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Abstract: In this review, a pedagogical introduction to the concepts of slow-roll inflationary universe

and number of e-folds is provided. In particular, the differences between the basic notion of number

of e-folds (Ne), total number of e-folds (NT) and number of e-folds before the end of inflation (N) are

outlined. The proper application of the number of e-folds before the end of inflation is discussed

both as a time-like variable for the scalar field evolution and as a key parameter for computing

inflationary predictions.

Keywords: cosmology; early universe cosmology; inflation; number of e-folds

1. Introduction

The paradigm of cosmological inflation [1–6] (for specific reviews, see [7–10], and
for a pedagogical wide-ranging treatment, see [11–15]) offers a comprehensive solution
for understanding the origins of the specific initial conditions that underpin the standard
Hot Big Bang (HBB) theory. These conditions encompass the flatness of three-dimensional
constant-time hypersurfaces, the homogeneity and isotropy of the cosmic microwave
background (CMB), the shortage of hypothetical heavy relics, and the significant observable
entropy. Moreover, inflation generates adiabatic, Gaussian, and nearly scale-invariant
scalar metric perturbations that are responsible both for matter inhomogeneities leading
to the formation of the observable large-scale structures (galaxies, clusters of galaxies,
superclusters, etc.) and for the primary (relative) temperature anisotropies (∼10−5) of
the CMB [16–25]. Nevertheless, inflation gives rise to tensor perturbations, or primordial
gravitational waves (GWs), which could be detectable if the inflationary energy scale
is sufficiently high [26–36]. For complete reviews on scalar and tensor perturbations,
see [37–39]. The inflationary phase can be realized via several mechanisms, and the simplest
one is the so-called (single-field) slow-roll inflation [40–42] that exists in a large number of
varieties [43]. The minimal version of the slow-roll scenario involves a single, homogeneous,
neutral, minimally coupled, and canonically normalized (pseudo)scalar field ϕ, known
as the inflaton, which typically dominates the stress–energy tensor Tµν of a reliable local
universe’s patch at (or below) the Planck scale (see [44–56] for details on such a slow-roll
onset). On general ground, the inflaton’s scalar potential V(ϕ), referred to as the inflationary
potential, exhibits an almost flat region and a global vacuum. Initially, the inflaton field is
misaligned from the potential minima and slowly crosses the flat region. Consequently,
the potential contribution dominates over the field kinetic term, resembling the presence
of a false vacuum or a transient cosmological constant and inducing an almost de Sitter
expansion of the universe.

After traversing a total distance ∆ϕ [57–62] and reaching a value ϕend, the slow-roll of
the field breaks down and the accelerated phase ends. The inflationary expansion yields a
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universe that is approximately flat, smooth, empty, and cold, as all pre-existing energy and
numerical densities are diluted away. Nevertheless, as ϕ approaches ϕend, the kinetic term
becomes important and the inflaton rapidly drops to the true vacuum, around which it
begins to oscillate. The inflaton field must also be coupled to the degrees of freedom of the
Standard Model (SM) or of some Beyond the Standard Model (BSM) extensions, enabling
the transfer of energy density stored in the scalar oscillation to the SM (or BSM) component
fields. This phase is called reheating. It produces the relativistic plasma of light SM (or
BSM) particles and the corresponding large entropy, and triggers the radiation epoch of
the Hot Big Bang (HBB) cosmology (see [63–69] for perturbative reheating, [70–77] for
non-perturbative reheating, and [78–82] for reviews).

This article reviews the fundamental aspects of the standard inflationary dynamics,
focusing on the concept of the number of e-folds, i.e., the quantity that counts the number
of exponential expansions of the universe, whose various definitions often give rise to
some confusions in the literature. In particular, Section 2 is dedicated to the basics of the
inflationary dynamic evolution in time, essentially described by a non-linear second-order
differential equation for the homogeneous inflaton field. Section 3 presents a derivation
of the alternative Hamilton–Jacobi description of inflation, founded on a system of first-
order differential equations. Section 4 introduces the hierarchies of slow-roll parameters,
useful both for a reliable description of the slow-roll phase and for a simpler treatment
of inflationary observables O(ϕ) at some desired perturbative order. Section 5 contains a
discussion of the general concept of the number of e-foldings (e-folds), Ne, together with
a derivation of the related notions of “total inflationary number of e-folds”, NT , and of
the fundamental “number of e-folds before the end of inflation”, N. Section 6 provides a
detailed and exhaustive derivation of the inflaton equation for the case in which the value
of N plays the role of a fundamental time-like variable. Section 7 discusses the computation
of the number of e-folds before the end of inflation related to the observable cosmological
scales. In Section 8, solutions ϕ(N) of the inflaton equations are used to compute numerical
estimates of the main inflationary observables O(ϕ) in terms of N. In particular, this recipe
is applied to some representative classes of inflationary potentials, like monomial potentials,
α-attractor models and a class of non-linear Einstein–Cartan gravities, classically equivalent
to models with a pseudoscalar slow-rolling inflaton. Finally, Section 9 provides conclusions
and discussions.

In this manuscript, the particle natural units h̄ = c = 1 and the “mostly minus”
Lorentzian metric signature (+,−,−,−) are used. In addition, Mp =

√
1/8πGN denotes

the reduced Planck mass, where GN is the Newton’s gravitational constant.

2. Standard Slow-Roll Inflationary Dynamics

The cosmological action for the slow-roll inflation can be written by adding to the
classical Einsten–Hilbert action, describing the gravitational sector, a matter term whose
particle content includes the inflaton (typically a scalar field), together with other SM or
BSM constituents. However, on the one hand, the inflaton is expected to dominate over the
remaining matter components. On the other hand, as the inflationary evolution proceeds,
the contributions due to additional matter degrees of freedom tend to become rapidly and
increasingly negligible. Therefore, a good description is given by

S
[
gµν, ϕ

]
∼ SEH + Sϕ =

=
∫

d4x
√
−g

(
−

M2
p

2
R +

1

2
∂µϕ∂µϕ − V(ϕ)

)
, (1)

where ϕ is the (minimally coupled to gravity) inflaton equipped with the (slow-roll) poten-
tial V(ϕ); R is the Ricci scalar curvature; and g is the determinant of the metric tensor gµν,
assumed to be the one giving the line element:

ds2 = dt2 − a(t)2dl2, dl2 =
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
. (2)
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Here, t represents the cosmic time, a(t) is the (dimensionless) cosmic scale factor while
dl2 is the (flat) euclidean line element of the metric describing three-dimensional spatial
hypersurfaces at constant time in terms of the triplet of comoving coordinates (r, θ, φ). The
validity of the assumption in Equation (2) is supported by the fact that, during the slow-roll
phase, the hypothethical spatial curvature contribution quickly becomes negligible. The
variation of the action in Equation (1) with respect to ϕ provides the Klein–Gordon-like
equation for the inflaton field, while the variation with respect to the gravitational metric
field gµν provides the usual Einstein field equations. The metric Ansatz in Equation (2)
determines a couple of differential equations for the cosmic scale factor a(t) or for the
Hubble rate H = ȧ/a, sourced, as usual, by the inflaton energy–momentum tensor Tµν

interpretable as that of a perfect fluid with a given energy density ρϕ and pressure pϕ.
Indeed, the standard Einstein–Friedmann equations come out to be

(
ȧ

a

)2

=
1

3M2
p

ρϕ (3)

and (
ä

a

)
= − 1

6M2
p

(
ρϕ + 3pϕ

)
, (4)

where energy density and pressure can be identified with

ρϕ =
1

2
ϕ̇2 + V(ϕ), pϕ =

1

2
ϕ̇2 − V(ϕ). (5)

The scalar wave equation for the inflaton reads

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0, (6)

and it is important to stress that the “Hubble friction term” containing the first-time
derivative of the field is distinctive of the expansion of the universe.

The Einstein–Friedmann–Klein–Gordon (EFKG) system of Equations (3)–(6) represents
the standard tool in order to describe an (hypothetical) inflationary phase. In addition,
the system allows us to identify the boundary conditions providing a suited accelerated
inflating evolution of the universe. In particular, Equation (4) shows that the necessary
requirement for a (positive) accelerated expanding phase is the so-called first slow-roll
condition [40–42]:

ϕ̇2 ≪ V(ϕ). (7)

Moreover, the accelerated expansion must be sustained for a sufficiently long period
in order to obtain a proper smooth and flat universe, in agreement with observations. This
is possible only if the inertial term in the inflaton Equation (6) is negligible compared to
the Hubble friction term and the potential term. In light of this, one has to impose a second
slow-roll condition:

|ϕ̈| ≪ |3Hϕ̇|,
∣∣∣ϕ̈
∣∣∣≪

∣∣∣
dV(ϕ)

dϕ

∣∣∣. (8)

The two slow-roll conditions can be translated into two corresponding slow-roll parameters:

ϵ(t) = − Ḣ

H2
, η(t) = − ϕ̈

Hϕ̇
. (9)

The first parameter can be derived just by noticing that ä/a = Ḣ + H2, while the
second term is constructed by the ratio of the inertial and friction terms of the scalar wave
Equation (6). As mentioned, the smallness of the first one (ϵ ≪ 1) ensures the realization
of the accelerated phase, while the smallness of the second one (|η| ≪ 1) ensures that the
accelerated phase lasts long enough to sufficiently stretch the universe in a way that is
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compatible with observations. In general, the solutions of the first Friedmann equation and
of the scalar field equation give a complete description of the dynamics, i.e., determine the
evolution of the scale factor a(t) (or H(t)) and of the inflaton field ϕ(t). The knowledge of
the precise expansion rate of the universe is surely very interesting. However, the inflaton
trajectory ϕ(t) represents the truly fundamental quantity, so that the system of equations is
often reduced to the Equation (6) coupled to

H2 =
1

3M2
p

(
1

2
ϕ̇2 + V(ϕ)

)
. (10)

They can be combined in a single non-linear second-order differential equation for the
inflaton field

ϕ̈ +

√
3

Mp

(
1

2
ϕ̇2 + V(ϕ)

)1/2

ϕ̇ +
dV

dϕ
= 0, (11)

promoted to a proper Cauchy problem by adding a reliable pair of initial conditions for the
inflaton field and its first derivative at a given (initial) reference time ti

ϕ(ti) = ϕi, ϕ̇(ti) ≪ 1. (12)

The time ti can be arbitrary, although the most natural choice for it will be discussed
later. In principle, the solution of the Cauchy problem is obtained via numerical integration
and provides an inflaton trajectory ϕ(t) as a function of the cosmic time. This function
shows attractor-like behavior [83–86] that is compatible with the inflationary phenomena and
is extremely useful because it allows us to analyze the behavior of the inflaton field both
(i) during the fundamental slow-roll phase and (ii) after the slow-roll phase, namely when
the inflaton moves towards the true vacuum and begins to oscillate around it. Eventually,
in the oscillating phase, the inflaton equation could be extended by adding phenomeno-
logical terms devoted to describe the decay of the inflaton modes into other particles. The
related non-perturbative and perturbative reheating phases are fundamental to connect the
inflationary epoch to the Friedmann–HBB dynamics in a way that preserves the precise
predictions of the Big Bang Nucleosynthesis [78–82].

3. Hamilton–Jacobi Inflationary Dynamics

The standard slow-roll dynamics is founded on a second-order scalar wave equation
with the time-like variable given by the usual cosmic time t. However, this scenario is not
unique and other possibilities exist. For example, an Hamilton–Jacobi treatment of the
inflationary equations based on a system of first-order (non-linear) differential equations in
the time-domain has been introduced in [87], while a more convenient version with the
scalar field itself as the main time-like variable has been originally proposed in [88]. The
starting point is the system of Friedmann equations that can be written just in terms of the
Hubble rate:

H2 =
1

3M2
p

ρϕ, (13)

Ḣ + H2 = − 1

6M2
p

(
ρϕ + 3pϕ

)
. (14)

Using the expressions of the energy density and pressure in Equation (5), the two
Equations (13) and (14) can be rephrased in terms of the inflaton field and combined
together in the single non-linear equation

ϕ̇2 = −2M2
p Ḣ, (15)

which relates the time derivative of the Hubble rate to the square of the inflaton time
derivative. It should be noticed that substituting Ḣ from Equation (15) inside the time
derivative of Equation (13) returns the original Klein–Gordon equation of the inflaton field,
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thereby confirming, in a sense, the redundancy of the original system of Equations (3)–(6).
In addition, Equation (15) also suggests the alternative definition

ϵ(t) = − Ḣ

H2
=

ϕ̇2

2M2
p H2

(16)

of the first slow-roll parameter. Moreover, one can substitute Equation (15) in Equation (14),
obtaining a single non-linear first-order differential equation for the Hubble rate, directly
in terms of the scalar field potential

3M2
pH2 + M2

pḢ = V(ϕ). (17)

Therefore, Equations (15) and (17) determine a time-dependent first-order system of
differential equations [87]. One should then trade the cosmic time variable for the scalar
field itself to have a measure of the Hubble variation in terms of the scalar field variation. It
can be carried out by deriving the inflaton energy density ρϕ with respect to time [88] and
applying the Klein–Gordon equation to obtain

ρ̇ϕ = −3Hϕ̇2. (18)

By dividing both members for ϕ̇, one obtains

dt

dϕ
= −3H

ρ′ϕ
, (19)

that implicitly returns the functional relation t(ϕ). By using the derivative of Equation (13)
with respect to ϕ, one can finally obtain the linear equation

ϕ̇ = −2M2
p H′(ϕ). (20)

It should be noticed that the condition ϕ̇ ̸= 0 is crucial in this treatment. Interestingly,
the same result can also be achieved by using the simple relation

dH

dt
= ϕ̇

dH

dϕ
, (21)

that always holds in the standard single-field slow-roll regime. Equation (20) provides two
different scenarios. The first corresponds to a decreasing scalar field (ϕ̇ < 0) during the
slow-roll. In this case, H′(ϕ) > 0 and, consequently, the Hubble rate also decreases with
time, Ḣ(t) < 0. The second is the opposite one. An increasing scalar field (ϕ̇ > 0) during
the slow-roll corresponds to H′(ϕ) < 0, resulting in an increasing-with-time Hubble rate,
Ḣ(t) > 0. Notice that a small variation in the time of the field does correspond to a small
variation in the Hubble rate with the field, as heuristically expected. Equation (20) can also
be inserted into Equation (17), giving rise to the following additional equation in terms of
the derivative with respect to ϕ:

V(ϕ) = 3M2
p H2(ϕ)− 2M4

p H′2(ϕ), (22)

The first-order Hamilton–Jacobi system of Equations (20) and (22), must be decorated
with a set of initial conditions for the Hubble rate and for the scalar field:

H(ϕi) = Hi, ϕ(ti) = ϕi. (23)

The Hamilton–Jacobi recipe furnishes an alternative window on the inflationary
dynamics and has been used to study several features of the inflationary phase. The
first example is due to Salopek and Bondi [89], who both discussed the analogy with the
Hamilton–Jacobi formalism of classical mechanics and the non-linear evolution of long-
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wavelength metric fluctuations in the context of stochastic inflation. These equations are
also very useful because they allow us to generate exact inflationary solutions starting from
a chosen form of the H(ϕ) function, an aspect that has been intensively explored in [90–94].

4. Slow-Roll Parameters, Inflationary Perturbations, and Observables

The previously discussed Hamilton–Jacobi treatment of inflation represents a funda-
mental framework to introduce a complete hierarchy of field-dependent slow-roll param-
eters, as discussed by Liddle et al. [42]. In particular, it is possible to define the so-called
Hubble slow-roll parameters (HSRPs) as

ϵH(ϕ) = 2M2
p

(
H′(ϕ)
H(ϕ)

)2

, (24)

β
(n)
H (ϕ) = (2M2

p)
n

(
(H′)n−1H(n+1)

Hn

)
, n ≥ 1. (25)

In literature, some higher-order HSRPs are also indicated with different symbols, like

ηH(ϕ) = β
(1)
H , ξ2

H(ϕ) = β
(2)
H , σ3

H(ϕ) = β
(3)
H , and so on. It is important to note that the choice

ϕ̇ < 0 naturally implies
√

ϵH(ϕ) > 0 (see Equation (20)). These parameters describe the
properties of the inflationary dynamics, while their hierarchical smallness contains the
initial conditions required to obtain a slow-roll inflationary phase. In particular, ϵH(ϕ) ≪ 1
and |ηH(ϕ)| ≪ 1 correctly reproduce the slow-roll conditions of Section 2. This is not a
surprise since, for instance, the ϵH parameter in Equation (24) can be obtained by simply
combining Equation (16) with Equation (20). Needless to say, one can perform the same in
terms of the potential, and indeed, one can define a second hierarchy, known as potential
slow-roll parameters (PRSPs), as

ϵV(ϕ) =
M2

p

2

(
V′(ϕ)
V(ϕ)

)2

, (26)

β
(n)
V (ϕ) = (M2

p)
n

(
(V′)n−1V(n+1)

Vn

)
, n ≥ 1. (27)

Again, the higher-order PSRPs are also denoted as ηV(ϕ)=β(1), ξ2
V(ϕ) = β

(2)
V , σ3

V(ϕ) =

β
(3)
V , and so on. However, this set of parameters does not include the necessary conditions

for having a slow-roll phase. Rather, it only classifies the flatness of the potential. In
principle, the PSRPs are equivalent to the HSRPs if one were to add a constraint, i.e.,
the condition that the trajectory ϕ(t) approaches an attractor solution [42], corresponding
to an asymptotic behavior given by the approximation of the scalar wave equation ϕ ≃
−V′/(3H). However, the HSRP and PSRP hierarchies are closely correlated rather than
independent. Indeed, the Hubble parameters can always be expanded (up to an arbitrary
order) in series of the potential parameters. For example, the second-order expansions of
the first three HSRPs are as follows:

ϵH = ϵV − 4

3
ϵ2

V +
2

3
ϵVηV + o(β3

V), (28)

ηH = ηV − ϵV +
8

3
ϵ2

V +
1

3
η2

V − 8

3
ϵVηV + o(β3

V), (29)

ξ2
H = ξ2

V − 3ϵVηV + 3ϵ2
V + o(β3

V). (30)

Vice versa, the PSRPs admit an exact expression in terms of the HSRPs (see [42] for
details), as one can deduce from Equation (22). If needed, one can as well expand the PSRPs
in a series of HSRPs. The inflationary stage is notoriously characterized by a decrease
in the comoving Hubble horizon (or radius) 1/aH and by an ubiquitous production of
vacuum fluctuations on all comoving subhorizon scales k ≫ aH of scalar fields with an
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effective mass smaller than the Hubble rate. In the simplest case, this involves only the
inflaton field driving the expansion. These inflaton fluctuations naturally turn into metric
fluctuations around the homogeneous FLRW spacetime [38], resulting in a metric tensor of
the form

gµν ∼ gFLRW
µν + δg

(1)
µν + δg

(2)
µν + ... (31)

In light of this, one can single out three main types of fluctuation modes, i.e., scalar
(S), vector (V), and tensor (T) modes. In the first approximation, one can consider small
fluctuations around the FLRW metric and simply take into account the linear contributions
of the expansion in Equation (31) [38]. The first-order approach provides simple field
equations for the three types of modes in the space of comoving k. Such modes result in a
complete decoupling from each other at a given scale k. In particular, the solution of the
field equations suggests that the vector modes can be neglected, while scalar and tensor
modes are naturally stretched beyond the (slowly changing) inflationary Hubble horizon by
the accelerated expansion, quickly freezing to superhorizon classical metric perturbations
k ≪ aH at a conserved value. The related period is usually called horizon crossing and can
be referred to any perturbed arbitrary scale k. However, for the sake of convenience, it is
better to reserve such a definition for the indication of the specific crossing of an observable
perturbed scale, or the period in which the entire package of (human) observable’ perturbed
scales are stretched out.

The superhorizon solutions for the amplitude of scalar and tensor modes can be used
to construct the so-called power spectra of perturbations, that can be written as

PS(k) ∼
1

8π2M2
p

H2

ϵH

∣∣∣
k=aH

; PT(k) ∼
2

π2

H2

M2
p

∣∣∣
k=aH

, (32)

where only PS happens to depend upon ϵH , while PT does not. It is important to stress
that the solutions of Equations (32) do not represent the power spectra at horizon crossing.
Indeed, they are the asymptotic solutions only written in terms of the horizon crossing
phase k ∼ aH (for details, see [95]). Moreover, since the evolution of the mode(s) k depends
on the scalar field, Equations (32) can be thought of as functions of ϕ at horizon crossing, via
H and ϵH . The solutions of Equations (32) also allow us to conclude that single-field slow-
roll inflation generates almost-scale-invariant metric perturbations with a corresponding
Gaussian probability density function (PDF) [38].

The power spectra also allow us to derive the so-called inflationary observables, O(ϕ),
that inherit the field dependence [95]

nS(ϕ) ∼ 1 − 4ϵH(ϕ) + 2ηH(ϕ), (33)

nT(ϕ) ∼ −2ϵH(ϕ), r(ϕ) ∼ 16ϵH(ϕ), (34)

αS(ϕ) ∼ −2ξ2
H(ϕ) + 10ϵH(ϕ)ηH(ϕ)− 8ϵ2

H(ϕ), (35)

αT(ϕ) ∼ −4ϵH(ϕ)(ϵH(ϕ)− ηH(ϕ)), (36)

where nS is the scalar tilt, nT is the tensor tilt, r is the tensor-to-scalar ratio, αS is the
running of the scalar tilt, and αT represents the running of tensors. Currently, the parameter
nT holds more theoretical than practical interest due to the lack of a (direct or indirect)
detection of an inflationary gravitational wave background. These functions describe how
the value of the power spectra in Equation (32) changes with (the log of) k [95]. Typically,
the inflationary stage predicts tiny inflationary observables confirming the almost-scale-
invariant behavior in the k space for the power spectra of Equation (32). The specific
dependency of the inflationary observables from the scalar field value ϕ is not simple to
derive, because it needs the knowledge of the form of the Hubble rate H(ϕ), which is
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strongly model-dependent. Fortunately, it is possible to use the expansions of the HSRPs in
terms of the PSRPs to convert the H(ϕ) dependency to a potential one, obtaining [95]:

nS(ϕ) ∼ 1 − 6ϵV(ϕ) + 2ηV(ϕ), (37)

nT(ϕ) ∼ −2ϵV(ϕ), r(ϕ) ∼ 16ϵV(ϕ), (38)

αS(ϕ) ∼ −2ξ2
V(ϕ) + 16ϵV(ϕ)ηV(ϕ)− 24ϵ2

V(ϕ), (39)

αT(ϕ) ∼ −4ϵV(ϕ)(2ϵV(ϕ)− ηV(ϕ)). (40)

In this way, the inflationary observables are explicitly determined by (the flatness of)
the scalar potential, which are functions of ϕ through V(ϕ). The cosmological observations
reveal that the amplitude of the scalar perturbations is of order PS ∼ 2 × 10−9 [96], the
scalar spectral index, measured at the reference comoving scale k ∼ 0.002 Mpc−1, is
nS = 0.9649 ± 0.0042 at 68% of confidence level (CL) [97], while the BICEP/Keck upper
limit on the tensor-to-scalar ratio at the reference comoving scale k ∼ 0.05 Mpc−1, results
r < 0.036 at 95% CL [98].

The observables above enable testing a single-field slow-roll inflation model with
potential V(ϕ) against current observations by varying the field as a parameter. This can be
performed by selecting a reasonable sample of scalar field values from the potential plateau.
However, this method is approximate, as the chosen field values may not correspond to
those at horizon crossing for the relevant scale(s) k. A reliable inflaton trajectory is needed,
which requires solving the inflaton equation of motion (11) with proper initial conditions
(Equation (12)) for (the horizon crossing of) the scales of interest, such as 0.002 Mpc−1.

This task is rather delicate because it is not easy to select (specific) time(s) and durations
of the desired horizon crossing. Therefore, the introduction of a new time-like variable is
necessary. The following three sections will be devoted to presenting this variable, exploring
its utility, and discussing its natural values in the context of horizon crossing.

5. Definitions of the Number of e-Folds

In inflationary cosmology, the evolution of the inflating universe’s patch can be de-
scribed, to a first approximation, by an explicit exponential term. Indeed, by definition,
the Hubble rate expression can be interpreted as an ordinary differential equation once
equipped with an initial condition for the cosmic scale factor at a generic slow-roll trigger
time ti (see Equation (12)):

ȧ

a
= H(t), a(ti) = ai, (41)

whose solution obviously reads

a(t) = aie
∫ t

ti
dτ H(τ)

(t > ti). (42)

Imposing the first slow-roll condition in Equation (7), the Hubble function depends only
on the value acquired by the inflaton (potential) energy density during the inflationary epoch

H2(ϕ) ∼ 1

3M2
p

ρϕ, ρϕ ∼ V(ϕ), (43)

corresponding to a “transient” ideal fluid with an equation of state (EoS) wϕ = −ρϕ/pϕ ∼
−1. In general, the time integral of the Hubble rate is called the number of e-folds of the
expansion from ti to the generic cosmic time t. It measures exactly the rate of exponential
growing of the universe during inflation, and can be considered as a function of the
upper extreme:

Ne(t) =
∫ t

ti

dτ H(τ),
dNe

dt
= H(t). (44)

If one assumes V(ϕ) as an almost constant plateau (for a reasonable range of the
scalar field values) of height ∼ M4

inf, the result of the integration is a linear function of
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time ∼ Hinf(t − ti), with Hinf ∼ M2
inf/Mp. Generically, the integral is more complicated,

but still, N(t) is an increasing function of time, with a positive derivative also causing the
cosmic scale factor a(t) to monotonically increase. Equation (44) allows us to write down
the total number of e-folds of an inflationary period from ti to a final time tend as

NT =
∫ tend

ti

dτ H(τ). (45)

If single-field slow-roll inflation is assumed to start at a time ti immediately following
a primordial quantum gravity phase and thought to propagate below an appropriate
BSM phase (for instance, a GUT phase), the total number of exponential expansions could
amount to millions—an information that may be indicative of the real size of the causal-
connected universe, the so-called particle horizon [11–14]. However, it is commonly believed
that the observable perturbed scales (and in some sense, the current observable universe)
has been generated at certain times during the last stages of the inflationary expansion. In
light of this, one can introduce a new convenient variable, the number of e-folds before the end
of inflation

∆N(t, tend) = NT − Ne(t) =
∫ tend

ti

dτ H(τ)−
∫ t

ti

dτ H(τ) =
∫ tend

t
dτ H(τ), (46)

obtained by subtracting from NT the number of e-folds that precede the beginning of the
“interesting phase”, where the observable perturbed scales are generated. This variable is
decreasing in time, since

d∆N(t, tend)

dt
= −dNe

dt
< 0, (47)

and can be used as a backwords time-like variable, vanishing when t = tend.
The number of e-folds before the end of inflation is often rewritten in terms of the

inflaton field ϕ along the flat potential direction and of the first HSRP ϵH(ϕ). In particular,
formally inverting the time profile of ϕ, one can turn the time integral into a field-space
integral, obtaining

∆N(ϕ, ϕend) =
∫ ϕend

ϕ
dϕ̃

H(ϕ̃)
˙̃ϕ

. (48)

Using Equation (20), assuming ϕ̇ < 0 and inserting the parameter ϵH(ϕ), one finally
obtains

∆N(ϕ, ϕend) =
1

Mp

∫ ϕ

ϕend

dϕ̃
1√

2ϵH(ϕ̃)
. (49)

In the following, we define

N(ϕ) ≡ ∆N(ϕ, ϕend). (50)

The reader should be aware that many authors label the same quantity with other
notations, e.g., Ne or N∗.

It should be noticed that Equation (49), under the approximation ϵH(ϕ) ∼ ϵV(ϕ), is
equivalent to the inverse solution of the first-order differential equation

dϕ

dN
∼ Mp

√
2ϵV(ϕ) (51)

that provides the scalar field profile as a function of N, ϕ(N). As aforementioned, such
field trajectory is not an exact solution, as it is rather the slow-roll limit of a more general
equation, and is to be discussed in the next section.
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6. Inflaton Evolution and Number of e-Folds

In Section 2, the system of Einstein–Friedmann–Klein–Gordon equations was intro-
duced, which provides the function a(t) and the global inflaton behavior ϕ(t). Nevertheless,
as anticipated at the end of Section 4, the knowledge of the time profile of the field ϕ is
not very useful for the numerical estimate of the inflationary observables O(ϕ). These
quantities are closely related to the horizon crossing window, so it would be advisable to
compute them for a proper range of the number of e-folds N. In this respect, it would be
much better to obtain inflaton solutions as explicit functions of the number of e-folds

Observable O[ϕ(t)] → Horizon Crossing → N → O[ϕ(N)], (52)

in a such a way that it is possible to literally sample O(ϕ) in terms of N. To this aim, it
is useful to rewrite the Klein–Gordon equation with N (in place of the cosmic time) as
the basic time-like variable. Its derivation, often overlooked in the current literature (see,
however, [43] for a brief description) is now reviewed in detail.

The relation between time and N is contained in the equation Ṅ = −H, which results
from the combination of Equation (44) and Equation (46).

Given a generic function whose time dependence f (t) = f [N(t)] is through N, it is
straightforward to derive the expressions for the first and second derivatives in the form

d f

dt
= −H

d f

dN
, (53)

d2 f

dt2
= H2(N) ϵ(N)

d f

dN
+ H2(N)

d2 f

dN2
, (54)

where the relation

ϵ(N) = ϵ(t(N)) = − Ḣ(t)

H2
=

1

H

dH

dN
(55)

has been used to insert the first slow-roll parameter ϵ(N). Applying the above relations to
ϕ(N) inside the Klein–Gordon equation, one obtains

H2(N)ϵ(N)
dϕ

dN
+ H2(N)

d2ϕ

dN2
− 3H2(N)

dϕ

dN
+

dV

dϕ
= 0, (56)

or
d2ϕ

dN2
+ ϵ(N)

dϕ

dN
− 3

dϕ

dN
+

1

H2(N)

dV

dϕ
= 0. (57)

It is useful to highlight that Equation (3) gives back H as a function of N in the form

H2(N) =
2V(ϕ)

6M2
p −

(
dϕ
dN

)2
, (58)

while Equation (15) in terms of N provides

(
dϕ

dN

)2

= 2M2
pϵ(N). (59)

As a result, the Hubble rate can be written as

H2(N) =
1

M2
p

V(ϕ)

3 − ϵ(N)
(60)

in terms of the potential and the “new” slow-roll parameter ϵ(N), introduced in Equation (55).
Performing an inversion of sign N → −N in order to allow for a forward integration over
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the time-like variable, the Cauchy problem related to the Klein–Gordon equation finally
reads

d2ϕ

dN2
+ (3 − ϵ(N))

dϕ

dN
+ (3 − ϵ(N))Mp

√
2ϵV(ϕ) = 0,

ϕ(Ni) = ϕi, ϕ̇i ≪ 1. (61)

The system is a second-order differential problem. It is non-linear because ϵ(N)
contains a derivative squared. Moreover, the first derivative term plays the same role
as the Hubble friction in the original formulation. The Klein–Gordon equation needs to
be numerically integrated to provide the exact inflaton trajectory in terms of the e-folds
number. However, the slow-roll limit corresponding to the conditions

ϵ(N) ≪ 1,
d2ϕ

dN2
≪
(

dϕ

dN
, Mp

√
2ϵV(ϕ)

)
, (62)

can be used to reduce the equation to the linear one

dϕ

dN
+ Mp

√
2ϵV(ϕ) ∼ 0, (63)

that simply matches the equation met in the previous section (with N → −N). Of course,
the integration of the linear equation correctly reproduces the (first-order) definition of the
number of e-folds before the end of inflation

N(ϕ) ≡ ∆N(ϕ, ϕend) ∼
1

Mp

∫ ϕ

ϕend

dϕ̃
1√

2ϵV(ϕ̃)
, (64)

where the inflaton value ϕend is computed from the corresponding slow-roll breaking
condition

ϵV(ϕend) ∼ 1. (65)

This treatment suggests that, given a scalar potential V(ϕ), an approximate analytic
solution ϕ(N) can be simply obtained by inverting Equation (64), if possible. Such a
solution allows us to choose an initial N and then to compute a related initial field value
for the Cauchy problem in Equation (61).

The numerical integration and the related field function should be given over a
reliable range of N associated with the horizon crossing of the reference-observable scales.
In principle, nothing prevents assuming arbitrary initial conditions for the slow-rolling
field. However, it is certainly better to consider simplified conditions already compatible
with the horizon crossing of the observable perturbed scales. In the next section, we present
a well-codified strategy to select the value of N related exactly to the epoch in which the
relevant observable scales cross the inflationary Hubble horizon.

7. Estimates of the Number of e-Folds before the End of Inflation

The number of e-folds occurring before the end inflation, N, can be estimated in a
very simple way in terms of generic properties of the inflationary phase and the features
qualifying the postinflationary evolution. In this context, it is interesting to consider a
comoving scale k that crosses the Hubble horizon at a certain time t during inflation, k ∼ aH,
and the comoving scale corresponding to the size of the current Hubble horizon, k0 ∼ a0H0.
The ratio of the two comoving scales

aH

a0H0
=

k

k0
=

λ0

λ
(66)
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is naturally constant throughout the evolution of the universe. This ratio can also be split as

k

a0H0
=

a

aend

aend

areh

areh

a0

H

H0
, (67)

where the first partial ratios are referred as the inflationary evolution, the reheating epoch,
and the HBB epoch, respectively, while the last fraction represents the ratio between the
Hubble scale at the inflationary time t and the current one. In order to obtain the number
of e-folds, it is convenient to take the logarithm of the ratio, obtaining

log
k

a0H0
= log

(
a

aend

)
+ log

(
aend

areh

)
+ log

(
areh

a0

)
+ log

(
H

H0

)
(68)

= −N − Nreh − NHBB + log

(
H

H0

)
.

Here, as said, N represents the number of e-folds occurring between the generic time
t and the end of inflation, tend, while Nreh describes the number of e-folds during the
reheating phase and NHBB indicates the e-folds related to the standard Big Bang phase. One
can thus write the following:

N = − log
k

a0H0
− Nreh − NHBB + log

H

H0
(69)

Notice that the first contribution is just a numerical term that depends on the chosen
comoving scale k. Nreh, on the other hand, can be estimated by assuming a global and
effective description of the reheating phase. In particular, one can suppose a reheating
phase characterized by a single, global fluid with an average equation of state (EoS) wreh

and a conserved average energy density described by a proper Boltzmann equation:

ρ̇reh + 3H(1 + wreh) ∼ 0. (70)

The solution of Equation (70) between tend and treh allows us to express Nreh in terms
of the average wreh, the energy density at the end of slow-roll inflation ρend, and the energy
density at the end of the reheating ρreh:

Nreh ∼ 1

3(1 + wreh)
log

ρend

ρreh
. (71)

The third contribution in Equation (69) can be easily extracted from the fundamental
definition of an HBB cosmology, i.e., the conservation of the comoving entropy density:

gS(treh)a3
rehT3

reh = gS(t0)a3
0T3

0 , (72)

where gS is the number of the relativistic degrees of freedom contributing to the entropy
density, Treh is the temperature of the relativistic matter close to the reheating scale, and
T0 is the current temperature of the relativistic component of the universe, mainly CMB
photons. Remembering that

ρreh ∼ π2

30
gE(treh)T

4
reh, (73)

where gS is the number of the relativistic degrees of freedom contributing to the energy
density, and by assuming that gS(treh) ∼ gE(treh) ∼ greh, one can infer that

NHBB ∼ log T0 −
1

4
log ρreh − 1

12
ln greh + log

(
43

11

) 1
3
(

π2

30

) 1
4

. (74)
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The substitution of the relations Equation (71), Equation (74), and Equation (43) into
Equation (69) leads to

N ∼ ζ − 1

3(1 + wreh)
ln

(
ρend

ρreh

)
+

1

4
ln

(
V2

M4
pρreh

)
(75)

where

ζ = − ln

(
k

a0H0

)
+ ln

(
T0

H0

)
+ ζ0 (76)

and ζ0 is just a numerical factor

ζ0 = − 1

12
ln greh +

1

4
ln

(
1

9

)
+ ln

(
43

11

) 1
3
(

π2

30

) 1
4

. (77)

Equation (75) describes the number of e-folds related to the horizon exit of the mode k
in terms of both the properties of the inflationary phase (V(ϕ), ρend) and the properties of
the postinflationary phase, relative to reheating and HBB cosmology epochs. In particular,
considering for simplicity an almost instantaneous reheating phase and neglecting the
subdominant numerical term ζ0, one can obtain the following simplified expression for the
number of e-folds:

N ∼ − ln

(
k

a0H0

)
+ ln

(
T0

H0

)
+ ln

Minf

Mp
. (78)

It is important to emphasize that N depends on the chosen “pivot” comoving wave
number k. It is worth mentioning that a smaller comoving scale k < a0H0 would obviously
give a smaller value of N, reflecting the fact that the smaller the comoving scale crossing
the horizon, the lower the number of e-folds before the end of inflation. It is customary to
focus on perturbed scales that can be experimentally probed, like that of the Planck mission,
k ∼ 0.002 Mpc−1. Remembering that a0 = 1, H0 ∼ 1.75× 10−42 GeV and T0 = 2.3× 10−13 GeV,
one obtains

N ∼ 64 + ln
Minf

Mp
. (79)

In Equation (79), N has a mild dependency on the inflationary scale. It is indeed
possible to demonstrate that it lies in the range 60–50 [99,100] for Minf ∼ (1016–1013) GeV.
A more complicated postinflationary phase (see, for example, [101–104]) would induce
modifications to the standard expression of Equation (75).

In the next section, the first-order computation of inflationary observables in terms
of the variable N for several paradigmatic classes of inflationary models is presented.
In addition, numerical predictions for the commonly chosen value of N ∼ 60 and their
compatibility with current experimental constraints are also discussed.

8. Inflationary Observables and Number of e-Folds

In the realm of the single-field slow-roll inflationary models, the simplest example
is surely given by the class of monomial potentials. This class of potentials was firstly
introduced contextually to the chaotic inflation scenario [6] and emerge, for instance, in
a number of BSM-motivated cosmologies like those within supergravity [105–110] or in
superstring theories (see, e.g., axion monodromy inflation [111–113]). The form of the
potential is

V(ϕ) = M4
inf

(
ϕ

Mp

)n

, (80)

which is often also written as

V(ϕ) = λnϕn, λn = M4
infM−n

p , (81)
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where the parameter λn is essentially the coupling constant of the inflaton self-interaction.
This class of models falls within the larger class of large-field inflation since the vacuum
expectation value of the inflaton field reduces from super-Planckian values ϕ ≫ Mp to the
vacuum value ϕ = 0 with ϕ̇ < 0. The most known scenarios are the quadratic case

V(ϕ) =
1

2
m2

ϕϕ2, m2
ϕ =

2M4
inf

M2
p

, (82)

and the quartic case

V(ϕ) =
λϕ

4
ϕ4, λϕ = 4

M4
inf

M4
p

, (83)

originally discussed by Andrei Linde as the simplest examples of chaotic inflation [6]. The
k-th derivative of the scalar potential in Equation (81)

V(k)(ϕ) =
M4

inf

Mk
p

Γ(n + 1)

Γ(n − k + 1)

(
ϕ

Mp

)n−k

, k ≤ n, (84)

allows us to write, for instance, the first three potential parameters:

ϵV(ϕ) =
n2

2

(
Mp

ϕ

)2

, (85)

ηV(ϕ) = n(n − 1)

(
Mp

ϕ

)2

, (86)

ξ2
V(ϕ) = n2(n − 1)(n − 2)

(
Mp

ϕ

)4

. (87)

Thus, one can derive the expression of the scalar power spectrum as

PS(ϕ) ∼
1

12π2n2

(
Minf

Mp

)4( ϕ

Mp

)n+2

(88)

as well as the inflationary observables introduced in Section 4 as explicit functions of the
scalar field:

nS(ϕ) ∼ 1 − n(n + 2)

(
Mp

ϕ

)2

, (89)

r(ϕ) ∼ 8n2

(
Mp

ϕ

)2

, (90)

αS(ϕ) ∼ −2n2(n + 2)

(
Mp

ϕ

)4

, (91)

αT(ϕ) ∼ 2n3

(
Mp

ϕ

)4

. (92)

The condition ϕ̇ < 0 naturally suggests how the scalar spectral index tends to decrease
while the tensor-to-scalar ratio has an opposite behavior. As discussed in Section 4, one
can roughly deduce the value of the cosmological parameters by considering a reasonable
set of inflaton configurations in the slow-roll plateau region of the scalar potential V(ϕ).
Nevertheless, a preferred approach is to determine the inflaton values by solving the
inflaton equation of motion (61), derived to this aim in Section 6. The associated numerical
solution gives an inflaton trajectory ϕ(N) that can be used to obtain a final, numerical
evolution of the interesting observables with respect to N. Finally, first-order analytic
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estimates of the cosmological parameters in terms of N can be very useful as well. To
achieve them, one can consider the slow-roll limit of the exact Equation (64) for N

N(ϕ) ∼ 1

nM2
p

1

2

(
ϕ2 − ϕ2

end

)
, (93)

and try to invert it explicitly. The result is

(
ϕ

Mp

)2

∼ 2nN +

(
ϕend

Mp

)2

, (94)

where the final field value, obtained by the condition ϵV(ϕend) ∼ 1, comes out to be

(
ϕend

Mp

)2

∼ n2

2
(95)

and leads to (
ϕ

Mp

)2

∼ 2nN +
n2

2
. (96)

The fundamental result in Equation (96) provides the expression

PS ∼ 1

12π2n2

M4
inf

M4
p

(
2nN + n2/2

)1+n/2
(97)

for the scalar spectrum. It can be inverted in terms of the ratio Minf/Mp and, if one
applies the current estimate for the scalar spectrum amplitude of the COBE mission,
Pcobe

S ∼ 2 × 10−9, it is possible to constrain the inflationary scale for a given n as

Minf

Mp
∼
[

12π2n2Pcobe
S

(2nN + n2/2)
1+n/2

]1/4

. (98)

In principle, one can assume that inflation occurs at some specific scale, for example,
around 1015 GeV. This statement, together with the COBE outcome, offers the possibility
to constrain the model parameter n. At the same time, the expressions for the set of
inflationary parameters in terms of N are

nS(N) ∼ 1 − n(n + 2)

2nN + n2/2
, (99)

r(N) ∼ 8n2

2nN + n2/2
, (100)

αS ∼ − 2n2(n + 2)

(2nN + n2/2)2
, (101)

αT ∼ 2n3

(2nN + n2/2)2
. (102)

To give an example, selecting the massive case (n = 2) that one has at first order leads to

nS(N) ∼ 1 − 2

N
(103)

r(N) ∼ 8

N
(104)

αS ∼ − 2

N2
(105)

αT ∼ 1

N2
. (106)
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If one assumes that the exits of reference scales correspond to N ∼ 60, then the related
inflaton value is of the order of ϕ ∼ 15Mp, the predicted reference energy scale is Minf ∼
2 × 1015 GeV, and, as a consequence, the inflaton mass is estimated to be mϕ ∼ 1012 GeV.
The numerical predictions for the two main inflationary observables result in

N ∼ 60, nS ∼ 0.9667 r ∼ 0.1333 (107)

N ∼ 50, nS ∼ 0.9600 r ∼ 0.1600 (108)

It is worth to stress that the numerical solution of the complete Equation (61) provides
slightly different (and clearly more precise) results. For example, for N ∼ 60, one obtains
nS ∼ 0.9669 and r ∼ 0.1322, while for N ∼ 50, nS ∼ 0.9606 and r ∼ 0.1573.

The same recipe can be used to evaluate other scenarios, as, for example, the model
with n = 4. In the single case of N ∼ 60, the scalar field value of the quartic case is
ϕ ∼ 20Mp and the related energy scale is Minf ∼ 1014 GeV, with a very small self-coupling
constant λϕ ∼ 10−15 − 10−16. Unfortunately, both the quadratic and quartic cases are not
compatible with the current Planck and BICEP results.

The monomial scenario provides a very simple function N(ϕ) that can be easily
inverted to give the solution ϕ(N). Moreover, a similar discussion can be performed for
the exponential scenario (see [114–116]), where an exact solution for ϕ(N) and a(t) can
also be obtained. Unfortunately, this is not always the case. For instance, there are models
in which the inversion must proceed via some special functions, preventing a simple
analytical interpretation for the solution ϕ(N). An interesting example is given by the
class of the so-called α-attractor models. They can be generated in several different ways,
although the most advanced version emerges from supergravity [117–124]). The α-attractor
potentials are typically divided into two subclasses called E models and T models, both
characterized by a flat region (for ϕ > Mp) that comes out to be protected against quantum
corrections [124]. In the present review, the focus will be limited only to the E-models,
whose scalar potential is

V(ϕ) = M4
inf

(
1 − e−bϕ/Mp

)2n
, b =

√
2

3α
, (109)

with the global minimum located at ϕ = 0. The scalar potential is characterized by a
couple of free parameters, n and α. In supergravity, the α parameter is related to the Kähler
curvature of the moduli space manifold, where the inflaton superfield is a coordinate [123].
It is important to stress how this family of potentials naturally reproduces well-known
inflationary models. For example, the case n = 1 corresponds to the Einstein frame version
of the Starobinsky model of inflation [125], while the case α = 1/9 is the supergravity
Linde–Goncharov model [126,127]. It should also be noticed that for large values of b (or
α ≪ 1), the exponential term tends to be suppressed and the scalar function approximates
a step-behavior. On the contrary, for small values of b (or α ≫ 1), V(ϕ) tends to assume
a simple quadratic parabolic shape. In order to simplify the treatment, one can simply
consider the scenario with n = 1. In this case, the derivatives of the potential

V(k)(ϕ) =
M4

inf

Mk
p

(−1)k−12bke−bϕ/Mp

(
1 − 2k−1e−bϕ/Mp

)
(110)

allow us to write down the PRSPs. In particular, the first two come out to be

ϵV(ϕ) =
2b2

(
ebϕ/Mp − 1

)2
, (111)

ηV(ϕ) = −2b2

(
ebϕ/Mp − 2

)

(
ebϕ/Mp − 1

)2
. (112)
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As a consequence, one obtains

PS(ϕ) ∼
1

48π2

(
Minf

Mp

)4 e2bϕ/Mp

b2

(
1 − e−bϕ/Mp

)4
(113)

and

nS(ϕ) ∼ 1 − 4b2

(
ebϕ/Mp + 1

)

(
ebϕ/Mp − 1

)2
, (114)

r(ϕ) ∼ 32b2

(
ebϕ/Mp − 1

)2
. (115)

The solution of Equation (64) gives

N(ϕ) ∼ 1

2b2

(
ebϕ/Mp − ebϕend/Mp

)
− 1

2b

(
ϕ

Mp
− ϕend

Mp

)
, (116)

where ϕend, defined by ϵV(ϕend) ∼ 1, results in

ϕend

Mp
∼ 1

b
log(1 +

√
2b). (117)

The inversion of the expression in Equation (116) is manifestly not a simple task. One
can try to use to the Lambert function W [43] to obtain

ϕ(N)

Mp
=

1

b

[
−F (N)− W(−e−F (N))

]
, (118)

where

F (N) = 2b2N + ebϕend/Mp − b
ϕend

Mp
. (119)

Unfortunately, this result does not provide a straightforward interpretation of the field
evolution. It is thus convenient to adopt an additional approximation, assuming that the
plateau inflaton value is larger than the final field value, ϕ ≫ ϕend. It implies that

ebϕ/Mp ∼ 2b2N, ϕ(N) ∼ 1

b
ln 2b2N, (120)

giving rise to the scalar power spectrum

PS ∼ N2

18απ2

(
Minf

Mp

)4

, (121)

whose inversion for the inflation scale provides

Minf

Mp
∼ 18απ2

N2
Pcobe

S . (122)

On the other hand, the inflationary observables decrease with N as

nS(N) ∼ 1 − 4b2e−bϕ(N)/Mp + ... = 1 − 2

N
, (123)

r(N) ∼ 32b2e−2bϕ(N)/Mp + ... =
12α

N2
. (124)
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The simplest example to discuss is the Starobinsky model corresponding, as mentioned,
to n = 1. Taking the standard horizon crossing option N ∼ 60, one has a scalar field at
horizon crossing ϕ ≳ 5Mp, an inflationary reference scale Minf ∼ 3 × 1015 GeV, and
numerical estimates for scalar tilt and tensor-to-scalar ratio:

N ∼ 60, nS ∼ 0.9667, r ∼ 0.0033 (125)

N ∼ 50, nS ∼ 0.9600, r ∼ 0.0048. (126)

The numerical investigation would reveal nS ∼ 0.9653 and r ∼ 0.0034 for N ∼ 60 and
nS ∼ 0.9584 with r ∼ 0.0049 for N ∼ 50. Therefore, the Starobinsky case as well as all the
α-attractor cases with a small model parameter (i.e., α < 1) are extremely compatible with
the current observational constraints.

To conclude this very brief overview, it can be interesting to analyze models where
the integral giving N(ϕ) can be exactly performed, but the resulting expression cannot
be explicitly inverted, even resorting to special functions. In this context, one can discuss
a recently discovered class of models, based on Einstein-Cartan extension of general
relativity [128–130]. In particular, it has been shown that one may consider a gravity theory
whose action is a combination of the scalar curvature term and a non-linear function of the
so-called parity violating Holst invariant term:

R′ ≡ εµνρσRµνρσ, (127)

where Rµνρσ is the curvature tensor and εµνρσ is the Levi–Civita invariant tensor. R′

obviously vanishes in a Riemannian geometry, but in a Palatini approach, it provides
a dynamical torsion and results classically equivalent (on shell) to a pseudoscalar field,
minimally coupled to general relativity, and equipped with a non-trivial potential suitable
to drive a single-field slow-roll inflationary phase. Indeed, if ϕ indicates the pseudoscalar
field unequivocally emerging from the underlying non-Riemannian geometry, the induced
potential comes out to be

V(ϕ) = M4
inf

∣∣∣∣∣γ sinh X(ϕ)− 1

∣∣∣∣∣

p
p−1

, (128)

with

X(ϕ) =

√
2

3

ϕ

Mp
+ θγ (129)

and the reference scale of inflation is given by

M4
inf =

p − 1

pp/(p−1)

1

ξ
1

p−1

∣∣∣∣∣
M2

p

4γ

∣∣∣∣∣

p
p−1

. (130)

In the previous expressions (for details, see [130] and refeences therein), γ is the
so-called Barbero–Immirzi parameter, p ≥ 1 is a real parameter, ξ is the coupling of the
non-linear term to the metric, and

θγ = sinh−1(γ−1). (131)

The sign of the Barbero–Immirzi parameter determines the direction of the slow-roll
phase. Specifically, the slow-roll phase occurs for decreasing values of the inflaton field (i.e.,
ϕ̇ < 0) for negative values of γ, while it occurs for increasing values of ϕ (i.e., ϕ̇ > 0) for
positive values of γ. The first derivative of the scalar potential reads

V′(ϕ) =
M4

inf

Mp

√
2 γ p cosh X(ϕ)|γ sinh X(ϕ)− 1|

p
p−1

√
3(p − 1)(γ sinh X(ϕ)− 1)

(132)



Universe 2024, 10, 284 19 of 24

and the second derivative is

V′′(ϕ) =
M4

inf

M2
p

2 γ p |γ sinh X(ϕ)− 1|
p

p−1

3(p − 1)(γ sinh X(ϕ)− 1)2

(
γ

p − 1
(p sinh2 X(ϕ) + 1)− sinh X(ϕ)

)
. (133)

Thus, the firsts two PSRPs can be calculated and result in

ϵV(ϕ) =
γ2

3

(
p

p − 1

)2 cosh2 X(ϕ)

(γ sinh X(ϕ)− 1)2
(134)

and

ηV(ϕ) =
2 γ p

3(p − 1)(γ sinh X(ϕ)− 1)2

(
γ

p − 1
(p sinh2 X(ϕ) + 1)− sinh X(ϕ)

)
. (135)

The power spectrum assumes the very complicated expression

PS(ϕ) ∼
M4

inf

18 π2 M4
p γ2

(
p − 1

p

)2 (γ sinh X(ϕ)− 1)2

cosh2 X(ϕ)

∣∣∣∣∣γ sinh X(ϕ)− 1

∣∣∣∣∣

p
p−1

, (136)

while the two main observables turn out to be

nS(ϕ) ∼ 1 − 2 γ2

3

(
p

p − 1

)2 cosh2 X(ϕ)

(γ sinh X(ϕ)− 1)2

+
4 γ p

3(p − 1)(γ sinh X(ϕ)− 1)2

[
γ

p − 1

(
p sinh2 X(ϕ,−1

)
− sinh X(ϕ)

]
(137)

and

r(ϕ) ∼ 16

3
γ2

(
p

p − 1

)2 cosh2 X(ϕ)

(γ sinh X(ϕ)− 1)2
. (138)

As usual, to obtain first-order expressions of the observables and an estimate of the
model parameter Minf, the solution of the integral N(ϕ) is required. One obtains

N(ϕ) =
3(p − 1)

2p

[
ln

∣∣∣∣∣ cosh X(ϕ)

∣∣∣∣∣−
1

γ
tan−1(sinh X(ϕ))

]∣∣∣∣∣

ϕ

ϕend

=
3(p − 1)

2p
ln

∣∣∣∣∣ cosh X(ϕ)

∣∣∣∣∣
∣∣∣∣∣ cosh X(ϕend)

∣∣∣∣∣

− 3(p − 1)

2 γ p

[
tan−1(sinh X(ϕ))− tan−1(sinh X(ϕend))

]
, (139)

which neatly show how there is no hope to analytically determine ϕ(N) by inversion,
unless a very specific range of the Barbero–Immirzi parameter (|γ| ≫ 10−1) is considered.
However, the function in Equation (139) is still very useful to extract possible pairs (N, ϕ),
allowing us to derive simple numerical predictions for the cosmological observables O(ϕ).
For instance, in the case p = 2, choosing γ ∼ 10−3 and N ∼ 60, one obtains

nS ∼ 0.9680, r ∼ 0.003, (140)

with a very high inflation reference scale Minf ∼ 5.6 × 1015 GeV. Such predictions result in
a very good agreement with the current constraints.

A final observation is in order: there are cases, of course, where the potential function
V(ϕ) does not allow for an exact calculation of the integral N(ϕ). In a similar situation, it
is convenient to proceed by approximating the potential with its slow-roll expression. It
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happens, for instance, in superstring-inspired models like the ones called fiber-inflation
scenarios [131–134].

9. Summary and Conclusions

The conventional Einstein–Friedmann–Klein–Gordon system of equations offers the
simplest framework for exploring the evolution of the single-field slow-roll inflationary
scenario in the early universe. Moreover, the solutions for the scale factor a(t) and the field
trajectory ϕ(t) have a straightforward interpretation and provide insights into the overall
dynamics. However, the time-dependent profile of the inflaton solution proves to be less
practical for tasks like the computation of inflationary observables that are, quite naturally,
functions of the scalar field ϕ via potential slow-roll parameters (PRSPs) and typically
exhibit an unusable dependence upon time. In light of this, it becomes unavoidable to
reformulate the inflaton equation using an alternative and more suitable time-like variable.
The number of e-folds before the end of inflation, denoted by N and tracking the times
the universe grows exponentially until the end of the slow-roll phase, appears to be the
most natural. Rough evaluations suggest that its value from the horizon crossing (of the
observable perturbed scales) to the end of inflation typically falls within the range between
50 and 60. Actually, many more possibilities exist, also depending on the properties of the
postinflationary phase (see, for example, [101–104]).

In this paper, we have reviewed the derivation and uses of the inflaton equations
based on N as a fundamental time-like variable in an approach that is widely used and
appreciated in the current literature, especially in order to obtain deeper insights on the
inflationary dynamics. The procedure is characterized by the introduction of a new form of
the first slow-roll parameter ϵ, which is slightly different from the traditional one.

Complete numerical solutions of the new equation require initial conditions that
are suited to describe the horizon crossing of the relevant cosmological perturbed scales.
Alternatively, one can apply the slow-roll approximation, which returns the standard
definition of N and facilitates the computation of a first-order, analytical field solution
ϕ(N), which is extremely useful to rephrase the dependency of the standard inflationary
observables in terms of N.

Finally, it is worth emphasizing another point that underscores the importance of the
number of e-folds. In Section 4, the focus was on the theory of linear or first-order metric
perturbations. However, as is well known, it is also important to study the behavior of
non-linear curvature perturbations since they can provide additional inflation observables
like higher-order spectra (bispectrum, trispectrum. . .), which are useful to estimate non-
Gaussianities on CMB scales (see, for instance, [135–140]). In those situations, the standard
computation approach proves to be quite cumbersome. More suitable non-perturbative
methods have thus been introduced, such as the δN formalism [141–145], based on counting
the local number of e-folds of various local patches. The δN formalism is widely used in
the current literature due to its easy-to-use nature (for a recent review, see [146]).
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