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Abstract
Myelodysplastic neoplasms, formerly known as myelodysplastic syndromes (MDS), represent a group of clonal disorders 
characterized by a high degree of clinical and molecular heterogeneity, and an invariable tendency to progress to acute 
myeloid leukemia. MDS typically present in the elderly with cytopenias of different degrees and bone marrow dysplasia, the 
hallmarks of the disease. Allogeneic hematopoietic stem cell transplant is the sole curative approach to date. Nonetheless, 
given the disease’s demographics, only a minority of patients can benefit from this procedure. Currently used prognostic 
schemes such as the Revised International Prognostic Scoring System (R-IPSS), and most recently the molecular IPSS (IPSS-
M), guide clinical management by dividing MDS into two big categories: lower- and higher-risk cases, based on a cut-off 
score of 3.5. The main clinical problem of the lower-risk group is represented by the management of cytopenias, whereas 
the prevention of secondary leukemia progression is the goal for the latter. Herein, we discuss the non-transplant treatment 
of MDS, focusing on current practice and available therapeutic options, while also presenting new investigational agents 
potentially entering the MDS therapeutic arsenal in the near future.
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Abbreviations
AI  Artificial intelligence
ATG   Antithymocyte globulin
AML  Acute myeloid leukemia
AZA  Azacitidine
BM  Bone marrow
CBC  Complete blood count
CR  Complete response
DEC  Decitabine
ESA  Erythropoiesis-stimulating agents
G-CSF  Granulocyte-Colony Stimulating Factor

HSC  Hematopoietic stem cell
HSCT  Hematopoietic stem cell transplant
ICC  International Consensus Classification of 

Myeloid Neoplasms and Acute Leukemia
IPSS-R  Revised International Prognostic Scoring 

System
IPSS-M  Molecular International Prognostic Scoring 

System
MDS  Myelodysplastic neoplasms
NGS  Next-generation sequencing
NOS  Not otherwise specified
ORR  Overall response rate
PB  Peripheral blood
PNH  Paroxysmal nocturnal hemoglobinuria
TPO  Thrombopoietin-receptor agonists (TPO-RA or 

TPO mimetics)
WHO  World Health Organization

1 Introduction

Myelodysplastic neoplasms (MDS), previously known as 
myelodysplastic syndromes, are a heterogeneous group 
of clonal disorders of the hematopoietic stem cell (HSC), 
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presenting with variable degrees of anemia, thrombocytope-
nia and neutropenia [1]. The natural history of MDS is char-
acterized by an invariable tendency to secondary leukemia 
progression, specifically in cases with proliferation of bone 
marrow (BM) blasts at disease onset [2]

MDS is a disease of the elderly, with a median age at 
diagnosis of approximately 70 years. The disease’s inci-
dence ranges from 4 per 100,000 in the general population 
to 25–40 per 100,000 in people aged > 65 years [2, 3]. The 
rare instances in younger patients (< 50 years of age) should 
prompt genetic testing for inherited conditions, in order to 
adequately address familial counseling and potential donor 
choice for allogeneic hematopoietic stem cell (HSCT) pur-
poses [4–7]. The latter represents the only curative treatment 
to date, but its wide application is limited by the disease 
demographics, and only eligible patients can benefit from 
this procedure [8, 9]. Late-onset and incomplete penetrance, 
and inherited predisposition traits may be present also in 

older MDS cases, with DDX41-mutants as prototypical 
examples [10, 11].

Clinically, the degree of cytopenias spans from mild to 
severe, with up to one-third of cases being already transfu-
sion-dependent at disease onset [2]. Therefore, signs and 
symptoms are related to the type and severity of peripheral 
blood (PB) cytopenias, with anemia being the most com-
mon form. Differential diagnoses include other hemato-
logical conditions characterized by bone marrow failure/
insufficiency such as aplastic anemia, paroxysmal noctur-
nal hemoglobinuria (PNH), pure red cell aplasia, as well 
as nutritional, endocrine and metabolic alterations [12–15]. 
Figure 1 (upper part) summarizes the initial laboratory 
assessment needed for the work-up of a patient with suspi-
cion of MDS.

In the last decade, the introduction of next-generation 
sequencing (NGS) has unveiled a plethora of gene mutations 
associated with MDS pathogenesis, thereby inaugurating a 

Fig. 1  Management of non-transplant eligible patients with MDS 
according to the 2022 NCCN and 2021 ESMO Guidelines [3, 34]. 
The diagram displays the initial diagnostic evaluation and treatment 
algorithm for MDS according to the International Prognostic Scoring 

System (R-IPSS) at onset. Abbreviations: EPO Erythropoietin, ESA 
Erythropoiesis-stimulating agents, HMA hypomethylating agents, HR 
higher-risk, Len lenalidomide, LR lower-risk, MDS myelodysplastic 
neoplasms, TPO thrombopoietin receptor agonist
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new molecular era (Fig. 2) [16, 17]. Paralleling the observed 
clinical heterogeneity, these studies uncovered that MDS 
patients also harbor a variety of genomic alterations, some 
of them identifying specific prognostic sub-entities [18]. The 
association between specific molecular lesions and peculiar 
MDS subtypes underpins the updates included in the most 
recent edition of the World Health Organization (WHO) 

classification (Table 1). Besides confirming already known 
molecularly-defined sub-entities such as MDS with low 
blast counts and isolated del(5q), the first genomic altera-
tion introduced in MDS classification [19], the 5th WHO 
edition now includes two additional subtypes with defin-
ing genetic abnormalities: MDS with low blast counts and 
SF3B1 mutation, and MDS with biallelic TP53 inactivation 

Fig. 2  MDS genomic landscape. The figure highlights gene mutations found in myelodysplastic neoplasms (MDS) and their frequencies. √ indi-
cates the available targeted therapeutics

Table 1  Myelodysplastic neoplasms/Myelodysplastic syndrome classification according to the 5th WHO 2022 edition, adapted from [20]

a Defined as > 2 TP53 mutations or 1 mutation plus copy number loss or copy-neutral loss-of-heterozygosity
b Requires SF3B1 mutation
c A blast threshold of 10% serves for the identification of the new sub-entity of MDS/AML according to the ICC [21] which also still retain a dif-
ferentiation according to the absence/presence of single/multilineage dysplasia in the low blasts (< 5% BM and < 2% PB) category defined as not 
otherwise specified (NOS)

Disease subtype Blasts Cytogenetics

MDS with defining genetic abnormalities
MDS with biallelic TP53  inactivationa  < 20% BM and PB Usually complex
MDS with low blasts and isolated del(5q)  < 5% BM and < 2% PB Isolated del(5) or plus 1 additional 

abnormality other than − 7/
del(7q)

MDS with low blasts and SF3B1  mutationb Absence of del(5q), − 7, or CK
MDS, morphologically defined
MDS with low blasts (MDS-LB)  < 5% BM and < 2% PB
MDS, hypoplastic (MDS-h)
MDS with increased blasts 1 (MDS-IB1) 5–9% BM or 2–4% PB
MDS with increased blasts 2 (MDS-IB2)c 10–19% BM or 5–19% PB or Auer rods
MDS with increased blasts and fibrosis (MDS-f) 5–19% BM; 2–19% PB
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[20]. Evaluation of BM blasts, cellularity and fibrosis and 
exclusion of cytogenetic and/or molecular features configur-
ing one of the above-mentioned MDS subtypes are conse-
quential for the definition of the rest of the cases (so called, 
morphologically defined) [20]. Of note, a blast threshold 
of ≥ 20% is still retained for the definition of acute myeloid 
leukemia (AML), whereas a 10% cut-off serves for the iden-
tification of the new sub-entity of MDS/AML, according 
to the International Consensus Classification of Myeloid 
Neoplasms and Acute Leukemia (ICC) [21]. The latter still 
includes a differentiation of MDS according to the absence/
presence of single/multilineage dysplasia in the low blast 
counts (< 5% BM and < 2% PB) category defined as not oth-
erwise specified (NOS), reminiscent of the previous WHO 
classification [22] (Table 1).

1.1  Risk‑Assessment

Once the diagnosis of MDS is established and the patient 
is classified according to the current diagnostic schemes, 
the next step is to assess the risk of AML progression, para-
mount for treatment decisions. To this end, several prog-
nostic tools have been proposed through the years, chiefly 
relying on complete blood count (CBC) parameters, BM 
blasts and cytogenetic alterations (Table 2) [23–25]. The 
existing standard is represented by the Revised International 
Prognostic Scoring System (R-IPSS), which accounts for the 
severity and number of cytopenias, percentage of BM blasts, 
and karyotypic abnormalities, allocating patients into five 
risk categories of diverse prognosis (with a median survival 
spanning from 9 years in Very low to less than 8 months in 
Very high risk groups) [26]. Generally, patients are also clas-
sified into lower (≤ 3.5) and higher-risk (> 3.5) based on the 
assigned R-IPSS score, identifying two subgroups of MDS 
with different therapeutic needs [27].

The recent advances in molecular biology have made the 
incorporation of genomic information into MDS prognosti-
cation a paramount task, eagerly pursed by the entire com-
munity [28, 29]. Artificial intelligence (AI) and machine 
learning algorithms have also demonstrated converging 
pathobiological routes by unveiling latent commonalities, 
but have also highlighted patterns unique to specific MDS 
clusters with prognostic implications [17, 29, 30]. Besides 
obvious potentialities, current pitfalls of such approaches lie 
in the statistical power of the sample size needed in case of 
rare mutational events, the consideration of specific muta-
tional characteristics (e.g., variant allelic frequency-VAF, 
type of mutations), and the inherent ‘black-box’ nature of 
the AI methods [31].

In an attempt to address the unmet need of incorporating 
the abundance of genomic information into MDS prognos-
tication, the International Working Group for the Prognosis 
of MDS has recently developed the Molecular International 

Prognostic Scoring System (IPSS-M) [32]. By combining 
genomic profiling, cytogenetic and hematologic param-
eters, the IPSS-M is able to better predict survival and leu-
kemic progression in patients with MDS as compared to 
its prior R-IPSS version, as demonstrated by the increased 
C-index reported in the study (0.75 versus 0.67, respectively; 
Table 2). This notwithstanding, validation of this new tool in 
real-life setting is required prior to its routine use in clinical 
practice for treatment decisions and patient’s allocation for 
clinical trials.

1.2  Clinical Management

1.2.1  Treatment of Lower‑Risk MDS

As mentioned above, the clinical management of MDS is 
based on the initial risk-assessment according to IPSS-R 
scores. Taking into account the more favorable natural his-
tory of lower-risk MDS, the treatment strategy in such cases 
mainly focuses on improvement of cytopenias and related 
symptoms with MDS-directed approaches or supportive 
measures (Fig. 1, left side). Nevertheless, in some instances 
of asymptomatic lower-risk patients with mild-to-moderate 
cytopenias, a “watch and wait” strategy can be advisable 
[33]. In this scenario, the better understanding of the disease 
pathobiology has shed light on the potential implications of 
the use of NGS, and future studies exploring early interven-
tions following genomic profiling are warranted [16].

Treatment choices depend on the clinical presentations. 
Anemia is one of the most typical features at diagnosis 
in lower-risk disease. In these cases, the first-line option 
is represented by erythropoiesis-stimulating agents (ESA) 
in both European and USA expert recommendation pan-
els [3, 34]. Randomized clinical trials showed that ESA 
at a weekly EPO dose of 30–80,000 units yield an overall 
response rate (ORR) of up to 40–50% within 8–12 weeks 
from treatment start, and with a median duration of response 
of 15–24 months [35–37]. ORR to ESA and achievement of 
transfusion-independence are strictly dependent on baseline 
EPO in an inverse fashion, with levels below 200 IU/L asso-
ciated with the best outcomes [38, 39]. Conversely, patients 
with EPO levels above 500 IU/L have reduced likelihood of 
erythroid response and must be offered alternative treatment 
options or clinical trial enrollment, whenever possible [40]. 
When EPO levels are increased, the response mechanisms 
to anemia may have already reached a supraphysiologic 
threshold of stimulation, as demonstrated by the observed 
expansion of erythropoiesis in BM evaluation at diagnosis 
in these cases [41]. Other factors influencing response to 
ESA include the concomitant administration of Granulocyte-
Colony Stimulating Factor (G-CSF), the IPSS-R score and 
burden of prior transfusion requirements [36, 42].
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Approximately 10–15% of MDS carry interstitial dele-
tions of the long arm of chromosome 5, namely del(5q). 
[43] MDS with del(5q) exhibit an exquisite sensitivity 
to lenalidomide, which represents the first targeted treat-
ment for MDS [19]. Clinical trials have shown erythroid 
responses in 70–80% of cases, with achievement of transfu-
sion-independence for up to a median of 2.5 years [44, 45]. 
Age at onset, neutrophil counts and lactate dehydrogenase 
levels, as well as the achievement of erythroid and cytoge-
netic responses have been identified as predictive factors 
for overall and progression-free survival [46]. Lenalido-
mide is given orally at a dose of 10 mg/daily for 21 days in 

28-days cycles and, particularly during the first cycles, may 
cause neutropenia and thrombocytopenia. These treatment-
related cytopenias have been linked to the cytotoxic suppres-
sion of the actual del(5q) clone, thereby leading to higher 
likelihood of response [47]. Data on long-term outcomes 
showed a safety signal of the drug with reassurance as to 
the worrisome rumors concerning secondary neoplasms and 
leukemia progression. The observation of long-term remis-
sions following treatment stop led to the current interest in 
exploring treatment-free remission strategies, paralleling the 
experience in other hematologic diseases such as chronic 
myeloid leukemia [46, 48, 49]. This notwithstanding, up to 

Table 2  Comparison of existing prognostication models in MDS

Adapted from [16]. Y: yes; X: no; BM: bone marrow; PLT: platelets; Hb: hemoglobin; NA: not available; SF3B15q: SF3B1 plus isolated del(5q); 
SF3B1β: SF3B1 plus BCOR, BCORL1, NRAS, RUNX1, SRSF2, or STAG2; SF3B1α any other SF3B1-mutant; TP53 allelic status is defined 
according to [105]. C-indexes refer to overall survival prediction

Model variables Cytogenetic 
risk groups

BM blasts
%

Cytopenia Molecular information Patient’s factor C-index
Model names

Models without molecular information
IPSS [23]
1997

Y Y Number of cytopenias X 0.65

IPSS-R [26]
2002

Y Y Degree of cytopenias X 0.67

WPSS [25]
2007

Y WHO category Transfusion requirement X 0.65

MDACC [24]
2008

Y Y Prior transfusion;
Degree of cytopenias

Age;
Performance status

0.65

Models with molecular information
Haferlach et al. [18]
2014

Y Y Degree of cytopenias (PLT, 
Hb)

ASXL1, CBL, ETV6, EZH2, 
KRAS, LAMB4, NCOR2, 
NF1, NPM1, NRAS, 
PRPF8, RUNX1, TET2, 
TP53

Age
Gender

NA

Nazha et al. [28]
2016

Y WHO category According to the combina-
tion models

TP53, EZH2, and SF3B1 Age 0.71

Nazha et al. [29]
2021

Y Y Degree of cytopenias (PLT, 
Hb)

RUNX1, RAD21, SRSF2, 
SF3B1, STAG2, ASXL1, 
TP53

Age 0.74

Bersanelli et al. [17]
2021

Y WHO category Number of cytopenias 47 molecular variables Age
Gender

0.75

IPSS-M [32]
2022

Y Y Degree of cytopenias (PLT, 
Hb)

− Binary (Yes/No): ASXL1, 
CBL, DNMT3A, ETV6, 
EZH2, FLT3, IDH2, 
KRAS, MLLPTD, NPM1, 
NRAS, RUNX1, SRSF2, 
and U2AF1

− TP53 allelic status
− SF3B15q, SF3B1α, SF3B1 

β

− Number of additional 
mutations in BCOR, 
BCORL1, CEBPA, 
ETNK1, GATA2, GNB1, 
IDH1, NF1, PHF6, 
PPM1D, PRPF8, PTPN11, 
SETBP1, STAG2, and WT1

X 0.75
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20% of MDS with del(5q) harbor TP53 mutations, which 
have been associated to an increased risk of secondary leu-
kemia progression, albeit without preventing initial eryth-
roid responses [50, 51]. Therefore, NGS evaluation is rec-
ommended to better identify cases at higher risk of AML 
progression, and may have a role in guiding treatment-free 
remission strategies, as previous studies have shown that 
some malignant HSC carrying del(5q) may still persist fol-
lowing the achievement of complete remission (CR) [52].

MDS with ring sideroblasts (RS), usually associated with 
SF3B1 mutations, typically present with anemia that can 
benefit from luspatercept, an activin receptor ligand trap 
inhibitor of the transforming growth factor (TGF)-β path-
way (Fig. 2). Initially tested across all lower-risk MDS in 
an open-label phase 2 trial, luspatercept (given at a dose 
of 1–1.75 mg/kg every 21 days) has shown higher eryth-
roid response rates (63%) and transfusion-independence 
(38%) in MDS with RS, SF3B1 and spliceosome mutations 
refractory to ESA treatment [53]. The randomized, double-
blind, placebo-controlled MEDALIST trial enrolled 229 
ESA-refractory MDS patients with RS confirming these 
initial findings and the safety signal of the drug [54]. Of 
note is that a recent analysis of the secondary endpoints of 
the study showed that, besides improvement in hemoglobin, 
also neutrophils and platelets incremented upon luspater-
cept treatment [55]. Furthermore, long-term follow up data 
of the MEDALIST trial indicated the substantial benefit of 
the investigational arm with approximately 25% of patients 
still under treatment at more than 2 years from enrollment 
[56]. The phase-3 COMMANDS trial is currently comparing 
the efficacy and safety of luspatercept versus epoetin alfa in 
ESA-naïve lower-risk MDS patients regardless of the pres-
ence of RS (NCT03682536) [57].

A selected group of younger (< 60 years) lower-risk 
MDS cases with hypocellular marrows (defined in Table 1), 
multiple cytopenias, normal cytogenetics (or trisomy 8) 
and autoimmune-like features (small PNH clones, STAT3-
mutant T-cell clones) can be suitable for immunosuppressive 
therapy with anti-thymocyte globulin (ATG) alone or more 
often in combination with cyclosporine A [58]. Responses 
are seen in up to 30–40% of cases with a median duration 
of 1.5 years, and seem to be associated with the presence 
of HLA-DR15 genotype and preferential use of horse ATG 
[59].

In the 30% of lower-risk MDS patients presenting with 
thrombocytopenia, high-dose androgens can improve plate-
let counts, but this effect is generally transient [3]. While not 
yet approved for use in the MDS setting, recent trials have 
explored the use of thrombopoietin-(TPO) receptor agonists 
(TPO-RA or TPO mimetics) [60]. In a study enrolling 250 
lower-risk MDS patients randomized 2:1 to receive romi-
plostim or placebo weekly for a total of 58 weeks, the inves-
tigational arm achieved higher platelet counts with decreased 

risk of clinically significant bleeding events (relative risk, 
0.92) and platelet transfusions (relative risk, 0.77), as com-
pared to the placebo arm [60]. Despite initial concerns on 
increased rate of AML progression, a recent update on long-
term follow-up data of this study reassured on the safety 
of romiplostim, showing similar progression rates between 
the two arms [61]. In another single-blind, randomized, 
phase-2 superiority trial, 90 patients were assigned 2:1 to 
receive eltrombopag (50–300 mg) or placebo for at least 
24 weeks [62]. Similar to romiplostim, also eltrombopag was 
able to increase platelet counts (47% versus 3%, p = 0.0017) 
and reduce the rate of bleeding episodes (14% versus 42%, 
p = 0.0025) when compared to the placebo.

As anemia is one of the main clinical manifestations in 
lower-risk diseases, patients oftentimes receive red blood 
cell (RBC) transfusions as a supportive care measure. In 
such a context, the role of iron chelation therapy (ICT) is yet 
not fully elucidated [3, 63]. Studies have shown that ICT may 
potentially improve overall and progression-free survival in 
transfusion-dependent lower-risk MDS. In a meta-analysis 
collating data from nine observational studies [64], overall 
ICT was associated with lower risk of mortality (HR 0.42; 
95% CI 0.28–0.62; p < 0.01) but not with decreased rates of 
AML progression. In the recent multicenter, double-blind, 
placebo-controlled trial TELESTO [65], 225 MDS patients 
with iron overload (serum ferritin levels > 2247 pmol/L) 
were randomly assigned (2:1) to deferasirox (10–40 mg/kg 
per day orally) or placebo. The study showed a better event-
free survival in the deferasirox arm and a clinically manage-
able safety profile of the drug, thereby concluding in favor 
of using ICT in such a setting.

1.2.2  Treatment of Higher‑Risk MDS

Besides HSCT, which is outside the scope of this review 
focusing on management of non-transplant eligible 
patients, hypomethylating agents (HMA) are the back-
bone treatment option for higher-risk cases (Fig. 1, right 
side) [3, 34]. Azacitidine (AZA) is usually administered 
subcutaneously at a dose of 75 mg/m2 daily for 7 days of 
a 28-day cycle, whereas decitabine (DEC) is given as an 
intravenous formulation at a dose of 20 mg/m2 daily for 
5 days of a 28-day cycle [2]. In the open-label, phase-3 
AZA-001 trial [66], 358 patients with higher-risk MDS 
were randomly assigned in a 1:1 fashion to receive AZA 
or conventional care (low-dose cytarabine, intensive 
chemotherapy or best supportive care). The results of the 
study showed a benefit of AZA in terms of ORR (29% 
versus 12%) and overall survival, with 51% versus 26% of 
patients alive at 2 years, as compared to the control arm. 
However, the reported survival advantage has been modest 
in subsequent trials, and many combinations with different 
drugs including checkpoint inhibitors (e.g., durvalumab) 
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or targeted therapies (e.g., glasdegib, histone deacetylase 
inhibitors) have been tried without incremental improve-
ments of outcomes, likely due to additional toxicities 
[67–69]. DEC has also been shown to increase ORR rate 
and prolong disease-free (but not overall) survival in rand-
omized clinical trials [70, 71]. Nevertheless, in a study on 
long-term outcomes of higher-risk MDS patients treated 
with HMA and not undergone subsequent HSCT, only 4% 
of cases were alive at 5 years from treatment start, regard-
less of the type of HMA used [72]. Therefore, participa-
tion of patients not eligible for HSCT in clinical trials is 
strongly recommended, especially after HMA failure [73, 
74]. Of note is that no difference in rates of CR, ORR and 
survival has been shown between the two drugs AZA and 
DEC, and this finding has been demonstrated not only in 
MDS but also in AML patients unfit for intensive chemo-
therapy [75, 76].

Given logistic difficulties with on-label administration 
schedules of AZA, various alternatives have been explored 
[77]. For instance, a 5-2-2 type of regimen (Monday-Fri-
day with weekend off and then Monday-Tuesday) is widely 
used by many centers (85% of 105 US centers according 
to a registry study [78]) to avoid the issue of weekend 
infusions, but no clinical randomized trial supports its 
equivalence with the 7–0 approved schedule [79]. Alterna-
tive regimens aside, a mainstay for a successful treatment 
with AZA is its continuation with a correct timing for at 
least the initial 4–6 cycles, in order to avoid rapid loss of 

response upon withdrawal due to related toxicities [80]. 
An alternative approach to HMA, albeit inferior to AZA, 
is low-dose cytarabine (LDAC) at a dose of 20 mg/m2/day 
for 10–14 days every 4 weeks [66].

Apart from schedules and therapy adherence, the 
response to HMA varies according to other baseline patient 
characteristics, cytogenetics and molecular alterations [16, 
81]. For instance, male gender and burden of comorbidities 
have been linked to inferior response rates [82–84]. Chromo-
some 7 abnormalities, 17p deletion (and thus TP53 disrup-
tion), and chromosomal translocations are also predictors 
of poor response and outcomes following AZA therapy [85, 
86]. Conversely, an increase in platelet counts after the first 
cycles has been identified as a favorable prognostic factor for 
treatment response, and mechanistically linked to transcrip-
tomic changes in factors implicated in late megakaryopoiesis 
[85, 87].

While TET2- (with controversial results) and DDX41-
mutants seem to have a higher rate of HMA response, MDS 
patients harboring ASXL1 and specific DNMT3A vari-
ants (e.g., R882H) tend to have dismal outcomes (Fig. 3) 
[88–90]. Another instance where HMA seems to be prom-
ising is the clinical dyad of MDS and VEXAS syndrome, 
a new hematoinflammatory disorder characterized by the 
concomitant presence of BM vacuoles, autoinflammatory 
symptoms, macrocytic anemia, and MDS in up to 60% of 
cases [91, 92]. In this context, treatment with AZA achieved 
CR not only of the underlying MDS but also of the corollary 

Fig. 3  Mutations with potential prognostic and therapeutic significance in MDS. The figure highlights potential gene mutations found in patients 
with MDS associated with prognostic significance or sensitivity to specific treatments
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autoinflammatory manifestations, with disappearance of the 
UBA1-mutant pathogenic clone in some cases [93, 94].

No established guidelines exist to inform on treatment 
choices after HMA failure in patients not eligible for trans-
plant, and clinical trial enrollment is recommended in such 
cases. However, off-label options may be represented by 
molecularly targeted therapies as well as molecularly-agnos-
tic options (see below) [95].

1.3  A Glimpse into the Future: Brief Overview 
of New Treatments and Investigational Agents

In the last decade, the better understanding of the molecular 
biology of the disease has opened new therapeutic possibili-
ties, borrowed from the experience matured in other hemato-
logical disorders. While several new drugs targeting specific 
pathways crucial for MDS are currently investigated, we 
will focus herein on some agents potentially entering routine 
clinical practice in the next few years (Fig. 4) [96].

Novel oral formulations of HMA (both AZA and DEC) 
are currently under evaluation alone or in combination with 
other drugs. The DEC and cedazuridine combination has 
been recently approved in the US and its benefit has been 
proven in a phase 3 study (ASCERTAIN) enrolling 133 
patients with MDS and chronic myelomonocytic leukemia 
(CMML), showing an ORR of 60% [97]. Pharmacokinetic 
studies confirmed that the oral route of administration, 
potentiated with the addition of cedazuridine to prevent 
the inactivation of DEC in the gastrointestinal tract, led 
to systemic levels of the drug similar to those obtained 
with the injectable form [98, 99]. An oral AZA formula-
tion (CC-486) has been tested in 216 MDS RBC trans-
fusion-dependent patients in a phase 3 randomized (1:1), 

placebo-controlled trial [100]. While not improving sur-
vival, CC-486 significantly ameliorated the rate of trans-
fusion-independence (31% versus 11%) when compared to 
placebo. Gastrointestinal and hematological toxicity were 
among the most common adverse events.

Preclinical studies focusing on mechanisms of AZA 
resistance identified the anti-apoptotic BCL-2 family mem-
bers as potent sensitizing targets [101]. Therefore, given the 
very promising results obtained in the AML setting [102], 
efforts to explore the combination of AZA with venetoclax, 
an oral BCL2 inhibitor, are undergoing in both treatment-
naïve (NCT02942290; NCT04401748) and relapse/refrac-
tory higher-risk MDS (NCT02966782). Preliminary data 
showed ORR as high as 84%, with a median time to CR 
of 2.6 months achieved across all spectra of accompanying 
myeloid driver mutations, including TP53 [103, 104]. The 
most frequent adverse events were hematological toxicities, 
with 45% of cases developing febrile neutropenia.

TP53 alterations are found in up to 20% of MDS and 
identify a difficult-to-treat population, because of high-
risk features such as complex karyotype and increased risk 
of AML progression [105]. In such a setting, two agents 
showed promising results. The first is APR-246, a small mol-
ecule able to restore p53 functions, which has been tested in 
two independent phase 2 trials in combination with AZA and 
induced an impressive ORR of 73%, with approximately half 
of patients obtaining CR [106, 107]. While confirming the 
higher CR rate in the investigational arm, the ongoing phase 
3 study (NCT03745716) did not reach the primary endpoint, 
but the final results are yet to be published [16]. The second 
drug with potential clinical activity in TP53-mutant MDS is 
magrolimab, a first-in-class anti-CD47 antibody, which syn-
ergizes with AZA and induce “eat me” signals on leukemic 

Fig. 4  Actionable targets and 
investigational agents in MDS. 
The figure showcases actionable 
targets identified in MDS and 
currently investigated agents 
with potential for future use in 
the routine clinical management
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stem cells by restoring macrophage-mediated phagocytosis 
[108]. A Phase 3, placebo-controlled trial of magrolimab 
in combination with AZA (ENHANCE; NCT04313881) is 
ongoing, and preliminary data showed CR of 40% in TP53-
mutants higher-risk MDS [109, 110].

In the past few years, targeted anti-IDH inhibitors have 
shown encouraging results in AML, and thereby are now 
investigated in the MDS setting. Albeit at a lower frequency 
(5–8%), IDH1 and IDH2 mutations can be also found 
in patients with MDS, constituting amenable targets for 
ivosidenib and enasidenib, respectively. The use of enasidenib 
showed an ORR of 74% for the combination with AZA, and of 
up to 50% when used as a single agent in HMA-treated cases 
[111, 112]. Similar results have been obtained for ivosidenib 
alone or in combination with AZA [113]. Both anti-IDH 
inhibitors are currently considered off-label in higher-risk 
MDS patients after HMA failure while being explored in clin-
ical trials (NCT02074839; NCT03503409; NCT03744390). 
Of note is that the use of these agents is associated with a 
differentiation syndrome characterized by a clinical picture 
very similar to that observed during treatment with all-trans 
retinoic acid in acute promyelocytic leukemia [114].

Besides the higher-risk setting, several new agents are 
currently studied also in lower-risk cases, chiefly directed at 
improvement of ineffective hematopoiesis and anemia. Roxa-
dustat is a new inhibitor of the oxygen-sensing pathway target-
ing the hypoxia-inducible factor and prolyl-hydroxylase. This 
drug, which mimics a low oxygen status, promotes eryth-
roid differentiation by increasing EPO levels and improving 
iron metabolism. Borrowing on the experience of end-stage 
chronic kidney disease [115, 116], roxadustat is now under 
evaluation for the treatment of anemia of lower-risk MDS 
with baseline EPO levels below 400 IU/L (NCT03263091). 
Preliminary results showed erythroid responses with achieve-
ment of transfusions-independence in up to 38% of patients 
sustained for 52 weeks [117]. Imetelstat is a first-in-class 
inhibitor of the human telomerase. The ongoing global phase 
2/3 double-blind, placebo-controlled, randomized (2:1) IMerge 
trial (NCT02598661) is evaluating imetelstat in patients with 
non-del(5q) lower-risk MDS, ESA-resistant and naïve to HMA 
[118]. The results of the concluded phase 2 showed a 42% 
transfusion-independence rate sustained for 8 weeks, and an 
overall hematological improvement in 68% of cases [119].

2  Conclusions

MDS constitutes a highly diverse group of disorders. First-
line treatment strategies aim at improvement of cytopenias 
in lower-risk cases, whereas the prevention of AML pro-
gression and prolongation of survival are the main goals 
in the higher-risk setting [120]. In cases not suitable for 
HSCT, second-line approaches are strictly dependent on 

reassessment of the risk in a dynamic fashion, given the 
challenges dictated by clonal evolution and potential acqui-
sition of additional cytogenetic or molecular alterations 
[121, 122]. In this scenario, off-label use of AML-approved 
drugs and enrollment into clinical trials represent reasonable 
options while waiting for the final results of ongoing studies, 
which very soon will broaden the therapeutic possibilities 
of MDS patients in a more personalized, tailored fashion.
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