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Abstract: Heart failure with preserved ejection fraction (HFpEF) is a common clinical syndrome
frequently seen in elderly patients, the incidence of which is steadily increasing due to an ageing
population and the increasing incidence of diseases, such as diabetes, hypertension, obesity, chronic
renal failure, and so on. It is a multifactorial disease with different phenotypic aspects that share left
ventricular diastolic dysfunction, and is the cause of about 50% of hospitalizations for heart failure in
the Western world. Due to the complexity of the disease, no specific therapies have been identified
for a long time. Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2-Is) and Glucagon-Like Peptide
Receptor Agonists (GLP-1 RAs) are antidiabetic drugs that have been shown to positively affect
heart and kidney diseases. For SGLT2-Is, there are precise data on their potential benefits in heart
failure with reduced ejection fraction (HFrEF) as well as in HFpEF; however, insufficient evidence is
available for GLP-1 RAs. This review addresses the current knowledge on the cardiac effects and
potential benefits of combined therapy with SGLT2-Is and GLP-1RAs in patients with HFpEF.

Keywords: heart failure with preserved ejection fraction; phenotypes; SGLT2 inhibitors; GLP1
receptor agonists

1. Introduction

HFpEF is not a well-defined clinical entity, but a multifactorial disease. It is an
amalgam of cardiovascular (CV), metabolic, renal, and geriatric conditions [1,2], with
different phenotypic aspects that have joint left ventricular diastolic dysfunction (LVDD).
The impairment of left ventricular (LV) compliance leads to an increase in cardiac chamber
stiffness and elevated filling pressures, which are responsible for the onset and worsening
of subjective and objective clinical signs of HF. HFpEF is the cause of about 50% of hospital
admissions for heart failure in the Western world [3]. The diagnosis of HFpEF is based on
the presence of signs and symptoms of HF with normal LV ejection fraction (EF).

Type 2 diabetes mellitus (T2DM) and heart failure (HF) frequently occur together [4,5].
The prevalence of T2DM in patients with HF ranges from 40% to 50%. The prevalence of
HF in patients with T2DM is estimated to be ≈20% [6–9]. In patients with HF, mortality is
higher in patients with T2DM than in patients without concomitant T2DM [10–12].

The pathophysiology of HF in diabetic patients is complex. “Diabetic cardiomyopa-
thy”, defined as ventricular systolic or diastolic dysfunction in the absence of other causes
(for example, coronary artery disease), is an increasingly recognized entity [13]. Several
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potential mechanisms contributing to the development of HF in diabetes include activation
of the renin-angiotensin-aldosterone system (RAAS); oxidative stress; inflammation; intra-
cellular calcium homeostasis alterations; increased formation of advanced glycation end
products; and myocardial energy substrate mismatch, including increased utilization of
free fatty acids, decreased glucose utilization, and increased oxygen consumption, leading
to energy deficiency [14–18].

Especially in view of the emerging cardiometabolic phenotypes (obesity, type 2 di-
abetes mellitus, and hypertension), GLP-1RA and SGLT2-Is are receiving increasing at-
tention as potential therapeutic strategies in HFpEF because of their glucose-lowering,
anti-inflammatory, and anti-remodeling effects. Indeed, GLP-1RAs and SGLT2-Is have
been shown to reduce the risk of CV events in T2DM patients because of several pro-
posed protective mechanisms [19]. Therefore, the combination of these drugs may further
improve CV and renal outcomes, especially in HFpEF patients with high or very high
cardio-metabolic risk.

In this review, we summarise the current evidence on the potential benefit of GLP-1
RAs and SGLT2-Is in patients with HFpEF, especially in those with high cardio-nephro-
metabolic risk.

2. Phenotyping Aspects and the Burden of Cardio-Nephro-Metabolic Risk in HFpEF

Multiple mechanisms lead to HFpEF, including dysfunction in atrial and ventricular
active relaxation, increased passive stiffness, and reduction in arterial compliance. More-
over, the presence of endothelial oxidative stress is associated with a decreased nitric oxide
(NO) bioavailability, which causes vasoconstriction and enhances a pro-inflammatory and
pro-thrombotic state. The cardiac remodeling is affected by changes in the composition and
structure of the extracellular matrix with fibrillar collagen deposition. In such a scenario,
the LV diastolic dysfunction is the final disease expression of heterogeneous phenotypes
and clinical presentations [20].

Hypertension is the steadfast underpinning of HFpEF. Ageing, obesity, pulmonary
hypertension (PH), and coronary artery disease affect HFpEF presentation and progres-
sion [21,22]. Their presence defines the different phenotypes seen in patients with HFpEF.
These phenotypes share some comorbid conditions, such as iron deficiency, chronic ob-
structive pulmonary disease (COPD), diabetes, and chronic kidney disease (CKD) [23]
(Figure 1).

Ageing Phenotype: Age is a major risk factor for HFpEF [24,25]. Many studies have
shown that the incidence of HFpEF is very high in elderly and very elderly subjects
(>80 years of age) [26,27]. Ageing is associated with many changes, most importantly
neurohormonal dysregulation and proinflammatory state, which promote increased arterial
stiffness and hypertension. By increasing systolic arterial pressure, arterial stiffening
imposes an excessive load on the heart, leading to LVDD [28,29]. Clinical events are more
frequent when HFpEF is associated with severely reduced LV compliance, but, in this stage,
it may longer be susceptible to therapy. The lack of therapeutic success of a lot of drugs
in patients with HFpEF is because the time of treatment may be earlier at the stage of
preclinical diastolic dysfunction and because of the different phenotypes of the illness [30].

Obesity Phenotype: Obesity, defined as an elevated body mass index (BMI; kg/m2)
>30, is a recognized risk factor for new onset of HFpEF [31,32] since it is a major determinant
of arterial stiffness, hypertension [33], and LV hypertrophy with increased risk of diastolic
LV dysfunction [34]. In addition, this condition is associated with a 4-fold greater prevalence
of OSAS, which contributes to the pathogenesis of HFpEF [35]. About 60–75% of patients
with HFpEF have a high BMI (>30 Kg/m2) [36]. It has been shown that, in such patients, the
activation of the renin-angiotensin-aldosterone axis and the sympathetic nervous system,
the inflammatory adipocytokines, and the induction of oxidative stress lead to cardiac
interstitial fibrosis with an increase in cardiac rigidity and, consequently, an augmentation
of the necessary energy required for LV diastolic relaxation [37,38].
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Figure 1. The influence of comorbidities on the development of HFpEF. Iron deficiency, diabetes 
mellitus, obesity, renal failure, hypertension, and pulmonary hypertension increase the risk of 
HFpEF through structural and functional cardiac change, and systemic inflammation. 
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The identification of glucagon-like peptide-1 (GLP-1), belonging to the family of gut-

derived incretin hormones, paved the way years ago to the development of GLP-1 RAs, 
with the intention of enlarging the armamentarium of therapeutic options for T2DM. This 
new class of drugs, which is initially made up of short-acting compounds (exenatide, 
liraglutide, and lixisenatide) and subsequently includes new second-generation molecules 
that are administered once weekly (semaglutide, exenatide LAR, albiglutide, and 
dulaglutide), has shortly been demonstrated to have several vascular actions going 
beyond the mere anti-hyperglycemic effects. Consequently, a number of experimental and 
clinical studies have been conducted over time, aiming at better understanding the 
pathophysiological mechanisms underlying the beneficial CV effects (mainly on 
atherosclerotic CV disease) observed in some dedicated CV outcomes trials with GLP-1 
RAs [52–56]. Indeed, with the exception of lixisenatide, all other GLP-1 RAs showed a 
trend toward a reduced incidence of MACEs (i.e., time to first event of either CV death or 
non-fatal myocardial infarction or stroke), which was significant in most of these trials, 
prompting a revision to the place of this class of drugs in the treatment algorithms of 
professional societies [57,58]. Of note, all of these CV outcome trials did aim at glycemic 
equipoise (that means having as much as possible similar glycemic control between the 
active drug and the placebo treatment); therefore, the glycated hemoglobin (HbA1c) 
reduction obtained with GLP-1 RA during the treatment period did not appear to be a 
plausible explanation for the observed CV benefits. This is also in accordance with the 
findings of previous large randomized clinical trials, which failed to demonstrate a clear 
effect of intensive glucose control as expressed by a marked HbA1c reduction on the CV 
outcomes and mortality in patients with T2DM [59]. As such, apart from glycemic control, 
other recognized clinical benefits of GLP-1 RAs have been highlighted, including 
reduction in weight and adiposity, improved blood pressure, and post-prandial 
excursions of triglycerides and apolipoprotein B, and perhaps reduction in some other 
diabetes-associated complications (for instance, renal disease) [60,61].  

Figure 1. The influence of comorbidities on the development of HFpEF. Iron deficiency, diabetes
mellitus, obesity, renal failure, hypertension, and pulmonary hypertension increase the risk of HFpEF
through structural and functional cardiac change, and systemic inflammation.

T2DM is strictly linked to obesity and to the development of HFpEF. The 49% of
5988 patients constituting the study sample of the EMPEROR-Preserved trial was affected
by diabetes [39]. This group of patients often develop diabetic kidney disease and chronic
kidney disease (CKD). Indeed, approximately 50% of patients with HFpEF suffer from
CKD [40]. Brouwers et al. reported that HF directly affects kidney function and vice versa,
while CKD worsens cardiac function [41]. The interplay between the heart and the kidneys,
the similarities in their microvascular networks, and the coexistence of CKD and HF make
the role for microvascular dysfunction in the onset and worsening of both diseases more
likely [42].

Pulmonary Hypertension Phenotype: The main leading cause of pulmonary venous
hypertension (type 2) is increased pressure in the left atrial. In HFpEF, the right ventricular
structure and function deteriorate over time; such deterioration is associated with coronary
heart disease, obesity, atrial fibrillation, increased pressure pulmonary venous, and in-
creased left heart filling pressures. When the left ventricular filling pressures increase, there
is an increased afterload of the right ventricle, resulting in a remodelling of the pulmonary
vascular system. Therefore, it becomes essential to carefully evaluate diuretic therapy in
patients with HFpEF in an attempt to normalize pressures at the level of the left heart [43].

Ischemic Heart Disease Phenotype: In contrast to HFrEF, where obstructive coronary
artery disease (CAD) is a significant illness determinant and needs specific management,
ischemic myocardial injury does not play an essential role in the pathophysiology of
HFpEF [44,45]. Though abnormal relaxation is the first mechanical manifestation of my-
ocardial ischemia [46,47], acute coronary syndromes seldom are the cause of HFpEF [47,48].
Although the prevalence of CAD is high in HFpEF patients, non-invasive testing fails to
detect the presence of CAD in at least one-third of HFpEF patients. Gerber et al. showed a
temporal shift in the mix of types of HF in patients experiencing an acute CV event, with a
recent increase in both midrange ejection fraction (HFmrEF) and HFpEF cases compared
to HFrEF cases, which were more common in the past [49]. In a recent article, Elgendy
and Pepine underlined that, aside from the traditional afterload–overload concept in the
pathophysiology of HFpEF, coronary microvascular dysfunction, which is secondary to
multiple co-morbidities, is an important pathogenetic mechanism [50]. It is, thus, essential
to perform specific tests in the cath lab to identify this subset of patients to prevent and
adequately treat ischemic and HFpEF symptoms.
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The integration of clinical data, biomarkers, and electrocardiographic and echocar-
diographic parameters is necessary to set up a correct therapeutic strategy for the whole
spectrum of patients with HFpEF. Such integration is very complex; therefore, ways of
phenotyping guided by mathematical/statistical algorithms, the so-called “machine learn-
ing”, of which a “cluster” analysis was first proposed by Shah et al. in 2015, represent the
first example for outlining pheno-groups that may be a therapeutic target for randomized
clinical trials in the future [51]. For example, the combination of SGLT2-Is and GLP-1 RAs,
according to the available evidence, is indicated in diabetic patients with atherosclerotic
disease and HF or at high risk of HF. In all other categories of patients, further studies are
needed [19].

3. Cardiovascular Effects of GLP-1 RAs in T2DM

The identification of glucagon-like peptide-1 (GLP-1), belonging to the family of gut-
derived incretin hormones, paved the way years ago to the development of GLP-1 RAs, with
the intention of enlarging the armamentarium of therapeutic options for T2DM. This new
class of drugs, which is initially made up of short-acting compounds (exenatide, liraglutide,
and lixisenatide) and subsequently includes new second-generation molecules that are
administered once weekly (semaglutide, exenatide LAR, albiglutide, and dulaglutide),
has shortly been demonstrated to have several vascular actions going beyond the mere
anti-hyperglycemic effects. Consequently, a number of experimental and clinical studies
have been conducted over time, aiming at better understanding the pathophysiological
mechanisms underlying the beneficial CV effects (mainly on atherosclerotic CV disease)
observed in some dedicated CV outcomes trials with GLP-1 RAs [52–56]. Indeed, with the
exception of lixisenatide, all other GLP-1 RAs showed a trend toward a reduced incidence
of MACEs (i.e., time to first event of either CV death or non-fatal myocardial infarction
or stroke), which was significant in most of these trials, prompting a revision to the place
of this class of drugs in the treatment algorithms of professional societies [57,58]. Of note,
all of these CV outcome trials did aim at glycemic equipoise (that means having as much
as possible similar glycemic control between the active drug and the placebo treatment);
therefore, the glycated hemoglobin (HbA1c) reduction obtained with GLP-1 RA during the
treatment period did not appear to be a plausible explanation for the observed CV benefits.
This is also in accordance with the findings of previous large randomized clinical trials,
which failed to demonstrate a clear effect of intensive glucose control as expressed by a
marked HbA1c reduction on the CV outcomes and mortality in patients with T2DM [59].
As such, apart from glycemic control, other recognized clinical benefits of GLP-1 RAs have
been highlighted, including reduction in weight and adiposity, improved blood pressure,
and post-prandial excursions of triglycerides and apolipoprotein B, and perhaps reduction
in some other diabetes-associated complications (for instance, renal disease) [60,61].

At the pathophysiological level, since GLP-1 RAs are expressed in endothelial cells,
as well as in monocytes, macrophages, and vascular smooth muscle cells, native GLP-1
exerts a number of diverse actions on the vasculature [62]. As a matter of fact, enhancing
the GLP-1 signaling by the administration of GLP-1 RAs can translate into significant
beneficial effects on the diverse mechanisms contributing to the atherosclerotic process.
GLP-1 RAs reduce oxidative stress by decreasing ROS production in cardiomyocytes
and by decreasing the circulating levels of 8-iso prostaglandin F2α as well as carotid
intima media thickness in T2DM patients [63]. In turn, the reduced exposure to ROS
has been shown to slow down the transformation of monocytes/macrophages in foam
cells [64,65], inhibit caspase-mediated apoptosis of foam cells, and reduce necrosis in the
core of atherosclerotic plaques [66–68]. GLP-1 RAs also reduce monocyte accumulation
in the vascular wall by affecting the expression of adhesion molecules, such as VCAM-
1, MCP-1, E-selectin, and ICAM-1, which are driven by oxLDL-mediated activation of
monocytes and macrophages in the early-stage atherosclerotic plaque [69,70]. Under
GLP-1 receptor stimulation, monocytes preferentially give origin to M2 macrophages,
instead of M1 macrophages, while the otherwise suppressed formation of Krüppel-like
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Factor 2 (KLF-2) becomes enhanced [71,72]. Endothelial cells cultured with GLP-1 RAs
have been shown to express more eNOS, produce more NO, and suppress endothelin
formation [73,74], resulting in overall increased vascular smooth muscle relaxation and
endothelium-dependent vasodilation. Vascular smooth muscle proliferation and migration
into the atherosclerotic plaque are additional pathophysiological processes potentially
affected by GLP-1 RA administration [75,76].

Accordingly, animal models of accelerated atherosclerosis have confirmed the diverse
beneficial effects of GLP-1 RAs on plaque progression, including reducing plaque hem-
orrhage, preserving the integrity of the fibrous cap, and preventing plaque rupture [77].
Noteworthy, these overall actions of GLP-1 RAs against systemic inflammation, vascular
damage, and atherosclerosis have been replicated in several experimental studies with
patients with metabolic syndrome and T2DM [78]. In addition to these findings, another
intriguing hypothesis for the anti-atherosclerotic effects of GLP-1RAs is the reduction of
epicardial adipose tissue [79], namely the metabolically active visceral fat depot of the heart
which turns out to be an additional modifiable risk factor because of its anatomical and
functional contiguity with the myocardium and coronary arteries.

Taken together, all this evidence supporting the significant role of GLP-1 receptor
stimulation against the atherosclerotic process provides solid grounds for the preferential
use of GLP-1 RAs in diabetic patients with or at high risk of atherosclerotic CV diseases.
New research is on the way to explore the potential synergistic (additive?) effects of GLP-1
RAs with other classes of drugs with proven CV benefits, such as SGLT-2 Is, in an attempt
to further improve CV protection in patients with T2DM (Table 1).

Table 1. Potential biological effects of SGLT1-Is or GLP-1 RAs, alone or in combination therapy.

Effects

Agent SGLT2
Inhibitors

GLP-1 Agonists Combination
Therapy

Oxidative stress
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SGLT2-Is are a novel class of drugs for the treatment of T2DM and HF [80–82].  
Maximal glucose tubular transport (TmG) in healthy adult men is 
approximately 375 mg/min, which corresponds to 300 mg of glucose per day 
[83–85]. Because glucose filtration rate is lower than TmG under normoglycemic 
and hypoglycemic conditions, filtered glucose is completely reabsorbed in 
proximal convoluted tubules by SGLT2 receptor; conversely, glycosuria occurs 
when glycemia exceeds the threshold of 180 mg/day.  
In patients with T2DM, the expression of SGLT2 receptors in the proximal tubule is 

higher than healthy individuals [86]. During hyperglycemia, as glucose and sodium 
reabsorptions are coupled, increased glucose reabsorption leads to increased sodium 
reabsorption, resulting in an increase in blood pressure; atrial natriuretic peptide release; 
glomerular afferent arteriole vasodilation mediated by nitric oxide, adenosine, and 
prostanoids; and efferent arteriole vasoconstriction through RAAS activation and 
angiotensin II action [87]. This results in an increased endoglomerular filtration pressure 
with glomerular hyperfiltration, which damages the mesangial structure and causes 
inflammation, fibrosis, renal damage, and albuminuria [88]. SGLT2-Is reduce sodium–
glucose reabsorption in the proximal convoluted tubule, increasing diuresis, natriuresis, 
and glicosuria; the increased sodium concentration in the filtrate that reaches the macula 
densa implements afferent arteriole vasoconstriction and efferent arteriole vasodilation, 
lowering filtration pressure and restoring the normal production of filtrate [89]. Moreover, 
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4. The SGLT2-Is Effects on Cardio-Renal Axis

Sodium-glucose cotransporter 2 belongs to a family of glucose transporter pro-
teins localized in the first segment of the proximal renal tubule and responsible
for the majority of filtered glucose and sodium reabsorption. SGLT2-Is are a novel
class of drugs for the treatment of T2DM and HF [80–82].

Maximal glucose tubular transport (TmG) in healthy adult men is approximately
375 mg/min, which corresponds to 300 mg of glucose per day [83–85]. Because
glucose filtration rate is lower than TmG under normoglycemic and hypoglycemic
conditions, filtered glucose is completely reabsorbed in proximal convoluted
tubules by SGLT2 receptor; conversely, glycosuria occurs when glycemia exceeds
the threshold of 180 mg/day.

In patients with T2DM, the expression of SGLT2 receptors in the proximal tubule is
higher than healthy individuals [86]. During hyperglycemia, as glucose and sodium reab-
sorptions are coupled, increased glucose reabsorption leads to increased sodium reabsorp-
tion, resulting in an increase in blood pressure; atrial natriuretic peptide release; glomerular
afferent arteriole vasodilation mediated by nitric oxide, adenosine, and prostanoids; and
efferent arteriole vasoconstriction through RAAS activation and angiotensin II action [87].
This results in an increased endoglomerular filtration pressure with glomerular hyperfil-
tration, which damages the mesangial structure and causes inflammation, fibrosis, renal
damage, and albuminuria [88]. SGLT2-Is reduce sodium–glucose reabsorption in the
proximal convoluted tubule, increasing diuresis, natriuresis, and glicosuria; the increased
sodium concentration in the filtrate that reaches the macula densa implements afferent
arteriole vasoconstriction and efferent arteriole vasodilation, lowering filtration pressure
and restoring the normal production of filtrate [89]. Moreover, SGLT2-Is reduce active
tubular transport work by decreasing renal oxygen demand [90]; improve mitochondrial
function and autophagy [91]; and reduce oxidative stress, apoptosis, tubule-interstitial
inflammation, and fibrosis [92]. Empaglifozin protects against renal ischemia-reperfusion
injury in mice by attenuating tubular damage, reducing proinflammatory cytokine expres-
sion, and inhibiting apoptosis [93]. In mice with diabetic kidney disease, Empaglifozin
improves kidney morphology and function by reprogramming the protein and metabolic
profile, including renal reductive stress regulation and renal mitochondrial dysfunction
and oxidative stress reaction reduction [94]. Finally, it increases hypoxia-inducible fac-
tor 2 alfa, stimulating erythropoiesis and improving renal oxygenation [95]. Hematocrit
increase may favorably influence cardiomyocyte mitochondrial function, angiogenesis,
cell proliferation, and inflammation; in addition, it directly enhances myocardial tissue
oxygen delivery. Mazer et al. [96] recently evaluated this in the EMPA-Heart CardioLink-6
randomized clinical trial and demonstrated that EPO levels increased significantly after
one month of Empagliflozin treatment in people with T2DM and coronary artery disease,
and was accompanied by an increase in hematocrit and reduced ferritin and red blood
cell haemoglobin.

CV beneficial effects of SGLT2-Is include positive hemodynamic effects with a
reduction in preload and afterload and improved cardiac contractility, related
not only to the increased diuresis and natriuresis, but also to nephron remod-
eling, endothelial function improvement and, through glycosuria, also loss of
body weight and adipose tissue with reduced insulin resistance [87,97,98]. A
systematic review of preclinical studies showed that SGLT2-Is attenuated vascular
dysfunction through a combination of mechanisms that appear to act indepen-
dently of glucose-lowering benefits [99]. SGLT2-Is reduce blood pressure also
in the absence of an increased heart rate, suggesting that these agents may lead
to a reduction in sympathetic nervous system (SNS) activity [100,101]. As HF
progresses, a continual decline in mitochondrial oxidative metabolism occurs;
SGLT2-Is were shown to increase circulating ketone levels, secondary to mobi-
lizing adipose tissue fatty acids, which are then used by the liver for ketogene-
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sis [102]. These ketones have been proposed to improve cardiac energetics and
cardiac efficiency [103,104].

Current clinical practice guidelines strongly recommend the use of SGLT2-Is in the
treatment of patients with HFrEF (Class I). However, these guidelines still make a weaker
recommendation for their use in HF with mildly reduced or preserved ejection fraction,
based on the data of the DELIVER that have been published recently [105]. A recent
comprehensive meta-analysis by Vaduganathan et al. built the evidence base for the benefit
of SGLT2-Is on the hospitalization for HF death, and in patients with preserved or mildly
reduced ejection fraction [106]. These authors did a prespecified meta-analysis of the
DELIVER and the EMPEROR-Preserved, and subsequently included trials that enrolled
patients with reduced ejection fraction (DAPA-HF and EMPEROR-Reduced) and those
admitted to the hospital with worsening HF with any ejection fraction (SOLOIST-WHF), for
a combined meta-analysis providing power to assess various clinical outcomes. SGLT2-Is
reduced composite CV death or first hospitalization for HF, CV death, first hospitalization
for HF, and all-cause mortality; these results were consistently observed across all five trials,
supporting the role of SGLT2-Is as a fundamental therapy for HF irrespective of ejection
fraction or care setting.

In clinical trials, SGLT2-Is reduced the risk of dialysis, transplantation, or death due
to kidney disease in individuals with T2DM and also provided protection against acute
kidney injury with consistent benefits across studies. These data provide substantive evi-
dence supporting the use of SGLT2-Is to prevent major kidney outcomes in people with
T2DM. The trials that determined these conclusions included the EMPA-REG OUTCOME
for Empagliflozin, the CANVAS Program and CREDENCE for Canagliflozin, and the
DECLARE–TIMI 58 for Dapagliflozin. Although there was evidence that the proportional
effect of SGLT2-Is might attenuate with declining kidney function, there was clear, sep-
arate evidence of benefit for all estimated glomerular filtration rate (eGFR) subgroups,
including in participants with a baseline eGFR 30–45 mL/min per 1.73 m2. Reno-protection
was also consistent across studies, irrespective of baseline albuminuria and use of RAS
blockade [107]. As it has been proven by large, double-blind clinical trials, Empagliflozin
not only decreases HbA1c in diabetic patients, but also improves their life expectancy
by reducing CV mortality [108]. Canagliflozin, Dapagliflozin, and Sotagliflozin signifi-
cantly decrease the composed primary end-point, including CV mortality and other CV
outcomes [109]. Ertugliflozin shows non-inferiority vs. placebo in reducing CV mortality
and other CV Outcomes [110]. The exact mechanism has not been fully established yet, and
SGLT2-Is show many additional beneficial effects which contribute to their wider use, even
in non-diabetic patients [111] (Figure 2).
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5. The Rationale for the Use of GLP-1RAs and SGLT2-Is in T2DM Patients with HFpEF

Empagliflozin in DM patients with CV disease leads to a reduction in LV mass and LV
end-diastolic volume, as well as to an improvement in LV diastolic function after a period
of three to six months of therapy [112].

There are several possible mechanisms that may explain SGLT2-Is-induced LV mass
reduction. Vasilakou et al. showed that Dapagliflozin could mediate the regression of
LV mass by reducing SBP. In fact, there was a statistically significant correlation between
the ambulatory reduction of SBP and LV mass reduction that could support this plausible
mechanism. It has been observed that SGLT2-Is lead to a reduction of SBP in the range of
3–5 mmHg in patients with T2DM [113]. Another mechanism that can explain this phe-
nomenon is given by the reduction of the ventricular preload due to osmotic diuresis and
natriuresis. The increase in diuresis could lead to an improved ventricular load condition
by reducing the LV wall stress [114].

The analysis of the EMPA-REG OUTCOME study suggested that approximately 50%
of the CV benefit could be attributed to Empagliflozin-induced hemoconcentration [115].
Weight loss is most significant in the first 4–6 months of therapy and is likely due to glucose
excretion and associated calorie loss [116]. Furthermore, SGLT2-Is-induced glycosuria
improves β cell function and insulin sensitivity, resulting in LV mass regression [117].

Verma et al. reported the effects of a 3-month Empagliflozin (10 mg/day) treatment
in terms of heart function. In 10 patients with T2DM and established CV disease, treat-
ment with Empagliflozin was associated with a significant reduction in LV mass index
and improved LV diastolic function, as assessed in terms of lateral e′ (8.5 vs. 9.6 cm/s,
p = 0.002) [118]. However, the exact mechanism of the improvement in diastolic function
may require further studies.

A small study that evaluated the effect of Canagliflozin on LV remodeling in DM
patients with HF showed that LV filling pressure, as assessed using a tissue Doppler,
decreased significantly after 6 months of treatment, and the effect was maintained even after
12 months of therapy. Many other mechanisms may be responsible for the improvement of
LV diastolic function. From those, the reduction of preload, the improvement of endothelial
dysfunction and aortic stability, the reduction of epicardial fat accumulation, and the
hypertrophy of visceral adipocytes are very important [119–121].

GLP-1 RAs also have positive effects on LV diastolic function. Bizino et al. demon-
strated that the administration of liraglutide reduced early LV diastolic filling and LV filling
pressure [122]. GLP-1 RA-induced weight loss might improve LV diastolic function [123]
(Figure 3). In addition, a direct cardio-protective effect of GLP-1 RA therapy has been
demonstrated in preclinical studies, and in some but not all human studies [124].

Coenraad Withaar et al., in a multi-hit mouse model of HFpEF showed that treatment
with liraglutide reduces cardiometabolic dysregulation; improves cardiac function; reduces
myocardial hypertrophy and fibrosis; and reduces atrial volume, natriuretic peptide levels,
and pulmonary congestion. Although it is not yet clear what is the true cardioprotective
mechanism of GLP-1 RAs in diabetic patients with HFpEF or in diabetic patients at high
risk of HFpEF, the authors are in agreement with the hypotheses that have been previously
formulated in other experimental and clinical studies: the beneficial effects on the heart
arise not only from a reduction in body weight, LV mass, and cardiac stiffness; but they
also come from the direct effects of GLP-1 RAs on the CV system deriving from natriuresis,
the central and peripheral vasodilation, and a reduction in both blood pressure and cardiac
fibrosis. GLP-1 RA may postpone the onset of HFpEF as it may delay the onset of diabetic
cardiomyopathy [7].
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6. Discussion

HFpEF is a multifactorial disease with different phenotypic aspects; therefore, due
to the high complexity of this syndrome, therapies targeting the sympathetic and RAA
system activation have not shown mortality benefit in HFpEF. The pharmacological treat-
ment of HFpEF represents the biggest ‘unmet medical need’ in the scientific community,
and not only in the CV community. In recent years, various consensus documents have
outlined the different modalities applicable to the phenotyping of patients with HFpHF.
This underscores how the “one size fits all” is not suitable for patients with HFpEF, and
it is necessary for therapeutic strategies to be individualized through the identification of
the clinical phenotypes of the disease. Currently, therapies for HFpEF are often limited to
something to improve the symptoms.

People affected by diabetes have a high risk of developing HFpEF and vice versa,
suggesting shared pathophysiological mechanisms exist; this, in turn, engenders the po-
tential for common treatments. In fact, T2DM is closely associated with microvascular
complications and microvascular dysfunctions, and plays an important role in the onset
of HFpEF.

SGLT2-Is, which started as antidiabetic drugs, have become one of the key pillars of
HFrEF therapy due to their positive pleiotropic effects on the kidney, liver, pancreas, blood
vessels, and adipose tissue.

The EMPA-REG OUTCOME showed that Empagliflozin treatment of DM patients had
no significant effect on hemodynamic parameters during the three months of therapy, but
induced rapid and sustained improvement in LV diastolic function (E/e′) [112]. Proscribed
SGLT2-Is therapy after acute myocardial infarction was not associated with improved
longitudinal LVEF or LV strain, but was correlated with favourable changes in diastolic
function parameters. The IDDIA showed that Dapagliflozin, in addition to standard anti-
hyperglycemic therapy, in patients with T2DM was related to a significant improvement in
LV diastolic dysfunction, as assessed by diastolic stress echocardiography, compared to
placebo [125].

The use of Dapagliflozin resulted in a significant reduction in LV filling pressure as
estimated by E/e′ during exercise in patients with type 2 DM.

The EMPEROR-Preserved was the first study on HFpEF that compared Empaglifozin
vs. placebo in patients with EF > 40%, regardless of the presence of diabetes, and demon-
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strated a reduction in the risk of HF-related hospitalizations and CV mortality and an
improvement in renal outcomes. In fact, previous studies, such as the CHARM-Preserved
(with candesartan), the TOPCAT (with spironolactone), and the PARAGON HF (with
sacubitril/valsartan), did not document a significant treatment benefit over placebo in
this clinical setting. The EMPEROR-Preserved trial is a real revolution in the treatment
of HFpEF because, after years of inconclusive studies of drugs used in such condition, its
results offer for the first time the potential benefit of improving outcomes and quality of
life in HFpEF patients [126].

The recent DELIVER trial demonstrated that Dapagliflozin is effective compared to
placebo in reducing CV death and HF hospitalizations in patients with mildly reduced or
preserved ejection fraction, and in patients with previous <40% EF which subsequently
increased above 40% [105], opening a new horizon in the treatment of HFpEF.

Other antidiabetic drugs that have demonstrated positive CV effects are GLP-1 RAs.
In previous randomized controlled trials with patients with T2DM, liraglutide, semaglu-
tide, and duraglutide have been shown to reduce CV mortality, but not the incidence
of HF or hospitalization for HF. A growing body of evidence shows a significant bene-
ficial effect of GLP-1 RAs on LV diastolic function in patients with T2DM. Studies that
examined patients with T2DM and without CV disease demonstrated that liraglutide
reduces LV filling pressure [127] and improves LV diastolic function, while LV diastolic
function is not improved by sitagliptin and linagliptin. A meta-analysis study that included
592 patients treated with different oral antidiabetic drugs (sitagliptin, linagliptin, piogli-
tazone, rosiglitazone, voglibose, and glimepiride), showed that only liraglutide was as-
sociated with significant improvement in LV diastolic function [128]. These results are
encouraging and warrant further investigation in subjects with HFpEF, since, to date, there
are no randomized studies with GLP-1 RAs in this setting of HF.

7. Conclusions

SGLT2-Is and GLP-1 RAs could be important weapons in the therapy of HFpEF, but
to date, the data are poor because there is still a lack of studies evaluating the effects of
their combined treatment. The goal should be to provide unambiguous clinical evidence in
order to improve the effectiveness of the therapeutic armamentarium for the prevention
and treatment of CV and renal diseases in cardio-metabolic high-risk patient, in order to
improve organ damage and reduce CV morbidity and mortality. Therefore, what is the
optimal therapy for HFpEF? Certainly, it is crucial to treat the cause of HFpEF and control
all comorbidities, not only with medical therapy but also with changes in lifestyle habits.
A future challenge will be to try to tailor an appropriate treatment strategy specific to the
phenotype-dominant disease in individual patients.
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