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Abstract: Computational chemistry is a valuable tool, as it allows for in silico prediction of key
parameters of novel compounds, such as pKa. In the framework of computational pKa determination,
the literature offers several approaches based on different level of theories, functionals and contin-
uum solvation models. However, correction factors are often used to provide reliable models that
adequately predict pKa. In this work, an accurate protocol based on a direct approach is proposed
for computing phenols pKa. Importantly, this methodology does not require the use of correction
factors or mathematical fitting, making it highly practical, easy to use and fast. Above all, DFT
calculations performed in the presence two explicit water molecules using CAM-B3LYP functional
with 6-311G+dp basis set and a solvation model based on density (SMD) led to accurate pKa values.
In particular, calculations performed on a series of 13 differently substituted phenols provided reliable
results, with a mean absolute error of 0.3. Furthermore, the model achieves accurate results with -CN
and -NO2 substituents, which are usually excluded from computational pKa studies, enabling easy
and reliable pKa determination in a wide range of phenols.

Keywords: pKa; computational pKa; phenol; thymol; direct approach; DFT; CAM-B3LYP; solvation
model based on density (SMD)

1. Introduction

Phenols are a class of odorous compounds mainly present in plant essential oils that is
attracting increasing scientific and applicative interest. Their use is extremely widespread,
ranging from antimicrobials and antivirals to cancer treatments and antioxidants also
adopted in fuels [1,2]. Native compounds are exploited in the biomedical field for their
ability to interact with cell membranes, provoking cell death without triggering a specific
pathway [3–5]. This behavior plays a fundamental role, as it often minimizes pharma-
cological resistance. Because antibiotic resistance is major cause of death every year [6],
the possibility of developing new compounds combining the potentially flawless natural
properties of phenols with tailored structural modification is compelling. To this end,
computational chemistry is pivotal, offering the possibility of designing molecules and
predicting their physicochemical properties [7]. It prevents time- and cost-consuming exper-
iments, suggesting easily screenable sets of data. Computational calculation of acid–base
dissociation constants (pKa) is among the most embraced methods [8,9].

The literature includes many strategies proposed to calculate pKa through computa-
tional models. The most common methodologies are the thermodynamic cycles theory and
the direct approach [10]. Considering the dissociation equilibrium of a generic acid, HA:

HA(sol) 
 A−
(sol) + H+

(sol) (1)

using the thermodynamic cycle theory, pKa determination requires the estimation of the
Gibbs free energy of the acid–base equilibrium in the gas phase (∆Gg) and the solvation
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free energy for each species involved in the equilibrium (∆∆Gsolv) [11]. Although accurate,
this model is time-consuming and laborious. Conversely, the direct approach is based on
the calculation of the Gibbs free energy of the acid–base equilibrium in solution (∆Gsol) [12]
without requiring gas-phase calculations [11]. Although the direct method depends on
different variables, such as the level of theory, the molecules involved in the equilibrium
and the adopted solvation model, it has shown to be as accurate as the thermodynamic
cycle theory [13].

However, both models require the free energy of the solvated proton, which cannot be
calculated using DFT methods because H+ has no electrons [13,14]. Therefore, a wide range
of experimental values (between −252.6 and −271.7 kcal·mol−1) [11] is usually adopted,
although this method is highly questioned [12]. Alternatively, correction factors and linear
regressions are commonly used to obtain reliable results, leading to relatively accurate
data [15–18].

To further improve precision in pKa calculation, in the last two decades, the inclusion
of explicit water molecules in the first solvation shell has been proposed. Using water as
the solvent in a continuum model, ∆pKa (i.e., pKacalc—pKaexp) values were still higher
than 1 unit [17]. Thus, the use of correction factors can be used to reduce the gap between
the experimental pKa and the calculated value [17].

In order to overcome issues related to the use of experimental values for proton solvation
free energy, the acid–base dissociation equilibrium can be rewritten as Equation (2) [18–20]:

HA(H2O)n(sol) + OH−(H2O)n(sol) 
 A−(H2O)n(sol) + H2O(H2O)n(sol) (2)

where n is the number of explicit water molecules.
In this model, the number of charged species is conserved on both sides of the equation;

thus, errors in calculations are reduced [11]. This equation [20] allows for the use of
continuum solvation theories with zero to several (n) explicit water molecules to shape a
solvation cage around the compounds involved in the equilibrium. In this case, correction
factors ensure reliable pKa values.

Taking into account the numerous models proposed in the literature, the aim of
this work is to offer a practical, accurate and ready-to-use protocol for computational
pKa determination of phenol derivatives through a direct approach that does not require
correction factors or mathematical fitting [18,19]. A screening of functional and solvation
models is thus proposed to accurately compute pKa. A series of differently substituted
phenol derivatives was selected on the basis of their biological, pharmaceutical, industrial
and synthetic interest in order to validate the proposed methodology.

2. Results and Discussion

In silico pKa determination requires investigation of a wide set of conditions [21];
in general, DFT calculations are preferred to ab initio calculations, owing to their lower
computational and time costs. In this work, we screened multiple functionals in order to
identify the most suitable model in terms of reliability and computational cost. B3PW91
was selected, owing to its reliability based on exchange- and gradient-corrected correlation
functionals [22]. B3LYP was chosen because it is a versatile functional in modelling small
and medium-sized organic molecules [23], and it uses 20% Hartree–Fock (HF) exchange.
CAM-B3LYP is based on B3LYP but it better depicts long-range interactions fundamental
in describing hydrogen bonds [24]. wB97XD includes a long-range correction based on
the empirical dispersion term of van der Waals interactions [25,26]. Hence, such theories
adequately describe hydrogen bonds and electrostatic interactions in water solutions [25].
Likewise, 6-311G+dp was selected as a basis set for its accuracy and reliability in describing
the behavior of first- and second- row elements, with an acceptable computational cost [24].
Solvation continuum models were chosen based on their isotropic properties. In particular,
SMD, CPCM and IEFPCM consider water a continuum dielectric field, but they differ in
terms of solvent cavity description. Truhlar and colleagues defined SMD as a continuum
solvation model effective for charged and neutral compounds in any solvent in which
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just a few parameters are known or required [23]. CPCM and IEFPCM are similar from a
common end-user point of view, although IEFPCM has a higher computational cost [27].

Thus, pKa was calculated according to the dissociation equilibrium reported in
Equation (2) [19,20]. Reaction energy (∆Edep) was estimated as follows:

∆Edep = EA− + EH2O − EOH− − EHA (3)

where EA−, EH2O, EOH− and EHA are the electronic energies of each species (eventually
calculated in the presence of explicit water molecules). After obtaining ∆Edep, it is possible
to estimate the pKa according to the following equation: [28]

pKa = ∆Edep/2.302RT + 15.74 (4)

Preliminary studies were performed on phenol and thymol as leading compounds.
pKa values were calculated according to equation 4, without adding explicit water molecules.
The geometry was optimized for each functional in the vacuum, followed by the calculation
of electronic energy in a continuum solvent using the specific solvation models. Table 1
lists ∆pKa values as pKacalc—pKaexp.

Table 1. ∆pKa values calculated with no explicit water molecules.

Compound pKa(ref)

B3LYP
6-311G+dp

B3PW91
6-311G+dp

WB97XD
6-311G+dp

CAM-B3LYP
6-311G+dp

SMD CPCM PCM SMD CPCM PCM SMD CPCM PCM SMD CPCM PCM

Phenol 9.98 −11.24 −6.43 −6.45 11.33 −6.93 −6.95 −2.78 −7.13 −7.15 −3.60 −11.63 −8.12
Thymol 10.60 −10.16 −4.79 −4.84 12.43 −5.36 −5.40 −1.77 −5.55 −5.60 −2.63 −6.69 −6.71

Results show that with all analyzed functionals and solvation models, pKa values are
largely under- or overestimated; thus, ∆pKa values are considerably higher than 1 pKa unit,
which is the acceptable threshold value for studies of this sort. The accuracy of data seems
not to be affected by the complexity of the theory or by the dielectric polarizability of the
models. It is not possible to highlight a general trend. The worst values were obtained by
applying the SMD model with B3LYP and B3PW91, whereas ∆pKa values with CPCM and
IEFPCM are slightly better. CAM-B3LYP and wB97XD exhibited an opposite trend, as ∆pKa
values obtained with SMD are lower than those obtained with the other solvation models.

To improve the model, one and two water molecules were made explicit for each
species involved in the equilibrium. A general improvement in ∆pKa values was observed,
including one explicit water molecule (Table 2).

Table 2. ∆pKa values calculated with one explicit water molecule.

Com-
pound

pKa(ref)
B3LYP B3PW91 WB97XD CAM-B3LYP

SMD CPCM PCM SMD CPCM PCM SMD CPCM PCM SMD CPCM PCM

Phenol 9.98 −0.69 −3.04 −3.26 −1.33 −3.70 −3.93 −1.26 −3.46 −3.67 −0.32 −2.50 −2.67
Thymol 10.60 −0.07 −1.97 −2.11 −1.17 −3.28 −3.49 −1.06 −2.96 −3.16 −0.06 −1.96 −1.97

In particular, all ∆pKa values were less than 4 units and, with B3LYP and CAM-B3LYP
in SMD, ∆pKa values of less than 1 were successfully obtained. Furthermore, for each
functional, the SMD solvation model led to satisfactory values for acid dissociation constant,
with a ∆pKa slightly higher than 1.

The addition of two explicit water molecules led to a further improvement in the sys-
tem. Specifically, ∆pKa values lower than 1 were obtained with SMD (Table 3). B3LYP and
CAM-B3LYP showed improved results, leading to a pKacalc value close to the experimental
value for phenol, with a ∆pKa slightly higher than zero.
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Table 3. ∆pKa values calculated with two explicit water molecules.

Com-
pound

pKa(ref)
B3LYP B3PW91 WB97XD CAM-B3LYP

SMD PCM CPCM SMD PCM CPCM SMD PCM CPCM SMD CPCM PCM

Phenol 9,98 0.02 0.91 0.96 0.58 1.48 1.49 0.86 1.62 1.65 0.29 0.24 0.28
Thymol 10,60 −0.72 0.13 0.16 −0.27 1.08 1.10 0.44 1.14 1.17 0.89 −0.37 −0.18

Figure 1 depicts the dependence of ∆pKa on the number of explicit water molecules
for phenol; an increase in the number of water molecules results in a decrease in ∆pKa
values to approximately zero. Therefore, no further investigations were performed with
additional explicit water molecules.
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Figure 1. ∆pKa vs. number of explicit water molecules.

Figure 2 compares the solvation volume obtained with SMD and IEFPCM for phenol.
A well-finished cavity was obtained with SMD, which is recommended for calculation of
the ∆G of solvation. In all cases, an ordered H-bonded closed network was observed around
the −OH group [29,30]. As previously reported [12,17], the position of water molecules
influences pKa; however, in this work, the optimized geometry with the minimum of
energy (thus the most stable one) was selected to compute pKa.

Figure 3 shows the influence of water molecules in the electronic distribution on the
potential electronic map (PEM). As expected, the presence of explicit solvent affects the
electronic distribution, especially for phenate, for which the negative charge is delocalized.
Such representation realistically describes what happens in solution, where water molecules
stabilize the negative charge through H-bond interactions.

To substantiate such methodology, a set of differently substituted phenols was selected.
Theoretical pKa was determined using the best-performing of the previously tested compu-
tational methods, i.e., 1H2O/CAM-B3LYP/SMD, 2H2O/CAM-B3LYP/SMD, 2H2O/CAM-
B3LYP/PCM, 2H2O/CAM-B3LYP/CPCM and 2H2O/B3LYP/SMD. With such functionals
and solvation models, ∆pKa values lower than 0.3 were obtained for phenol, in addition
to reliable results for thymol. Thus, an assorted range of phenolic compounds bearing at
least two alkyl substituents with varying steric hindrance and phenols substituted with
electron-donating or electron-withdrawing groups was selected (i.e., halogens, methoxy,
cyano and nitro groups). Importantly, halogens, methoxy, cyano and nitro substituents
were exclusively included at position 4 of the phenols to avoid intramolecular hydrogen
bonding at the reaction center [16].
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Figure 3. Isosurface of electrostatic potential plotted at a value of 0.0004 of phenol (top) and phenate
(bottom) with: 0 (a,a’), 1 (b,b’), 2 (c,c’) explicit water molecules. Calculations were performed with
CAM-B3LYP/6-311G+dp/SMD level of theory.

Table 4 shows the experimental and calculated pKa values of the selected compounds,
and the ∆pKa as the difference between experimental and calculated pKa, the mean absolute
error (MAE) and standard deviation (std. dev.) for each computational method are reported
in Table 5.
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Table 4. Calculated pKa for phenol derivatives with 6-311G+dp basis set.

Compound pKaref

CAM-B3LYP B3LYP

1H2O 2H2O 2H2O 2H2O 2H2O
SMD SMD PCM CPCM SMD

pKacalc pKacalc pKacalc pKacalc pKacalc

Phenol 9.98 9.35 10.27 10.23 10.15 9.95
2-isopropyl-5-methylphenol (thymol) 10.60 10.23 11.49 11.80 11.78 11.39
5-isopropyl-2-methylphenol (carvacrol) 10.42 9.59 10.36 11.19 11.15 9.89
2,3-dimethylphenol 10.54 9.45 10.35 11.04 11.01 9.87
2,4-dimethylphenol 10.60 9.74 10.54 11.32 11.29 9.99
2,6-diisopropylphenol 11.10 10.02 11.07 11.58 11.53 10.26
2-methyl-4-terz-butylphenol 10.59 10.41 10.59 11.31 11.27 10.03
4-bromo-2-isopropyl-5-methylphenol 9.92 9.31 10.57 10.42 10.38 9.90
4-chloro-2-isopropyl-5-methylphenol 9.98 9.34 10.59 10.61 10.58 10.08
4-methoxyphenol 10.05 10.84 10.84 11.02 10.97 11.14
4-hydroxybenzonitrile 7.97 6.25 8.26 6.55 6.54 7.73
4-nitrophenol 7.15 4.11 6.62 6.22 6.22 5.33
4-nitro-2-isopropyl-5-methylphenol 7.38 4.85 6.78 5.98 5.97 6.39

Table 5. ∆pKa for phenol derivatives with 6-311G+dp basis set.

Compound pKaref

CAM-B3LYP B3LYP

1H2O 2H2O 2H2O 2H2O 2H2O
SMD SMD PCM CPCM SMD

pKacalc pKacalc pKacalc pKacalc pKacalc

Phenol 9.98 −0.63 0.29 0.25 0.17 −0.03
2-isopropyl-5-methylphenol (thymol) 10.60 −0.37 0.89 1.20 1.18 0.79
5-isopropyl-2-methylphenol (carvacrol) 10.42 −0.83 0.06 0.77 0.73 −0.53
2,3-dimethylphenol 10.54 −1.09 −0.19 0.50 0.47 −0.67
2,4-dimethylphenol 10.60 −0.86 −0.06 0.72 0.69 −0.61
2,6-diisopropylphenol 11.10 −1.08 −0,03 0.48 0.43 −0.84
2-methyl-4-terz-butylphenol 10.59 −0.18 0.00 0.72 0.68 −0.56
4-bromo-2-isopropyl-5-methylphenol 9.92 −0.61 0.65 0.50 0.46 −0.02
4-chloro-2-isopropyl-5-methylphenol 9.98 −0.64 0.61 0.63 0.60 −0.10
4-methoxyphenol 10.05 0.79 0.79 0.97 0.92 1.09
4-hydroxybenzonitrile 7.97 −1.72 0.29 −1.42 −1.43 −0.24
4-nitrophenol 7.15 −3.04 −0.53 −0.93 −0.93 −1.82
4-nitro-2-isopropyl-5-methylphenol 7.38 −2.53 −0.60 −1.40 −1.41 −0.99
MAE 1.25 0.39 0.88 0.85 0.70
Std. dev. 0.97 0.30 0.45 0.47 0.53

Calculations performed with 1H2O/CAM-B3LYP/SMD led to satisfactory results. In
particular, ∆pKa < 1.1 units (MAE = 0.72) was obtained for all dialkyl-substituted phenols,
which is considered acceptable for theoretical pKa determinations. Satisfactory results
were also achieved with halogens and methoxy substituents. However, considerable ∆pKa
values were obtained with strong electron-withdrawing groups, such as -CN and -NO2,
which significantly affect the electron density on the phenol ring. Conversely, good to
excellent results were obtained with two explicit water molecules. In particular, the SMD
solvation model achieved ∆pKa < 0.2 units for all dialkyl-substituted phenols, except for
thymol, the pKa of which was overestimated, at 0.9 units. 4-Bromo- and 4-chlorothymol (4-
bromo-2-isopropyl-5-methylphenol and 4-chloro-2-isopropyl-5-methylphenol, respectively)
pKa were satisfactorily calculated with all solvation models, and SMD was suitable for
the accurate determination of the pKa of phenols with complex substituents, such as
-CN and -NO2 groups. In particular, the pKa of -NO2-substituted phenols was slightly
underestimated (0.6 units), whereas with 4-hydroxybenzonitrile, a ∆pKa = 0.3 was obtained.
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Such remarkable results strengthen the applicability of this method [31–33]. Cyano and
nitro substituents are rarely reported in computational studies on pKa determination and
are usually associated with a high ∆pKa [34,35]. Thus, the simulation of their electronic
effect is challenging. With all the tested computational methods, with the exception of
2H2O/CAM-B3LYP/SMD, pKacalc values for phenols bearing -CN and -NO2 groups were
largely underestimated (Tables 4 and 5). On the contrary, 2H2O/CAM-B3LYP/SMD led to
accurate results without the introduction of correction factors or mathematical regressions,
as typically observed in the literature [16,28,29]. In addition, for all analyzed compounds,
2H2O/CAM-B3LYP/SMD led to the lowest MAE (0.39) and std. dev. (0.29), with maximum
positive and negative deviations of 0.89 and −0.60, respectively, which is in the range
of acceptable values for theoretical pKa determinations. Figure 4 shows the relationship
obtained between pKacalc and pKaexp using such a computational method; the reported
slope (1.019) is close to the ideal value (i.e., 1.000 for pKacalc = pKaexp) [16], highlighting
the accuracy of such a model, without requiring correction factors.
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The optimized geometries of the analyzed phenols in the presence of two explicit water
molecules obtained with 2H2O/CAM-B3LYP/SMD computational model are reported in
Figure 5. For phenol, dialkyl phenol derivatives and phenols bearing halogen substituents,
an ordered H-bonded cage can be observed around the reaction center (i.e., −OH group),
with H-bond lengths in the range of 1.765–2.136 Å. Conversely, in the case of 4-nitrophenol
and 4-hydroxybenzonitrile, an open-cage was obtained, likely owing to the presence of
the electron-withdrawing substituent, strengthening the H bond between the −OH group
and the first water molecule (H-bond length < 1.67 Å) but reducing the availability of the
oxygen lone pair. Therefore, the second water molecule is more than 4 Å from the −OH
group, preventing an H bond. Unexpectedly, an open cage is also energetically favored
in the case of 4-methoxyphenol, being ca. 1.24 kcal·mol−1 more stable than the ordered
H-bonded cage.
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3. Materials and Methods
3.1. Chemicals and Synthesis

Solvents and chemical reagents were purchased from Sigma Aldrich/Merck KgaA,
Darmstadt, Germany, and were used without further purification. 4-Bromo-2-isopropyl-5-
methylphenol (4-bromothymol) and 2-isopropyl-5-methyl-4-nitrophenol (4-nitrothymol)
were synthesized and fully characterized (Supp. Info). 1H NMR experiments were carried
out using a Bruker400 MHz Avance III spectrometer (Billerica, MA, USA). GC-MS analyses
were performed with a GCMS QP2010 Ultra system (Shimadzu, Kyoto, Japan) at 70 eV
ionization energy. The absorption spectra were recorded with a UV−Vis 2450 spectropho-
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tometer (Shimadzu, Kyoto, Japan). For known compounds, experimental pKa values were
obtained from the NIH (National Library of Medicine) through PubChem or ChemIDplus.

3.2. Computational Method and Data Analysis

DFT calculations were performed using Gaussian 16 rev. A.03. [36]. All compounds
were geometrically optimized in vacuum and in continuum solvent. Calculations were
performed using wB97XD, B3PW91, B3LYP and CAM-B3LYP functionals with 6-311G+dp
basis set. For calculations in solution, the following continuum solvation models were used:
SMD (solvation model based on density), CPCM (conductor-like polarizable continuum
model) and IEFPCM (integral equation formalism polarizable continuum model). For each
functional and basis set, electronic energy was collected in the presence of zero, one or
two explicit water molecules [37]. The starting geometries for the hydrated molecules
were based on chemical intuition, as proposed by Cunningham and colleagues [17], and
drawn using GaussView 6.0 software. All calculations parameters were set up for geometry
optimization (true minima) of each species, avoiding negative frequencies. pKa values
were computed at 298.15 K. Optimized cartesian coordinates are reported in Supp. Info.

3.3. Experimental pKa Determination

Buffer solutions with different pH values were prepared using varying KH2PO4,
K2HPO4 and K3PO4 concentrations. The pH of each solution was checked with a glass
electrode. A 10−2 M stock solution was prepared in methanol for the analyzed phe-
nols (4-bromothymol and 4-nitrothymol). A volume of 30 µL of the stock solution was
diluted in 3 mL of the buffer solutions at varying pH values, and the UV-vis absorp-
tion spectra were recorded. For all the tested compounds, the final concentration in
the cuvette was 10−4 M. For data analysis, the absorbance values were reported as a
function of pH at the appropriate wavelength; then, sigmoidal fitting was used to ob-
tain the inflection point (Figures S1–S2), pKaexp (4-bromothymol) = 9.92 ± 0.04; pKaexp
(4-nitrothymol) = 7.38 ± 0.06.

4. Conclusions

In this work, we developed an easy-to-use method based on the direct approach for
computing pKa without introducing correction factors. Phenol and thymol were used as
leading compounds of a set of molecules with various substituents on the aromatic ring.
Four DFT functionals, three solvation models and a range of explicit water molecules (from
zero to two) were compared.

For all analyzed phenols, 2H2O/CAM-B3LYP/6-311G+dp/SMD led to accurate re-
sults, with a mean absolute error of 0.37, which is an acceptable value for theoretical pKa
determinations. In addition, this methodology achieved reliable results with nitro and
cyano substituents, which are usually associated with very high ∆pKa values, proving that
this method can be applied to a wide range of substituted phenols. Results were obtained
without the introduction of any correction factors or mathematical regressions, making this
approach a valid and accurate method for the direct calculation of the pKa of natural and
synthetic phenols.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27238590/s1, Synthesis of 4-bromo-2-isopropyl-5-methylphenol
(4-bromothymol); Synthesis of 2-isopropyl-5-methyl-4-nitrophenol (4-nitrothymol); Experimental
pKa determination; Figure S1: UV-vis absorption spectra of 4-bromothymol at different pHs (left);
sigmoidal fitting for 4-bromothymol pKa determination (right); Figure S2: UV-vis absorption
spectra of 4-nitrothymol at different pHs (left); sigmoidal fitting for 4-nitrothymol pKa determi-
nation (right); Optimized Cartesian coordinates (in Angstroms). References [38–40] are cited in
Supplementary Materials.
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