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We present a lattice calculation of the charged/neutral pion mass differenceMπþ −Mπ0 at order OðαemÞ
using the gauge configurations produced by the Extended Twisted Mass Collaboration with Nf ¼
2þ 1þ 1 dynamical quark flavors at three values of the lattice spacing (a ≃ 0.062; 0.082; 0.089 fm) and
pion masses in the range Mπ ≃ 250–500 MeV. We employ the RM123 method and expand the path
integral around the isospin symmetric point at leading order in the electromagnetic coupling αem. Making
use of the recently proposed rotated twisted-mass scheme, we evaluate the full OðαemÞ contribution, with
the inclusion of the disconnected diagram. At the physical point, after performing the continuum and
infinite volume extrapolation, we obtain the value Mπþ −Mπ0 ¼ 4.622ð95Þ MeV which is in good
agreement with the experimental result ½Mπþ −Mπ0 �exp ¼ 4.5936ð5Þ MeV.
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I. INTRODUCTION

In the last decade, the precision achieved in the compu-
tation of several observables relevant for flavor physics by
lattice QCD has reached a level where electromagnetic and
strong isospin-breaking (IB) effects can no longer be
neglected [1]. The issue of how to evaluate QED effects
from lattice QCD simulations has been addressed so far in
two different ways: the first method (see e.g., Refs. [2–5])
consists in including QED to the action, performing QCDþ
QED simulations at different values of the electromagnetic
coupling αem and extrapolating to the physical value. The
second method, the so-called RM123 method [6–13], con-
sists in expanding the path integral around the isospin
symmetric pointmd ¼ mu, in powers of the small parameters
αem andmd −mu, withαem ∼ ðmd −muÞ=ΛQCD ∼Oð10−2Þ.

This approach allows to express the expectation value of any
given observable in QCDþ QED as a power series in αem
and md −mu whose coefficients are related to correlation
functions evaluated in the isospin symmetric theory. This has
also the advantage that only standard lattice QCD simula-
tions needs to be performed.
In the last years, the RM123 method has been success-

fully applied to the computation of the leading electro-
magnetic and IB effects to the hadron spectrum, as in the
case of the charged/neutral mass splitting of light, strange
and charmed pseudoscalar mesons [7,14]. In the case of the
neutral pion mass Mπ0 , its diagrammatic expansion con-
tains a quark-line disconnected diagram connected by a
photon line [see Eq. (8)], in the following simply called
“disconnected diagram,” which contributes to the charged/
neutral pion mass difference Mπþ −Mπ0 . Computing such
diagram is a highly nontrivial numerical problem, and
moreover, it can be shown that, as a consequence of the
Dashen theorem [15], this disconnected diagram represents
a tiny contribution of orderOðαemm̂lÞ. For this reason it has
been neglected in our previous study [14]. The aim of this
paper is to evaluate both the connected and disconnected
contributions entering Mπþ −Mπ0 at order OðαemÞ.
For this calculation, we use the rotated twisted-mass

(RTM) scheme introduced in Ref. [16]. We have recently
shown that this method is particularly convenient for IB and
QED calculations based on the RM123 approach, since it
allows us to consider correlation functions which are
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affected by much smaller statistical fluctuations with
respect to the ones appearing in the RM123 expansion
with standard twisted mass (TM) fermions. Evaluating the
disconnected diagram appearing in the charged/neutral
pion mass difference using the RTM scheme provides in
turn an ideal benchmark test in view of its applications to
more complicated cases such as the evaluation of the
disconnected diagrams relevant for the semileptonic pion
and kaon decay (πl3 , Kl3).
For the numerical simulations, we use the pure QCD

isospin symmetric gauge ensembles generated by the
Extended Twisted Mass Collaboration (ETMC) with
Nf ¼ 2þ 1þ 1 dynamical quarks [17,18]. With respect
to our previous analysis [14], we perform simulations on
larger lattice volumes, using two additional ensembles with
linear lattice extent L ∼ 3.5 and 4.2 fm and lattice spacing
a ∼ 0.089 fm, and adopt an improved ansatz in the
extrapolation to the physical pion mass and to the con-
tinuum and infinite volume limit. Our final result is

Mπþ −Mπ0 ¼ 4.622 ð64Þstatð70Þsyst MeV; ð1Þ

in very good agreement with the experimental value [19]

½Mπþ −Mπ0 �exp ¼ 4.5936ð5Þ MeV: ð2Þ

The paper is organized as follows: in Sec. II we present our
lattice setup and a recap of the RM123 method, focusing on
the evaluation of the pion mass splitting in the standard
basis and in the RTM scheme. In Sec. III we present our
numerical results for Mπþ −Mπ0, computed in the RTM
scheme with the inclusion of the disconnected diagram.
Finally, in Sec. IV we draw our conclusions.

II. METHODOLOGY

A. Lattice discretization of isospin symmetric QCD

We use the QCD isospin symmetric gauge configura-
tions produced by the ETMC and generated with the
maximally twisted Wilson action for fermions, and the
Iwasaki action for gluons. All details concerning the lattice
discretization have been already presented elsewhere [18].
The fermionic action describes Nf ¼ 2þ 1þ 1 quark
flavors which include in the sea, besides two mass-
degenerate quarks, also the strange and charm quarks
with masses close to their physical values. The untwisted
bare quark mass is tuned to its critical value, which
guarantees the automatic OðaÞ improvement of parity-
even observables [20]. We consider three values of the
inverse bare lattice coupling β as well as different lattice
sizes. For each lattice spacing, several values of the light
sea quark mass are considered in order to perform a
reliable extrapolation to its physical value. The complete
list of lattice ensembles along with the values of the bare
quark masses we use and the number of gauge configu-
rations Ncfg accumulated for each ensemble is collected in
Table I.

B. QED and strong IB corrections: The standard
RM123 approach

The leading electromagnetic and strong IB correc-
tions are evaluated adopting the RM123 method [7,14].
The starting point is the compact formulation of QED
on the lattice in which the photon field AμðxÞ is intro-
duced in the pure QCD lattice action through the
replacement

TABLE I. Details of the lattice ensembles we use for the present study. They have been generated by the ETMC
employingNf ¼ 2þ 1þ 1 dynamical quark flavors, with degenerate u and d quark masses [17,18], and correspond
to lattice spacings in the range a ∈ ½0.062; 0.089� fm and pion massesMπ ∈ ½250; 500� MeV. For each ensemble we
also quote the total number Ncfg of accumulated independent gauge configurations.

Ensemble β a−1 (GeV) V=a4 Mπ (MeV) MπL aμsea ¼ aμval Ncfg

A30.32 1.90 2.227 (85) 323 × 64 275 (10) 3.95 0.0030 150
A40.32 316 (12) 4.54 0.0040 100
A50.32 350 (13) 5.03 0.0050 150
A40.24 243 × 48 322 (13) 3.40 0.0040 150
A60.24 386 (15) 4.18 0.0060 150
A80.24 442 (17) 4.77 0.0080 150
A100.24 495 (19) 5.34 0.0100 150
A40.40 403 × 80 317 (12) 5.69 0.0040 150
A40.48 483 × 96 316 (12) 6.80 0.0040 100

B35.32 1.95 2.418 (84) 323 × 64 302 (10) 3.98 0.0035 150
B55.32 375 (13) 4.96 0.0055 150
B75.32 436 (15) 5.76 0.0075 80
B85.24 243 × 48 468 (16) 4.64 0.0085 150

D20.48 2.10 3.187 (81) 483 × 96 255 (7) 3.84 0.0020 100
D30.48 318 (8) 4.69 0.0030 100
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∇μψfðxÞ ¼ UμðxÞψfðxþ aμ̂Þ − ψfðxÞ
→ eieqfAμðxÞUμðxÞψfðxþ aμ̂Þ − ψfðxÞ; ð3Þ

together with the inclusion of the pure gauge photon action
Sgauge½Aμ� in Feynman gauge

Sgauge½Aμ� ¼
1

2

X

x;μ;ν

AμðxÞ½−∇�
ν∇ν�AμðxÞ

¼ 1

2

X

k;μ;ν

A�
μðkÞ

�
2 sin

�
kν
2

��
2

AμðkÞ: ð4Þ

In Eq. (3), e2 ¼ 4παem, while qf is the electric charge of the
quark f in units of the electric charge of the positron. To
cope with the infrared divergence of the photon propagator,
we adopt the QEDL regularization and set Aμðk0; k⃗ ¼ 0Þ ¼
0 for all k0. The resulting path integral is then expanded
around the isospin symmetric point to the order
Oðαem; m̂d − m̂uÞ, where m̂u=d are the renormalized masses
of the up and down quark in QCDþ QED. It should be
noted, that the presence of QED interactions produce
additional ultraviolet divergences which are then absorbed
through a set of properly defined counterterms [7].
At leading order in the IB parameters ðmd −muÞ=

ΛQCD ∼ αem, the charged/neutral pion mass splitting is a

pure electromagnetic effect, since the leading IB correc-
tions proportional to md −mu cancel out in both the
charged and neutral pion correlators which are symmetric
with respect to the exchange u ↔ d. Away from the
isospin symmetric limit, the neutral pion mixes with the
η and η0 mesons [21]. However, such mixing, which is an
Oðmd −muÞ effect, enters the neutral pion correlator only
at the next-to-leading order, and for this reason, contam-
inations from the η and η0 mesons are absent in our leading
order calculation of the neutral pion correlator. According
to the analysis of Ref. [7], at order OðαemÞ the charged/
neutral pion mass difference Mπþ −Mπ0 is given by

Mπþ −Mπ0 ¼
e2

2
ðqu − qdÞ2∂t

δCexch
π ðtÞ − δCdisc

π ðtÞ
CππðtÞ

; ð5Þ

where CππðtÞ is the pion correlator of isospin symmetric
QCD,while the quantities δCexch

π ðtÞ and δCdisc
π ðtÞ are defined

in terms of the pion correlators of the isospin symmetric
theory with two integrated insertions of the electromagnetic
current JμðxÞ, for which we consider here its local version1

JμðxÞ ¼ e
X

f

qfψ̄fðxÞγμψfðxÞ: ð6Þ

Explicitly one has2

ð7Þ

ð8Þ

2The quark-line connected and disconnected Wick contractions have a relative minus sign stemming from the extra fermion loop
present in the disconnected contribution. For convenience, we decided to pull out this extra minus sign from the definition of the
disconnected diagram.

1The use of the (renormalized) local vector current in place of the exactly conserved point-split current adopted in our previous work
[14] gives identical results up to Oða2Þ lattice artifacts.
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where L is the spatial lattice extent, Δμν is the photon
propagator in Feynman gauge, h0j:j0i is the vacuum expect-
ationvalue (VEV) computed in the isospin symmetric theory,
and h:iU indicates the average over the SU(3) gauge field
after integrating over the fermionic fields.Slðx; yÞ is the light
quark propagator of isospin symmetricQCD, and the trace Tr
is intended over color and Dirac indices. ϕπþ and ϕπ0 are
interpolating operators having the same quantumnumbers of
the positively charged and neutral pion, for which we choose

ϕπþðxÞ ¼ iψ̄dðxÞγ5ψuðxÞ; ð9Þ

ϕπ0ðxÞ ¼ i
ψ̄uðxÞγ5ψuðxÞ − ψ̄dðxÞγ5ψdðxÞffiffiffi

2
p : ð10Þ

Following the definition given in Ref. [7], the operator
−∂t in Eq. (5) corresponds to the evaluation of the so-called
effective slope δmeffðtÞ from the ratio of correlators δC=C,
which is defined through

δmeffðtÞ≡ −∂t
δCðtÞ
CðtÞ

¼ 1

FðT=2 − t;MÞ
�
δCðtÞ
CðtÞ −

δCðt − aÞ
Cðt − aÞ

�
; ð11Þ

where in our case

δCðtÞ≡ δCexch
π ðtÞ − δCdisc

π ðtÞ; CðtÞ≡ CππðtÞ: ð12Þ

In Eq. (11), M is the ground state mass extracted from the
correlator CðtÞ, T is the temporal extent of the lattice and
the factor Fðx;MÞ is given by

Fðx;MÞ ¼ x tanh ðMxÞ − ðxþ aÞ tanh ðMðxþ aÞÞ: ð13Þ

In the large time limit t ≫ a, T − t ≫ a, where the ground
state is dominant, the effective slope δmeffðtÞ tends to
Mπþ −Mπ0 . Making use of the previous definitions, we
thus simply have

ð14Þ

where the diagram in the denominator of the right-hand
side (rhs) is the pion correlator in isospin symmetric QCD.
The result of Eq. (14) holds true also in the full unquenched
theory. As argued in Ref. [7], the disconnected diagram
δCdisc

π vanishes in the SU(2) chiral limit as a consequence of
the Dashen theorem: in the continuum limit, even in the
presence of e.m. interactions, the neutral pion is an exact

Goldstone boson for mu ¼ md ¼ 0 and arbitrary values of
qu and qd since the electromagnetic current is diagonal in
flavor space and it is invariant under a chiral transformation
with generator τ3. This in particular implies (see Ref. [7] for
details) that the disconnected contribution is of order
OðαemmlÞ, and represents therefore a tiny corrections
which has been neglected in the pioneering analysis of
Ref. [7] and in the updated study which made use of Nf ¼
2þ 1þ 1 ensembles of Ref. [14]. However, aiming to a
precise quantitative estimate of theMπþ −Mπ0 mass differ-
ence, it is important to evaluate also the disconnected
contribution, which is the main motivation for the present
work. In addition, the computation of the disconnected
diagram entering the pion mass splitting can be considered
as a benchmark test in view of the computation of the
disconnected diagrams appearing in, e.g., Kl3 decays.

C. The charged/neutral pion mass difference
in the RTM scheme

In the TM regularization of the lattice fermionic action,
isospin is broken at finite lattice spacing already at the level
of pure QCD. In particular, the neutral pion correlator
involves disconnected diagrams, which cancel in the
continuum due to isospin symmetry. Moreover, the related
mass suffers from Oða2ΛQCDÞ cutoff effects. On the
contrary, the charged pion correlator involves only con-
nected diagram, and its mass is affected only by Oða2mlÞ
cut-off effects, behaving as a true Goldstone boson as
shown in Refs. [20,22]. In addition, correlation functions
involving the propagation of the TM neutral pion, are
typically noisier than the corresponding charged ones.
Therefore, the disconnected contribution to Mπþ −Mπ0

is very difficult to determine in the standard TM approach,
due to the presence of large statistical fluctuations in the
neutral sector.
In our previous analysis of the pion mass splitting [7,14],

we evaluated Eq. (7) in a mixed action setup. In the valence
sector, for each light quark flavor f, a pair of Osterwalder-
Seiler fermions ψþ

f , ψ−
f , having the same mass of the

corresponding sea quark, but regularized with opposite
values of the Wilson parameter, r ¼ �1, has been intro-
duced. This allowed to compute the correlation functions in
Eq. (7) using as interpolating field of the neutral and
charged pion:

ϕπþðxÞ ¼ iψ̄−
d ðxÞγ5ψþ

u ðxÞ; ð15Þ

ϕπ0ðxÞ ¼ i
ψ̄þ
u ðxÞγ5ψ−

u ðxÞ − ψ̄þ
d ðxÞγ5ψ−

d ðxÞffiffiffi
2

p : ð16Þ

In this way both charged and neutral pions contain valence
quarks carrying different signs of the twisted Wilson
term. This choice gives rise to correlators having
reduced statistical errors compared to other choices of
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the interpolator fields like ψ̄þ
f ψ

þ
f . However, within this

mixed action setup, only the connected fermionic Wick
contraction in Eq. (7) is non-zero, and in the continuum
limit the corresponding correlation function only reprodu-
ces the correct contribution of δCexch

π to the pion mass
splitting. In Refs. [7,14], the more noisy contribution
δCdisc

π ðtÞ has been neglected.
In a recent paper [16], we showed that it is possible to

evaluate both the exchange and disconnected diagrams by
considering only correlation functions involving quark
lines with opposite values of the Wilson parameter by
working in the so-called RTM scheme. In this scheme,
the pure isoQCD action of the light-quark sector is given
by [16]

LRTMðψ 0
lÞ¼ ψ̄ 0

lðxÞ½γμ∇̃μ− iγ5τ3WðmcrÞþm̂l�ψ 0
lðxÞ; ð17Þ

where ψ 0
l ¼ ðu0; d0Þ, while ∇̃μ is the lattice symmetric

covariant derivative, written in terms of the forward ð∇μÞ
and backward (∇�

μ) covariant derivatives,

∇̃μ ¼
1

2
ð∇�

μ þ∇μÞ: ð18Þ

In Eq. (17), WðmcrÞ is the critical Wilson term, which
includes the critical mass mcr, and it is given by

WðmcrÞ ¼ −a
r
2
∇μ∇�

μ þmcrðrÞ: ð19Þ

In the RTM scheme, the primed quark fields u0, d0 are
regularized with opposite values of the Wilson parameter
r ¼ �1, and are related to the “physical” basis up and down
quark fields, u, d, through the rotation

�
u0

d0

�
¼ 1ffiffiffi

2
p

�
1 1

−1 1

��
u

d

�
: ð20Þ

Notice that the RTM action is not equivalent to the standard
TM action, because the transformation in Eq. (20) does not
correspond to a symmetry of the discretized theory due to
the presence of the twisted Wilson term proportional to τ3.
We call here “physical” quark basis the one where the
isospin breaking terms proportional to ðmu −mdÞ=2 and
ðqu − qdÞ=2 ¼ Δq, once written in terms of ψl ¼ ðu; dÞT ,
involve a τ3 matrix. In the primed basis of Eq. (17) these
isospin violating terms, expressed via the fields ψ 0

l ¼
ðu0; d0ÞT , involve instead a τ1 matrix. The peculiarity of
the RTM valence fermion action is that different Pauli
matrices (e.g., τ3 and τ1) appear in the chirally twisted
Wilson term and in the isospin breaking terms, whatever
basis is taken.
In the basis of Eq. (17), the “rotated charged” pion fields

ϕπ0− ¼ ū0γ5d0 and ϕπ0þ ¼ d̄0γ5u0 are related to the physical
pion fields through

ϕπ0− ¼ −
1

2
ðϕπþ − ϕπ−Þ −

1ffiffiffi
2

p ϕπ0 ;

ϕπ0þ ¼ 1

2
ðϕπþ − ϕπ−Þ −

1ffiffiffi
2

p ϕπ0 ; ð21Þ

while the light quark contribution to the electromagnetic
current in Eq. (6), written in the rotated basis, takes the
form

JμðxÞ → J0μðxÞ≡ J̄μðxÞ þ Jibμ ðxÞ; ð22Þ

where

J̄μðxÞ≡ eq̄ψ̄ 0
lðxÞγμψ 0

lðxÞ ð23Þ

Jibμ ðxÞ≡ −eΔqψ̄ 0
lðxÞτ1γμψ 0

lðxÞ ð24Þ

with q̄ ¼ ðqu þ qdÞ=2 and Δq ¼ ðqu − qdÞ=2. The IB
component of the electromagnetic current Jibμ in Eq. (23)
has an unconventional direction in flavor space, and
induces a mixing between the u0 and d0 quarks.
Using Eq. (21) it is easily realized that the correlator

Cπ0þπ0−ðtÞ ¼ h0jϕπ0þðtÞϕ†
π0−ð0Þj0i which describes, in the

rotated basis, the mixing between the positive and negative
rotated pion fields, is related to the difference between the
charged and neutral physical pion correlator via

Cπ0þπ0−ðtÞ ¼
1

2
ðCπ0π0ðtÞ − CπþπþðtÞÞ: ð25Þ

The mixing is absent in the QCD isospin symmetric theory,
and it is generated, in the RTM scheme, by a double
insertion of the “flavor off-diagonal” component Jibμ of the
rotated electromagnetic current, which is an OðαemÞ effect.
From this result it follows (see Ref. [16] for a detailed
derivation), that the pion mass difference at OðαemÞ can be
expressed in this scheme as

ð26Þ

where we now also include explicitly the RC ZA of the local
current Jibμ , which in our TM setup renormalizes as the axial
current for untwisted Wilson quarks. In the diagrams of
Eq. (26), we show explicitly the sign of the Wilson
parameter on each quark line, which gets always flipped
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at the e.m. vertex where the u0 quark turns into a d0 quark
and viceversa. Manifestly, in both exchange and discon-
nected diagrams, only the “rotated charged” isospin sym-
metric pion propagates, and the resulting correlation
functions are affected by strongly reduced statistical errors.
We refer to Ref. [16] for a statistical comparison between
rotated and unrotated disconnected correlators as well as
for a more detailed discussion about the renormalization
properties and continuum limit of the correlation functions
in Eq. (26). In the next section, we evaluate the charged/
neutral pion mass splitting from the diagrams displayed
in Eq. (26).

III. NUMERICAL RESULTS

As already mentioned, for this study we use the Nf ¼
2þ 1þ 1 ensembles of Wilson TM fermions generated by
the ETMC by only considering the ensembles with
MπL > 3.8. With respect to Table I, we thus exclude from
the final analysis the ensemble A40.24. This subset of
ensembles correspond to pion masses in the range Mπ ∈
½250; 500� MeV and lattice spacings from a ∼ 0.089 fm
down to a ∼ 0.062 fm. For the RC ZA appearing in
Eq. (26), we use the precise determination obtained
from the method M2 of Ref. [18], namely ZA ¼
f0.703ð2Þ; 0.714ð2Þ; 0.752ð2Þg at β ¼ f1.90; 1.95; 2.10g.
To improve the precision on the disconnected diagram of
Eq. (26), we devised a new numerical technique, tailored
for quark disconnected diagrams, in which the photon
propagator is evaluated exactly by working in momentum
space, and therefore the statistical noise generated by its

stochastic representation is absent. The method, which is
discussed in details in Appendix, combined with the benefit
of the RTM scheme, allows us to obtain an Oð1%Þ
statistical accuracy on the value of the disconnected
diagram. As an example, we show in Fig. 1, for the
ensemble D30.48 (see Table I), our determination of the
effective slope δmeffðtÞ extracted from both the exchange
and the disconnected diagram.
To reduce the sensitivity of the result to the uncertainties

of the scale setting, we find it useful to consider the
dimensionless ratio

Rπ ≡M2
πþ −M2

π0

f2π
≈
2Mπ

f2π
ðMπþ −Mπ0Þ; ð27Þ

where fπ is the pion decay constant, and Mπ is the mass of
the TM charged pion in isospin symmetric QCD. Aiming at
a determination of the pion mass splitting with Oð1%Þ
accuracy, it is however important to have control over the
QCD exponentially suppressed finite size effects (FSEs)
affecting both fπ and Mπ , to which we apply the SU(2)
ChPT (chiral perturbation theory) finite volume corrections
at NNLOþ resummation, i.e., the Colangelo-Dürr-Haefeli
(CDH) formulas [23]. The latter depend on the knowledge
of the four, scale dependent, SU(2) low-energy constants
(LECs) l̄1, l̄2, l̄3, l̄4, for which in this work we adopt the
values l̄1ðMphys

π Þ ¼ −0.4, l̄2ðMphys
π Þ ¼ 4.3, l̄3ðMphys

π Þ ¼
3.2, l̄4ðMphys

π Þ ¼ 4.4. The size of such corrections is in all
cases smaller than one percent.

310MeV

FIG. 1. Time dependence of the effective slope δmeffðtÞ, in the case of the exchange (top) and of the disconnected (bottom) diagram,
for the gauge ensemble D30.48. The horizontal bands indicate the result of a constant fit in the plateaux region where the ground state
dominates.
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When a massless photon is put on a box, FSEs show up
in QED observables as inverse powers of the spatial extent.
The analysis of such finite volume corrections has been the
subject of several studies (see Refs. [2,24]), where different
infrared regularizations of QED have been considered.
FSEs on hadron masses start at order OðL−1Þ and they are
universal up to order OðL−2Þ included, i.e., their size
depends solely on the charge, mass and spin of the hadron,
but not on its internal structure. In the case of the QEDL
which we use in this work, and for a pseudoscalar meson of
electric charge Q and mass MPS, the universal FSEs are
given by

M2
PSðLÞ −M2

PSð∞Þ ¼ −Q2αem
2κ

L2

�
1þ 1

2
MPSL

�
; ð28Þ

where κ ¼ 2.837297. Such corrections have been applied
to our lattice data leaving residual structure-dependent (SD)
OðL−3Þ FSEs. This is shown in Fig. 2 for the four
ensembles of type A40:XX, which only differ in the spatial
extent. For these ensembles, the residual FSEs are very well
described by a 1=L3 term, and we do not see evidence of
higher order OðL−4Þ FSEs within errors.
The SD FSEs arising in the QEDL regularization have

been analyzed in Refs. [2,24–26]. In the nonrelativistic
effective field theory approach developed in Ref. [24], the
leading OðL−3Þ term is found to be proportional to the
squared pion charge radius hr2iπþ via

½M2
πþðLÞ −M2

πþð∞Þ�ðSDÞ ¼ e2

3

Mπ

L3
hr2iπþ þO

�
1

L4

�
; ð29Þ

where hr2iπþ ¼ ð0.672� 0.008 fmÞ2. However, as dis-
cussed in Refs. [2,25,26], additional OðL−3Þ contributions,
whose exact structure turns out to be difficult to determine
theoretically, can be present in the full theory. At order
OðL−4Þ QED-related FSEs starts to be present also for
neutral pseudoscalar particles.
In Fig. 3 we show our determination of the Rπ ratio,

before and after removal of the universal FSEs of Eq. (28),
as a function of the dimensionless ratio M2

π=ð4πfπÞ2. As
the figure shows, the statistical accuracy is very good and
in all cases of order of percent or smaller. The universal
FSEs corrections are always sizable on our lattice vol-
umes, approaching 45% at the largest simulated value
of M2

π=ð4πfπÞ2.
According to the analysis of Refs. [27,28], the SU(3)

ChPT prediction for the squared pion mass difference at
NLO is given by

M2
πþ −M2

π0
¼ e2f20C

�
1 − 4

�
Mπ

4πf0

�
2

log

�
Mπ

4πf0

�
2

− 2

�
MK

4πf0

�
2

log

�
MK

4πf0

�
2
�

− 3e2f20

�
Mπ

4πf0

�
2

log

�
Mπ

4πf0

�
2

þOðM2
π;M2

KÞ; ð30Þ

FIG. 2. The squared pion mass difference in the RTM scheme, for the ensembles of type A40:XX, which share a common value of the
pion mass (Mπ ≃ 320 MeV) and of the lattice spacing, but differ in the lattice size L. The black points represent the data in lattice units
without any FSE correction, while the red ones are corrected subtracting the universal FSEs of Eq. (28). The dashed line is the result of a
linear fit.
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where f0 is the pion decay constant in the chiral limit, and
C is a LEC. Here and in the following two equations, we
focus on the terms with the leading logarithmic dependence
on the pseudoscalar light meson masses and denote by
OðM2

π;M2
KÞ terms of first and higher order in the squared

pion and kaon masses (involving further LECs), the
presence of which will effectively be taken into account
in the fit ansatz of Eq. (33). After inserting the SU(3) ChPT
prediction for the pion decay constant at NLO [29]

fπ ¼ f0

�
1 − 2

�
Mπ

4πf0

�
2

log

�
Mπ

4πf0

�
2

−
�
MK

4πf0

�
2

log

�
MK

4πf0

�
2
�
þOðM2

π;M2
KÞ; ð31Þ

we obtain for the ratio Rπ the expression

Rπ ¼ 4e2C − 3e2
�

Mπ

4πf0

�
2

log

�
Mπ

4πf0

�
2

þOðM2
π;M2

KÞ: ð32Þ

Notice that the chiral prediction for the ratio Rπ is not
affected, even in the SU(3) effective theory, by logarithmic
corrections in the kaon mass, at NLO.
Inspired by the ChPT prediction of Eq. (32), and by the

analysis of the SD FSEs of Refs. [24–26], we extrapolate
the lattice data toward the physical pion mass and toward
the continuum and infinite volume limit, employing the
following ansatz for the ratio Rπ

Rsub
π ðξπ; a; LÞ ¼ 4e2C − 3e2ξπ log ξπ þ e2A1ξπ

þ e2A2ξ
2
π þ e2Da2 þ e2Dmξπa2

þ e2K
ð4πÞ2ξπ
3MπL3

hr2iπþ
�
1þ F4

MπL

�

þ e2Fa
ξπ
Mπ

a2

L3
; ð33Þ

where Rsub
π is the Rπ ratio after the subtraction of the

universal FSEs using Eq. (28), and ξπ ≡M2
π=ð4πfπÞ2 after

applying the CDH corrections toMπ and fπ . In the previous
expression C, A1, A2, D, Dm, K, Fa and F4 are treated as
free fitting parameters. In particular C and A1 parameterize
the ChPT expansion for Rπ up to NLO, A2 is an effective
LEC at NNLO, while D and Dm take into account
discretization effects. The constant K parametrizes devia-
tions from the nonrelativistic prediction (K ¼ 1) of Eq. (29)
for the SD FSEs, the term proportional to a2=L3 corre-
sponds to a FSE due to an heavy intermediate state of mass
∝ 1=a [25], and finally F4 parametrizes higher order
OðL−4Þ FSEs.
In Fig. 4, we show the result of the extrapolation

obtained using the ansatz of Eq. (33), setting A2 ¼ D ¼
Dm ¼ Fa ¼ F4 ¼ 0, which corresponds to our preferred
fit. The quantity ΔMπ, which at the physical point gives the
pion mass splitting, is defined as

ΔMπ ≡ Rπ
ðfphysπ Þ2
2Mphys

π

; ð34Þ

FIG. 3. Our results for the ratio Rπ as a function of the dimensionless ratioM2
π=ð4πfπÞ2, determined in the RTM scheme and including

the contribution of the disconnected diagram. The filled markers represent the data without any FSE correction, while the empty ones
represent the result of the subtraction of the universal FSE using Eq. (28).
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with Mphys
π ¼ 134.977 MeV and fphysπ ¼ 130.4 MeV. The

reduced χ2 of the fit is χ2=d:o:f: ∼ 1.8 with 14 measures
and 4 parameters. Notice the remarkable smallness of
Oða2Þ effects in our data. The inclusion of the fit parameter
D to describe Oða2Þ lattice artifacts does not improve the
description of the data: the resulting χ2=d:o:f: is 1.9 and the
parameter D turns out to be consistent with zero within
errors [D ¼ 0.04ð10Þ]. To estimate systematic errors, we
perform a total of 24 fits, differing on whether the A2, the
D, and theDm fit parameters are included or not, and on the
form of the SD FSEs for which we either includeK or Fa as
a free fit parameter (in this last case setting K ¼ 1), or
include the additional term ∝ F4=L4 on top of the non-
relativistic prediction K ¼ 1, Fa ¼ 0. The fit results are
combined using the Akaike information criterion (AIC)
[30], in which, to each fit, it is assigned a weight
wi ∝ exp−ðχ2 þ 2nparsÞ=2. Mean values and standard
errors are then computed using [18,31,32]

x̄ ¼
X

i

wix̄i; σ2 ¼
X

i

wiðσ2i þ ðx̄i − x̄Þ2Þ; ð35Þ

where ðx̄i; σiÞ is the mean value and the standard error
obtained in the ith fit. Our final result for the pion mass
splitting is

Mπþ −Mπ0 ¼ 4.622ð64Þstatð70Þsyst1 MeV

¼ 4.622ð95Þ MeV; ð36Þ

which agrees very well with the experimental determina-
tion ½Mπþ −Mπ0 �exp ¼ 4.5936ð5Þ MeV, and with the result
of a recent lattice determination [33] Mπþ −Mπ0 ¼
4.534ð42Þð43Þ MeV, in which the disconnected contribu-
tion has been computed as well.

IV. CONCLUSIONS

We have presented an analysis of the OðαemÞ mass
splitting Mπþ −Mπ0 between the charged and neutral pion,
including the calculation of the disconnected diagram. We
made use of the gauge configurations generated by the
Extended Twisted Mass Collaboration with Nf¼2þ1þ1

dynamical quark flavors. The gauge ensembles considered
corresponds to three different values of the lattice spacing
a ≃ 0.062, 0.082 and 0.089 fm, pion masses in the range
Mπ ≃ 250–450 MeV, while the strange and charm quark
masses are set in all ensembles to their physical value. We
showed that a good accuracy in the determination of the
disconnected diagram can be achieved by working in the
rotated twisted mass (RTM) scheme, which have been
shown to be particularly convenient for the evaluation of
some QCDþ QED mesonic observables based on the
RM123 approach. We also developed a new numerical
technique, tailored to quark-line disconnected diagrams,
which does not rely on a stochastic representation of the
photon propagator and that produced a further reduction of
the statistical noise by more than one order of magnitude.
After extrapolating to the continuum and infinite volume

FIG. 4. Our results for ΔMπ as a function of the parameter ξπ. The data points refer to our lattice estimate after the subtraction of both
universal and SD FSEs. The solid lines represents, for each lattice spacing, the central value of the fitted curve in Eq. (33) obtained
setting A2 ¼ D ¼ Dm ¼ Fa ¼ F4 ¼ 0, and in the thermodynamic limit L → ∞. The orange band shows the statistical uncertainty on
ΔMπ after the continuum and infinite volume extrapolation. Finally, the black point corresponds to our determination at the physical
point ξphysπ ≃ 0.00678 MeV.
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limit, and at the physical point, we obtain a value for
Mπþ −Mπ0 which perfectly agrees with the experimental
result. With respect to our previous determination [14], we
were able to reduce the uncertainty on the pion mass
splitting by a factor ∼3, thanks to the use of the dimension-
less ratio Rπ, and its ChPT-based extrapolation analysis,
and of larger lattice volumes.
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APPENDIX: NUMERICAL METHODS FOR THE
DISCONNECTED DIAGRAM

The disconnected contribution to the pion mass differ-
ence Mπþ −Mπ0 , in the RTM basis, is encoded in the
following Wick-contracted Green function of the isospin
symmetric theory

ðA1Þ

Equation (A1) can be in turn written as

Gð4Þ
μν ðt − t0; y; y0Þ ¼ 2e2ðΔqÞ2 · hGð2Þ

μ ðt; yÞGð2Þ
ν ðt0; y0ÞiU;

ðA2Þ

where h:iU denotes the average over the SU(3) QCD gauge
field, while

Gð2Þ
μ ðt; yÞ ¼ 1ffiffiffiffiffiffi

L3
p

X

x⃗

TrfSþl ððx⃗; tÞ; yÞγμS−l ðy; ðx⃗; tÞÞγ5g;

ðA3Þ

and Tr is meant over color and spin indices. In the previous
equation, S�l is the propagator of the two “flavor” compo-
nents corresponding to Wilson parameters r ¼ �1 of the
light quark isodoublet field ψ 0

l entering the RTM action
in Eq. (17).
As illustrated in Sec. II B, the disconnected contribution

to Mπþ −Mπ0 , can be extracted from the large time

behavior of δC0disc
π ðtÞ=CisoQCD

ππ ðtÞ, where CisoQCD
ππ ðtÞ is the

TM charged pion correlator

CisoQCD
ππ ðtÞ ¼ 1ffiffiffiffiffiffi

L3
p

X

x⃗

h0jTfϕπþðx⃗; tÞϕ†
πþð0Þgj0i; ðA4Þ

and

δC0disc
π ðt0−tÞ¼ 1

2e2ðΔqÞ
X

y;y0
Gð4Þ

μν ðt;t0;y;y0ÞΔμνðy;y0Þ; ðA5Þ

As usual, the QED corrections at order OðαemÞ require
the computation of the integrals over the two ends of the
photon propagator [sum over y and y0 in Eq. (A5)]. The
explicit summation is, however, prohibitively costly on a
large four dimensional lattice, as it scales like the square of
the lattice volume V ¼ L3 · T. To cope with this issue, in
Ref. [14] a stochastic technique has been adopted to
evaluate all connected diagrams arising at order OðαemÞ,
and in this work we adopt the same strategy to compute the
exchange diagram. The idea of the stochastic approach is to
exploit the definition of the photon propagator in terms of
the expectation value of the time ordered product of photon
fields, i.e.,

Δμνðy − y0Þ ¼ hAμðyÞAνðy0ÞiA: ðA6Þ

One can then sample each mode of the photon field AμðyÞ
from the local probability distribution in momentum space

P½A⃗ðkÞ�dA⃗ðkÞ ∝ exp ð−AμðkÞΔ−1
μν ðkÞAνðkÞÞ; ðA7Þ

where in Feynman gauge Δ−1
μν ðkÞ ¼ δμν=k̃

2, with

k̃ν ¼ 2 sin

�
kν

2

�
: ðA8Þ

In ourQEDL setup all the “spatial zeromodes”Aμðk0; k⃗ ¼ 0Þ
are removed. By drawing a sample fAi

μgi¼1;…;n, the photon
propagator can be estimated as

Δμνðy − y0Þ ≃ 1

n

Xn

i¼1

Ai
μðyÞAi

νðy0Þ; ðA9Þ

and the estimate becomes an exact equality in the infinite n
limit. In this way, any observable of the form

O ¼
X

y;y0
hOμ

1ðyÞ ·Oν
2ðy0ÞiUΔμνðy; y0Þ; ðA10Þ

can be split into two summations, each scaling as the lattice
volume V, using
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O ¼ lim
n→∞

1

n

X

i

hOAi

1 ·OAi

2 iU;

OAi

j ¼
X

y

Oμ
j ðyÞAi

μðyÞ; j ¼ 1; 2: ðA11Þ

We refer to the Appendix A of Ref. [14] for a detailed
explanation on how this strategy can be implemented to
efficiently evaluate the exchange diagram.
However, despite the stochastic technique proves itself

useful in many occasions, the evaluation of the discon-
nected diagram turns out to be very noisy, requiring a too
large value of n to get a clear signal. In this work we thus
adopt a different strategy, specific to quark-line discon-
nected diagrams, that does not rely on a stochastic
representation of the photon propagator, and allows to
compute δC0disc

π in OðV logVÞ time.
Starting from Eq. (A3), we define

B̃νðt; y0Þ¼def
X

y

Gð2Þ
μ ðt; yÞΔμνðy − y0Þ; ðA12Þ

which is nothing but the convolution Gð2Þ
μ ðtÞ � Δμν. In

Fourier space we thus have

B̃νðt; kÞ ¼ Gð2Þ
μ ðt; kÞΔμνðkÞ ¼ Gð2Þ

ν ðt; kÞ=k̃2; ðA13Þ
where on a L3 × T torus and within the QEDL theory we
considered, the set of allowed momenta k is given by

k ¼ 2π

�
n0
T
;
n1
L
;
n2
L
;
n3
L

�
; ðA14Þ

n0 ∈ f0;…; T − 1g; ðA15Þ
ni¼1;2;3 ∈ f1;…; L − 1g: ðA16Þ

The quantity Gð2Þ
μ ðt; kÞ can be computed from Gð2Þ

μ ðt; xÞ
using fast Fourier transform (FFT) methods in OðV logVÞ
time. Moreover, transforming back from B̃ðt; kÞ to
B̃ðt; y0Þ via

B̃νðt; y0Þ ¼
X

k

e−iky
0
B̃νðt; kÞ; ðA17Þ

can be done within a similar machine time. The discon-
nected diagram δC0disc

π ðt0 − tÞ is then obtained from the

product between the “bubble diagram” Gð2Þ
μ ðt0; y0Þ and

B̃μðt; y0Þ via

δC0disc
π ðt0 − tÞ ¼

X

y0
B̃νðt; y0ÞGð2Þ

ν ðt0; y0Þ; ðA18Þ

which requires OðVÞ operations, and the overall complex-
ity of the computation is thus of order OðV logVÞ.
Concerning the bubble diagram Gð2Þ

μ ðt; yÞ, for each
gauge configuration its value can be estimated through a

single inversion of the lattice Dirac operator as in the case
of the pion correlator of the isospin symmetric theory. As is
standard practice, the inversion is performed stochastically
using a certain number NsðtÞ of random sources. This

induces, as usual, an uncertainty on Gð2Þ
μ ðt; yÞ that scales as

ðNsðtÞÞ−1=2. The noise induced by the use of the stochastic
method on δC0disc

π ðΔt ¼ t0 − tÞ at a given Δt, depends
instead on two factors. The first one is clearly the total
number NðΔtÞ of stochastic sources separated by a time
distance Δt, i.e.,

NðΔtÞ ¼
XT−1

t¼0

NsðtÞ · Nsððtþ ΔtÞ mod TÞ: ðA19Þ

Indeed, defining δC0disc
π ðΔt; ti; t0jÞ to be the estimate of

δC0disc
π ðΔtÞ obtained considering only the ith random

source at time t and the jth random source at time
t0 ¼ ðtþ ΔtÞ mod T, the value of δC0disc

π ðΔtÞ is estimated
through

δC0disc
π ðΔtÞ∼ 1

NðΔtÞ
XT−1

t¼0

XNsðtÞ

i¼1

XNsðt0Þ

j¼1

δC0disc
π ðΔt; ti; t0jÞ: ðA20Þ

However, the statistical uncertainty on δC0disc
π ðΔtÞ does not

scale exactly as ðNðΔtÞÞ−1=2 since a given random source
appears in general many times in the sum of Eq. (A20),
inducing a correlation between the various terms. Thus,
understanding how the uncertainty on δC0disc

π ðΔtÞ behaves
depending on the choice of the NsðtÞ is a nontrivial
problem. Given a fixed number of sources Ntot

s ¼P
T−1
t¼0 NsðtÞ, one would like to find the optimal way of

FIG. 5. Ratio of correlators δC0disc
π ðtÞ=CisoQCD

ππ ðtÞ computed
using the FFT-based method (solid points), and the stochastic
one in which the photon field Aμ is sampled (empty points). The
two datasets correspond to simulations on a 243 × 48 lattice at
β ¼ 1.90 having a similar numerical cost.
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distributing the Ntot
s sources along the time direction, in

such a way that the signal of δC0disc
π ðΔtÞ is optimized in a

given interval Δt ∈ ½tmin; tmax� where one expects the
ground-state to be dominant. However, after performing
preliminary tests using Ntot

s ¼ T, we found that the uniform
distribution NsðtÞ ¼ 1, produces the smallest errors among
various choices of the distribution of the random sources.
The results presented in Sec. III have been obtained
employing NsðtÞ ¼ 1 for all simulation points.

Finally, we show in Fig. 5 a comparison between the
ratio of correlators δC0disc

π ðtÞ=CisoQCD
ππ ðtÞ computed using

both the FFT-based and the stochastic method. The
comparison is performed at approximately equal total
machine time, on a 243 × 48 lattice at β ¼ 1.90 and with
a pion mass Mπ ∼ 320 MeV. As it can be seen from the
figure the improvement is dramatic, with the precision on
δC0disc

π ðtÞ=CisoQCD
ππ ðtÞ improving by a factor 10–20.
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