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Abstract
Lock-in amplifiers, used in several experimental physics applications, are instruments performing quadrature demodula-
tion, which is useful when signals are affected by much noise. Generally, commercially-available lock-in amplifiers are very 
accurate, but expensive, especially if their operating range includes radiofrequencies. In many applications, high precision 
is not necessary for the measurements, but it is preferable to have low-cost, low-weight, compactness and a user-friendly 
graphical unit interface. In this paper, we describe a new fully-digital low-frequency lock-in amplifier developed at ENEA 
C.R. Frascati Laboratories for photoluminescence experiments based on an innovative low-cost architecture and process-
ing algorithms. The hardware, firmware and software developed for the whole photoluminescence measurement set-up is 
presented. The present lock-in was first characterized with synthetic electrical sine wave signals and white noise. A dynamic 
reserve of 43 dB and a noise figure in the range of 25–44 dB were estimated. These results show compatibility with several 
measurement applications, such as photoluminescence, and the adequacy of the resolutions with respect to the hardware 
costs. Finally, preliminary results of photoluminescence measurements are presented.
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1 Introduction

Lock-in amplifiers demodulate a signal, with a proper car-
rier that can be in a very different frequency range, from 
an extremely noisy environment. At ENEA C.R. Frascati 
Laboratories, measurement instrumentation not available 
on the market, based on lock-in amplifier architecture in 
medium–high frequency range, was developed, such as 
interferometers [1], reflectometers [2], optical radars [3] 
and bolometers [4]. In high-frequency carrier applications, 
like optical radar demodulation, quadrature demodulation, 
based on a well-tested algorithm [3], Field Programmable 
Gate Array (FPGA) hardware was mandatory. On the con-
trary, in linear optical spectroscopy measurements, used in 
many applications and scientific investigations, the carrier 

frequency can be very low. In this case, considering the 
carrier frequency (i.e. ~ 200 Hz), the sampling frequency 
of 1ksps (1 k sample per second) is below the Nyquist 
Frequency.

In this paper, we describe a new family of fully-digital 
lock-in amplifiers, based on microcontrollers, developed 
for photoluminescence (PL) measurements at ENEA C.R. 
Frascati, with the aim of making instrumentation with the 
following characteristics: easy to use, cheap, reduced size 
and weight, accurate, reprogrammable and/or reconfigur-
able, with graphical user interface and digital data trans-
mission to a Host PC without loss of precision. In order to 
check the validity of the present scheme and to enable com-
parison with other previous implementations, experimental 
tests were first carried out with synthetic electrical signals 
and white noise at different values of signal-to-noise ratio 
(SNR). This allowed us to carefully estimate the dynamic 
reserve and noise figure of our system. Then, the lock-in 
amplifier was applied to real electrical signals coming from 
photoluminescence measurements.
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2  System description

2.1  Lock‑in hardware

The measurement system is based on a custom DSP Box 
containing a Microcontroller board and a simple. Signal 
conditioning mezzanine.

The microcontroller board is the low-cost Arduino 
Mega 2S60, based on the 8bit Atmel ATmega2S60 micro-
controller, having 16 MHz crystal-oscillator, 16 analog 
inputs, and a USB port [5].

The conditioning board consists of two anti-aliasing 
low-pass filters for both CH1_R and CH2_S channels. 
Moreover, the CH2_S channel has a DC-block and a DC 
offset circuit, necessary to pull up the input in case of 
negative signals, such as in the case of PMT (Photomul-
tiplier tube).

Figure 1 shows the DSP Box layout and the test-bench 
for its electrical characterization, as explained in par 3.1.

2.2  Microcontroller firmware

The firmware for the microcontroller board (see Figs. 2 
and 3) has been developed in C language and performs 
several functions:

1. Communication with Host PC
2. Oscilloscope feature
3. Lock-in feature and setup see Fig. 2

Details on the functions listed above are given below:

1. Communication with Host PC
2. The microcontroller board communicates setup and 

starts oscilloscope and lock-in with the Host PC via USB 

port in serial protocol (19,200 baud). General-purpose 
serial monitor software or the custom software described 
in Sect. 2.3 must be installed on the Host PC.

3. Oscilloscope feature
4. The oscilloscope firmware acquires the CH1 and CH2 

signals at 1ksps. Due to the low throughput of the USB 
port, it is necessary for the microcontroller to acquire 
and store the CH1 and CH2 signals in arrays. When the 
array is full, the microcontroller stops the acquisition 
and sends the data to the host PC.

5. Lock-in feature and setup
6. The microcontroller implements the quadrature demodu-

lation in real-time with a fully digital signal processing, 

Fig. 1  DSP box layout and electric characterization test bench
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sending the record containing the timestamp and the 
demodulated components to the Host PC.

Considering a sampling frequency of 1ksps, the chopper 
frequency (~ 200 Hz) is lower than the Nyquist Frequency, 
so it is possible to sample both channels (CH1_R (reference) 
and CH2_S (signal)) and perform quadrature demodulation 
with the digitalized signal using Digital Signal Processing.

The digital demodulation algorithm [3] needs a synthe-
tized digital local oscillator, the Local Oscillator signals 
and the sampled signals are connected to a complex product 
generating low and high frequency components. The high 
frequency ones are removed by a first Low Pass Decimator 
FIR (Finite Response Filter). The complex low-frequency 
components, relative to Signal and Reference, are multiplied 
after a conjugation operation [3]. In such a way, even if the 
Local Oscillator is not perfectly synchronous to the Chop-
per frequency, the low-frequency components related to the 
sinusoidal and cosinusoidal part of the Photodetector Signal 
with respect to the Chopper Reference are obtained.

The time required for the dispatch of the records contain-
ing the lock-in measures up to 1sps, allows to process the 
signals CH1, CH2 without loss. If the chopper frequency is 
not known, it is possible to measure it by using the oscil-
loscope function (see. Figure 4); the position of the peaks 

in the FFT spectra provides the fundamental frequencies of 
the signals. We set the parameters of the two Decimation 
FIRs (decimation factor and FIR response) as a function of 
the desired output measurement frequency and the chopper 
jitter.

2.3  Host software and graphical user interface

The Host PC is connected to the microcontroller board via 
USB port in serial protocol (see Fig. 1 and Fig. 2). The 
microcontroller receives command strings such as start_
oscilloscope and answers sending to the Host PC the oscil-
loscope data, the lock-in data or acknowledgement signal for 
the setup operations. The command strings can be sent to 
the Microcontroller in command-line interface mode, using 
generic software. For simplicity, an easy-to-use Graphical 
User Interface (GUI) has been developed in LabVIEW envi-
ronment. Figure 4 and Fig. 5 show the Graphic User Inter-
face for the Oscilloscope and Lock-In functions.

Figure 4 shows the acquisition of two sinusoidal signals 
having different amplitudes and frequencies (4 Vpp at 80 Hz 
and 0.4 Vpp at 180 Hz, red and blue signals, respectively).

Figure 5 shows the GUI for the lock-in function. The 
input signals are two sinusoidal signals slightly shifted 
in frequency (180.00 and 179.95 Hz). Signal at −20 dB 

Fig. 4  GUI: Tab for oscillo-
scope function
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compared to the full range and reference at Low Level of 
100–200 mV.

It is possible to appreciate the great phase linearity, and 
the small standard deviation of the amplitude (0.6 compared 
to the average 172.45 [a.u.]) even with an input level 20 dB 
below the maximum range.

3  System test

3.1  Lock‑in electrical characterization

In order to characterize the lock-in, a test bench containing 
a dual channel synthetic generator (Tektronix AFG 3252) 
has been set up (see Fig. 1). The used generator can supply 
sinusoidal signals with very small frequency shifts; in this 
way, while the amplitude of the signals detected by the lock-
in is fixed, the phase must have a sawtooth trend.

A manual rotary stepper attenuator allows to obtain sig-
nals at different amplitudes, while generator output sets were 
used to vary the amplitude of the reference. In Fig. 6 the 
Measured_Amplitude changes linearly with the reference 
amplitude, being proportional to Reference_Amplitude × Sig-
nal_Amplitude. If necessary, the components contained in 

the Lock-In amplifier record allow the evaluation of the 
Reference_Amplitude and the Signal_Amplitude separately.

Figure 6 shows the high linearity of the Measured_Ampli-
tude and Measured_Phase, but also the presence of a cross-
talk effect between the CH1_R and CH2_S channels, which 
makes it more convenient to use reference signals with not 
excessive levels.

All the results shown below were obtained with the fol-
lowing test setup:

Fig. 5  GUI: tab for lock in 
function

Fig. 6  Measured_amplitude vs. signal attenuation with high and low 
reference input levels
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• Measurement rate 1sps;
• 2Vpp 179.9 Hz sinusoidal signal (100–2100 mV) atten-

uated at different levels with the rotary attenuator (0 
– 60 dB);

• Sinusoidal reference at frequency 180 Hz with four dif-
ferent levels:

• High level (100–2100 mV)
• Medium levels I (100–1100 mV)
• Medium levels II (100–600 mV)
• Low level (100–200 mV).

Figure 6 shows that the Measured_Amplitude has high 
linearity as a function of the signal attenuation.

Figure  7 shows the Measured_Amplitude Standard 
Deviation for the high and low reference levels; it is pos-
sible to verify that, due to the cross-talk effect, the stand-
ard deviation cannot be lower than 30 (a.u.) in the case of 
High Reference Level, while in the case of Low Reference 
Level the standard deviation is less than 10 (a.u.) with a 
signal attenuation up to 60 dB.

The percent standard deviation of the Measured_Ampli-
tude shows an almost linear dependence with the Meas-
ured_Amplitude in logarithmic scale, but in the case of 
High Level Reference (100–2100 mV), due to the presence 
of cross talk, the standard deviation is higher (see Fig. 8).

By using Low Level Reference (100–200  mV) the 
standard deviation is less than 1%, for signal attenuated 
up to 42 dB (see Fig. 8 and Fig. 9). This is a good result, 
considering the low cost of the instrumentation.

Figure 10 shows the time behaviour of the Measured_
Phase in the case of input at two different frequencies 
(180.0 and 179.9 Hz) measured at three different reference 
levels and with the signal attenuated of 60 dB.

Being 1sps the measurement rate, the entire phase inter-
val between ± π is linearly scanned in ten samples.

Fig. 7  Standard deviation of the measured_amplitude vs the signal 
amplitude attenuation
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Fig. 10  Measured_phase during the test with signal and reference at 
180.0 Hz and 179.9 Hz, respectively at three different reference levels
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We can observe the presence of non-linearity, if the refer-
ence has high level, due to the cross-talk between channels. 
Likewise, the amplitude is not constant over time for the 
same reason (see Fig. 11).

The cross-talk effect can be seen more easily by plotting 
the components of the quadrature demodulation in polar 
coordinates (see Fig. 12).

3.1.1  Dynamic reserve and noise reduction performances

A figure of merit of the present implementation can be pro-
vided by the Dynamic Reserve, which is the ratio of the 
largest tolerable noise signal to the full-scale signal that is 
allowed before saturation occurs.

Conservatively, we have calculated the dynamic reserve 
using the maximum noise level obtained during all the meas-
urements, and the signal measured before saturation, obtain-
ing a value of 43 dB. This value, although lower than that 
of digital or analogic Commercial On The Shelf (COTS) 
lock-in amplifiers (typically 60–70 dB), is adequate for a 
wide range of applications.

In addition, the lock-in noise reduction efficiency has 
been tested by implementing a test setup including a dual 
channel synthetic generator (Siglent SDG6052X) and a 
noise generator (Agilent 33220A) (see Fig. 13). The Noise 
Figure (NF) was thus estimated as the ratio of the output 
SNR (SNRo) to the input SNR (SNRi) expressed in dB.

SNRi was simply evaluated as the ratio of signal power to 
the noise power on the CH2_S channel. On the other hand, 
since our lock-in directly provides a numerical output, SNRo 
was estimated as the square of the ratio of the mean of the 
Measured_Amplitude (recorded over a 60 s time period with 
a sampling rate of 1 measurement/s) to its standard devia-
tion, thus considering the fluctuations of the digital output 
as the lock-in output noise.

Table  1 summarizes the NF obtained in the case of 
Reference at 200mVpp and signal frequency of 180 Hz, 
approximately.

The reason for the decrease of the NF with reducing noise 
lies in the presence of self-generated noise inside the lock-
in amplifier, which becomes relevant as the external noise 
decreases.

3.1.2  Lock‑in amplifier performance comparison

Unfortunately, most of the literature [6–11] does not report 
the quantitative determination of the noise figures. In the 
Table 2, we compare the Dynamic Reserve and cost of some 
prototypes together with a typical COTS instrument.

It should be pointed out that the obtained Dynamic 
Reserve of the present system, although lower than that 
of COTS lock-in amplifiers, is adequate for a wide range 

Fig. 11  Cross talk effect: measured_amplitude at different reference 
level in the case of low signal level 60 dB attenuation

-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70

-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Q
 [a

.u
]

I [a.u]

cross talk
vector rota�ng

vector

measured
vector

1 sec

rota�ng
vector

Fig. 12  Quadrature demodulation components vs. time

Power 
combiner

Sinusoidal 
generator

Lock-In
DSP BOX Oscilloscope

CH1_R CH2_S

Noise 
generator

180Hz 179.95Hz

Measured_Amplitude

Fig. 13  Noise figure estimation layout



Analog Integrated Circuits and Signal Processing 

1 3

of applications and is achieved at very low cost (less than 
50 €) which makes the DSP Box also suitable in dispos-
able systems.

3.2  Experimental test in photoluminescence 
measurements of F2 color centers in lithium 
fluoride crystals

As mentioned in Introduction, the present lock-in was espe-
cially designed for application to photoluminescence (PL) 
measurements, where low-cost and compactness can fit the 
needs of both portable systems and versatile laboratory set-
ups [12]. As a specific example, here we report the experi-
mental test of the lock-in amplifier within a compact system 
for measuring the PL of passive solid-state dosimeters based 
on the PL of  F2 color centers (CCs) in lithium fluoride (LiF) 
crystals.

Such CCs were created in LiF by irradiation with 26 MeV 
protons, produced by the TOP-IMPLART linear accelerator 
at ENEA Frascati, in the (0.5–48) Gy dose range [13]. When 
 F2 CCs are optically pumped with blue light, they absorb it 
and emit light in the red spectral range [14]. The PL inten-
sity, due to the total amount of CCs created in the crystals by 
the ionizing radiation, is proportional to the deposited dose 
at constant blue light excitation intensity.

The PL measurement system (see Fig. 14) consisted of a 
10 mW and 1.7 mm beam diameter continuous wave 445 nm 
Cobolt laser, modulated with a Thorlabs MC2000 chopper at 
180 Hz. The emitted PL was focused by a convex lens into 
a phototube Hamamatsu H7422 with C7319 preamplifier 
unit, after an interference filter allowed PL to be transmit-
ted only in a 50 nm-wide band centered at 670 nm, cor-
responding to the  F2 CCs maximum emission wavelength 
range. The acquired data, shown in Fig. 15, confirm that the 
50 nm spectrally-integrated PL intensity response is linear 
with dose, as obtained in ref. [13] from the PL spectra of the 
same colored LiF crystals, measured with a more sophisti-
cated system. Each plotted point is the average of a 60 s long 
signal acquisition.  

Table 1  Noise figure recorded at different values of the input signal 
and added noise

CH2_S SNRi SNRo NF

Signal ampli-
tude

Noise amplitude SNRi/SNRo

[mVpp] [mVpp] [mVrms] [dB]

100 4000 666.67 0.00281 67.70 43.82
200 1000 166.67 0.1799 4132.2 43.61
100 1000 166.67 0.0450 953.9 43.26
10 1000 166.67 0.00045 8.9 42.96
200 100 16.67 17.995 12,838 38.53
100 100 16.67 4.4986 32,225 38.55
10 100 16.67 0.04499 479.6 40.27
200 18 3.00 555.39 65,996.9 20.75
100 18 3.00 138.85 43,376 24.94

Table 2  Comparison with other implementations and COTS instru-
ment

Prototype/instrument Dynamic reserve Approximate cost

ENEA DSP Box 43 dB  < 50€
S. Carrato [7] 30–50 dB Not applicable
J. Gaspar [8] 76 dB ≈200€
Stanford research systems 

mod. SR810
100 dB  > 4000€

Fig. 14  Photoluminescence 
measurement layout
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4  Conclusions

For low frequency application, a very low-cost lock-in has 
been developed in ENEA Frascati laboratories. The lock-in 
is based on a microcontroller board (Arduino Mega) and has 
been electrically characterized through experimental tests 
with synthetic electrical signals and white noise, which have 
demonstrated a dynamic reserve of 43 dB and a noise figure 
in the range 25–50 dB. These values, although lower than 
those of digital or analogic COTS lock-in amplifiers, are 
adequate for a wide range of applications. As an example 
of real application, our system was used in laboratory with 
good results for PL measurements.

Future activities include upgrading the lock-in with a 
more performing microcontroller board and its application 
to photoacoustic spectroscopy measurements [15].
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