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Simple Summary: The present review summarizes and interprets uniform therapy schemes for
rescuing relapsed or refractory (r/r) neoplasias of quite different histologic origins. Exploiting tumor
tissues’ plasticity by reprogramming hallmarks of cancer into biologic hallmarks controlling tumor
regrowth with metronomic chemotherapy and simultaneous targeting of nuclear and/or cytokine
receptors plus/minus targeted therapies, termed tumor tissue editing, may induce cCR or long-term
tumor control, as indicated by data from clinical trials designed for the treatment of r/r neoplasias of
quite different histologic origins. Tumor tissue editing may overcome unique post-therapy disease
traits that arise following treatment of r/r tumor disease with standard therapy regimens using
maximum tolerable doses, i.e., metastatic spread, cancer repopulation, and acquired tumor cell
resistance (M-CRAC), by attenuating, or resolving M-CRAC. The introduction of M-CRAC control
in future therapeutic considerations may help to overcome the multifold translational challenges of
precision medicine in the large group of r/r neoplasias without driver mutations.

Abstract: The concept of post-therapy metastatic spread, cancer repopulation and acquired tumor
cell resistance (M-CRAC) rationalizes tumor progression because of tumor cell heterogeneity arising
from post-therapy genetic damage and subsequent tissue repair mechanisms. Therapeutic strategies
designed to specifically address M-CRAC involve tissue editing approaches, such as low-dose
metronomic chemotherapy and the use of transcriptional modulators with or without targeted
therapies. Notably, tumor tissue editing holds the potential to treat patients, who are refractory to or
relapsing (r/r) after conventional chemotherapy, which is usually based on administering a maximum
tolerable dose of a cytostatic drugs. Clinical trials enrolling patients with r/r malignancies, e.g.,
non-small cell lung cancer, Hodgkin’s lymphoma, Langerhans cell histiocytosis and acute myelocytic
leukemia, indicate that tissue editing approaches could yield tangible clinical benefit. In contrast to
conventional chemotherapy or state-of-the-art precision medicine, tissue editing employs a multi-
pronged approach targeting important drivers of M-CRAC across various tumor entities, thereby,
simultaneously engaging tumor cell differentiation, immunomodulation, and inflammation control.
In this review, we highlight the M-CRAC concept as a major factor in resistance to conventional
cancer therapies and discusses tissue editing as a potential treatment.

Keywords: tumor tissue editing; anakoinosis; M-CRAC; drug resistance; tumor heterogeneity;
tumor cell repopulation; metastases; pioglitazone; drug repurposing; metronomic chemotherapy;
transcriptional modulation
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1. Introduction

The treatment of metastatic tumors poses a crucial challenge in anti-cancer therapy.
Although the therapeutic armamentarium has steadily grown and overall survival (OS)
rates have significantly improved, continuous complete remissions (cCRs) are still scarce in
patients with refractory or relapsing (r/r) metastatic tumor disease [1–7].

Conventional tumor therapy based on the application of a maximum tolerable dose
to achieve maximum apoptosis induction in cancer cells is still a vital pillar of anti-cancer
therapy [1,6,8]. However, disease relapse after initially successful chemotherapy is fre-
quently observed, and relapsing cancer cells often display elevated resistance to traditional
chemotherapy schedules [1].

Seeking to explain tumor progression after conventional tumor therapy, the concept of
post-therapy metastatic spread, cancer repopulation, and acquired tumor cell resistance
(M-CRAC) is primarily predicated on tumor cell heterogeneity generated as a result of
post-chemotherapy genetic damage and subsequent tissue repair mechanisms [9,10]. Due
to M-CRAC processes, tumor cells and the associated tumor microenvironment give rise to
significant resistance and pave the way for r/r metastatic disease [8,11].

Contrary to conventional chemotherapy, immunotherapy or targeted therapies with
small molecules, tumor tissue editing approaches therapeutically design the tumor phe-
notype by simultaneously engaging tumor cell differentiation, immunosurveillance, in-
flammation, and tumor metabolism via redirection of cancer hallmarks. These factors
are important drivers of M-CRAC in a multitude of histologically different relapsed or
refractory tumor entities treated with tumor tissue editing approaches [12–31].

Tissue editing approaches encompass low-dose metronomic chemotherapy, the use of
transcriptional modulators, and targeted therapies. Clinically, treatment regimens based on
tissue editing can achieve continuous complete remissions in patients with a variety of dif-
ferent r/r malignancies, such as Hodgkin’s lymphoma, Langerhans cell histiocytosis, renal
clear cell carcinoma, cholangiocarcinoma, and angiosarcoma. This definitively shows that
M-CRAC induced by preceding systemic therapies may be overcome, even by induction of
cCR in single patients with histologically different r/r tumor disease [13,16,24–26].

In the present review, we introduce the M-CRAC concept as a key factor contributing
to clinical resistance to standard systemic tumor therapies. In addition, we highlight tumor
tissue editing strategies as specific interventions to counteract M-CRAC and maintain
long-lasting disease control.

2. M-CRAC as a Target for Tumor Tissue Editing in Refractory or Relapsed Neoplasias

The novel treatment paradigm ‘tumor tissue editing’ adopts the use of tissue editing
technologies for correcting genetic or epigenetic abnormalities in tumor tissues [32–36]. Tu-
mor tissue editing methodologies are now focused on achieving phenotypic, therapeutically
relevant editing of tumors [37].

Tumor tissue editing is defined as the therapy-guided targeted evolution of tumor
tissues to establish biologic hallmarks that facilitate tumor control or initiate complete
remission in relapsed or refractory tumor disease [38]. Appropriate editing schedules com-
bine bioactive therapeutic principles to readjust aberrant tissue homeostasis at primary and
metastatic tumor sites by using differential regulatory active therapeutic techniques [39,40].
Bioactive drugs must not demonstrate any monoactivity in the respective tumor disease [40].
The combined regulatory activity profile concertedly redirecting hallmarks of cancer is of
pivotal therapeutic interest (Table 1).
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Table 1. Tumor tissue editing protocols for relapsed or refractory tumors: transcriptional modu-
lation plus low-dose metronomic chemotherapy (MCT) for M-CRAC control and resolution (CR:
complete remission, cCR: continuous complete remission). PR = partial remission. SD= stable disease.
®: randomization. n.d = not done.

Transcriptional
Regulation

MCT, Targeted
Therapy r/r Neoplasia [12–30] Reprogramming

Cancer Hallmarks Best Response Reference
Citation

Pioglitazone, rofecoxib MCT Hepatocellular
carcinoma

Inflammation
control PR [20]

Pioglitazone, rofecoxib MCT Cholangiocellular
carcinoma n.d. cCR [26]

Pioglitazone, rofecoxib MCT High-grade gliomas n.d. SD [31]
Pioglitazone, rofecoxib MCT Angiosarcoma n.d. cCR [24]
Rofecoxib plus/minus

pioglitazone MCT Metastatic gastric cancer ® n.d. PR [21]

Rofecoxib plus/minus
pioglitazone
Pioglitazone,

etoricoxib

MCT
MCT +

temsirolimus

r/r metastatic
melanoma

uveal melanoma

® Inflammation
control

PR
SD [22,41]

Pioglitazone,
etoricoxib

MCT,
clarithromycin
vs. nivolumab

r/r Non-small cell lung
cancer

® Enhancing
immune

surveillance
PR [23]

Pioglitazone,
dexamethasone,

etoricoxib

MCT
MCT + imatinib

Castration-refractory
prostate cancer n.d. PR [18,30,42]

Pioglitazone,
dexamethasone,

etoricoxib
MCT, everolimus r/r Hodgkin’s

lymphoma
Inflammation

control cCR [13,27]

Pioglitazone,
dexamethasone,

etoricoxib
MCT

r/r Multisystem
Langerhans cell

histiocytosis

Inflammation
control cCR [16,28]

Pioglitazone, rofecoxib
Pioglitazone,
rofecoxib, +
interferon-α

MCT
MCT

r/r Renal clear cell
carcinoma

r/r Renal clear cell
carcinoma

No sufficient
inflammation

control
Inflammation

control

SD
cCR [17,25,43]

Pioglitazone,
dexamethasone MCT, lenalidomide r/r Multiple myeloma n.d. PR [14]

Pioglitazone, all-trans
retinoic acid Azacytidine

r/r Non-promyelocytic
acute myelocytic

leukemia

Differentiation
induction CR [44–47]

The operational procedure facilitating tumor tissue editing, i.e., anakoinosis, pro-
motes therapy-initiated reprogramming and cell recruitment in tumor tissues, which finally
contributes to the tumors’ plasticity in therapeutic intention [39,40]. Tumor-associated
supervising communication lines that cumulatively constitute tumor-type specific commu-
nication protocols among different tumor cell compartments are supposed to be respective
therapeutic targets of editing techniques [40,48].

The editing procedure relies on tumor-specific communication lines to establish phe-
notypic plasticity. The extent and quality of tumor systems’ plasticity reflect evolutionary
system states and the developmental and medical histories of tumor diseases [12,44,49,50].
Tumor tissue plasticity is constituted by timely and spatially developing tumor cell au-
tonomous and non-autonomous processes and cannot be described by genetic/molecular ge-
netic aberrations alone, particularly if driver mutations are absent, as in most tumors [51–53].

Tumor tissue editing approaches turned out to efficaciously control or resolve M-
CRAC by redirecting cancer associated hallmarks into biologic hallmarks, attenuating
tumor growth, and inducing alternative patterns of tumor cell death in r/r tumor disease.
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As shown, clinical trials using editing approaches may induce long-term tumor control,
objective response or even cCR [38] (Figure 1, Table 1).
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Figure 1. Tumor tissue editing for rescuing relapsed or refractory tumor disease separates M-CRAC
as targetable phenomenon: suggested mechanisms of action.

The novel treatment strategy is highly integrative and provides, beyond its biomodu-
latory activity profile, opportunities for drug repurposing, e.g., by providing edited non-
oncogene addiction. Moreover, editing techniques may establish transdifferentiation and
differentiation of tumor cells for M-CRAC control and tumor cell death induction [12,37,49].

Important aspects of tissue editing approaches include the possibility of exploiting
the synergistic potency and efficacy of biomodulatorily active drug combinations [54]. The
combinatorial, metronomic administration of drugs targeting the network infrastructure
of tumor tissues proved to be efficacious in various, histologically quite different tumors.
Interestingly, edited tumor tissues provide novel activity profiles for otherwise less effica-
cious approved targeted therapies. As clinically shown, the use of repurposed targeted
therapies, e.g., mTOR inhibitors, may contribute to long-term tumor control or cCR in r/r
tumor disease, e.g., Hodgkin’s lymphoma or uveal melanoma [22,37].

Tumor tissue editing approaches for rescuing r/r neoplasias via M-CRAC control
and tumor cell death induction may include different metronomically scheduled cytotoxic
drugs (trofosfamide, treosulfan, capecitabine). Low-dose metronomic chemotherapy serves
as a prerequisite for the activity of otherwise inefficacious transcriptional modulators [40].
Tissue editing approaches use transcriptional modulators, such as nuclear receptor agonists
or cytokines, as indicated in Table 1. Pioglitazone itself is a dual-receptor agonist for the
peroxisome-proliferator-activated receptor PPARα and γ (PPARα/γ). Therefore, all the
mentioned tumor tissue editing trials used dual or triple transcriptional regulation in
addition to low-dose metronomic chemotherapy (Table 1) [55].

With tissue editing techniques, quite different neoplasias in the r/r stage could be ei-
ther stabilized for the long term or controlled by objective response, even by
cCR [13,16,19,22,25,26]. Further, in castration-resistant prostate cancer (CRPC) or r/r
multiple myeloma (MM), disease control was stable even after discontinuation of the tumor
editing approach. In CRPC, hormone sensitivity was reestablished in single cases [19].
Stable M-CRAC control beyond discontinuation of tumor tissue editing in CRPC and
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r/r multiple myeloma reveals reprogramming of the tumor tissue, i.e., simultaneously
involving the stroma and tumor cells [14,19].

Thus, tumor tissue editing techniques facilitate the achievement of quite different end-
points that finally contribute to M-CRAC control. Objective response is not a prerequisite
for M-CRAC control [14].

3. Tissue Editing Methods Redirect Cancer-Related Hallmarks into Novel Biologic
Hallmarks Facilitating Tumor Response

How tissue editing approaches work at the tumor tissue communication level cannot
yet be pinned down to single pathways [40].

Studies on non-PML-AML provide the insight that only the triple combination of
azacitidine, ATRA, and pioglitazone may induce cytologically proven differentiation as a
triple combination. These results, however, underline that the synergism of each drug with
one another is a prerequisite for therapeutically redirecting leukemia plasticity [45,50].

Also, clinical data on r/r RCCC, showing cCR induction with the combination piogli-
tazone plus interferon-α on the background of ‘very’-low-dose capecitabine, are not well
experimentally supported [25]. However, reprogramming the oncogenic stress response is
the prerequisite for dual control of tumor-associated inflammation with pioglitazone and
interferon-α. C-reactive protein (CRP) is a strong marker indicating tumor response [17,43].
In RCCC, tumor cells may directly produce CRP aside from liver-mediated secretion [56].
Different tissue editing approaches, as indicated in Table 1, result in diversified reprogram-
ming results of tumor tissues.

Also, the recently published survival benefit of patients with relapsed head and neck
cancer receiving metronomic methotrexate, celecoxib, and erlotinib combined with low-
dose nivolumab in comparison to those receiving the same metronomic schedule without
nivolumab cannot be based on pathway analyses providing distinct mechanisms of action
promoting OS benefit with quadruple therapy [57]. Enhancement of the immune response
might be the main emphasis of the nivolumab arm.

In general, the studies on tissue editing demonstrate the efficacy of tumor editing
techniques in selectively redirecting cancer hallmarks for tumor control.

Within tissue editing approaches, pleiotropic tissue activity profiles of single biomod-
ulatory drugs lead in concerted tissue communication guiding activity profiles that are
focused and successfully reprogram the oncogenic stress response as a prerequisite for redi-
recting single cancer hallmarks into biologic hallmarks attenuating tumor growth [40]. This
way, tumor tissue editing approaches therapeutically exploit tumor plasticity (Figure 1).
The reprogramming process is termed anakoinosis in anticipation of future descriptions of
communicative lines describing the molecular background of the respective pharmacologic
interactions on the tissue level in more detail [40]. The activity profiles of metronomic
chemotherapy, pioglitazone, and other transcriptional modulators in reviews did not pre-
dict the outcome provided by tissue editing protocols that have been successfully applied
in many histologically highly different neoplasias [55,58,59].

4. Tissue Editing Approaches: Impact on the Genomic Evolution of Tumors

A remarkable clinical result is that tumor tissue editing approaches may induce CR or
cCR in r/r neoplasias, even within small study populations (Table 1).

Recent studies found molecular genetic markers or histologies associated with re-
sistance to metronomic chemotherapy in head and neck cancer or triple-negative breast
cancer [60,61]. These data might not be directly transferable to tissue editing approaches.
Metronomic low-dose chemotherapy facilitates the use of the clinically decisive step, con-
certed transcriptional modulation. As shown in non-PML AML, even complex aberrant
karyotypes may respond with CR to editing methods [45].

Hodgkin’s lymphoma in the relapsed or refractory stage demonstrates that an ade-
quate tissue editing approach overcomes resistance mechanisms of quite different origin,
namely those induced by radiotherapy, immunotherapy, and chemotherapy, as indicated
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by consecutive CR and cCR induction [13]. Thus, editing-specific genomic evolution of
resistance plays no key role when using an adequate editing methodology.

Nevertheless, developing resistance may limit response to tissue editing approaches
in r/r tumor disease. Up to now, there was no urgent need to perform genetic analyses at
the time of tumor progression, because there are fewer concerns about the rapid evolution
of resistance to tissue editing approaches. Currently, the main therapeutic focus is the
implementation of the most suitable editing approach, at best in a personalized manner.
Further studies must establish missing biomarkers for the personalized selection of editing
techniques and corresponding follow-up parameters. The tissue editing methodology is at
its beginning (Figure 2).
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Figure 2. Disease traits of M-CRAC trigger spontaneous cancer progression. The therapeutic tumor
tissue editing tool may control, resolve, or bypass M-CRAC via access to shared triggers for tumor
promotion present in histologically different tumor types.

5. M-CRAC as Driver of Disease Relapse and Chemoresistance: The Therapeutic View

Definition of M-CRAC: M-CRAC-associated disease traits, i.e., metastatic spread, can-
cer repopulation, and acquired tumor cell resistance as well as genetic and/or molecular-
genetic tumor cell heterogeneity, may be clinically separated as a unique post-therapeutic
response pattern to systemic tumor therapies based on the clinical finding that M-CRAC
may be successfully resolved or attenuated by the introduction of tumor tissue editing
techniques designed for the treatment of r/r neoplasias of different histologic origin
(Table 1) [12–28]. In particular, the differentially developing resistance patterns in tu-
mors, originating either from resistant clones during initial tumor growth or from the
multifold resistance patterns induced by preceding systemic tumor therapies, describe
the therapeutic challenges for establishing M-CRAC control and indicate the necessity for
novel therapeutic solutions. The multifaceted M-CRAC disease traits have been intensively
studied, e.g., in r/rMM [62–65].

The M-CRAC concept summarizes disease traits promoting tumor progression or
relapse following any kind of prior therapy, such as chemotherapy, immunotherapy, and



Cancers 2024, 16, 180 7 of 22

targeted therapies with small molecules. M-CARC is often associated with mixed or
organ-specific response patterns to systemic tumor therapy [9,10,66,67].

The availability of specific tumor-type-adapted tissue editing techniques for rescu-
ing relapsed or refractory tumor disease of quite different histologic origins support the
consistency of the M-CRAC concept (Table 1).

Biologic processes promoting M-CRAC: Intrinsic, i.e., systemic, and tumor-specific
factors guide the biology of metastatic tumor disease. Tumor-cell-specific parameters are
commonly considered targets for systemic tumor therapy to attain maximum apoptosis
induction [68]. Additionally, extrinsic, primarily non-genetic factors, termed the ‘exposome’
of the host, impact tumor biology and long-term outcome following systemic tumor therapy
and play a pivotal role in the development of M-CRAC [8,69,70]. All preceding chemother-
apies, immunotherapies, targeted therapies with small molecules, and radiation therapies
contribute to the ‘exposome’ and are directly involved in the development of M-CRAC. In
aggregate, M-CRAC describes the oncogenic potential of prior tumor therapies promoting
pathophysiological disease traits associated with tumor progression or relapse [8,9].

Potential mechanisms underlying M-CRAC: Damage response to systemic tumor
therapy reshapes cancer tissue by a multitude of coordinated, timely, spatially, and dy-
namically developing cellular and tissue events, summarized in M-CRAC [9,71]. The
enormous range of post-therapy tumor system states, arising on the basis of the tumor
tissue’s plasticity, facilitates the maintenance of the tumor tissue’s integrity via wound
healing mechanisms [72]. Multifold concurrent events linked to M-CRAC-related disease
traits are closely interwoven and underline the oncogenic role of tumor cell death during
post-therapy tissue repair [72–77].

Apoptotic tumor cells, hypoxia, and inflammation may promote compensatory tumor
cell proliferation, for instance through the caspase-3-cytosolic phospholipase A(2) alpha
(cPLA-2)-COX-2-PGE-2-STAT3 Phoenix rising pathway. [10,68,78,79]. Maximum-tolerated
doses (MTD) of chemotherapy may promote M-CRAC via the epithelial–mesenchymal
transition (EMT) orchestrated by hypoxia-inducible factors (HIF)-1α and (HIF)-2α [79–85].

For future research, experimental studies are vital to investigate how the post-therapy
oncogenic potential of pulsed therapies, summarized in M-CRAC-related disease traits,
might be accessible with differential tissue editing approaches [10,11,86–90].

The therapeutic accessibility of M-CRAC via tumor tissue editing techniques is sur-
prising, as tumor progression following systemic tumor therapy is spatially and temporally
heterogeneous. Tumor cells are epigenetically remodeled and may successively become ge-
netically heterogeneous. Moreover, stromal cells may gain genetic aberrations, cancer stem
cells become functionally altered, non-mutated tumor suppressors are down-regulated,
epithelial–mesenchymal transition is promoted, and autophagy becomes dysregulated.
Finally, context-dependent roles of TGFβ occur, tumor and stroma cell metabolism are
disturbed, immunosurveillance is decreased, pro-inflammatory processes in hypoxia are
highly activated, and angiogenesis is altered [91–108].

As a result of the multi-leveled repair processes, the phenotypic outcome of M-CRAC
seems to be poorly predictable. The cellular tumor tissue compartments exploit the whole
repertoire of cellular plasticity to guarantee tissue integrity at the expense of M-CRAC
development [109–114]. The evolution within cancer tissues to establish novel tissue
homeostasis under hypoxic, pro-inflammatory, and immunosuppressive conditions and
the presence of damaged cells involves all cellular compartments [3,109,115–117]. In the
end, even secondary malignancies are possible as a final ‘reconstitution’ process.

The induction of cCR in r/r neoplasias indicates resolution of M-CRAC. Differentiation
induction may completely bypass M-CRAC, as shown by hematologic or molecular-genetic
complete remission in relapsed or refractory acute myelocytic leukemia (AML), even in
those with adverse risk according to European LeukemiaNet (ELN) [12,45–47].

This means the clinically circumscriptive phenotype defined as M-CRAC is differen-
tially accessible with tumor tissue editing techniques using biomodulatory techniques, i.e.,
anakoinosis, for successfully targeting the evolutionary preserved plasticity of tumor tis-
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sues in therapeutic intention (Figure 1). Different tumor histologies share targets available
for M-CRAC control, even if in quite different contexts, as exemplified for pioglitazone
(Table 1).

An important mechanism of action for meeting the multifold therapeutic challenges
provoked by M-CRAC might be the therapeutic alteration and redirection of the tumor-
specific, survival-related inevitable stress response patterns via metronomic low-dose
chemotherapy and, additionally, via targeted transcriptional modulation. The feasibility of
establishing edited non-oncogene addiction to mTOR in r/r HL, followed by the achieve-
ment of cCR, supports the explanation that Hodgkin tissue cannot manage any more stress
responses, irrespective of the kind of pre-treatment [13].

The available data on tissue editing trials cannot yet specify whether differential
editing approaches are necessary for M-CRAC control to meet specific tissue alterations
given by preceding systemic tumor therapies. However, different prior systemic targeted
therapies, chemotherapies, and immunotherapies within one histologic tumor type were
rescued with unique tissue editing techniques, as exemplarily shown in r/r acute myelocytic
leukemia (AML) and r/r Hodgkin lymphoma (HL) [12,13,45–47].

Explaining M-CRAC by tumor tissue editing techniques: Tissue editing techniques
therapeutically target the network infrastructure of tumor tissues and the tumor’s phe-
notypic plasticity, which contrasts with frequently used approaches separately targeting
tumor and/or stroma cells (Figure 1). Therapeutical reprogramming of the tumor infras-
tructure promotes new ways of tumor cell death. Moreover, differentiation induction
and post-therapy wound healing processes may be modulated to resolve or bypass M-
CRAC [25,50,118–120]. The induction of cCR in r/r metastatic neoplasias shows that tumor
cell heterogeneity in metastatic r/r disease may be overcome by functionally editing the
whole repertoire of heterogeneous tumor phenotypes and genetically heterogeneous tumor
cells [13,16,24–26]. Tissue editing techniques demonstrate, even in small study populations
and in histologically quite heterogeneous neoplasias successful control of r/r metastatic
disease (Table 1) [12–28].

Single pathways are not attributable as cause of complex post-therapy disease traits
mediated by M-CRAC. Tissue editing techniques may address M-CRAC, which emerged
as regulatory and differentially accessible phenomenon. M-CRAC control aims at repro-
gramming communication networks that are supported by tumor and stroma cells.

6. Specific Therapeutic Access to M-CRAC with Tumor Tissue Editing Approaches

Therapeutic challenges in treating M-CRAC with chemotherapy, immunotherapy, or
targeted therapies with small molecules: Enhancing apoptosis induction by the application
of maximum tolerable doses is the main aim of most systemic tumor therapies. Irrespective
of the drug combination, the drug-related ‘exposome’ leaves major therapeutic challenges,
as reflected by a high frequency of relapsed or refractory diseases. Systemic tumor therapy
rarely achieves long-term tumor control or cCR in most r/r metastatic neoplasias despite
the steadily increasing and diversifying therapeutic repertoire. Reasons are tissue repair
processes following apoptosis, hypoxia, cell damage, immunosuppression, metabolic
alterations and inflammation [1,2,4–8,121].

M-CRAC is a major obstacle counteracting the initially induced tumor response and
therefore affects the overall outcome. The approved pulsed chemotherapy regimens, relying
on the application of maximum tolerable doses, primarily aim at tumor cell destruction,
resulting in the stimulation of tissue repair and potential M-CRAC development [1].

Therefore, induction therapies designed to induce maximum rates of tumor cell death
should be complemented with therapies targeting and guiding the tumor tissues’ post-
therapy functional phenotypes to simultaneously address M-CRAC [83].

Differential techniques of tumor tissue editing uncover M-CRAC as a unique but
differentially accessible pathophysiological phenomenon. Three therapeutic elements sys-
tematically addressed M-CRA: Low-dose metronomic chemotherapy, epigenetic modifiers
(azacitidine), and transcriptional modulation via nuclear receptors (PPARα/γ glucocorti-
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coid receptor, RXR, or cytokine receptors). Moreover, the combination with classic targeted
therapies could be beneficial, as exemplarily shown for mTOR inhibitors by the edited
non-oncogene addiction in r/r HL for mTOR (Figure 1, Table 1) [13,45].

Resolution of M-CRAC has been achieved as indicated by cCR in r/r cholangiocellular
carcinoma, renal clear cell carcinoma, angiosarcoma, multisystem Langerhans cell histiocy-
tosis, Hodgkin’s lymphoma, or by CR in non-promyelocytic acute myelocytic leukemia
(non-PML-AML) [12,13,16,24,25,45,122]. Tissue editing induced long-term tumor control
in all studied r/r neoplasias, in high grade gliomas stable disease as best response, and in
all the other neoplasias at least partial remissions (Table 1).

Tumor plasticity is the starting point and final target for tumor tissue editing meth-
ods [9,37]. Differential therapeutic emphasis on distinctively developed tumor-associated
hallmarks may help to select specific tumor tissue editing techniques (Figure 1).

All stroma components, i.e., mesenchymal cells, cancer-associated fibroblasts (CAFs),
adipocytes, endothelial cells and hematologic cells, such as myeloid-derived suppressive
cells, tumor-associated macrophages (TAMs) and T-cells, are involved in M-CRAC control,
but to different extents depending on the focus of the chosen biomodulatory drug com-
bination [55,59]. Enhancement of immunosurveillance seems to frequently play a crucial
role in successful editing techniques, besides strong inflammation control, differentiation
induction and metabolic reprogramming (Table 1, Figure 1) [23,42,57].

Metronomic low-dose chemotherapy as a prerequisite for transcriptional editing
During long-term administration of metronomic low-dose chemotherapy in schedules for
tumor tissue editing, scheduled dose reductions of cytotoxic drugs were allowed, even up
to a quarter of the initially recommended starting dose [17]. Thus, the initially intended
monoactivity of metronomic ‘very’ low-dose chemotherapy to induce at least PR or even
cCR is out of range.

The study on r/r renal clear cell carcinoma (RCCC) impressively shows the effect of
‘very’ low doses of capecitabine. The addition of low-dose interferon-α to pioglitazone and
cyclooxygenase-2 (COX-2) inhibition may induce cCR on the background of very low-doses
of capecitabine, namely, 1 g absolute BID × 2 weeks, followed by a 1-week rest period,
and scheduled dose reductions of capecitabine to 0.5 g or 0.25 g absolute BID × 2 weeks,
followed by a 1-week rest period. In contrast to the approved standard dose of capecitabine,
1250 mg/m2 BID within the same schedule, the starting dose of capecitabine in the phase II
editing trials was 40% in comparison to the standard dose capecitabine, and 20% or 10% if
scheduled dose reduction was performed in phase II editing trials for RCCC [17,43].

Metronomic, very low-dose chemotherapy promotes a continuous pattern of stress
responses [55,123–125]. The present clinical data reveal that metronomic chemotherapy
at ‘very’ low-doses limits tumor tissue plasticity by stress response, probably decreasing
phenotypic heterogeneity of tumor cell niches as tissue stress generally induces a tighter
phenotype [123,126–131]. Thus, metronomic chemotherapy might induce phenotypic inte-
gration of inflammation control or differentiation by editing techniques and, consecutively,
may serve as an enhancer of pro-anakoinotic effects mediated by added transcriptional
modulators [55,123]. Exposure of tumor tissues to stress in addition to the tumor intrinsic
management of oncogenic stress for preserving tumor integrity and promotion, or inhi-
bition of salvage pathways managing the stress response, may induce tumor cell death
pathways. Whereas non-tumor cells compensate for therapeutically induced perturbations,
as indicated by the modest toxicity profile of editing trials (Table 1) [132,133]. Tumor tissue
editing techniques finally inhibit the relief of stress in tumor tissue, which cancer cells
are relying on for survival. This way, tumor tissue editing approaches seem to resolve or
attenuate M-CRAC.

Only combined transcriptional regulation with nuclear receptor agonists or cytokines
(interferon-α) led either to decisive inflammation control and cCR, e.g., in r/r renal clear
cell carcinoma, r/r LCH and r/r HL, or to differentiation induction in AML, or to the
establishment of non-oncogene addiction in r/rHL [12,17,25,45].



Cancers 2024, 16, 180 10 of 22

The clinical results demonstrate that combined transcriptional modulation on-topic
unlocks the phenotypic plasticity of tumor tissues for M-CRAC control (Figures 1 and 2).
Unlocking is profoundly associated with the reprogramming of cancer hallmarks in edited
tumor tissues, on the background of the reprogrammed tumor system’s stress response,
which facilitates a tighter phenotype at the phenotypically and genetically heterogeneous
tumor sites. The tight phenotype might be an explanation for why tumor tissue editing may
overcome genetic heterogeneity at different metastatic tumor sites and associated resistance.

The combination of both treatment components, metronomic low-dose chemotherapy
plus transcriptional modulation, is profoundly associated with the reprogramming of
cancer hallmarks to biologic hallmarks controlling M-CRAC in respective edited tumor
tissues (Figure 2).

The prerequisite of exceptionally low doses of metronomic chemotherapy for clini-
cally efficacious transcriptional modulation reveals a novel aspect of the mechanisms of
action of metronomic chemotherapy. Both treatment components, low-dose metronomic
chemotherapy and transcriptional modulation, provide poor or no monoactivity in r/r
tumors [40,55].

Concerted reprogramming of cancer hallmarks with metronomic (very) low-dose
chemotherapy and dual/triple transcriptional modulation induces a series of clinically
important phenomena beyond M-CRAC control. These are tumor cell death, edition of
non-oncogene addiction, maintenance of disease control beyond discontinuation of editing
therapy, or re-establishment of hormone sensitivity in CRPC [14,19,37].

7. Repurposing Chemotherapy: Metronomic Low-Dose Chemotherapy

Metronomic chemotherapy is clinically efficacious despite frequently applied sched-
uled dose reductions (Table 1). Clinical efficacy of ‘very’ low-doses within tissue editing
protocols demonstrates the meaning of ‘low-dose’ metronomic chemotherapy. Thus, the
clinical biomodulatory effect of metronomic low-dose chemotherapy is not necessarily
based on the cumulative achievement of maximum tolerable doses with equally split daily
doses applied during a 3 to 4-week treatment cycle.

A main result of the presented series of tissue editing trials is that metronomic ‘very’
low-dose chemotherapy is sufficient and essential for reprogramming of the oncogenic
stress response and for transcriptional tumor editing. Metronomic low-dose chemotherapy
may concretely contribute to stimulating the immune response, particularly in concert with
additional immunomodulators (immune checkpoint inhibitors, pioglitazone). Metronomic
low-dose chemotherapy may inhibit tumor-associated inflammation, e.g., in combination
with pioglitazone, interferon-α, and angiogenesis, and/or may promote tumor differen-
tiation, e.g., in combination with all-trans retinoic acid. Finally, metronomic low-dose
chemotherapy facilitates edited non-oncogene addiction, namely the successful use of re-
purposed targeted therapies, e.g., mTOR inhibitors, associated with resolution of M-CRAC
in r/r Hodgkin’s lymphoma and consecutive cCR [13,17,45,57].

Low-dose metronomic chemotherapy, as used in tissue editing approaches, represents
a completely repurposed way of applying chemotherapy. Alkylating agents or methotrexate
have been frequently applied with respect to their immunomodulatory activity profile
(Table 1) [57].

Reprogramming the tumor-associated stress response, the novel activity profile of
metronomic chemotherapy, determines the therapeutic difference in comparison to the well-
known mechanisms of action observed following pulsed chemotherapy. Prolonged therapy-
free intervals for recovering toxicity, the risk of infections, and M-CRAC development are
well-known problems associated with conventional chemotherapy [134]. Focusing on
tumor cell death with maximum tolerable doses always bears the risk of post-therapy
M-CRAC induction due to evolving molecular-genetic and genetic tumor heterogeneity
and drug resistance.

Tissue editing approaches integrating low-dose metronomic chemotherapy induce,
as shown, not only replication arrest or dormancy, associated with stable disease or stable
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objective response, even beyond discontinuation of tissue editing, but also CR and cCR in
r/r neoplasias (Table 1) [19,25].

Thus, the overall impact of low-dose metronomic chemotherapy is not simply to
save treatment costs in countries that cannot afford expensive targeted therapies or to
integrate a mostly non-approved therapy into ‘Common Sense Oncology’ [135,136]. Rather,
metronomic chemotherapy may address the weaknesses of pulsed chemotherapies, targeted
therapies, oncogene-directed, or non-oncogene ‘addicted’ therapies by targeting the tumor’s
plasticity via phenotypic editing of undruggable genetic defects in tumor cells, for example,
in AML patients with complex chromosomal aberrations, including defects in gatekeeper
genes such as TP53 mutations and PTEN downregulation, which may be counteracted with
pioglitazone [13,45,100]. Gatekeeper defective genes, e.g., aberrant expression of PTEN
could probably be normalized, as clinically suggested in r/r Hodgkin’s lymphoma, by
edited non-oncogene addiction to mTOR [13,137].

8. Examples of M-CRAC Control and Tissue Editing in the Clinical Setting

In a large series of studies, tissue editing approaches were applied for the treatment of
relapsed or refractory tumor diseases of quite different histologic origins, e.g., carcinoma,
sarcoma, and hematologic neoplasias (Table 1) [12–28]. A recent randomized trial compared
in r/r metastatic non-small cell lung cancer (NSCLC) (second-to-fifth-line treatments) such
as two biomodulatory therapy approaches, nivolumab at the approved dose level versus
metronomic low-dose chemotherapy, pioglitazone, COX-2 inhibitors, and clarithromycin.
The experimental arm failed to show superiority in progression-free survival (PFS). Never-
theless, the fact that overall survival (OS) was similar between the treatment arms gives
rise to the hypothesis that the well-tolerable biomodulatory therapy may edit and prime
tumor tissues for efficacious, consecutive immune checkpoint inhibitor (ICPi) therapy in
the experimental arm [23,138,139].

In r/r Hodgkin’s lymphoma, two cohorts of patients are retrospectively summa-
rized (Figure 3) [13,27]. Patients had either all received, at that time, approved systemic
treatments or were ineligible for standard treatment, including immune checkpoint in-
hibitors. One patient received a previous allogenic hematopoietic stem-cell transplant
(alloHSCT). The rescue therapy consisted of an all-oral tissue editing approach including
metronomic, daily, low-dose treosulfan, pioglitazone, etoricoxib, and dexamethasone, plus,
in repurposed edited tissue, everolimus 15 mg p.o. daily to achieve serum trough levels of
15 ng/mL (MEPED schedule for r/r HL). Everolimus has some but poor monoactivity in
r/r Hodgkin’s disease [140]. All patients achieved continuous, complete remission with
MEPED. After entering CR, three transplant-eligible patients underwent consolidating
alloHSCT and achieved consecutive cCR.

As shown, in Hodgkin’s lymphoma, both lymphoma cell death and M-CRAC control
may be achieved with an on-topic guided therapeutic procedure using inflammation
control, enhancement of immunosurveillance, and metabolic reprogramming [55,141]. An
earlier small series of patients showed that response to treatment positively correlated with
systemic inflammation control [27].

The addition of everolimus to pulsed standard chemotherapy in r/r HL failed to show
any beneficial clinical effect [142]. Therefore, the clinical data reveal that tissue editing
effects in r/rHL are associated with an edited non-oncogene addiction to mTOR [142]
(Figure 1).

Multisystem Langerhans cell histiocytosis (mLCH) is an inflammation-driven malig-
nant hematologic disease with strong PPARγ expression on malignant histiocytes [27,143].
A concerted anti-inflammatory, immunomodulatory, and metabolic reprogramming ap-
proach in r/r multi-system LCH with low-dose trofosfamide, etoricoxib, pioglitazone,
and low-dose dexamethasone led to long-term control; cCR was observed in cases with
involvement of the pituitary gland or meningeal involvement [16,27].
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A tissue editing approach tailored to the treatment of AML comprising low-dose
azacitidine (AZA), pioglitazone, and all-trans retinoic acid (ATRA) could induce hemato-
logic or molecular complete remission in non-promyelocytic leukemia (non-PML) AML
by inducing differentiation of blasts to granulocytes, which has also been corroborated
in vitro (Figure 3) [12,44,50]. The differentiated leukemic blasts may gain functional impor-
tance, as suggested by the resolution of fungal pneumonia during therapy. Differentiation
induction in AML blasts might provide a broad pattern of cell death pathways, like in
neutrophils [144]. As in r/r Hodgkin’s lymphoma, relapse following alloHSCT may be
rescued in AML by differentiation induction [45,47].

Response duration at different organ sites (skin versus bone marrow) was organ-
dependent in AML [46]. Recent negative results of ATRA in addition to low-dose chemother-
apy underline the important therapeutic impact of pioglitazone and azacitidine in addition
to ATRA for M-CRAC control [145].

Differential tumor tissue editing approaches for overcoming M-CRAC: The four chosen
examples of r/r tumor neoplasias treated via tumor tissue editing techniques demonstrate
the successful use of quite different editing approaches. All approaches facilitate M-CRAC
control in r/r tumor disease via concerted inflammation control in r/r LCH and r/r HL,
differentiation induction in r/r AML with adverse risk features according to European
LeukemiaNet (ELN), and the efficacious targeting of edited non-oncogene addiction in r/r
HL and melanoma with mTOR inhibitors [12,13,16,23,41,45] (Figure 3). In r/r NSCLC, an
immunomodulatory effect of the editing schedule may be suggested due to the observed
efficacy of rescue therapy with immune checkpoint inhibitors [23].

Thus, from a therapeutic point of view, the resolution or attenuation of the clinically
defined M-CRAC phenomenon is highly differentially accessible despite a uniquely arising
therapeutic problem, M-CRAC.

Clinical data on successful tumor tissue editing in r/r neoplasias descriptively sepa-
rate M-CRAC and, therefore, provide an example for knowledge-generating patient care.
Experimental studies on tumor tissue editing must still describe in more detail the concrete
mechanisms of action responsible for M-CRAC control (Figures 2 and 4). However, it is
clinically obvious that tumor tissue editing techniques may overcome M-CRAC.
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9. Addressing M-CRAC Control with a Novel Therapy Model for r/r Neoplasias

Tumor tissue editing, as clinically demonstrated, promotes therapeutic access to system-
relevant normative structures and functions (Figure 4) and reverses tumor-promoting nor-
mative functions, such as hallmarks of cancer, into biologic hallmarks controlling tumor
growth or inducing cCR in r/r tumor disease. The clinically accessible surrogates, such
as inflammation control, differentiation induction, establishment of non-oncogene addic-
tion, enhancement of immunosurveillance, or the reprogramming of tumor metabolism
(pioglitazone) reveal the possibility of selecting differential editing approaches even within
a histologic tumor type. The clinically monitored surrogates that indicate the reprogram-
ming of cancer hallmarks do not sufficiently cover the suggested activity profiles of the
used transcriptional modulators [55]. For example, pioglitazone participates in modulat-
ing metabolic processes and immunosurveillance. Alternative apoptosis pathways, like
ferroptosis, may be initiated with pioglitazone [146].

The activity profiles of the chosen biomodulatory drugs in differential tissue edit-
ing protocols may be context-dependently specified, as impressively shown for pioglita-
zone [55]. Pioglitazone and metronomic low-dose chemotherapy are the backbone in all
histologically quite different r/r neoplasias (Table 1). Therefore, tumors share intra- and
extracellular communication protocols. Tissue editing protocols provide unique accessibil-
ity in r/r hematologic and oncologic neoplasias and are the basis of context-dependently
targeting M-CRAC (Table 1).

The novel tumor model is currently primarily based on patient-reported outcomes
and clinically evaluable outcome parameters, such as the correlation of inflammation and
M-CRAC control, differentiation induction, establishment of non-oncogene addiction, or
enhancement of immune surveillance [23]. Alternative ways of tumor cell death induction
may be suggested from the known mechanisms of action of single drugs used in editing
schedules [55].

In the future, the huge repertoire of biomodulatory active drugs could expand, de-
pendent on novel editing-relevant surrogates, the reprogramming of cancer hallmarks
and ways of oncogenic stress response. Accordingly, novel biomodulatory combinations
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may be established and drug repurposing exploited, particularly with respect to edited
non-oncogene addiction (Table 1, Figure 1) [37,147]. Molecular imaging, imaging-based
3D invasion culture, imaging mass cytometry and ‘omic’ technologies could be pivotal
techniques for studying mechanisms involved in providing therapeutically relevant tu-
mor plasticity and for guiding the appropriate selection of biomodulatory active drugs
addressing the M-CRAC problem (Figure 4) [148–152].

The new therapy model represents a substantial advancement as complete remission
or continuous complete remission may be achieved in histologically quite different r/r
neoplsias, i.e., r/r non-PML AML, RCCC, angiosarcoma, cholangiocellular carcinoma,
HL, and mLCH [13,16,24–26,45]. If long-term disease control is the best response to tis-
sue editing protocols, competitive classic maintenance or rescue therapies are available,
particularly in tumors with druggable driver mutations or high tumor mutational bur-
den [23,153–155]. However, a general advantage of tissue editing approaches is modest
toxicity, as exemplified in a randomized trial for r/r hepatocellular carcinoma in compari-
son to nivolumab [23]. Classic maintenance therapies may also show interesting biologic
effects, such as an impact on consecutive progression-free survival (PFS2), e.g., in multiple
myeloma, or an improvement in overall survival, as exemplarily shown for non-small cell
lung cancer [153,154].

10. Patient Selection Criteria for Treatment with Tumor Tissue Editing Approaches

Regulatory authorities cannot approve tumor tissue editing approaches due to missing
phase III trials. The first randomized phase III trial by Patil et al. might lead to the approval
of metronomic chemotherapy plus a reduced dose of nivolumab combined with erlotinib
in relapsed head and neck cancer. The presented trials are phase I and II trials for relapsed
and refractory neoplasias. Thus, only individual treatment concepts can be an indication
for tumor tissue editing approaches. The formal establishment of differential tumor tissue
editing techniques urgently requires larger phase II or III trials.

11. Conclusions and Future Directions

The oncogenic potential of systemic tumor therapies, as reflected by the promotion of
metastases, tumor repopulation, acquired cancer cell resistance, and genetic heterogeneity
(M-CRAC), poses a crucial barrier to long-term survival in metastatic cancer. Successful
patient care in refractory or relapsed neoplasias with a unique therapeutic principle, tumor
tissue editing, facilitated clinically separating the oncogenic potential of M-CRAC as a
phenomenon that arises as a post-therapeutic disease. Tumor tissue editing successfully
resolves M-CRAC or bypasses M-CRAC with differentiation induction (Table 1). Moreover,
clinical data on M-CRAC control additionally reveal that heterogeneous types of macro-
metastasis and organ parenchymal interfaces promoting tumor invasion may be controlled
or resolved by tissue editing techniques [156].

Tumor tissue editing may achieve both tumor cell death and M-CRAC control by using
on-topic guided editing techniques. These techniques encompass differentiation induction,
inflammation control, enhancement of immunosurveillance, and metabolic reprogramming
with pioglitazone [55,141,157]. Resistance mechanisms, developing in response to quali-
tatively quite different preceding systemic or local radiotherapies, may be controlled by
editing techniques, as exemplified in r/r AML and r/r Hodgkin’s lymphoma [12,13,44–47].

Weiss et al. identified shared nodules promoting metastasis and therapy resistance in
tumors and suggested new opportunities to improve tumor therapy with novel therapeutic
strategies [11]. Clinical trials on tissue editing in relapsed or refractory tumor diseases with
different histologies now indicate that the novel biomodulatory strategies may overcome
significant obstacles to long-term disease control induced by pulsed standard therapies.

Successfully introduced tissue editing schedules reveal that editing must be specifically
adapted according to tumor histology. Nevertheless, histologically different neoplasias
share common patterns of targets for the unique therapeutic reprogramming of cancer
hallmarks with respective differential recombination of transcriptional modulators (Table 1).
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Stress response to low-dose metronomic chemotherapy is suggested to be a prerequisite
for the differential combined activity of transcriptional modulators or for the concertedly
edited stress response, referred to as non-oncogene addiction [133,158].

Tissue editing identifies M-CRAC as a unique disease trait by reversing tumor pro-
moting hallmarks of cancer into biologic hallmarks, controlling, resolving, or bypassing
M-CRAC. The clinical results give hints on mechanisms of action as indicated by clinical sur-
rogates, inflammation control, differentiation induction and establishment of non-oncogene
addiction. The shared ‘tissue nodes’ promoting M-CRAC are objects for further research.

The novel therapy model addressing M-CRAC control may initialize multileveled,
clinically linked studies on tumor tissue editing for deciphering communicative networks
that provide tumor-inherent therapeutic plasticity as a prerequisite for successful editing
(Figure 4). Biomodulatory drug combinations may therapeutically disturb the tumor’s
novel, evolved homeostatic mechanisms for managing the stress response [132]. Targeting
tumor cell survival with tumor tissue editing techniques shows promise for principally
controlling M-CRAC and for inducing tumor cell death with biomodulatory therapeutic
techniques.

Designing tissue editing therapies is just the beginning, and novel concepts may
include quite different drugs, including immunotherapeutics. Immunotherapy could be
applied in novel settings to promote synergistic potency and efficacy with novel biomodu-
latory tumor tissue reprogramming, i.e., ‘pro-anakoinotic’ therapy schedules [40,57].

In addition, the control of the M-CRAC disease traits following classic induction
therapies warrants the evaluation of differential tissue editing approaches. The introduction
of M-CRAC control in future therapeutic considerations may help overcome the multifold
translational challenges of precision medicine by repurposing targeted therapies. Such
therapy approaches could be beneficial for the very large group of r/r tumor diseases
without driver mutations [159–162].
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