was considered for producing a humid environment to cool off along with the
aluminium fins.
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Table 3. Datasheet values of a 315 Wp PV module.

Parameter Symbol Value

Maximum power PMP 315 W
Short-circuit current ISC 8.95 A
Open-circuit voltage VOC 45.6 V

Current at Maximum power IMP 8.45 A
Voltage at Maximum power VMP 37.3 V

Co-efficient of current KI 0.05%/◦C
Co-efficient of voltage KV −0.35%/◦C
Co-efficient of power KP −0.40%/◦C

Nominal operating cell temperature NOCT 45 ± 2 ◦C

5. Conclusions

Parameter estimation of a solar photovoltaic system is a vital in PV modelling. A
number of algorithms have been reported to estimate the unknown parameters of the PV
cell/module across the globe in the last decade. Based on the observation of all the reported
algorithms, a few recent best-reported algorithms were selected for this review in terms of
accuracy, computational complexity and convergence issues. To strengthen the review, all
types of algorithms, including analytical, numerical and evolutionary algorithms, were con-
sidered, and the outcome was reported in a tabular manner. Simulations were performed
for a few of the best-reported models, and the performance was checked at various temper-
atures. In this study, it is observed that the combination of both analytical and numerical
techniques (combined technique) are less time-consuming compared to other techniques
that are used for parameter estimation of solar PV systems. The combined technique has
the highest accuracy compared to the other existing literature. In analytical algorithms,
the number of non-linear exponential terms can be reduced by 4 times compared to the
existing literature. Hence, the combined technique is computationally efficient. The shunt
resistance (Rsh) should be considered as one of the iteration parameters, which makes the
approach more realistic. The application of the NOCT value in the PV parameter estimation
strengthens the accuracy in varying temperatures and irradiance conditions. Based on our
careful observations, it is noticed that, on average, 10% performance degradation is present
in the MPP obtained at Tcell compared to Tamb.
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