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A B S T R A C T   

In recent years, research on long non-coding RNAs (lncRNAs) has gained considerable attention due to the 
increasing number of newly identified transcripts. Several characteristics make their functional evaluation 
challenging, which called for the urgent need to combine molecular biology with other disciplines, including 
bioinformatics. Indeed, the recent development of computational pipelines and resources has greatly facilitated 
both the discovery and the mechanisms of action of lncRNAs. In this review, we present a curated collection of 
the most recent computational resources, which have been categorized into distinct groups: databases and 
annotation, identification and classification, interaction prediction, and structure prediction. As the repertoire of 
lncRNAs and their analysis tools continues to expand over the years, standardizing the computational pipelines 
and improving the existing annotation of lncRNAs will be crucial to facilitate functional genomics studies.   

1. Introduction 

The need to decode the complexity of living beings in terms of ge-
netic information has recently challenged the field of molecular biology 
and absorbed part of the scientific interests into the study of the genome 
“dark side ” [1]. This called for massive efforts into the development and 
use of high-throughput sequencing methods culminating with the dis-
covery of a significant fraction of non-coding (nc) genes, estimated as 
17,948 according to RefSeq [2] and 19,933 in GENCODE v6 [3]. Further 
interpretation of these loci [4,5] has led to a comprehensive mapping of 
their functions, which revealed the presence of a large number of reg-
ulatory elements (i.e. promoters, enhancers, silencers, insulators) and 
ncRNAs. More recent improvements in the high-throughput RNA 
sequencing technologies further expanded this collection and have put 
the spotlight on the class of long ncRNAs (lncRNAs). LncRNA represents 
a heterogeneous class of RNA-Pol II non-coding transcripts (more than 
500 nt), which have attracted increasing attention of the biomedical 
research because of their huge assortment, number, and sequence 
versatility [6]. A number of genome editing approaches were applied for 
the generation of adequate animal model systems in which the func-
tional significance of these RNAs was analyzed in vivo [7]. It emerged 
that, depending on their specific expression, subcellular distribution 

(nuclear and/or cytoplasmic) and interaction with other macromole-
cules, these RNAs can be integrated in signaling pathways controlling 
several physiological processes, such as cell fate, cell growth and dif-
ferentiation or tissue and organ development [8]. Consequently, mul-
tiple lines of evidence link changes in lncRNA activity or abundance to 
various human diseases, especially cancer, cardiovascular and neuro-
degenerative disorders [9–11]. 

Mechanistically, lncRNAs exert their biological functions through a 
wide-range of transcriptional and post-transcriptional mechanisms [12, 
13] (Fig. 1). The functional plasticity of these molecules is supported by 
their distinctive chemical nature, enabling them to serve as scaffolds for 
RNA, DNA and protein partners in specific cellular compartments 
[14–18]. 

From these considerations, it follows that lncRNA studies can benefit 
the combination of molecular with genomics and transcriptomics ap-
proaches. Indeed, bioinformatics can provide a potent set of tools for 
lncRNA identification within the genomes of different species thus of-
fering a new window to infer their function, in both health and disease 
states. Several tools have been developed to analyze massive data 
generated by Next Generation Sequencing (NGS) technologies for the de 
novo discovery of lncRNAs; other computational strategies can help in 
assessing the genomic location, predicting the structure, thus aiding the 
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interpretation of the potential lncRNA functions. Furthermore, other in 
silico tools able to predict the interactions between lncRNAs and other 
biomolecules can be widely used to provide insights into the study of 
lncRNA-mediated biological networks. Finally, integrating prior 
knowledge with lncRNA expression data and identifying differentially 
expressed lncRNAs that participate in specific cellular pathways are 
useful approaches for studying these molecules effectively. 

In this review, we summarize the collection of computational re-
sources available for facilitating lncRNA research, classifying them into 
several categories to support annotation, classification, RNA/protein 
interactions, and structure analyses. Some of these tools have multiple 
features or functions and will be classified according to their primary 
use. 

2. Results 

2.1. Databases and annotation 

Public databases are pivotal sources of scientific content. Annotation 
tools and resources offer the possibility to classify, standardize nomen-
clature by cross-referencing other databases and retrieve functional in-
formation about any given manually or computationally curated 
biological entities. In the last decade, many databases have been 
implemented with multiple ncRNA notions, such as sequences, in-
teractions, and gene ontologies. In this direction, a huge international 
effort recently led to build RNAcentral [27], a comprehensive 

aggregator database aiming to provide a reference resource of sequences 
and annotations for researchers studying ncRNAs. Currently, the data-
base stores over 35 million unique sequences from over 170,000 or-
ganisms and it contains annotations for almost all types of ncRNAs, 
including transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small 
nucleolar RNAs (snoRNAs), microRNAs (miRNAs) and lncRNAs. In 
RNAcentral, annotations are provided by expert curators and extracted 
from a variety of sources, including literature and experimental data, 
with cross-references to other resources. Importantly, a total of 51 da-
tabases are imported into RNAcentral, including some that are 
completely dedicated to lncRNA information, such as EVLncRNAs [28], 
LncBase [29], LncBook [30], LNCipedia [31] and lncRNAdb [32]. Users 
can mine RNAcentral by sequence, identifier, or keyword and can access 
a variety of tools for analyzing and visualizing data. RNAcentral also 
provides web services and application programming interfaces (APIs) 
that allow integration with other in silico resources. Among the RNA-
central hosted databases, LncBook and LNCipedia represent invaluable 
tools for lncRNA annotation [30,31]. Specifically, LncBook stores 95, 
243 human lncRNA genes, which are integrated with annotations at 
different omic levels, such as their conservation across species, nucleo-
tide variations, methylation, expression and interactions with miRNA 
and proteins. Other tools allow the users to perform identifier conver-
sion across different databases, compute the coding potential and check 
the genomic location of lncRNAs. LNCipedia cures the collection of 56, 
946 lncRNA genes and facilitates both literature search and the down-
load of tracks for genome browsers, such as IGV and UCSC. 

Fig. 1. Mechanisms of action of lncRNAs. Cytoplasmic-enriched lncRNAs (a, b) can regulate mRNA translation and stability [15,16,19], or act as templates for 
micro-peptides [20,21]. Nuclear-enriched lncRNAs (c-i) can act as enhancers [22], guides [23], decoy molecules [24], or chromatin architects [25,26], by the 
interaction with a variety of transcription factors and epigenetic effectors, typically including DNA methyltransferases, histone-modifying, or chromatin remodel-
ing enzymes. 
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The functional importance of lncRNA-mediated networks and in-
teractions has recently led systems biology to develop tools for data 
storing and integration. In this direction, the database RAIN (RNA- 
protein Association and Interaction Networks) [33] stores lncRNA-RNA 
and lncRNA-protein interaction data integrated with the protein-protein 
interaction STRING database [34], thus facilitating the exploration of 
regulatory networks involving lncRNAs. Similarly, ncFANs [35] is a 
web-based resource for functional annotation of lncRNAs that imple-
ments three distinct functional modules, for i) retrieving 
ncRNAs-protein coding genes relations, ii) identifying enhancer-derived 
lncRNAs, and iii) performing functional annotation through 
microarray-based analysis. Users are allowed to access information 
related to the expression of annotated lncRNAs and interaction networks 
in both physiological and pathological contexts, with a particular 
emphasis on cancer. 

Other freely available databases include NPInter [36], which pro-
vides comprehensive annotations of lncRNA-protein interactions (i.e. 
binding affinity, localization, and function) in multiple species, 
including human, mice, and rats. It also includes lncRNA-DNA in-
teractions obtained through the Chromatin Isolation by RNA Purifica-
tion (ChIRP-seq) technique, as well as interactions involving circular 
RNAs. Furthermore, disease associations have been incorporated into 
the database. Another resource that integrates experimentally validated 
and computationally predicted RNA interactions from literature mining 
and databases is RNAInter4.0 [37]. RNAInter4.0 provides information 
about various types of interactions across 8 different taxa, including 
RNA-RNA, RNA-protein, RNA-DNA, RNA-compound, and RNA-histone 
modification interactions. 

Furthermore, RNA-Chrom [38] is a recently established database 
that provides manually curated information on RNA-chromatin in-
teractions. This valuable resource contains the coordinates of billions of 
chromatin interactions involving thousands of RNAs from human and 
mouse. Despite the progress made so far, novel experimental methods 
for identifying lncRNA interactions continue to be time-consuming and 
costly. Manually annotated databases, therefore, promote the develop-
ment of computational approaches that serve as a complementary 
strategy to facilitate experimental work [39]. Importantly, annotation of 
any genetic sequences, including lncRNAs, can be found in the NCBI 
GeneBank database [40], a publicly accessible repository containing 
nucleotide sequences, as well as gene expression data and genetic 
variation data from a variety of organisms, including viruses, bacteria, 
fungi, plants, and animals. 

Some of the available resources let users also explore RNA-RNA in-
teractions, thus helping in the relations between lncRNAs and other 
types of short and long RNAs. An example is RISE (RNA Interactome 
from Sequencing Experiments) [41], a repository of 328,811 RNA-RNA 
interactions built from experimental (transcriptome-wide and targeted 
studies) and in silico data taken from other sources, such as NPInter [36], 
RAIN [33] and RAID [42] databases. RISE includes data from human, 
mouse, and yeast, and provides a web interface with a search box in 
which users are allowed to retrieve information on RNA-RNA in-
teractions for a specific species in both graph and tabular forms. 
LncRRIsearch [43] is a web server in which users can input a query and a 
target RNA by its gene/transcript name or ID and choose between 
human or mouse species. Finally, the web server TANRIC (The Atlas of 
non-coding RNA in Cancer) [44] integrates gene expression data from 
multiple cancer types, mostly by the Cancer Genome Atlas project to 
explore the correlation between lncRNA expression and clinical meta-
data, within and across the different tumor types. 

Growing evidence suggests that subcellular localization of lncRNAs 
could offer insights into their functionality. On this direction, in 2018 
the database lncSLdb [45] was introduced with the aim of enhancing our 
understanding of the subcellular localization of lncRNAs. This resource 
was established to store and effectively manage qualitative and quan-
titative subcellular localization data of lncRNAs obtained through 
literature mining, thereby contributing to the expansion of knowledge in 

this field. Here, the authors have classified the transcripts into three 
fundamental localization types (nucleus, cytoplasm, and nucleus/cyto-
plasm) based on the accumulated regions of lncRNAs. Because of the 
scarcity of experimental data, various algorithms have also been 
developed to predict and annotate the subcellular localization of 
lncRNAs, including lncLocation [46], GM-lncLoc [47], and GraphLncLoc 
[48]. In perspective, standardization of both annotation and nomen-
clature, will improve the lncRNA knowledge and will advantage the 
integration of large volumes of lncRNA data from different sources. 
Using multiple tools and resources in combination could enhance the 
accuracy of the retrieved information. 

2.2. Identification, classification and annotation 

De novo identification of lncRNAs poses a challenging and non-trivial 
task which often requires a combination of both experimental and 
computational methodologies. One popular approach involves utilizing 
transcriptome assembly techniques that rely on high-throughput RNA 
sequencing (RNA-seq) data. These methodologies rely on de novo as-
sembly algorithms, such as Trinity [49], Oases [50] or SPAdes [51]. To 
identify bona fide non-coding RNAs, the assembled transcripts can be 
further filtered based on other specific criteria, such as transcript length, 
exon-intron structure, and protein-coding potential [52], often using 
and combining two or more different tools. 

The tools available for lncRNA annotation and coding-potential 
assessment, which are currently operational at the time of manuscript 
writing, are enlisted in Table 1. 

Most of the available tools for the assessment of the coding potential 
of lncRNAs utilize primary sequence and/or structural information. For 
instance, CPAT (Coding Potential Assessment Tool)[53], is a machine 
learning-based tool that leverages sequence features to distinguish be-
tween coding and non-coding RNAs. CPAT assists the discovery of 
lncRNA from transcriptomic data employing a logistic regression model 
in a selected list of organisms by providing sequences in FASTA or BED 
formats. Other tools employ alignment-free methodologies and integrate 
several molecular features. One example is FEELnc (FlExible Extraction 
of LncRNAs)[54], a tool for lncRNA annotation which classifies tran-
scripts as protein-coding or non-coding through a Random Forest model. 
FEELnc integrates multiple features, including sequence conservation, 
secondary structure, and the length of potential open reading frames 
(ORF). Another alignment-free tool is PLEK (predictor of long 
non-coding RNAs and messenger RNAs based on an improved k-mer 
scheme) [55]. PLEK is an open-source computational resource that uses 
a k-mer scheme and a support vector machine (SVM) algorithm to 
identify lncRNAs in the absence of genomic sequences or annotations. Li 
and co-authors recommend its preferable use with PacBio or 454 
sequencing data and large-scale transcriptome data. Another example is 
COME (coding potential calculator based on multiple features) [56], 
which is based on the observation that lncRNAs generally lack coding 
potential and do not have significant sequence similarity with 
protein-coding genes. This resource applies a supervised model to 
identify lncRNAs from sequence features and experimental evidence by 
using a decompose-compose method. 

Other tools utilize RNAseq data for lncRNA identification. Among 
them lncEvo [63] is a tool for the identification and conservation of 
lncRNAs which uses a workflow made of three major tasks: tran-
scriptome assembly from RNAseq data, prediction of lncRNA, and 
genome-wide analysis of lncRNA conservation between two species. 

EVlncRNA-pred [57] is a three-layered deep-learning neural 
network-based tool that distinguishes lncRNAs validated by high- from 
those derived from low-throughput experiments often causing 
sequencing noise, excluding coding transcripts. A specific module of this 
algorithm, named EVlncRNA-Dpred, is also available as a webserver, 
and uses a GTF annotation file as input. LncRScan-SVM [58] is a ma-
chine learning-based approach that uses a SVM algorithm to predict 
whether a transcript is protein-coding or not. By using a combination of 
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gene structure, transcript sequence, potential codon sequence and con-
servation, LncRScan-SVM produces a score which is used for calculation 
of coding/non-coding potential. A different approach is undertaken by 
PhyloCSF (Phylogenetic Codon Substitution Frequencies) [59], a 
comparative genomics-based tool that predicts the coding potential 
based on evolutionary conservation. To distinguish between coding and 
non-coding sequences, PhyloCSF uses two phylogenetic models, one for 
predicting the evolution of codons into coding genetic material, and the 
other for the evolution of codons into non-coding genes. 

RNAcode [60] is a program aimed at detecting coding regions in 
multiple sequence alignments. Differently from other methods, it does 
not rely on the use of any machine learning components, as it is based on 
universal evolutionary signatures of coding sequence. 

Collectively, these tools can identify lncRNAs by incorporating 
diverse features, such as primary sequences of RNAs and other infor-
mation, including multiple sequence alignments. Frequently, a machine 
learning methodology underpins each of these tools to facilitate the 
training and construction of a model, which can accurately infer the 
coding potential. Many of these methods have been extensively 
compared [64] as a guide to their use. In fact, as these tools can be 
sensitive to the quality of transcriptome assembly or to the intrinsic 
features of the targeted RNAs, their choice must rely on the specific 
research purposes and data type. The combination of multiple tools is 
also beneficial. 

LncRNA genes can also be identified by other functional character-
istics, such as the presence of neighboring transcription factor binding 
sites or their proximity to specific chromatin domains. 

Several web servers and tools have been developed to help in deci-
phering the functions of lncRNAs. These tools, which include Co- 
LncRNA [65], Lnc-GFP [66], and FARNA [67], can be used to predict 
the function of selected lncRNAs using RNA-seq data and to examine 
their expression correlation with mRNAs. LnCompare [61] provides the 
opportunity to analyze lncRNA set features through distinct modules: 
one for comparing two sets of lncRNAs to identify significantly different 
features; the other for retrieving a set of lncRNAs that are similar to 
user-defined query genes. LncSEA [62] integrates various available re-
sources of human lncRNAs to allow users to perform annotation and 
enrichment analyses on the submitted lncRNA lists. In its latest version, 
LncSEA provides support for over 400,000 reference sets, which have 
been categorized (n = 33) into downstream (e.g., chromatin, RNA or 

protein interactions, eQTLs) or upstream regulators of the lncRNA 
functions thanks to the integration of TF-ChIP-seq, DNase-seq, ATAC-seq 
and H3K27ac-ChIP-seq data. Results from gene set enrichment analyses 
are provided within a web interface, requiring a list of lncRNAs and the 
adjustment of a few user-defined statistical parameters. 

Overall, various bioinformatics and biostatistics methodologies can 
be employed in conjunction with experimental approaches, even if an 
exploration of these methodologies is beyond the scope of this review. 
However, experimental approaches aimed at identifying lncRNAs at 
both genome and transcriptome levels could be needed for a definitive 
identification of lncRNAs and their and annotation on public 
repositories. 

2.3. Predicting interactions of lncRNAs with proteins or nucleic acids 

LncRNAs regulate gene expression through interactions with other 
molecules. For instance, they can engage with proteins in several ways, 
including direct binding, recruiting proteins to specific genomic loci, and 
regulating protein function, in both the nuclear and cytoplasmic com-
partments [6]. Therefore, predicting the protein partners of lncRNAs is 
vital for understanding their role in any given biological and molecular 
context. 

Henceforth, we list some available bioinformatic tools for predicting 
lncRNA-protein interactions (Table 2), which are also reviewed in [68]. 
Most of the available methods are based on the analysis of the primary 
sequence of either the RNA or the protein provided as inputs. Some of 
them also consider some structural features or differ in the machine 
learning algorithm leveraged for training the model and making 
predictions. 

RPISeq [69] is an example of computational tool that predicts 
RNA-protein interactions by using sequence-derived information. The 
method generates a set of features from the RNA and protein sequences, 
which are then used to train two classifiers, a SVM and a Random Forest 
(RF), on a set of known RNA-protein interactions. Once trained, the 
classifier can be used to predict the likelihood of RNA and protein in-
teractions between any sequences, regardless of the organism of origin. 
RPITER [70] is a hierarchical deep learning-based framework which 
feeds an algorithm consisting of four ensemble-integrated basic modules 
with the RNA and protein sequences as input. 

BGFE [78] is a sequence-based method that uses a Stacked 

Table 1 
Tools and resources for de novo annotation and functional analysis of lncRNAs.  

TOOL NAME ACRONYM MODEL/METHOD WEB LINK REFERENCE NOTES 

Coding Potential Assessment Tool CPAT Logistic regression https://code.google.com/archive/p/ 
cpat/ 
https://rna-cpat.sourceforge.net/ 

[53] It requires programming skills. BED or 
FASTA files required as input 

FlExible Extraction of LncRNAs FEELnc Random Forest https://github.com/tderrien/FEELnc [54] It requires programming skills. GTF or 
FASTA files required as input 

Predictor of long non-coding RNAs 
and messenger RNAs based on an 
improved k-mer scheme 

PLEK k-mer and Support 
Vector Machine 

http://202.200.112.245/plek/ [55] It requires programming skills. FASTA file 
required as input 

Coding Potential Calculator, lncRNA 
Orthologs and Multiple Evidence 

COME - https://github.com/lulab/COME [56] It requires programming skills. GTF file 
required as input 

EVlncRNA-pred - Multilayer Neural 
Network 

http://biophy.dzu.edu.cn/ 
lncrnapred/index.html 

[57] No programming skills are required. A GTF 
annotation file is required as input. 

lncRScan-SVM - Support Vector 
Machine 

- [58] It requires programming skills. GTF and 
FASTA files required as input 

Phylogenetic Codon Substitution 
Frequencies 

PhyloCSF Phylogenetic codon 
substitution 
frequency 

https://data.broadinstitute.org/ 
compbio1/PhyloCSFtracks/ 
trackHub/hub.DOC.html 
https://github.com/mlin/PhyloCSF/ 
wiki 

[59] It requires programming skills. Scores for 
selected phylogenies may be displayed with 
the UCSC genome browser 

RNAcode - Support Vector 
Machine 

https://github.com/ViennaRNA/ 
RNAcode 

[60] Provided as both software and web services 

LnCompare LnCompare - http://www.rnanut.net/lncompare/ [61] It allows the functional comparison 
between two sets of lncRNA 

LncSEA LncSEA - https://bio.liclab.net/LncSEA/ [62] Gene set and functional enrichment 
analysis on lncRNAs  
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auto-encoder network together with a RF classifier as model. The model 
is primarily fed with ncRNA sequences that are represented by a k-mers 
sparse matrix, then a singular value decomposition (SVD) is used to 
extract feature vectors from this matrix. Evolutionary information is 
extracted from protein sequences through a PSSM, and a bi-gram algo-
rithm used to extract feature vectors from the matrices. Finally, a RF 
classifier is fed with the data to predict the putative ncRNA-protein 
interaction. 

RBPsuite [81] is a webserver designed to predict RNA-binding pro-
tein (RBP) binding sites on both linear and circular RNAs using a deep 
learning approach. Non-deep-learning-based tools include omiXcore 
[82] and SMARTIV [83]. OmiXcore is an RBP-general method, which 
employs a non-linear algorithm on pooled RNA-protein interactions, 
accepting protein and large RNA sequences as input. SMARTIV requires 

a set of RNA sequences in BED format and utilizes Hidden Markov Model 
(HMM) to find the enriched sequence and structural motifs from in vivo 
binding data. 

DM-RPIs (Deep Mining ncRNA-Protein Interactions) [71] uses RNA 
and protein sequences as input to predict the probability of their inter-
action. The model is based on three machine learning classifiers, namely 
SVM, RF, and Convolutional Neural Network (CNN), which are sepa-
rately trained as individual predictors and then integrated using a 
stacked ensemble strategy. EDLMFC (Ensemble deep learning frame-
work with multi-scale features combination) [72] is a computational 
methodology predicting ncRNA-protein interactions by combination of 
multiple features, including primary sequences or RNA and protein 
structures. These features are learned by layered networks, including 
CNN and “Bidirectional Long Short-Term Memory” (BLSTM). 

Table 2 
Tools and resources for the prediction of protein and nucleic acids lncRNA-interactions.  

NAME ACRONYM MODEL/METHOD WEB-LINK REFERENCE NOTES 

RNA-protein interactions using 
only Sequence information 

RPISeq SVM or RF http://pridb.gdcb.iastate.edu/ 
RPISeq/ 

[69] It requires protein and RNA 
sequences in plain text format as 
input 

RPITER RPITER CNN with stacked auto-encoder https://github.com/Pengeace/ 
RPITER 

[70] It requires python language 
programming 

Deep Mining ncRNA-Protein 
Interactions 

DM-RPIs SVM, RF, CNN with Deep Stacking 
Auto-encoders Networks 

- [71] Methods provided within the article 

Ensemble deep learning 
framework with multi-scale 
features combination 

EDLMFC Ensemble deep learning with CNN 
and bi-directional long short-term 
memory network (BLSTM) 

https://github.com/ 
JingjingWang-87/EDLMFC 

[72] It requires python language 
programming 

Interaction Pattern Miner IPMiner stacked autoencoder, RF https://github.com/ 
xypan1232/IPMiner 

[73] It requires python language 
programming 

Prediction of lncRNA-Protein 
Interactions using HeteSim 
Scores 

PLPIHS HeteSim Scores and SVM - [74] Methods provided within the article 

HLPI-Ensemble - SVM, RF, XGB http://112.126.70.33/ 
hlpiensemble/prediction.php 

[75] It requires protein and RNA 
sequences in plain text format as 
input 

RPI-SE RPI-SE Stacked ensemble https://github.com/ 
haichengyi/RPI-SE 

[76] It requires python language 
programming 

Predicting Long Non-Coding RNA 
and Protein Interaction Using 
Graph Regularized Nonnegative 
Matrix Factorization 

LPGNMF graph regularized nonnegative 
matrix factorization (LPGNMF) 

- [77] Methods provided within the article 

BGFE BGFE RF, stacked auto-encoder network - [78] Methods provided within the article 
catRAPID catRAPID 

signature/ 
omics 

Methods provided within the 
articles and website 

http://s.tartaglialab.com/page/ 
catrapid_group 

[79,80] It requires protein and RNA 
sequences in plain text format as 
input and the setting of user- 
defined parameters 

RBPsuite RBPsuite iDeepS (CNNs and LSTMs), and 
CRIP (stacked codon-based 
encoding scheme, CNN and a 
biLSTM) 

http://www.csbio.sjtu.edu.cn/ 
bioinf/RBPsuite/ 

[81] It requires RNA sequence in plain 
text format as input and the setting 
of user-defined parameters 

omiXcore omiXcore - http://service.tartaglialab.com/ 
update_submission/742489/ 
8e5af8ea58 

[82] Web server. It requires protein and 
RNA sequences in plain text format 
as input. No programming skills 
required 

Sequence and structure motif 
enrichment analysis for ranked 
RNA data from in vivo binding 
experiments 

SMARTIV - http://smartiv.technion.ac.il/ [83] Web server. It requires RNA 
sequence in BED or FASTA formats. 

Protein-RNA Interaction by 
Structure-informed Modeling 
using deep neural NETwork 

PrismNet Software and architecture provided 
within the original article 

https://github.com/kuixu/ 
PrismNet 

[84] It requires programming language 
skills 

LncADeep LncADeep deep belief network (DBN) for 
lncRNAs identification, and deep 
neural networks for lncRNAs 
functional annotation 

https://github.com/cyang235/ 
LncADeep 

[85] It requires programming language 
skills. Files in FASTA format 
required for both lncRNAs 
identification and annotation 

miRanda miRanda Smith-Waterman-like algorithm https://bioweb.pasteur.fr/ 
packages/ 
pack@miRanda@3.3a 

[86] Programming skills required. 

TargetScan TargetScan CNN https://www.targetscan.org/ 
vert_80/ 

[87] Web server. It requires genes or 
miRNA identifiers as input, and 
setting user-defined parameters 

Mienturnet Mienturnet over-representation of miRNA- 
target interactions (from 
TargetScan and miRTarBase data) 

http://userver.bio.uniroma1.it/ 
apps/mienturnet/ 

[88] Web server. It requires gene or 
miRNA identifiers as input.  
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IPMiner (Interaction Pattern Miner) [73] is a tool based on deep 
learning and stacked ensembling with a reported high prediction per-
formance achieved by integrating different predictors. Instead, PLPIHS 
(Prediction of lncRNA-Protein Interactions using HeteSim Scores) [74] 
improves the accuracy of predictions by utilizing a learning framework 
combined with HeteSim measurements. Specifically, the model first 
builds a heterogeneous network based on lncRNA-lncRNA similarity, 
lncRNA-protein association, and protein-protein interaction networks. 
Then, PLPIHS calculates the similarity score using the HeteSim metric 
for each pair of lncRNA-protein associations, under each path. Finally, 
an SVM classifier is built with the HeteSim scores to predict 
lncRNA-protein interactions. 

HLPI-Ensemble [75] is a method designed specifically for human 
lncRNA-protein interactions, onto which the model is trained. 
HLPI-Ensemble adopts an ensemble strategy based on the combination 
of three different machine learning algorithms: SVM, RF, and Extreme 
Gradient Boosting (XGB). RPI-SE [76] upgrades the previous RPI-SAN by 
integrating the Gradient Boosting Decision Tree, SVM and Extremely 
Randomized Trees (ExtraTree) algorithms. Position weighted matrix 
and k-mer sparse matrix first mine features from protein and RNA se-
quences, then a stacking ensemble approach is used to integrate the 
predictors. 

LPGNMF (Predicting Long Non-Coding RNA and Protein Interaction 
Using Graph Regularized Nonnegative Matrix Factorization) [77], is a 
tool designed to capture complex relationships between lncRNAs and 
proteins. Unlike other tools, it uses as input the quantitative expression 
levels of lncRNAs and proteins in in their respective biological context. 
The obtained matrix is factorized into two non-negative matrices, rep-
resenting the latent features of lncRNAs and proteins, respectively. 
These features are subsequently used to calculate the “similarity score”, 
as the likelihood of interaction of a given lncRNA-protein pair. 

catRAPID [89] computes protein-RNA interaction propensities tak-
ing into consideration not only primary (RNA and protein) sequence 
information but also other biochemical features, including secondary 
structures, hydrogen bonding, and van der Waals forces. Users are 
allowed to choose a specific implementation to reconstruct the inter-
action score for protein-RNA pairs or rank the fragments of long protein 
and RNA sequences according to the predicted interaction strength. It 
has been recently upgraded to catRAPID omics 2.0 [80], which is a 
webserver that allows users to input protein or RNA sequences to 
calculate the interaction scores. In the last upgrade, it is also possible to 
predict the interactions between a custom protein set and a custom RNA 
set, and to display the predicted binding sites for both protein and RNA 
sequences. 

PrismNet (Protein-RNA Interaction by Structure-informed Modeling 
using deep neural NETwork) [84] is another deep learning-based tool 
that integrates RNA structure data and RBP binding data to predict RBP 
binding sites at the nucleotide level. 

LncADeep [85] is a tool for both the annotation and the prediction of 
lncRNA interactions with proteins. It is based on a deep neural network 
architecture and takes, as input, the sequences of the lncRNA and pro-
tein molecules, as well as their predicted secondary structures. It uses a 
neural network model trained on a dataset of known lncRNA-protein 
interactions. Once the model is trained, it can be used to predict the 
likelihood of interaction between any given lncRNA and protein. 

One key aspect of lncRNAs relies on their ability to functionally bind 
not only to proteins but also to nucleic acid sequences, including other 
RNA molecules. This binding capacity is reflected in their functioning as 
post-transcriptional regulators, being able to influence the expression of 
distinct genes directly or indirectly. Notoriously, lncRNAs can function 
as sponges for miRNAs [90–93], hence regulating the expression of 
target genes at a post-transcriptional level. Different tools have been 
developed to infer miRNA binding sites on nucleic acid sequences, such 
as miRanda [86], TargetScan [87] and Mienturnet [88]. MiRanda is an 
algorithm for the prediction on miRNA binding sites on genomic se-
quences based on sequence complementarity and the thermodynamic 

stability of RNA duplexes. TargetScan is a tool for the prediction of 
miRNA target sites that are conserved in 3′ UTRs, also offering 
customized methods for ranking the predictions. Mienturnet is a web- 
and R-based tool that enables the discovery of miRNA binding sites on 
RNAs. Given a list of miRNAs or genes, it can output computationally 
predicted or experimentally validated miRNA-target interactions. 

In line with this, the output may serve as a starting point for con-
ducting further experimental validations, such as performing cross- 
linking immunoprecipitation (CLIP) or reciprocal RNA pull-down ap-
proaches [94,95]. 

All these tools enable the prediction of putative interactions between 
lncRNAs and proteins or nucleic acids. Since the accuracy of these tools 
can vary depending on several aspects, including the datasets used for 
training, it is advisable to proceed with caution when inferring in-
teractions with other molecular entities. 

2.4. Structure prediction and comparison 

The formation of RNA secondary structures has been shown to drive 
the scaffolding activities of lncRNAs [18,96]. In fact, the spatial 
arrangement achieved through dynamic base-pairing interactions can 
facilitate interactions of lncRNAs with distinct molecules, thus forming 
proper ribonucleoprotein hubs for the downstream modulation of gene 
expression. Secondary structures are also important for their localiza-
tion within the cell, and for the stability of the lncRNA in its cellular 
context [97,98]. 

Although necessary, experimental procedures aimed at assessing the 
RNAs secondary structure can be time-consuming and expensive, lead-
ing to an increasing demand for automated tools to facilitate structure 
prediction. Considering this need, a plethora of algorithms and online 
resources have emerged in recent years, and can be used for studying 
RNA, and more specifically, lncRNAs (Table 3). 

One of the most popular resources is ViennaRNA Web Services [99], 
a server providing a suite of online tools, including some for RNA sec-
ondary structure prediction and analysis. The resource is based on the 
ViennaRNA package, a set of programs dedicated to RNA secondary 
structure prediction, RNA folding kinetics, and RNA-RNA interaction 
prediction. ViennaRNA offers several online tools, including RNAfold, a 
popular tool for predicting the secondary structure of RNAs using the 
minimum free energy (MFE) method to predict the most stable sec-
ondary structure for a given RNA sequence. RNAstructure [100] repre-
sents another option and a web server has been developed to lend 
accessibility to non-expert users. 

One major problem in predicting the secondary structure of lncRNAs 
is the existence of pseudoknots, which are complex secondary structures 
that arise when a single-stranded loop in the RNA base-pairs with 
another RNA region which is not adjacent in the primary sequence. The 
result is a structure in which two or more stem-loop structures are 
interlinked and create a “knot-like” appearance. PknotsRG [101], IPknot 
[112], Iterative HFold [102] and Rtools [104], incorporate specific al-
gorithms to predict pseudoknot structures. In addition, Rtips (RNA 
sTructure prediction using IP Scheme) [106] is a web server in which 
IPknot is combined with RactIP [106], the latter for predicting 
RNA-RNA interactions with kissing hairpins. Other methodologies, like 
Knotify+ [105], address pseudoknots prediction by taking advantage of 
the combination between context-free grammar, maximum base pairing, 
and minimum free energy. 

The existence of tools that allow the comparison between RNA sec-
ondary structures is advantageous for researchers aiming to understand 
and interpret the relationships between different RNAs as well as dif-
ferences and similarities among secondary structures inside the same 
RNA molecule. Web servers for the comparison of RNA sequences and 
secondary structures include Web-Beagle [109] and MultiSETTER 
[110]. Web-Beagle performs RNA structural alignments taking sets of 
RNA sequences and structures or primary sequences alone as input. In 
the absence of known secondary structures, the server makes predictions 
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by using the RNAfold algorithm. Specifically, it performs structural 
comparisons between secondary structures, generating pairwise align-
ments, assessing structural similarity, and evaluating statistical signifi-
cance for each alignment. This resource can also be used for the 
identification of homologous regions shared by different RNAs, or for 
functional annotation. MultiSETTER is a web server for the analysis and 
visualization of RNA structure in the space, based on an algorithm that 
performs the alignment of multiple RNA structures. The inputs can be 
either a list of Protein Data Bank (PDB) IDs, or user-defined text files. 
The algorithm outputs the three-dimensional structure of the RNAs 
together with reports and statistics. 

The identification of sequences or structure motifs in the RNA serves 
as a fundamental step in the discovery of potential RNA interactors. 
From this perspective, Adinolfi and collaborators [113] shed light on 
intriguing motifs that exhibit a higher occurrence in mRNAs targeted by 
specific ncRNAs, particularly lncRNAs. The dataset comprises 2508 
sequence and 2296 structure motifs, which are associated with the 
binding of 186 individual proteins and 69 single protein domains. Based 
on this dataset, Guarracino and collaborators [111] have developed 
BRIO, a web server designed to identify sequences or structural motifs 
potentially involved in the interaction between lncRNAs and 
RNA-binding proteins. The database contains more than 2000 RNA 
motifs that are known to bind human proteins from PAR-CLIP, eCLIP, 
HITS experiments. Using a substitution matrix, it returns the list of 
protein binding motifs identified in the input sequences. 

In summary, several tools and web services exist for the prediction 
and comparison of lncRNA secondary structures. These tools use various 
approaches, including MFE methods, pseudoknot prediction, and deep 

learning for their predictions, providing advantages for functional 
studies on lncRNAs. Care should be taken when using computational 
tools to infer lncRNA functions on secondary structure predictions. 
Recent papers have highlighted some pitfalls in statistical methodolo-
gies behind those predictions, including the use of comparative 
sequence analysis [114,115]. 

3. Relevant considerations in the study of lncRNAs 

Over the past few years, increasing attention was given to link 
lncRNA expression and nucleotide variations in genetic and complex 
diseases. Although next-generation RNA sequencing approaches have 
revealed numerous alterations in their expression, the implication of 
lncRNAs in disease is still in its infancy and demands further annotation 
and targeted methodologies. The improvement of deep-sequencing 
technologies made possible to acquire lncRNA sequences and study 
their mutations in cancer-related processes. These alterations include 
single nucleotide variations, indels, and copy number amplifications 
affecting non-coding regions of the genome [116]. Some lncRNAs, such 
as the well-characterized H19, NORAT, MALAT1 and HOTAIR, have 
been also implicated in promoting cancer metastasis, via mechanisms 
that include epithelial-mesenchymal transition, migration and modula-
tion of the microenvironment [117], eventually affecting 
cancer-associated signaling pathways [118]. Moreover, it has been 
shown that lncRNAs can function either as tumor-suppressors or have an 
oncogenic function [119]. Based on these considerations, it is advisable 
that dedicated tools and resources are necessary to enhance our un-
derstanding of the implication of lncRNAs in cancer. Recently, signifi-
cant efforts have been made to store and annotate lncRNAs with 
validated cancer roles. This has resulted in the creation of a resource 
called the “Cancer lncRNA Census” [120], which stores 122 lncRNAs 
from GENCODE with an established role in cancer phenotypes. An 
additional resource is lncRNAfunc [121], a knowledgebase of human 
lncRNAs with roles in cancer. It integrates data from various tumor types 
from The Cancer Genome to gain insights into pathological mechanisms 
mediated by lncRNAs. 

LncRNAs have also been associated with diseases other than cancer, 
as a consequence of mutations occurring in their sequence and regula-
tory regions. Many studies have linked lncRNAs to a broad spectrum of 
diseases, including cardiometabolic traits [122], autism [123], amyo-
trophic lateral sclerosis [124], among others. In line with this, a resource 
named LncRNADisease [125] has been developed as a compendium of 
experimentally validated and predicted ncRNA-disease associations 
derived from manual curation of literature and other resources. 

The discovery of disease-associated lncRNAs, which could act 
through either direct or indirect pathogenic mechanisms, has been 
enhanced by the increasing use of research methodologies aimed at 
identifying genomic variants associated with diseases or traits, such as 
GWAS studies. In this context, a recent work led to the development of 
lncRNASNP [126], a repository of single nucleotide polymorphisms 
(SNPs) located within lncRNA sequences, along with their consequences 
on the molecular structure and function of these lncRNAs. The resource 
also includes drug target associations, GWAS, and the effect of SNPs on 
expression quantitative trait loci (eQTL). 

4. Conclusions and future directions 

The availability of computational tools capable of predicting the 
structural attributes, functional characteristics, and intermolecular in-
teractions of RNA represents a valuable source for a more comprehen-
sive understanding of the “dark side” of the genome. In the case of 
lncRNAs, the application of specialized bioinformatic pipelines, exclu-
sively designed for analyzing this class of transcripts, is helping scientists 
to bridge the gap between the existence of still poorly characterized non- 
coding sequences and their possible impact on gene regulation. 

A plethora of bioinformatics tools has been developed to analyze the 

Table 3 
Tools and resources for lncRNA secondary structure prediction and comparison.  

NAME TOOL TYPE NOTES WEB-LINK REFERENCE 

ViennaRNA 
Web 
Services 

Web server Also available as 
command line 
tools 

http://rna.tbi. 
univie.ac.at/ 

[99] 

RNAstructure Web server Features 
available: 
download of 
RNA structures 

https://www. 
urmc.rochester. 
edu/rna/ 

[100] 

PknotsRG Web server For pseudoknock 
structures 

http://bibiserv. 
techfak.uni- 
bielefeld.de/ 
pknotsrg 

[101] 

Iterative 
HFold 

Command 
line tool 

https://github. 
com/ 
HosnaJabbari/ 
Iterative-HFold 

[102] 

Rtools Web server http://rtools. 
cbrc.jp/ 

[103,104] 

Knotify+ Command 
line tool 

https://github. 
com/ntua- 
dslab/knotify 

[105] 

Rtips Web server It includes 
IPknot+ + and 
RactIP 

http://ws.sato- 
lab.org/rtips/ 

[106–108] 

Web-Beagle Web server It requires RNA 
sequence in 
plain text format 
as input and the 
setting of a few 
parameters 

http://beagle. 
bio.uniroma2. 
it/ 

[109] 

MultiSETTER Web server It requires 
programming 
skills 

http://siret.ms. 
mff.cuni.cz/ 
multisetter-app 

[110] 

BRIO Web server It requires RNA 
sequence in 
plain text and/or 
dot-bracket 
annotation of 
RNA sequence as 
input(s) 

http://brio.bio. 
uniroma2.it/ 

[111]  
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expression and regulation of lncRNAs. Broadly employed for the analysis 
of RNA sequencing data, prominent tools include DESeq2 [127], edgeR 
[128], and Limma [129]. In fact, differentially expressed genes derived 
from these analyses often include lncRNAs. However, a critical obstacle 
persists in the form of limited lncRNA annotation data in databases 
governing both pathways and gene ontology enrichments, which im-
pedes accurate assessment of their involvement in distinct pathways or 
cellular processes. 

Scientists are also aware that predictive tools would require extra 
validations by means of experimental approaches. In fact, the advance of 
in silico tools, that are thought for their direct and immediate applica-
tion, is accompanied by the need of new structural, molecular and 
biochemical bench-based approaches. These can be either RNA or 
protein-centric methods for the analysis of RNA-protein interactions 
[130], or refined with the use of psoralen or dextran sulfate for 
improving the study of RNA-RNA interactions [131,132]. These 
biochemical approaches are increasing the stringency and the accuracy 
to assess in vivo the predictions obtained using bioinformatics pipelines. 

One of the areas that will undoubtedly require time and resources in 
the coming years is the standardization of the nomenclature for 
lncRNAs. The lack of standardized nomenclature for lncRNAs can lead to 
confusion and hinder data sharing and collaboration. Establishing clear 
and consistent naming conventions is crucial to facilitate communica-
tion and ensure that findings can be effectively integrated into the 
broader scientific community. Another crucial aspect is related to un-
derstanding the tissue-specific and condition-specific roles of lncRNAs, 
which is vital for unraveling their functions in health and disease. 
However, obtaining relevant data can be challenging, especially for rare 
cell types or under specific conditions. Furthermore, considering that 
lncRNAs often exhibit functional redundancy, where multiple lncRNAs 
may regulate the same genes or pathways, deciphering the individual 
contributions of these lncRNAs to cellular processes and disease states 
can be complex and requires sophisticated experimental design and 
analysis. 

Interdisciplinary collaboration from molecular biology, bioinfor-
matics and related disciplines is expected to increase to make scientists 
more trustworthy and to address various issues related to the study of 
lncRNAs. This will strength open communication and more critical 
discussion on the importance of wet-lab approaches, such as CLIP-seq 
and PAR-CLIP-seq for the analysis of lncRNAs interactions. Training 
on large datasets and experimental validation will also beneficial for 
implementation of more accurate computational predictors and for the 
use of NGS methodologies to comprehensively profiling lncRNAs. 
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