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Abstract
We discuss a model describing the spin orbit resonance cascade. We assume that the body
has a two-layer (core–shell) structure; it is composed of a thin external shell and an inner and
heavier solid core that are interacting due to the presence of a viscous friction. We assume
two sources of dissipation: a viscous one, depending on the relative angular velocity between
core and shell and a tidal one, smaller than the first, due to the viscoelastic structure of the
core. We show how these two sources of dissipation are needed for the capture in spin–orbit
resonance. The shell and the core fall in resonance with different time scales if the viscous
coupling between them is big enough. Finally, the tidal dissipation of the viscoelastic core,
decreasing the eccentricity, brings the system out of the resonance in a third very long time
scale. This mechanism of entry and exit from resonance ends in the 1 : 1 stable state.

Keywords Tidal dissipation · Spin orbit resonance · Core shell model

1 Introduction

It iswell-known thatHamiltonianmechanics is a very effectiveway to describe the astronomi-
cal motions because the systems are in this context almost conservative. However considering
the fact that the bodies are extended, instead of point masses, and that their inner motions,
mainly due to tides, dissipate energy, some small non-conservative effects have to be taken
into account.More recently, the argument has been deeply studied, and it became very impor-
tant also because we have today the possibility to perform astronomical measurements with
an impressive precision. Actually, the main motivation of this work is to introduce an inter-
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pretative framework for the measurement of Ganymede by the space mission JUICE. Indeed
the 3GM experiment will be able to measure with high accuracy the Ganymede’s gravity field
and the thickness of subsurface ocean, see Cappuccio et al. (2020). Both these measures can
be related to the friction coefficients of our model, as we will show below. We want also to
remind that recent space missions (JUICE, Juno, BepiColombo) are receiving considerable
support frameworks in literature, consisting in both analytically and numerically models, see,
for instance (Lari et al. 2022; Lari 2018).

The literature about tidal dissipation and triaxial effects is immense, see for instance
(Murray and Dermott 1999; Efroimsky and Makarov 2013; Efroimsky 2015; Ferraz-Mello
et al. 2015) and references therein. The subject is quite subtle, most of all because the
friction appearing in this dissipation is a very complicated topic, and we have so far only
phenomenologicalmodels of it. Just to quote a relatively recent developmentwith this respect,
in a geological framework the motion between plaques is supposed to exhibit the so-called
stick/slip phenomenon, see for instance (Corbi et al. 2011). In order to acquire the possibility
of a detailed control of the parameters of the system, an accurate description is needed, but
it is still far from the current knowledge. Some attempt, in a statistical mechanics context,
has been preliminary performed in terms of the so-called shaken dynamics, see for instance
(Scoppola et al. 2022b; Apollonio et al. 2022a, b; D’Autilia et al. 2021; Apollonio et al.
2019), but the subject is really in a very primordial state.

On the other side, a quantitative control of the friction involved in the tidal phenomena
could be very useful in order to study the numerous resonances that can be observed in
solar system. In this paper, we will face a simple form of resonance, namely the rational
ratio between the orbital period and the spin period; we will call this resonance spin–orbit
resonance.

While it is definitely quite clear that such resonances may appear in celestial mechanics,
see again for instance (Murray and Dermott 1999; Correia et al. 2018; Antognini et al. 2014;
Scoppola et al. 2022a), it ismuch less clear, fromaquantitative point of view, how it is possible
that the systems are captured by certain resonances. An example particularly clear with this
respect is the 3:2 spin–orbit resonance exhibited byMercury. The latter has been investigated
in pioneeringworks, see Goldreich and Peale (1966, 1967), and it has been immediately clear
that the probability of capture in the observed resonance forMercury is extremely small if one
wants to describe the tidal friction in terms of simple phenomenological relations. After this
first computations, various models have been proposed in order to overcome this difficulty,
giving a more plausible justification of the observed resonance. Here, we want to recall the
paper (Noyelles et al. 2014), in which the capture in resonance has been described in term of
a very detailed and frequency dependent model of tidal friction. On the other hand, numerical
approaches are also proposed, see, for instance (Bartuccelli et al. 2015; Correia and Laskar
2009, 2010).

For the physical reasons mentioned above, we believe that a description of the capture
into resonance based on a detailed knowledge of the friction is not completely satisfying.
Hence, following some ideas in Baland et al. (2019), Goldreich and Peale (1966), Goldreich
and Peale (1967), in this paper, we propose a different model of the capture in resonance that
we briefly describe here.

The basic idea is the following: Assume that the body is composed by a thin solid crust and
an inner and heavier solid core, both triaxial, that are interacting due to the presence of a fluid
interface. This interaction, when the rotations of the crust and the core are different, is a first
source of dissipation. A second, much smaller, source of friction is due to the viscoelastic
structure of the core, in which the tidal deformation is not completely elastic, implying a
certain dissipation. In principle, a similar source of friction on the crust is also present, but
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since it is reasonable to assume that it contributeswith small effects and, in any case, it does not
add anything to the general description, we will neglect this term for the sake of simplicity.1

Other kind of interactions between core and crust, such as self-gravitational, pressure or
electromagnetic, are sometimes considered in literature, for an exhaustive discussion see
Rochester (1970). For the aim of this paper, we neglect all this kind of couplings that we
implicitly suppose much smaller than the two we are considering.

We will face in the rest of the paper two different systems, namely Sun-Mercury and
Jupiter-Ganymede. The structure described above is shared by these two systems, with an
important difference: indeed, according to Juno’s data, the liquid interface in the case of
Ganymede is supposed to be composed of liquid water, see for instance (Gomez Casajus
et al. 2022); Mercury, on the contrary has probably a molten mantle, exhibiting a viscosity
about 7 order of magnitude higher than the water’s, see for instance (Smith et al. 2012). In
literature, it is possible to find some studies, related to different phenomena, starting from
these assumptions on the inner structures of the celestial bodies, see for instance (Folonier
and Ferraz-Mello 2017; Baland et al. 2019; Ragazzo et al. 2022).

In order to describe the two sources of dissipation in the system, we assume a simple
viscous friction, linearly dependent on the difference of velocity, for the interaction between
crust and core, i.e., similar to equation (10) in Correia and Laskar (2009). As it will be clear
below, using a rough computation based on laminar solution of the Navier–Stokes equation,
this assumption seems to be reasonable, and it is possible to give an estimate of the order of
magnitude of the torque produced by this kind of friction. The description of the capture in
resonance, anyway, is not dependent on this linearity assumption; we just need a continuous
friction vanishing at zero velocity. The details about the viscoelastic friction on the core are
even less important in order to achieve the results of this paper. The only important assumption
with this respect is the fact that the viscoelastic tidal torque on the core has to be smaller than
the viscous torque applied to the crust-core system. Rough estimates, see again next sections,
show that this assumption is fulfilled in the two specific systems we are studying. Since the
details of the viscoelastic torque on the core are inessential, we will describe it again in terms
of a friction linear in velocity, in order to be able to write the equation of motions by means
of a Rayleigh function.

As it will be clear below, the mechanism leading to the capture in spin–orbit resonance of
the celestial bodies seems to be the following. The (much lighter) crust usually rotates jointly
with the core. A viscoelastic tidal torque acting on the core is always present that slowly
decreases the angular velocity of the whole body. When the angular velocity of such whole
body becomes sufficiently close to a resonance the crust is certainly captured in resonance
on a very small time scale. Then, if the contribution of the viscoelastic friction is sufficiently
small with respect to the viscous coupling between crust and core, the core is driven, again
with certainty, to the same resonance on a different and slightly longer time scale. The body,
then, exits from resonance when the action of the viscoelastic torque reduces the eccentricity
of the orbit under a certain limit value, and this happens on a third longer time scale. The
whole process causes a cascade of spin–orbit resonances, bringing eventually the system in
the stable 1:1 state.

For the seek of simplicity, we consider only the leading terms of expansions in the small
parameters of the system. Future works will be devoted to the control of the convergence of
such expansions following the approach presented in Chen and Pinzari (2021), Celletti and
Chierchia (2000), Calleja et al. (2022). The work is organized as follows. In Sect. 2, to recall
the mechanism leading to the spin–orbit resonance and to fix some notations, we present

1 See below for numerical estimates.
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the equations of motions of the two layers without viscous coupling. Then, we evaluate the
stability of any generic spin–orbit resonance. In Sect. 3, we introduce the two dissipative
terms, we discuss the capture mechanisms, and we find out a condition on the eccentricity
that ensure the capture into spin–orbit resonance for the crust and the core. In Sect. 4, we
show how the system exits from a resonance to go to the next one. Finally, Sect. 5 is devoted
to some preliminary numerical computation and to the discussion of future developments of
the work.

2 Stability of spin–orbit resonance

Celestial bodies such as Mercury or some of the Jovian satellites consist of several layers of
materials with different density that interact differently with other celestial body (e.g., the
Sun, Jupiter or the other satellites). The rotational velocity of such layers is, in general, not
the same. It is reasonable to think that the friction between them depends on their mutual
angular velocity.

In this framework, we introduce a simple model in order to compute the effects of inner
dissipation in the two body problem. We want to investigate the effects that this dissipation
has on the orbital evolution and in particular on the spin–orbit resonance capture. We will
assume that the two bodies have very different masses, say M � m, and we call central body
the body with mass M and orbiting body the body with massm. To keep the model as simple
as possible, we assume the axis of rotation of the orbiting body to be perpendicular to the
orbital plane. Indeed both in the case of Mercury and Ganymede, the obliquity is negligible;
Mercury has a very tiny obliquity and some recent papers show that Ganymede’s obliquity
is lesser than a degree, see, for instance (Hay and Matsuyama 2019).

In our model, we assume a three-layer structure of the orbiting body: an inner solid not
perfectly elastic heavy core and an external solid thin and light crust, both described in terms
of triaxial ellipsoid, separated by a fluid ocean (Ganymede) or a viscous mantle (Mercury).
Following the idea in Baland et al. (2012, 2019) and Coyette et al. (2016), the ocean is
divided into an inner part attached with the core and an outer part attached with the crust,
the boundary between the two being a sphere with radius equal to the semi-major axis of the
core, see Fig. 1. Then, we call core the interior part of the body, composed by the true core
together with the inner part of the ocean and shell the external part of the body, composed
by the outer part of the ocean together with the crust. So the orbiting body, centered in P , is
described in terms of a core of mass m −μ and a not perfectly spherical shell of mass μ. Let
A, B,C and A′, B ′,C ′ be respectively the moments of inertia of the core and of the shell with
respect to the reference axis. In particular, C and C ′ are the moments of inertia with respect
to the spin direction. The equatorial ellipticity are therefore ε = 3

2
B−A
C and ε′ = 3

2
B′−A′
C ′

respectively. It is reasonable to assume that the triaxiality shape of core and shell are similar:
ε � ε′; but, since the shell is lighter and thinner than the core, it is also reasonable to assume
that each moment of inertia of the shell is smaller than the corresponding moment of inertia
of the core, in particular C ′ << C .

The results we obtain remain unchanged if one considers a simpler model in which the
orbiting body, centered in P , is described in terms of a not perfectly spherical core of mass
m − μ and a mechanical dumbbell centered in P , i.e., a system of two points, each having
mass μ/2, constrained to be at fixed mutual distance 2l, having P as center of mass. The
idea is to substitute the triaxiality of the shell with a dumbbell. In this paper, however, we
follow the first more usual approach.
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Fig. 1 Geometry of the system. Core (in gray) and crust (in brown) are separated by an ocean (in blue). The
ocean is divided into two regions: an internal one attached to the core and an external one attached to the crust.
The surface that separates the two regions is a sphere centered in P with radius equal to the semi-major axis
of the core; it is represented by the dotted line

Let the central body be a massive point S fixed in the origin of reference frame and let P
move on a Keplerian orbit around S. Let ρ be the distance PS, ϑ be the true anomaly and let
ϕ and ν be the angles between the PS direction and direction of the major axis of the shell or
the direction of the major axis of the core respectively. So, ϑ̇ , ϕ̇ and ν̇ are the orbital angular
velocity and the angular velocities with respect to the central body of the shell and the core
respectively.

To fix our notation and to increase the readability of the paper, we provide an independent
derivation of the equation of motion of two-layer body already present in literature. In order
to be able to insert friction in the system in terms of Rayleigh’s dissipation function, we use
a Lagrangian formalism.

The total kinetic energy is the sum of the kinetic energies of the two shells: the shell and
the core.

T = 1

2
m(ρ̇2 + ρ2ϑ̇2) + 1

2
C ′(ϕ̇ + ϑ̇)2 + 1

2
C(ν̇ + ϑ̇)2. (1)

The potential energy is the sumof two pieces of gravitational attraction: the attraction between
the core of the orbiting body and the central body and the attraction between the shell of the
orbiting body and the central body:

V = −GM
∫
V

dm

r
− GM

∫
V ′

dm

r

= −GM

ρ

{
m + 1

4ρ2

[
A + B + 3(B − A) cos(2ν) + A′ + B ′ + 3(B ′ − A′) cos(2ϕ)

]}
,

(2)

where G is the universal gravitational constant, V the volume of the core and V ′ the volume
of the shell.

So, the energy of the system is:

E = Ek + Eϕ + Eν, (3)
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with

Ek = 1

2
m(ρ̇2 + ρ2ϑ̇2) − GMm

ρ
, (4)

Eϕ = 1

2
C ′(ϕ̇ + ϑ̇)2 − GM

4ρ3

[
A′ + B ′ + 3(B ′ − A′) cos(2ϕ)

]
, (5)

and

Eν = 1

2
C(ν̇ + ϑ̇)2 − GM

4ρ3 [A + B + 3(B − A) cos(2ν)] . (6)

We note that Ek is the well-known energy of the Kepler problem, that is constant on the
Keplerian orbit, describing the motion of the center of mass of the orbiting body.

In what follows, we assume that the center ofmass of the orbiting bodymoves unperturbed
on its Keplerian trajectory.

On the other hand, Eϕ and Eν describe the dynamics associated with the shell and the
core, respectively.

It is useful to consider the entire series of (a/ρ)3 and ϑ in terms of eccentricity and mean
anomaly, see Murray and Dermott (1999), namely:

(
a

ρ

)3

=
∞∑
n=0

an(e)e
n cos(nωt), (7)

with

an(e) =
∞∑
l=0

bnle
2l , (8)

and b00 = 1.

ϑ = ωt +
∞∑
n=1

cn(e)e
n sin(nωt), (9)

with

cn(e) =
∞∑
l=0

dnle
2l . (10)

Hence,

ϑ̇ = ω +
∞∑
n=1

nωcn(e)e
n cos(nωt). (11)

So Eϕ and Eν can be written as (cfr. (7), (11)):

Eϕ = 1

2
C ′

(
ϕ̇ + ω +

∞∑
n=1

nωcn(e)e
n cos(nωt)

)2

− ω2

4

[
A′ + B ′ + 3(B ′ − A′) cos(2ϕ)

] ∞∑
n=0

an(e)e
n cos(nωt)

(12)
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and

Eν = 1

2
C

(
ν̇ + ω +

∞∑
n=1

nωcn(e)e
n cos(nωt)

)2

− ω2

4
[A + B + 3(B − A) cos(2ν)]

∞∑
n=0

an(e)e
n cos(nωt),

(13)

where we have used the Kepler’s third law: GM
a3

= ω2.

We can now consider a generic 2(k/2 + 1) : 2 spin–orbit resonance, setting

ϕ = kωt

2
+ γ and ν = kωt

2
+ η. (14)

Indeed, according to our definition, the angle between the semi-major axis of the shell
and the x-axis is ϑ + ϕ � ωt + kωt

2 + γ = ( k
2 + 1

)
ωt + γ ; so the shell’s angular speed

with respect to the x-axis is
( k
2 + 1

)
ω + γ̇ , that is, the 2(k/2 + 1) : 2 spin–orbit resonance

condition, with γ the resonant angle. Same for the core.
Hence, (12) and (13) become:

Eγ = 1

2
C ′

[(
k

2
+ 1

)
ω + γ̇ +

∞∑
n=1

nωcn(e)e
n cos(nωt)

]2

− ω2

4

[
A′ + B ′ + 3(B ′ − A′) cos(kωt + 2γ )

] ∞∑
n=0

an(e)e
n cos(nωt)

(15)

and

Eη = 1

2
C

[(
k

2
+ 1

)
ω + η̇ +

∞∑
n=1

nωcn(e)e
n cos(nωt)

]2

− ω2

4

[
A + B + 3(B ′ − A′) cos(kωt + 2η)

] ∞∑
n=0

an(e)e
n cos(nωt).

(16)

Each of these expressions depend on two angles ϑ = ωt and γ or η, respectively. Accord-
ing to our assumptions, ϑ is faster than γ and η (that vary very slowly); for this reason, we
can consider the mean value of the energies Eγ and Eη over a period of ϑ .

〈Eγ 〉 = 1

2
C ′

[
γ̇ 2 +

(
k

2
+ 1

)2

ω2 + 2

(
k

2
+ 1

)
ωγ̇ +

∞∑
n=1

n2ω2c2n(e)e
2n

2

]

− 3

8
ω2(B ′ − A′)ak(e)ek cos(2γ )

(17)

and

〈Eη〉 = 1

2
C

[
η̇2 +

(
k

2
+ 1

)2

ω2 + 2

(
k

2
+ 1

)
ωη̇ +

∞∑
n=1

n2ω2c2n(e)e
2n

2

]

− 3

8
ω2(B − A)ak(e)e

k cos(2η).

(18)
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The corresponding Lagrangian is:

L = 1

2
C ′

[
γ̇ 2 +

(
k

2
+ 1

)2

ω2 + 2

(
k

2
+ 1

)
ωγ̇ +

∞∑
n=1

n2ω2c2n(e)e
2n

2

]

+ 3

8
ω2(B ′ − A′)ak(e)ek cos(2γ )

+ 1

2
C

[
η̇2 +

(
k

2
+ 1

)2

ω2 + 2

(
k

2
+ 1

)
ωη̇ +

∞∑
n=1

n2ω2c2n(e)e
2n

2

]

+ 3

8
ω2(B − A)ak(e)e

k cos(2η).

(19)

The corresponding equations of motion are:
{
C ′γ̈ = − 3

4 (B
′ − A′)ω2ak(e)ek sin 2γ

C η̈ = − 3
4 (B − A)ω2ak(e)ek sin 2η

(20)

that are the equations of two independent pendulums. These equations are well-known in
literature, see, for instance equation (10) in Goldreich and Peale (1966) or equation (5.73) in
Murray and Dermott (1999).2

So, for suitable initial conditions, γ = 0, η = 0 is a stable equilibrium point for the system.
This implies that every 2(k/2 + 1) : 2 spin–orbit resonance is stable.

3 Capture into spin–orbit resonance

In this section, wewant to investigate the resonance capturemechanism. In order to do that we
introduce in both the equations in (20) a coupled viscous friction (i.e., a friction proportional
to the difference of velocity ϕ̇ − ν̇ = γ̇ − η̇). Moreover, in equation for η we introduce a
second term of friction, proportional to ν̇ = η̇ + kω

2 that gives the dissipation due to the
non-perfect elasticity of the core.

A standard approach to treat a viscous friction in Lagrangian formalism is to use the
Rayleigh’s dissipation function R, defined as the function such that ∂R

∂q̇i
= fi , where fi is the

frictional force acting on the i-th variable.
In our case, the Rayleigh’s dissipation function assumes the form:

R = −1

2
λ (ϕ̇ − ν̇)2 − 1

2
λ′ν̇2 = −1

2
λ (γ̇ − η̇)2 − 1

2
λ′

(
η̇ + kω

2

)2

, (21)

with λ > 0 a viscous friction coefficient and λ′ � λ a viscoelastic friction coefficient.
The Euler–Lagrange equations become:⎧⎨

⎩
d
dt

(
∂L
∂γ̇

)
= ∂L

∂γ
+ ∂R

∂γ̇

d
dt

(
∂L
∂η̇

)
= ∂L

∂η
+ ∂R

∂η̇

(22)

2 Remark that we have the factor 3
4 in Eq. (20) instead of the more familiar 3

2 . This is due to our choice of
coordinates. Considering for instance the second equation in (14), our resonant angle differs from that defined
in Murray and Dermott (1999), where using notation in Fig. 1 is θ + ν − pM . The difference between our
resonant angle η and Murray & Dermott’s one is 2e sinM , giving different factor in the averaged equation of
motion.
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Then, the equations of motion are:{
C ′γ̈ = − 3

4 (B
′ − A′)ω2ak(e)ek sin 2γ − λ(γ̇ − η̇)

C η̈ = − 3
4 (B − A)ω2ak(e)ek sin 2η + λ(γ̇ − η̇) − λ′(η̇ + kω

2 )
(23)

Aswealready said, in principle in equation forγ , a friction termproportional to ϕ̇ = γ̇+ kω
2

must be present that gives the dissipation due to the non-perfect elasticity of the shell. Hence,
equation of motion becomes:{

C ′γ̈ = − 3
4 (B

′ − A′)ω2ak(e)ek sin 2γ − λ(γ̇ − η̇) − λ′′(γ̇ + kω
2 )

C η̈ = − 3
4 (B − A)ω2ak(e)ek sin 2η + λ(γ̇ − η̇) − λ′(η̇ + kω

2 ),
(24)

but since it is reasonable assume that the shell is much lighter than the core, then λ′′ << λ′.
For this reason, we will neglect this term that, in any case, does not add anything to the
general description.3

Equation (23) can be rewritten in terms of first-order ones:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ′v̇γ = − 3
4 (B

′ − A′)ω2ak(e)ek sin 2γ − λ(vγ − vη)

γ̇ = vγ

C v̇η = − 3
4 (B − A)ω2ak(e)ek sin 2η + λ(vγ − vη) − λ′(vη + kω

2 )

η̇ = vη

(25)

In Sect. 5, we solve numerically this system of nonlinear coupled differential equations
for different values of initial conditions.

Nevertheless, here we want to study analytically the behavior of the system. In order to
do that we note that vγ varies with a characteristic time τγ = C ′

λ
, while vη varies with a

characteristic time τη = C
λ
. Hence, if C ′ � C then τη � τγ

4; in this case, vη varies very
slowly compared to vγ , and then we can study the evolution of vγ in (25) considering vη as a
constant. This is equivalent to decoupling the four equations in (25) into two velocity fields
fγ and fη.

Let us consider then fγ , with vη constant:
{
C ′v̇γ = − 3

4 (B
′ − A′)ω2ak(e)ek sin 2γ − λvγ + λvη

γ̇ = vγ

(26)

The equilibrium points are of the form (γ̄ ; 0) and ( π
2 − γ̄ ; 0),

with γ̄ = 1
2 arcsin

(
4λvη

3(B′−A′)ω2ak (e)ek

)
.

These equilibrium point exist if and only if

4λ|vη|
3(B ′ − A′)ω2ak(e)ek

< 1 	⇒ |vη| <
3(B ′ − A′)ω2ak(e)ek

4λ
, (27)

namely if the core is rotating with a velocity not too far from the resonance one.
The physical meaning is straightforward. If the friction term λvη is bigger than the torque,

then the shell stays glued to the core and the two rotate together. If the condition (27) is not
satisfied, then the solution of the equations, after a small transient, is characterized by a γ that
grows linearly in time and a vγ that oscillates very slowly around the value vη: 〈ϕ̇〉 = 〈ν̇〉.

3 For an explicit expression of λ′ or λ′′ see Eq. (48) below.
4 See below for numerical estimates.
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On the other side, if the condition (27) is satisfied, then the friction term is weaker than
the torque and in this case gravitational attraction of the central body brings the shell into the
spin–orbit resonance (that is the equilibrium point).

Notice that in our model, the shell will certainly (with probability 1) reach the equilibrium
point if the condition (27) is satisfied, which will certainly be verified after a long enough
time since vη is slowly decreasing due to the presence of friction terms.

Once the shell reaches the resonance, slowly it brings the core into the resonance as well.
Indeed, if the shell is in resonance, then vγ = 0, so fη in (25) become:{

C v̇η = − 3
4 (B − A)ω2ak(e)ek sin 2η − (λ + λ′)vη − λ′ kω

2

η̇ = vη

(28)

In order to simplify the notation, we can rescale the first equation, obtaining:{
v̇η = − 1

2εω
2ak(e)ek sin 2η − (λ+λ′)

C vη − λ′
C

kω
2

η̇ = vη,
(29)

with ε = 3
2

(B−A)
C .

The equilibrium points are of the form (η̄; 0) and ( π
2 − η̄; 0),

with η̄ = 1
2 arcsin

(
kλ′/C

εωak (e)ek

)
.

These equilibrium points exist if and only if

kλ′/C
εωak(e)ek

< 1 	⇒ ek >
kλ′

εCωak(e)
, (30)

namely if the eccentricity is big enough.
The equilibrium point (η̄; 0) is asymptotically stable if it exists a Lyapunov functionW (η, vη)

such that W has a minimum in (η̄, 0) and ∇W · fη ≤ 0.
A Lyapunov function is:

W (η, vη) = 1

2
v2η − 1

4
εω2ak(e)e

k cos 2η + λ′

C

kω

2
η. (31)

Indeed

∇W · fη = ∂W

∂vη

· v̇η + ∂W

∂η
· η̇

= vη

[
−1

2
εω2ak(e)e

k sin 2η − (λ + λ′)
C

vη − λ′

C

kω

2

]

+
[
1

2
εω2ak(e)e

k sin 2η + λ′

C

kω

2

]
vη = − (λ + λ′)

C
v2η ≤ 0.

(32)

So we can consider the Lyapunov function as an effective energy:

Eeff = 1

2
η̇2 + Veff (33)

such that

dEeff

dt
= − (λ + λ′)

C
η̇2 (34)

and

Veff = −1

2
εω2ak(e)e

k cos 2η + λ′

C

kω

2
η. (35)
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Fig. 2 Graphical representation
of the condition that ensure the
capture in resonance: the energy
dissipation |�Eeff| between two
maxima of the potential is bigger
than the corresponding potential
variation |�Veff|. The scale on
the y-axis has been voluntarily
increased

Now, following the already mentioned pioneering papers (Goldreich and Peale 1966,
1967), we can find a condition which ensure that the equilibrium point is reached. Indeed
the core will certainly (with probability 1) reach the resonance if the energy dissipation
|�Eeff| between two maxima of the potential (e.g., between −π

2 and π
2 ) is bigger than the

corresponding potential variation |�Veff|.
|�Veff| is easy to determine:

|�Veff| =
∣∣∣Veff

(π

2

)
− Veff

(
−π

2

)∣∣∣ = λ′

C

kω

2
π. (36)

While |�Eeff| can be determine integrating dEeff
dη from −π

2 to π
2 :

|�Eeff| =
∣∣∣∣∣
∫ π

2

− π
2

(
dEeff

dη

)
dη

∣∣∣∣∣ =
∣∣∣∣∣
∫ π

2

− π
2

(λ + λ′)
C

η̇dη

∣∣∣∣∣
= (λ + λ′)

C

∫ π
2

− π
2

√
2(Eeff − Veff)dη (37)

To solve the integral, we can replace Veff with V > Veff, obtaining a lower bound for
|�Eeff|. Moreover, as we can see in Fig. 2, we can imagine that the motion reverses its
direction near to the maximum of the potential (in this way we still get a lower bound):

|�Eeff| ≥ (λ + λ′)
C

∫ π
2

− π
2

√
2(Eeff − V )dη

≥ (λ + λ′)
C

∫ π
2

− π
2

√
2
1

2
εω2ak(e)ek(1 + cos 2η)dη

= (λ + λ′)
C

ω
√

εak(e)ek
∫ π

2

− π
2

√
1 + cos 2ηdη = (λ + λ′)

C
ω

√
8εak(e)ek

(38)

where we have used the relation 1 + cos 2η = 2 cos2 η.
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So, the core will reach the 2(k/2 + 1) : 2 spin–orbit resonance with probability 1 if:

|�Eeff| > |�Veff| 	⇒ (λ + λ′)
C

ω
√
8εak(e)ek >

λ′

C

kω

2
π 	⇒ λ

λ′ >
kπ√

32εak(e)ek
− 1,

(39)

namely if λ is sufficiently larger than λ′.
An analogous computation for the capture in resonance of the shell has been omitted

because the linear term in its Lyapunov function has the opposite sign, implying the capture
with probability 1.

Notice that in the pioneering works (Goldreich and Peale 1966, 1967), no assumptions are
made about the internal structure of the orbiting body, so in that model the additional viscous
dissipation is absent, while it is a fundamental ingredient in our model. We can therefore
think that our model generalizes that of Goldreich and Peale, indeed setting λ = 0 (i.e.,
neglecting the viscous friction between the two layers) our equation of motion for η in (23)
becomes the equation (10) with torque (12a) in Goldreich and Peale (1966); therefore, in
this case, the problem of a small capture probability arises. On the contrary, if one consider,
like we did, also the internal viscous dissipation between the layers of the orbiting body, that
problem is overcome: the core is certainly (with probability 1) captured into the resonance if
conditions (30) and (39) are satisfied, namely, respectively, it the eccentricity is big enough
and if the viscous dissipation is bigger enough with respect the viscoelastic one.5

4 Exit from the resonance

When the core and the shell are both in resonance, they rotate together with the same angular
speed: ϕ̇ = ν̇ = kω

2 	⇒ vγ = vη = 0, so the viscous dissipation in both the equations for
γ and η vanishes.

In such a situation the only dissipation source is the viscoelastic term λ′ kω
2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ′v̇γ = − 3
4 (B

′ − A′)ω2ak(e)ek sin 2γ

γ̇ = vγ

C v̇η = − 3
4 (B − A)ω2ak(e)ek sin 2η − λ′ kω

2

η̇ = vη

(40)

Although the dissipation λ′ kω
2 is very small, it slowly tends to circularize the orbit.

When the eccentricity becomes so small that condition (30) is no longer satisfied, then the
system exit from the 2(k/2 + 1) : 2 and, while the shell and the core still rotate at the same
angular speed, it further decreases until the system reaches, with the same mechanisms, the
2(k′/2 + 1) : 2 spin–orbit resonance, with k′ = k − 1.
The second to last resonance that the system visits is the 3 : 2 spin–orbit resonance(k = 1),
as in Sun-Mercury system. The last is, of course, the 1 : 1 spin orbit resonance (k = 0), as
in Jupiter-Ganymede system.

5 See below for numerical estimates.
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5 Numerical simulations

In this section, we present some preliminary numerical simulations integrating the set of
coupled Eq. (25) using Mathematica.

The purpose of these simulations is to qualitatively observe the dynamics of the system
and to note the presence of different time scales in order to justify the assumptions made
before regarding the way to decouple the equations.

More in-depth simulations will be the subject of future works, as well as simulations
regarding the orbital dynamics of systems in 1 : 1 spin–orbit resonance. The aim is to observe
how the internal structure modeled in this paper can influence the evolution of systems in
1 : 1 spin orbit resonance, such as the Jupiter-Ganymede system. This could provide a support
framework for the JUICE mission to analyze the data collected by the space craft.

In order to perform the numerical integration in a more handy way, we rewrite Eq. (25)
as: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v̇γ = − 1
2ε

′ω2ak(e)ek sin 2γ − 1
τγ

(vγ − vη)

γ̇ = vγ

v̇η = − 1
2εω

2ak(e)ek sin 2η + 1
τη

(vγ − vη) − 1
τ ′
η
(vη + kω

2 )

η̇ = vη

(41)

with τγ = C ′
λ
, τη = C

λ
and τ ′

η = C
λ′ .

For the purpose of this work, we focus our simulations on a particular spin orbit resonance,
namely the 3:2. This correspond to set k = 1 and consequently ak(e) evaluated at e = 0 is
a1(0) = 3; the exploration of the cascade in subsequent spin orbit resonances will be the
subject of future works.

Finally, in order to obtain plausible simulations, we consider the parameters values of
Ganymede, summarized in Table 1.

The equations become the following:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̇γ = −0, 02 sin 2γ − 0.03(vγ − vη)

γ̇ = vγ

v̇η = −0, 02 sin 2η + 3 × 10−5(vγ − vη) − 3 × 10−8(vη + 150)

η̇ = vη

(42)

where we have expressed the coefficients until the first significant digit, and we have used
S.I. units except for time, which is expressed in years.6

We first integrated the equations for 105 iterations with initial conditions (γ ; vγ ; η; vη) =(
0.1; 1000 1

y ; 0.1; 50 1
y

)
, i.e., when vη does not satisfy condition (27); the result are shown in

Fig. 3. As we can see, in this case vγ decreases on a very short time until it reaches the value
of vη and from then it oscillates around this value (left picture in Fig. 3) never approaching
zero. vη, on the contrary, remains almost constant; indeed it decreases very slowly on a very
long time scale (right picture in Fig. 3). The physical meaning is straightforward; vη is large
enough that the friction term is bigger than the gravitational torque, then the shell stays glued
to the core and the two rotate together.

Then,we integrated the equations for 107 iterationswith initial conditions (γ ; vγ ; η; vη) =(
0.1; 1000 1

y ; 0.1; 5 1
y

)
, i.e., when vη satisfies condition (27); the result are shown in Fig. 4.

6 For an estimate of the parameters see Eq. (52) below.
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Table 1 Physical parameter
values expressed with two
significant digits in SI units

Table of physical parameter values
Ganymede Mercury

Mean motion (ω) 1.0 × 10−5 8.3 × 10−7

Semi-major axis (a) 1.1 × 109 5.8 × 1010

Eccentricity (e) 1.3 × 10−3 2.1 × 10−1

Mean radius (R) 2.6 × 106 2.4 × 106

Mass (m) 1.5 × 1023 3.3 × 1023

Equatorial ellipticity (ε) (10−3) (6 × 10−5)

Tidal quality factor (Q) (100) (100)

Tidal Love number (K2) (0.02) (0.1)

Viscosity of ocean/mantle (η̄) (1.6 × 10−3) (103)

Thickness of ocean/mantle (h) (105) (4 × 105)

The values without brackets are taken from NASA Fact Sheet
The values of ε are computed using data in Zubarev et al. (2015) and
Karimi et al. (2016) respectively
The values of Q and K2 of Mercury are taken fromMurray and Dermott
(1999)
For Ganymede, we use the same values of Q and K2 of Europa,
taken from Murray and Dermott (1999); indeed it seems reasonable to
think that the internal structure of the two satellites; therefore, the tidal
response, is similar. These values are just a numerical estimates, indeed
neither Ganymede’s nor Europa’s K2/Q are known for sure. One of the
tasks of JUICE mission is to estimate these parameters
The values of η̄ of Ganymede andMercury are that of water and magma,
respectively
The values of h of Ganymede and Mercury are taken from Hay and
Matsuyama (2019) and Hauck et al. (2013), respectively

As we can see, in this case, vγ vanishes on a very short time and from then it oscillates
around zero (left picture in Fig. 4). vη, on the contrary, also vanishes but on a longer time
scale (right picture in Fig. 4). The physical meaning is straightforward: vη is small enough
that the friction term is lesser than the gravitational torque, then the latter brings the shell
into the spin–orbit resonance and, slowly, the core enter the resonance too.

At some point the system will exit from resonance. This process occurs in a very long
time scales.7 In this paper, we are not interested in the numerical investigation of this process
that will be the subject of future works.

6 Astronomical estimates

In this section, we want to propose a possible way to estimate some quantities involved in
our model from values know in the literature, summarized in Table 1.

To this end, let us consider the equation for vη in (25):

C v̇η = −3

4
(B − A)ω2ak(e)e

k sin 2η + λ(vγ − vη) − λ′
(

vη + kω

2

)

7 See below for numerical estimates.
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Fig. 3 Numerical solution for the
system with initial conditions
(γ ; vγ ; η; vη) =(
0.1; 1000 1

y ; 0.1; 50 1
y

)
, i.e.,

when vη does not satisfy
condition (27). In the picture on
the left, we have plotted vγ

versus time for 100 time steps.
As we can see, after about 30
time steps, vγ reaches the value
of vη and oscillates around it. In
the picture on the right, we have
plotted vη versus time for 100000
time steps. As we can see, vη

remains almost constant: indeed
it decreases very slowly on a very
long time scale

= −3

4
(B − A)ω2ak(e)e

k sin 2η + Tv + Tt , (43)

with Tv = λ(vγ −vη) the viscous torque and Tt = −λ′(vη + kω
2 ) the viscoelastic tidal torque.

We can compute Tv considering a two-layer body having a solid core that rotates with
angular speed vν and a solid crust that rotates with angular speed vϕ , separated by a fluid (i.e.,
an ocean) of thickness h. Hence, the crust rotates with velocity vrel = vν −vϕ = vη −vγ with
respect to the core. In a point at distance r from the rotational axis, the tangential relative
velocity is: vrel r .

Finally, let us suppose that the viscous friction force per unit surface is η̄ times the gradient
of tangential relative velocity, or, if you prefer, by definition of viscosity (η̄): Fv = η̄ vrel r/h.
Hence, the friction torque with respect the rotational axis acting on the core is obtained by
integrating over all the core’s surface �c:

|Tv| =
∫

�c

Fv r dσ =
∫ 2π

0

∫ π

0

η̄(vη − vγ )r

h
r R2 sin ϑdϑdφ, (44)

with r = R sin ϑ the distance between the rotational axis (z-axis) and the point of geographic
coordinate (φ, ϑ).

|Tv| = 2π
η̄(vη − vγ )R4

h

∫ π

0
sin3 ϑdϑ = 8π

3

η̄(vη − vγ )R4

h
. (45)
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Fig. 4 Numerical solution for the
system with initial conditions
(γ ; vγ ; η; vη) =(
0.1; 1000 1

y ; 0.1; 5 1
y

)
, i.e.,

when vη satisfies condition (27).
In the picture on the left, we have
plotted vγ versus time for 200
time steps. As we can see, after
about 50 time steps, vγ vanishes
and oscillates around zero. In the
picture on the right, we have
plotted vη versus time for 107

time steps. As we can see, vη

vanishes but on a much longer
time scale (on the order of 106

iterations)

So, the friction coefficient λ used from (23) onward is given by:

λ = 8π

3

η̄R4

h
. (46)

Note that this expression of λ represents a lower bound. Indeed, our assumption on a laminar
flow is a convenient way to find an explicit expression of λ. Some recent papers predict non-
laminar flow in the subsurface oceans of icy satellites, see for instance (Hay and Matsuyama
2019), where the effects of turbulent subsurface oceans are numerically modeled. Moreover,
as we already said, others kinds of couplings between core and shell are treated in literature.
In Correia and Laskar (2009) and Williams et al. (2001), an expression of the effective
friction coefficient due to both viscous and electromagnetic coupling is given. In any case,
considering turbulent regimes or considering other sources of dissipation, the value of λ will
be greater than the one we found and condition (39) is even more satisfied.

The estimate of λ′ can be found considering the expression of Tt given by theMacDonald’s
tidal torque formula (equation 4.159 in Murray and Dermott (1999)):

|Tt | = 3

2

k2
Q

Gm2R5

a6
. (47)
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Hence, if we suppose vη < ω:

λ′ = 3

kω

k2
Q

Gm2R5

a6
. (48)

Finally,

λ

λ′ = 8πη̄a6Qkω

9hk2Gm2R
(49)

Considering the values of the parameters known in the literature (Table 1), we obtain the
estimate of λ/λ′ for Ganymede and Mercury is:(

λ

λ′

)
G

� 103;
(

λ

λ′

)
M

� 1016. (50)

If we now consider condition (39) for k = 1 (3 : 2 spin–orbit resonance), we can see that
for Mercury’s parameters, it is certainly satisfied. Whereas in the case of Ganymede, the
condition require an λ/λ′ ratio exactly of the same order as the one we estimate using current
values for the parameters, so is not obvious that Ganymede could have trapped into the 3 : 2
spin–orbit resonance or even if it has been trapped in the past, its present small eccentricity
is probably not compatible with the 3 : 2 spin–orbit resonance. Since some of Ganymede’s
parameters are not known exactly, but in a range, the values of λ/λ′ ratio could be update in
future with more accurate measurements.

Finally, the estimate value
(

λ
λ′

)
M � 1016 is a purely indicative lower bound; indeed in the

case of Mercury, we expect that λ′ is bigger than the value we found since the molten mantle
too gives an important contribution to the dissipation. Nevertheless, an in-depth study of this
aspect is beyond the aim of this work.

7 Characteristic time scales

In this section, we want to estimate the characteristic time scales of the system in order to
justify all the assumptions we made regarding the decoupling of Eq. (25):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ′v̇γ = − 3
4 (B

′ − A′)ω2ak(e)ek sin 2γ − λ(vγ − vη)

γ̇ = vγ

C v̇η = − 3
4 (B − A)ω2ak(e)ek sin 2η + λ(vγ − vη) − λ′(vη + kω

2 )

η̇ = vη

(51)

As we have seen in the paper, we can identify three well-separated processes: the entrance in
resonance for the shell, the entrance in resonance for the core and the exit from resonance.

We will see that these three processes occur on very different time scales. Indeed, the
entrance in resonance for the shell occurs in a characteristic time τγ = C ′

λ
(characteristic

time of the dynamics of vγ ).
On the other hand, the entrance in resonance for the core occurs in a characteristic time

τη = C
λ
(characteristic time of the dynamics of vη).

Finally, the exit from resonance occurs in a characteristic time τ ′
η = C

λ′ (characteristic time
of the dynamics of vη in Eq. (40) that coincides with the characteristic time of the dynamics
of the eccentricity).

SinceC ′ � C and λ′ � λ, then τγ << τη << τ ′
η and thus the three processes mentioned

above have a well-separated time scales.
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Since C ∝ R5, it is reasonable to assume that C ′/C of the order 10−3 or 10−4; indeed the
thickness of the shell is about 104 m or 105 m while the radius of the core is about 106 m for
both Mercury and Ganymede.

The estimate of τγ ; τη; τ ′
η for Ganymede are:

τγ � 109 s; τη � 1012 s; τ ′
η � 1015 s. (52)

We note that τ ′
η, that is the characteristic time of exit from resonance, coincides with the

characteristic time of variation of eccentricity. Our value is in good agreement with that
known in literature:
108 y � 1015 s, see, for instance (Murray and Dermott 1999; Showman et al. 1997).

8 Conclusions

In our model, we assume that the body is composed by an inner solid core and an outer
solid crust separated by a viscous liquid layer (ocean or mantle). We derive the following
mechanism to enters an arbitrary spin–orbit resonance. The (much lighter) crust usually
rotates jointly with the core. A viscoelastic tidal torque acting on the core is always present
that slowly decreases the angular velocity of the whole body. When the angular velocity
of such whole body becomes sufficiently close to a resonance (condition (27)), the crust is
certainly captured in resonance on a very small time scale. Then, if the contribution of the
viscoelastic friction is sufficiently small with respect to the viscous coupling between crust
and core (condition (39)), the core is driven, again with certainty, to the same resonance on a
different and slightly longer time scale. The body, then, exits from resonance when the action
of the viscoelastic torque reduces the eccentricity of the orbit under a certain limit value
(condition (30)), and this happens on a third longer time scale. The whole process causes a
cascade of spin–orbit resonances, bringing eventually the system in the stable 1:1 state.

The implication of our model on the dynamics of a body in 1 : 1 spin orbit resonance with
its central body will be the subject of future works.
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