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Abstract
Bolometry is an essential diagnostic for calculating the power balances and for the understanding of
different physical aspects of tokamak experiments. The reconstructionmethod based on the
MaximumLikelihood (ML) principle, developed initially for JET, has been implemented for ASDEX
Upgrade. Due to the availability of a limited number of views, the reconstruction problem is
mathematically ill-posed. A regularizing procedure, based on the assumption of smoothness along the
magnetic surfaces, given by plasma equilibrium,must also be implemented. A new anisotropic
smoothing technique, which acts along locally oriented kernels, has been implemented. The
performances of themethod have been evaluated, in terms of shapes, resolution and of the derived
radiated power, and comparedwith the bolometrymethod used routinely onASDEXUpgrade. The
specific advantage of theML reconstruction algorithm consists of the possibility to assess the
uncertainties of the reconstruction and to derive confidence intervals in the emitted radiation levels.
The importance of this capability is illustrated.

1. Introduction

The total emission of radiation is a very important quantity for evaluating tokamak power balances and for
understanding various physical processes [1]. The radiation patterns relevant to divertor loads, transport of
impurities, plasma detachment, X-point radiation should be accurately determined to improve both operation
and scientific exploitation of the experiments. Crucial information, related to instabilities potentially triggering
disruptions, can also be derived from radiation anomalies.

As the radiation profile is, in general, highly non-uniform, tomography reconstruction of bolometry
represents a solution for deriving its spatial 2D distribution. Bolometrymeasurements are provided by pinhole
cameras, which are located roughly in a 2Dpoloidal cross section. The pinholes determine a set of line-of-sights
(LOS), which define the geometry of the tomography problem. Figure 1 shows the ASDEXUpgrade (AUG) LOSs
geometry. A detailed description of the AUGbolometry system is provided in [2, 3].

Given the access restrictions and the fact that bolometrymust coexist with other diagnostics installed around
the tokamakmain chamber, in general a limited number ofmeasurements are available. Therefore, due to the
limited data availability, the tomography problem ismathematically ill-posed. In order to compensate for the
lack of information, the reconstructionmethods incorporate a regularizing procedure that assumes smoothness
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along themagnetic surfaces, given by the plasma equilibrium. The incorporation of the prior information,
related to themagnetic configuration, plays an essential role in ensuring accurate reconstructions.

The reconstructionmethod used for routine bolometry analysis in AUGhas been initially proposed in [4]. It
is based on theminimisation of the chi-squared error betweenmeasured and back-calculated tomographic
projections, with a regularization integral that describes the curvature of the 2Dprofile. Themethod implements
also a regularisation procedure based on anisotropic smoothing, taking into account the asymmetric gradients
of the radiation parallel and radial to themagnetic flux surfaces. Subsequent improvements have been proposed
in [2]. The specific definition of the algorithmparameters for different regions (confined plasma, SOL inner and
outer divertor, X-point) allow theminimisation of various artefacts and ensure increased robustness against
experimental noise and dead channels. Recently, ray-tracing techniques have been applied to take into account
the effect of the finite collection volume of the detector’s apertures [5]. To optimise the computation of both
total and local radiated power, amethod based on tomography using a reduced reconstruction grid and the use
of integrated values of radiation over large enough regions, averaging potential numeric artefacts, has been
proposed in [6]. Very recently the application ofGaussian process tomography [7] to the bolometer diagnostic at
ASDEXUpgrade has been reported [8]. This approach uses nonstationary Cartesian kernels and kernels that
incorporatemagnetic equilibrium information. The kernel hyperparameters are derived by a training process
which is based on a subset of pre-existent AUG reconstructions, obtainedwith themethod described in [2–4].
When using the nonstationary Cartesian kernel, which does not take into account themagnetic information, the
computational speed is compatible with real-time application. The calculation of the reconstruction
uncertainties is possible by using a certain errormodel for themeasurements error. Thismodel assumes that the
detectors values are given by a constant background noise and a signal dependent noise. The parameters of these
two additive components are derived by analysing a large collection of signals.

In the present paper, we propose to apply toAUGbolometry a reconstructionmethod based on the
statisticalMaximumLikelihood (ML).ML tomography has been already applied in JET for gamma, neutron,
HXR tomography [9–11] and also for bolometry [12]. The advantage of theMLmethod is the capability of
evaluating the reconstruction uncertainties when calculating the total radiated power or power profiles. The
proper assessment of the uncertainties is, for example, an important aspect for investigating high radiative
discharges [13]. Comprehensive studies regarding the uncertainties in bolometric tomography on JEThave been
reported [14, 15].

Sections 2–4 of the paper present a review of theML tomographicmethod, from the point of view of its
implementation onAUG.Details about the new smoothing procedure, used for regularising the ill-posed
tomography problem, are also provided. The overall quality of themethod has been assessed by numerical

Figure 1. Schematic view of AUGbolometric diagnostic layout.
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simulationswith phantoms and comparedwith the AUG standardmethod [2–4] as described in section 5.
Representative results, obtained during AUG experiments, are also reported. Conclusions and the potential
additional applications of themethodology are discussed in the last section of the paper.

2.Maximum likelihood reconstructionmethod

The expectation–maximization (EM) algorithmwas proposed byDempster et al [16] for problems, inwhich
latent variables (not directly observed) have to be predicted, based on a set of observed data, assuming that the
probability distribution associatedwith the latent variables is known.

Let be G the randomvector containing the datameasured in the experiment and ( )qD G,G its density
function, where q are parameters to be estimated. Also let be F the vector in a larger space, embedding the
sample space G.Therefore, amany-to-onemapping ( )=G h F exists. It is assumed also that F has the density
function ( )qD F,F with respect to ameasure ( )m F . ( )qD G,G can be retrieved by integrating:

( ) ( ) ( ) ( )òq q m=D G D F d F, , 1G F

or, in discrete form:

( ) ( ) ( )åq q=D G D F, , 2G F

At each iteration the EMalgorithm, perform two successive steps. Thefirst is the E-stepwhen the conditional
expectation:

( ( ) | ) ( )( )q qE D F Gln , , 3F k

is created using the current estimation ( )q k of the parameters. In the followingM-step, the conditional
expectation E ismaximizedwith respect to q in order to obtain the new estimates.

For emission tomography, the experimentalmeasurements g are integrals over the emissivity distribution f
taken along a set of lines of sight. The probability of detecting emission in detector m frompixel n is given by so
called projectionmatrix { }= = ¼ = ¼H H ,mn m M n N1, , ; 1, , where M is the total number of detectors and N is the
total number of pixels in the image representing the emissivity distribution. The projectionmatrix incorporates
the detection geometry and other characteristics of the system. The tomography reconstruction problem can be
formulated as follows:

( )å=
=

g H f 4m
n

N

mn n
1

Let Xnm be the randomnumber of photons that are emitted frompixel n and contribute to themeasurement at
detector m.Themean of Xnm is H f .mn n Also let Ym be the total number recorded at detectorm.
Obviously = åY X .m n nm

It is assumed that the emissivity is governed by a spatial Poisson process. Asmeasurements are linear
combination of emissivities, they are also Poisson distributed. The log-likelihood function is given by the
following equation (the reader is referred to [17, 18] for complete details about deriving this equation):

( ) { ( ) } ( )å å= - + -D Y f H f Y H f Yln , ln ln 5F

m n
mn n m mn n m

Considering the conditional expectation of Xmn with respect to Ym and the current vector of parameter estimates
( )f ,k wehave:

( ( ) | ) { ( ) } ( )( ) åå -= + +E D X f Y f H f Q H f Rln , , ln 6F k

m n
mn n mn mn n

where:

⎛

⎝
⎜

⎞

⎠
⎟| ( )( )

( )

( )= =
å

Q E X Y f
H f Y

H f
, 7mn mn m

k mn n
k

m

l ml l
k

and R is a termwhich groups all the terms not depend on the new f values.
TheM-step consists of equating to zero the partial derivatives of (7):

( ( ) | ) ( )( ) å å¶
¶

= - + =-

f
E D X f Y f H Q fln , , 0 8

n

F k

m
mn

m
nm n

1

Which leads to the following equation for retrieving updated estimation:

( )( )
( )

( )å
å

=
å
å

=
å

+f
Qij

H

f

H

H g

H f
9

n
k m

m mn

n
k

m mn m

mn m

j
mj j

k
1

It has to be noted that the non-negativity constraint ( ) f 0
n

k is ensured automatically.
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3. Smoothing for reconstruction regularization

Due to the topology of the emission and the limited number of views, the bolometry problem is a highly
underdetermined inversion. To compensate for the lack of experimental data, additional prior information
must be used. A usual approach for regularizing the ill-posed problem is to assume smoothness along the
magnetic surfaces, given by plasma equilibrium.

In the present approach, the smoothing operator is implemented based on the anisotropic smoothing
techniques. For a systematic description of the theoretical foundations and of numerical aspects of this class of
image smoothingmethods, the reader is referred to [19]. Anisotropic smoothing has beenfirst proposed by
Perona-Malik [20] as away to smooth images in a non-linear waywith the aimof preserving image
discontinuities which are blurred by various factors (noise, scratches, compression artefacts, etc). In general, the
image is smoothed locally in several directions while the directionsmay vary frompoint to point. The directions
are chosen to be parallel to the image contours in order to preserve the image edges.

In afirst step the geometrical structure of the edges have to be determined. The geometry of the image F can
be described by:

• two unit vectors: ( )f+X and ( )f-X directed along the localmaximumandminimumvariations of image

intensities at location X ; ‖ ‖f =  s s
- ^f f/ gives the contour direction and ‖ ‖||f =  s s

+ f f/ is related to
the variation in the direction perpendicular on the contour.

• two corresponding positive values ( )l+
X and ( )l- ,X measuring the effective variations of the image intensities

along ( )f+X and ( )f-X respectively. ( )l+
X and ( )l-

X describe the local strength of the edge; the usual representation

of these effects uses an ellipse with axis lengths corresponding to ( )f+X and ( )f- ,X and axismagnitudes given by

l+ and l-.When l l@+ -, the neighbourhood is isotropic, while when l l+ - , then the gradients in the
local image region have the same orientation.

The image geometry { | }l f+ - + - X,/ / } can be retrieved by computing the gradient field f .A common
approach is to use a smoothed gradient field  = ´s sf f Gauss , where sGauss is a 2DGaussian kernel
with a variance s, in order to remove the noise effects.

A convenient way toworkwith the image geometry is to use the tensor ( ) l f f l f f= +- - - + + +T x ;T T l-

and l+ are the eigenvalues ofT , while f- and f+ are the corresponding eigenvectors. Therefore, the local
geometry of the image F is described by the tensor ( ) ( ) ( )=  T x I F .X X

T

Amore flexible particular formof thefield of diffusion tensors has been proposed in [18]:

( ) ( ) ( ) ( )( ) ( )f f l f f= +l l l l
- - - - + + +
+ - + -T x h h 10T T

, ,

where the functions + -h / determines the strength of the smoothing along the directions f-, f+. Several choices
of these functions are possible depending on the specific application. A possible choice is:

( ) ( )
( )( ) ( )l l l l

=
+ +

=
+ +

<l l l l
-

+ -
+

+ -
+ - + -h h p p

1

1
,

1

1
, 11

p p, , 1 2
1 2

where p p,1 2 are two adjustable parameters.
For a pixel located on the image contour, l+ has a high value and therefore - +h h .Consequently, the

smoothing along f-, itmeans along the contour, will prevail. For pixels located in a homogenous region, the
smoothingwill be performed isotopically as l+ has a small value and consequently + -h h .

The anisotropic smoothing of the image F for the local geometry described byT can be formulated as a
divergence PDE (Partial Differential Equations) problem [19]:

( ) ( )¶
¶

= 
F

t
div T F 12i

i

An alternative to the divergence equation (12) is a formulation based on a trace operator [21]:

( ) ( )¶
¶

=
F

t
trace TH 13i

i

where
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶

Hi

I

x

I

x y

I

x y

I

y

i i

i i

2

2

2

2 2

2

is theHessian of F .i As shown in [21], in this case, the smoothing is equivalent to the

application of convolution around local values of X with aGaussianmask Gauss ,t
T oriented by the tensor ( )T x :
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( ) ( ) ( )
p

= -
-

Gauss x
t

X T X

t

1

4
exp

4
14t

T
T 1

For the bolometry images we followed the approach in [22] that considers an additional term inwith respect to
equation (13):

( ) ( )¶
¶

= + 
F

t
trace ww H F J w 15T

i i
T

w

where w is the vector field used for smoothing:
‖ ‖

w

w
is the direction alongwhich the smoothing is performed,

while‖ ‖w is the smoothing strength. Considering the two spatial components of w, ( )( ) ( ) ( )=w u v ,x x x
T then Jw

stands for the Jacobian of w.This formulation takes into account the curvature of the smoothing directions. The
imagefiltering is performed using curvedGaussian kernels, when necessary, for better preserving the image
structure (the reader is referred to 20 for details).

In case of bolometry images, the image geometry and the diffusion tensors are not derived from the
reconstructed image itself. As it is desired to favour smoothing alongmagnetic surfaces, the diffusion tensors are
derived from the image representing themagnetic equilibrium (see figure 2). The anisotropic smoothing is
applied during the reconstruction process (6) after each iteration.

4.Uncertainties estimation

Corrupting noise is always present inmeasured data and itmay adversely affect the qualitative interpretation and
quantitative analysis of the reconstructed images. Therefore, the accuratemodelling of the projection noise
propagation is an important issue. In general, the reconstructionmethods applied for bolometry are based on
highly non-linear algorithms, whichmake difficult the description of the image statistics. Also,multiple noise
realizations are generally unavailable and thereforeMonte Carlo approaches are not viable or at least very
unreliable. On the contrary, theML approach benefits from the significant effort that has been spent during time
for developingmethods for reconstruction uncertainty evaluation. Approximate formulas for the ensemble
mean and covariance have been derived for the first time byBarret et al [23], various other developments being
reported later [24–32].

The presence of noise in the data and in the reconstructed image is introduced by the relations:

̅ ( )= +g g n 16g

Figure 2.Bolometry reconstruction (left)with the representation of themagnetic topology; (right) LOSs and their intensities (color-
coded) for AUGpulse#40198 at t= 3.1s. The intensities corresponding to the LOSs are normalized, therefore arbitrary units (a.u.)
appear on the colour bar.
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ˆ ˆ ̅ ( )( ) ( ) ( )= +f f n 17
k k

f
k

Where ̅g and ˆ ̅ ( )
f

k
denotes the expectation of the data and image estimate, respectively, and ng and nf are zero

mean noise vectors.
Following the above-mentioned approaches, theML tomography problem can be formulated as a

maximization problem:

ˆ ( | ) ( )=f argmax L g f 18f

Apreconditioned gradient ascent algorithm solver can bewritten as:

ˆ ˆ ( ˆ ) ( | ) ( )( ) ( ) ( ) ( )a= + 
+

f f C f L g f 19
k k k k

x
1

where a > 0 is afixed step size, ( ˆ )( ) ( )
C fk k

is a positive definitematrix (pre-conditioner), normally a function of
the current image estimate. The typical pre-conditioner used forML tomography is:

( ˆ ) [ ˆ ] [ ]( ) ( ) ( )a = -C f diag f diag s ,k k k 1 where s is a vector with all elements equal to 1 [27].
Thefirstmain assumption in deriving a formula for the reconstruction uncertainty, is the lowmagnitude of

the noise level in the data, which allows a first-order Taylor expansion:

( | ˆ ) ( ̅ | ˆ ̅ ) ( ̅ | ˆ ̅ ) ( ̅ | ˆ ̅ ) ( )( ) ( ) ( ) ( )
 »  +  + L g f L g f L g f n L g f n 20x

k
x

k
xy

k
g xx

k
f

( ˆ ) ( ˆ ) ( ˆ ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
» +C f C f C n f, 21k k k k

x
k

f
k k

Substituting (20) and (21) into (19) and separating the signal fromnoise, the following equations can be
obtained:

ˆ ˆ ( ˆ )· ( |¯ ˆ ̅ ) ( )( ) ( ) ( ) ( ) ( )
a» + 

+
f f C f L g f 22

k k k k
x

k1

[ ] ( )( ) ( ) ( ) ( ) ( )» - + =+ +n I A n B n V n 23f
k k

f
k k

g
k

g
1 1

where:

‐ ( ˆ )· ( ̅ | ˆ ̅ ) ( ̅ | ˆ ̅ ) ( )( ) ( ) ( ) ( ) ( )
a a=  - A C f L g f M L g f , 24k k k

xx
k

x
k

( ˆ )· ( ̅ | ˆ ̅ ) ( )( ) ( ) ( ) ( )
a= B C f L g f 25k k k

xy
k

andwhere the (j, l) element of [ ]M g f; is ( )å ¶ ¶g C f f .
m

m jm
k

l/

Equation (22) shows that the image reconstruction expectation can be obtained using themeasured data
expectationwhile equation (23) represents a linear update formula for the reconstruction uncertainty. It has to
be emphasised again that both equations hold if themagnitude of the noise accompanying themeasured data
is low.

Equation (23) can be re-written in the form:

[ ] ( )( ) ( ) ( ) ( )= - ++V I A V B 26k k k k1

which allows the derivation of the reconstruction covariance:

( ˆ ) ( )[ ] ( )( ) ( ) ( )= ¢COV f V COV g V 27
k k k

where ( )COV g is the covariance of themeasured data.

5. Results

The performances of theMLbolometry reconstructionmethod for AUGhave been assessedwith a set of
phantoms. The phantoms are created as combinations of discs of diameter equal to 0.1m, lying on a 5%
background. These combinations aremimicking experimental cases (see below in this paper). For each
phantom, the corresponding tomographic projections are calculated using equation (4), simulating the
measurement process. Then, the phantomprojections are used by theML code to obtain tomography
reconstructions which are comparedwith the phantoms in order to assess the performances of themethod. The
phantoms, togetherwith their reconstructions, are presented infigure 3. Beside the qualitative comparison, a
quantitative evaluation has been performed by calculating the cumulated image intensities in the regionwhere
the image features are located. This region is defined as the set of pixels located belowZ=−0.76m. This limit
defines the radiative region located below theX-point. The limit, used throughout the paper, is located slightly
above the X point height, in order to allow the inclusion of possible radiation spots located at the X-point. The
percentage differences are presented also infigure 1. From the tomographic point of view, the phantom#3
represents themost difficult case. Each disc of the phantom is in the shadowof the otherswith respect to

6
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different LOSs. Due to the limited number of asymmetric views, certain distortions in the reconstruction of
disks shape occur. The shape reconstruction can be improved by an increased smoothing but the price paid is the
increased error in the value of the cumulated intensity (equivalent to radiated power for real experiments). In
practice the real shape of the radiation distribution is, of course, unknown. Therefore, the smoothing
parameters should be slightly varied and then thefinal reconstruction could be chosen by correlating its shape
with independent physical aspects, when possible. As the isotropically smoothing does notmake sense for the
particular structure of the phantoms in figure 3, we used aGaussian smoothing filter of size 5× 5. Further
numerical tests will be performed, using phantomswith shapesmimicking the distribution encountered in
experiments.

The performances of themethod have been evaluated also bymeans of a comparisonwith the results
provided by the reconstructionmethod used routinely for bolometry analysis on this device (noted for the rest of
the paper as AUG-tomo [4]). The comparison has been performed for a set of four cases, selected for being
exemplary for different radiation patterns, from the tomographic point of view. The experimental data has been

Figure 3.Phantoms used for testing the quality of the reconstruction (second column) and the corresponding reconstructions (third
column). In case of phantom#3 reconstructions, where distortions occur due to the limited number of views (left), improved shape
reconstructions can be obtained increasing the smoothing (right); however, this leads to an increased error of the cumulated intensity.
At the bottomof thefigure the percentage difference between the values of the cumulated images intensity below = -z 0.76m,
calculated for the phantom and the reconstruction, are listed.

7
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measured in the following experiments: discharge#32770 at t= 3.2 s (experiment withHe asmain species),
discharge#33280 at t= 5.4 s (high radiation scenarios experiment with Ar seeding), discharge#34716 at
t= 2.375 s (lowdensity, no seeding, reference scenario) and#36655 at 6.1 s (X-point control and detachment
characterization experiment withN seeding). The bolometry reconstructions obtained using AUG-tomo and
MLmethods are presented infigure 4. The reconstructions display radiative spots developing at the X-point or
on the divertor tiles. Themost complicated case is for the discharge#33280where a radiating zone develops
inside the separatrix, slightly above the X-point, after divertor detachment. Figure 4 shows that theMLmethod
is able to correctly identify the radiative patterns, in terms of shapes and resolution, in all cases.

Beside the qualitative comparison between the AUG-tomo andMLmethods, a quantitative evaluation of the
radiation emitted in different regions has been performed. Four regions have been defined for this quantitative
comparison, as illustrated infigure 5. The values of the radiated powers, calculated using theAUG-tomo andML
methods are presented in table 1. The values show a good agreement between the twomethods.

As alreadymentioned, the specific advantage of theMLmethod is related to the calculation of the
reconstruction uncertainties, based on the statistical uncertainties of themeasured data. For each time instance t
themeasured data is read in an interval [ ]- +t ms t ms5 , 5 and themean and standard deviation are calculated.
Outliers are identified based on the scaledmedian absolute deviation and excluded [14]. The image variances,
corresponding to each reconstruction, are presented infigure 6 for the four analysed cases. The shape of the
image variance is, in general, similar to the shape of the reconstruction. As remarked for the first time by Llacer
et al [31],ML-EMalgorithms are characterised by amonotonically increasing dependence of the noise variance
on themean (or noise-free) image pixel values. This is an advantageous characteristic of theMLmethod. In case
of linearmethods, for example, the noise in the high-intensity regions tend to contribute to relatively distant
low-intensity regions [32]. However, this similarity is perturbedwhen part of the inputmeasured values have a
significantly increased statistical uncertainty, as, for example, in the case of#32770 discharge (figure 6first line
andfigure 7).

The image variance allows the calculation of the uncertainties related to each derived quantity depending on
the emission distribution. Quantifying the uncertainties in the reconstructions on a routine basis would be
beneficial for various studies. For example, an accurate estimate of the uncertainties is essential when
approaching high radiation fraction from the point of view of both the plasma control and the interpretation of
the physics. An accurate evaluation of the radiated powers in different locations of themain chamber, together
with the associated uncertainties, proved to be a useful tool in analysing the dynamics of the radiation leading to

Figure 4.Reconstruction obtained using AUG-tomo andMLmethods for four AUGdischarges:#32770 at t= 3.2s (top-left),
#33280 at t= 5.4s (top-right),#34716 at t= 2.375s (bottom-left) and#36655 at t= 6.1s (bottom-right). For each case theAUG-
tomo reconstruction is presented on the left sidewhile theML reconstruction on the right side.
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disruptions in a series of discharges with impurity seeding, devoted to the investigation of high radiated fraction
regimes [13]. For routine analysis, the availability of the reconstruction statistical uncertainty permits the
calculation of error bars for the power profiles, as illustrated infigure 6 (last column). The power profiles are
evaluated using the reconstruction image. Each value of the radiation profile represents the total radiation
calculated inside the correspondingmagnetic surface r; r = 0 at the centre of the plasmawhile r = 1 at the last
closedmagnetic surface. The error bars are evaluated accordingly, using the reconstruction variance.

A significantly increased value of the error bars is obtained in case of the#32770 discharge, due to the
relatively large number of experimental data points with high statistical uncertainty value (figure 7). The
evaluation of the uncertainties corresponding to the radiated power calculated for the four zones defined in
figure 5 is given in table 2. The uncertainty values account only for the statistical uncertainties, the systematic
errors have not been considered.

Figure 5.The four zones for evaluation and comparison of the radiated powers.

Table 1.Comparison between the values of the radiated powers, in different poloidal regions, calculatedwith theAUG-tomo andML
methods.

Radiated power from the

entire poloidal section

Radiated power inside the last

closedmagnetic surface

Radiated power below

Z=−0.76m

Radiated power in the

SOL aboveXp

#32770

P (MW)
AUG-tomo

6.13 3.14 2.78 0.47

P (MW)ML 6.11 2.82 2.49 0.54

Difference −0.4% −11.4% −11.5% 12.2%

#33280

P (MW)
AUG-tomo

14.53 10.36 4.26 1.45

P (MW)ML 15.98 10.39 4.33 1.63

Difference 9.05% −11.38% 1.63% 10.93%

#34716

P (MW)
AUG-tomo

3.38 0.99 2.17 0.39

P (MW)ML 3.02 1.14 1.90 0.44

Difference −11.98% 12.59% −13.93% 10.60%

#36655

P (MW)
AUG-tomo

12.58 7.47 7.51 1.20

P (MW)ML 13.61 7.05 6.69 1.30

Difference 7.53% −5.98% −12.29% 7.83%
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As already stated, for the reconstruction infigure 6, themeasured data is read in an interval of 10 ms. The use
of such a low value is advantageouswhen the radiation distribution changes fast. On the other hand, it implies
high statistical uncertainties.When the radiation distribution is stable, it is, of course, better to use higher
temporal intervals for collecting data, in order to ensure lower variances. An example is presented infigure 8 for
the pulse#34716. The temporal interval has been set at 150ms. It can be observed that the image variance
becomesmore similar with the reconstruction image. Also, the error bars for the radiation profiles diminishes.
Therefore, the evaluation of the reconstruction statistical uncertainties could be a helpful instrument formaking
a good compromise between the level of the error bars and the tomography time resolution. In certain cases, the
choice of a large temporal window, ensuring low variances, in not possible due to the fast variation of the
radiation distribution. An example is presented infigure 9.

The projection data collectedwhen using awindowof 10ms and of 150ms, respectively, is very different,
leading to different shapes of the reconstruction. For thewindowof 150ms, the associated variance (not shown
infigure 9) incorporates a component due to inherent statistical variations but also a component determined by
the variation of the radiation distribution. As the use of a short time interval is necessary in this case, the

Figure 6.The variance images (middle column) for theML reconstruction (left column) for the four AUGdischarges. The
reconstruction uncertainties evaluation allows the calculations of confidence intervals for the radiation profile (right column).
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evaluation of statistical uncertainties of the reconstruction is important to judge the relevance of the features in
the reconstruction.

Coming back to the comparison of the reconstruction provided by theML and the AUG-tomomethods
(table 1), it should be remarked that the differences between the radiated power values calculated for various
regions of themain chamber do not exceed 16%.However, this value is higher than the reconstruction statistical
uncertainties reported infigure 3. The explanation should focus on the limited data type tomography of
bolometry. The high underdetermination is solved differently by the twomethods. The additional differences,
which cannot be accounted for by statistical uncertainties, give an idea about the limitations inherent in solving
this tomography problem.

Figure 7.Measured datawith statistical uncertainties for AUGdischarge#32770.Data points with high uncertainty values aremarked
in red. The detectors belonging to different cameras are indicated in blue. The vertical dashed cyan barsmark the detectors involved in
the creation of the spot highlighted infigure 10.

Table 2.MLpower calculations and uncertainty evaluation in different poloidal regions.

Radiated power from the

entire poloidal section

Radiated power inside the last

closedmagnetic surface

Radiated power below

XpZ=−0.76

Radiated power in the

SOL aboveXp

#32770

MLpower [MW] 6.11 2.82 2.49 0.54

Uncertainty +/− 2.12 +/− 1.18 +/− 0.23 +/− 0.63

34.7% 41.8% 20.0% 32.2%

#33280

MLpower [MW] 15.98 10.39 4.33 1.63

Uncertainty +/− 0.75 +/− 0.23 +/− 0.31 +/− 0.11

4.7% 5.0% 7.2% %

#34716

MLpower [MW] 3.02 1.14 1.90 0.44

Uncertainty +/− 0.32 +/− 0.16 +/− 0.04 +/− 0.10

4.5% 4.4% 3.2% 4.9%

#36655

MLpower [MW] 13.61 7.05 6.69 1.30

Uncertainty +/− 0.21 +/− 0.13 +/− 0.01 +/− 0.05

1.6% 1.9% 0.5% 1.9%
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An example of a situationwhich is hard to be clarified due to the limited number of views is presented in
figure10, for the pulse#32770. The feature on the on the high-field-sidemidplane (encircled infigure 9) is
outside the statistical error bars (see figure 6first row). However, this image feature could be an artifact. The spot
is in the shadowof the point located in the inner divertor region, being generated by the high valuesmeasured in
the detectors corresponding to LOSs 88–89 in combinationwith the detector values corresponding to LOSs
55–56, which are a bitmore elevated than the neighboring detectors. The LOSs contributing to the creatin of this
spot aremarked by cyan vertical bars infigure 7. As can be seen infigure 4, this situation is solved differently by
the AUG-tomo andMLmethods. Only an increased number of views, unfortunately unavailable, could clarify if
this spot is an artifact or not.

TheMLmethod has been used for the analysis of recent experiments. Two examples are presented in
figures 11–12. The reconstruction infigure 11 shows the formation of a X-point radiator [33, 34] in case of the
AUGdischarge#40333. The reconstruction infigure 12 has been obtained during the discharge#40363, in an
experiment dedicated to plasma detachment. The evolution in time of the bolometry reconstructions for these
two cases is presented in the supplementarymaterial in the formof videos. The videos have been obtained using
a temporal resolution of 10ms. The time interval investigated are: 1.0–8.0s for the discharge#40333 and
2.1–7.0s for the discharge#40363. Reconstruction time seriesmay provide an overview of the pulse behaviour,
mainly shortly after the experiment, followed later by detailed analysis of specific time instances, interesting for
various physics phenomena.

TheML reconstructionmethod needs 10–15 iterations to converge. This takes a few tens of seconds on a
usual computer in theMATLAB environment. As it has been recently shown, an accelerated version,
implemented inC and using a compatible ITER fast controller platformwith theUbuntu 18.04 or the ITER

Figure 8.The variance images (middle column) for theML reconstruction (left column) for the four AUGpulse#34716when setting
the temporal interval for data collection to 150ms. The radiation profiles and the associated error bars are presented in the right
column.

Figure 9.Comparison of the projection data (left) and of the reconstructions (middle and right) obtained for the pulse#32770, using
a temporal windowof 10ms and 150ms respectively.
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CodacCore Systemdistributions (6.1.2), achieves thefinal reconstruction in a few seconds [35]. Therefore, the
method is compatible with inter-shot analysis.

The specific advantage of theML reconstruction algorithm consists of the possibility to evaluate
reconstruction statistical uncertainties. This evaluation is useful in variousways. First, the variance associated
with different features in the image is ameasure of the confidence regarding their real existence. However,
reconstructions are affected not only by statistical uncertainties but also by artifacts generated by the limited data
sets and by the reconstructionmethods’ imperfections. Therefore, the analysis of the reconstruction variance
image is only a step in validating the reconstruction features. The level of the reconstruction uncertainties is

Figure 10.The LOSs (red-cyan lines) are responsible for the creation of a spot (white dashed encircled), which is difficult to be
classified as a real feature or as an artefact. The detectormeasurements corresponding to these LOSs aremarked by the dashed cyan
vertical bars infigure 7.

Figure 11.Reconstruction for the AUGdischarge#40333 at t= 4.0 s. The reconstruction shows the formation of aX-point radiator.
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directly correlatedwith the size of thewindowused for collecting data. Therefore, a good compromise between
reasonable uncertainties and a good time resolution can be obtained based on this information. The
dissimilarities between the shape of the reconstruction and of the image variance is an indicator that several
detectors, viewing the regionswith significant differences, are affected by increased statistical errors. The
reconstruction variance image also allows the derivation of the confidence intervals for total radiated power, of
for the power radiated in different regions of interest. Confidence intervals can be calculated for any other
physical quantities derived from the radiation power distribution.

6. Conclusions

The tomographic inversionmethod based on themaximum likelihood has been applied toASDEXUpgrade
bolometry. Themain advantage of themethod is the ability to quantify the uncertainties of the tomographic
reconstruction and of the derived quantities, such as the radiated powers in different locations of themain
chamber and radiation profile, given the actual instrumental errors of the diagnostic. A new anisotropic
smoothing technique, acting along locally oriented kernels improves the quality of the tomograms.

The algorithmhas been assessed by numerical tests with phantoms and testedwith discharges related to
different experiments, for which validated tomograms obtainedwith AUG standard tomographic code are
available. The percentage difference does not exceed 16%. In some cases, this difference is higher than the
statistical uncertainties associated to theML tomograms. Apart from the noisy data, the final reconstructed
image also depends on the constraints imposed by the diagnostic layout, which are solved in a different way by
the twomethods. The spread of the results provides information about the effects of the limited bolometric
data sets.

Also, in terms of future developments, it is believed that, oncefinally adjusted, theML tomographic
technique could be a good complement to the traditional AUG algorithm. The competitive advantage of
providing confidence intervals in the reconstructions on a routine basis, should help inmany integral parts of
AUGprogramme, fromdetachment to theX-point radiator and the experiments with impurity seeding. Given
JET experience, an accurate determination of the radiation patterns could become also very useful to better
understand and predict disruptions [13, 36].
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