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Abstract We develop methodology for network data with special attention to epi-
demic network spatio-temporal structures. We provide estimation methodology for
linear network autoregressivemodels for both continuous and countmultivariate time
series. A study of non-linear models for inference under the assumption of known
network structure is provided. We propose a family of test statistics for testing lin-
earity of the imposed model. In particular, we compare empirically two bootstrap
versions of a supremum-type quasi-score test. Synthetic data are employed to demon-
strate the validity of the methodological results. Finally, an epidemic application of
the proposed methodology to daily COVID-19 cases detected on province-level geo-
graphical network in Italy complements the work.

1 Modelling Network Time Series

New sources of data like social networks, GPS data, or epidemic counting processes,
usually recorded over a timespan and a specific geographical area, has motivated a
lot of interest in network data modelling. In particular, understanding the effect of a
network to a multivariate time series is of essential importance for many applications
and has attracted considerable recent attention. The methodology outlined in this
work has potential application in several network science related fields.

Knight et al. [30] defined such multivariate streaming data as network time series
and proposed a methodology for modelling them. This approach has been originally
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proposed in the context of spatio-temporal data analysis and is referred to Space-
Time Autoregressive Moving Average (STARMA) models. See Cliff and Ord [9]
andMartin and Oeppen [36], among many others. Indeed, a wide variety of available
spatial streaming data related to physical phenomena fits this framework. In general,
any stream of data for a sample of units whose relations can be modelled through an
adjacency matrix (neighborhood structure), adhere to statistical techniques reviewed
in this work.

We review some recent literature for network time series. Zhu et al. [54] developed
inferential theory for Network Autoregressive models (NAR) when the network
dimension N is increasing (N → ∞), under the Independent Identic Distributed
(I I D) assumption on the innovation error sequence, where a continuous response
random variable is observed for each node of a network. Technically speaking, in
this approach the observed variable Y , for the node i at time t , is denoted by Yi,t .
To understand its behavior, as it evolves in time, it is assumed to depend on the past
value of the variable for the node itself, say Yi,t−1, and of the past values of the
average variable between its neighbors, i.e. the mean of the variable Y , at time t − 1
observed among the nodes connected to the node i . These authors develop Ordinary
Least Squares (OLS) inference and study the asymptotic behaviour of the related
estimator. Further extensions of network autoregressive models consider quantile
autoregression [55], grouped least squares estimation [53], as well as a network
extension for GARCH models [52]. The latter has been considered only for the case
of fixed network dimension. Finally, Knight et al. [31] studied the more elaborate
neighbourhood structures of STARMA models in the context of network analysis,
named as Generalized NAR (GNAR), which considers the effect of several layers
of connections between the nodes of the network and provide R software for fitting
such models, for continuous variables only.

1.1 The Case of Discrete Responses

Interesting datasets collected from social network analysis have integer-valued
nature, e.g. number of characters contained in users posts, number of likes, etc.
However, the literature on models for multivariate count time series is sparse; see
Fokianos [17] for a recent review. To fill this gap, Armillotta and Fokianos [3] pro-
posed a linear and a log-linear Poisson network autoregression model (PNAR) for
Poisson distributed data, under the assumption of α-mixing innovations. For details
about and weak dependence related literature see Rosenblatt [43] and Doukhan [15].
Thismodel generalizes the linearNARmodel, by linking it with the context ofGener-
alized Linear Models [37], since the observations are marginally Poisson distributed,
conditionally to their past history. The joint dependence among different variables is
specified by a copula construction, see Fokianos et al. [21, Sect. 2]. Armillotta and
Fokianos [3] have further established parametric estimation under the framework of
quasi maximum likelihood inference [26, 50] and associated asymptotic theorywhen
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the network dimension increases. Bracher and Held [6] study the related problem
from a Bayesian point of view.

1.2 Nonlinear Models

All previous contributions assume linearity of themodel, which is restrictive assump-
tion in practice. Literature for univariate nonlinear time series models is well estab-
lished; this is especially true for continuous-valued variables. The interested reader
can see Tong [46], Fan and Yao [16], Gao [23] and Teräsvirta et al. [45], amongmany
others, for more details. For integer-valued data there exists a more recent stream of
works, although still under development. Suitable smoothing conditions for infer-
ence on nonlinear models are provided by Fokianos et al. [20], Neumann [38] with
Poisson data, Christou and Fokianos [7] for the Negative Binomial case, and Gorgi
[25] for the Beta Negative Binomial distribution. See also Wang et al. [47] for a
threshold autoregressive model with Poisson distribution. In a more general frame-
work, related works are by Ahmad and Francq [1], Davis and Liu [12] and Douc et al.
[14], among others. For a recent review see Davis et al. [13]. Despite this flourishing
literature related to nonlinear models, the previous works are not directly applicable
to network autoregressive models, because of their multivariate structure. Multivari-
ate models for discrete observations include the work by Pedeli and Karlis [40–42]
and Fokianos et al. [21], among others, who consider linear models. Armillotta and
Fokianos [4] specified a general nonlinear network autoregressive model for both
continuous and discrete-valued processes, establishing also the related stationarity
results and asymptotic theory of suitable quasi maximum likelihood estimators.

1.3 Testing for Linearity

Testing the linearity of a given model is a classical subject of study in time series
analysis and econometrics. For continuous-valued random variables, general results
have been reported when the parameters are identifiable or non-identifiable under
the null hypothesis; see Boos [5] for the former and Francq et al. [22] for the latter
case. Other linearity tests for specific nonlinear models and with non identifiable
parameters, have been specified in Luukkonen et al. [35], for the Smooth Transition
Autoregression (STAR) case, Li and Li [33], for the ThresholdAutoregression (TAR)
model, among others. For discrete-valued time series, Christou and Fokianos [8] sug-
gest a score type test for univariate (mixed) Poisson random variables, in the case
of correctly identifiable parameters. Finally, Andrews and Ploberger [2] and Hansen
[28] proposed general methods for testing linearity under non-identifiability for uni-
variate models. Non parametric tests have been also proposed; see, for example, Gao
et al. [24] and Fokianos and Neumann [18], for continuous and count data, respec-
tively. However, these latter test become computationally intensivewhen considering
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multivariate time series models. Armillotta and Fokianos [4] proposed testing proce-
dures for examining linearity (or nonlinearity) of NAR models, for both continuous
and count data, with and without the presence of non identifiable parameters under
the null hypothesis.

1.4 Outline

The main aim of the work is to compare different bootstrap methods for testing lin-
earity of NARmodels. Such comparison will be conducted with the use of simulated
synthetic data as well as by an application to real world data.

Thepaper is organized as follows: Sect. 2 introduces general nonlinear frameworks
for network time series autoregressive models, for continuous and count processes
and also discusses specificmodels of interest. Details about the inference to unknown
parameters of the model are also provided. Then, in Sect. 3, results concerning the
quasi-score test for testing linearity in network autoregressive models are discussed.
The testing methodology is analyzed with and without non identifiable parameters
under the null assumption. Practical computational aspects are taken into account, by
describing different ways to compute the p-values of the proposed test statistics, by
feasible bounds and bootstrap methodologies. Section4 presents the results obtained
on simulated data regarding the comparison between different computations of the
linearity test. Finally, the proposedmethodology is also applied to a real data analysis
on epidemic networks to daily new COVID-19 cases observed on province-level
geographical network in Italy.

Notation

For a q × p matrix M = (mi j ), i = 1, . . . , q, j = 1, . . . , p, denotes the generalized
matrix norm |||M |||r=max|x |r=1 |Mx |r . If r=1, then |||M |||1=max1≤ j≤p

∑q
i=1 |mi j |.

If r = 2, |||M |||2 = ρ1/2(M ′M),whereρ(·) is the spectral radius. If r = ∞, |||M |||∞ =
max1≤i≤q

∑p
j=1 |mi j |. If q = p, these norms arematrix norms. The symbol I denotes

an identity matrix, 1 a vector of ones, 0 a vector of zeros, whose dimensions depend
on the context in which they are applied.

2 Network Autoregressive Models

When a network with N nodes, indexed by i = 1, . . . N is a priori known to the
researcher, the neighbourhood structure of such a network is completely described
by using its adjacency matrix A = (ai j ) ∈ R

N×N . The single element of such matrix
would beai j = 1, if there is a directed edge from i to j (e.g. user i follows j onTwitter,



Bootstrapping Network Autoregressive Models for Testing Linearity 103

a flight take off from airport i landing to airport j), and ai j = 0 otherwise. Undirected
graphs are allowed (A = A′), which means that the edge between two nodes, i and
j , has no specific direction. Typically, self-relationships are excluded i.e. aii = 0
for any i = 1, . . . , N . This is a restriction for many applications, such as social
networks; see Wasserman et al. [49] and Kolaczyk and Csárdi [32], for more details
on network definitions. Since the information on the network is assumed to be known
in advance, the network structure is treated as a known component of the analysis. The
row-normalised adjacency matrix is defined by W = diag {n1, . . . , nN }−1 A where
ni = ∑N

j=1 ai j is the total number of connections starting from the node i , such that
i → j ; it is called out-degree. Then,W is constructed with the property |||W |||∞ = 1.
Moreover, define ei the N -dimensional unit vector with 1 in the i th position and
0 everywhere else, such that wi = ai j/ni = (e′

iW )′ = (wi1 . . . , wi N )′ is the vector
containing the i th row of W .

Define a N -dimensional vector of time series {Yt , t = 1, 2 . . . , T }, where Yt =
(Y1,t , . . . ,Yi,t , . . . YN ,t )

′, which is observed on the given network; in this way,
a univariate time series is detected for each node, say Yi,t , with corresponding
conditional expectation λi,t , denoted by {λt ≡ E(Yt |Ft−1), t = 1, 2 . . . , T }, with
λt = (λ1,t , . . . , λi,t , . . . , λN ,t )

′ being the conditional expectation vector, and denote
the history of the process by Ft = σ(Ys : s ≤ t). When the stochastic process
{Yt : t ∈ Z} is integer-valued, the first lag order nonlinear Poisson Network Autore-
gression (PNAR) is generally specified as follow [4]

Yt = Nt (λt ), λt = f (Yt−1,W, θ) (1)

where f (·) is a function depending on the past lags of the count random vector,
the known network structure W , and an m-dimensional parameter vector θ . The
process {Nt } is a sequence of N -variate copula-Poisson processes describing the
joint dependence structure of the time series vectorYt , where themarginal probability
distribution of the count variables is Yi,t |Ft−1 ∼ Poisson(λi,t ), for i = 1, . . . , N .
The joint distribution between univariate variables is generated by a copula structure,
sayC(·, ρ), onwaiting timesof aPoissonprocess, definedbyArmillotta andFokianos
[3, Sect. 2.1]. An extension of (1) for a general lag order p > 1 models is given by,
see Armillotta and Fokianos [4]

λt = f (Yt−1, . . . ,Yt−p,W, θ) .

When the time series are continuous-valued, the nonlinear Network Autoregres-
sion (NAR) is defined by Armillotta and Fokianos [4] such that

Yt = λt + ξt , λt = f (Yt−1,W, θ) (2)

where ξi,t ∼ I I D(0, σ 2), for 1 ≤ i ≤ N and 1 ≤ t ≤ T . Obviously, we can extend
(2) by incorporating a larger number of lags.
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Models (1)–(2) have been proved to be stationary under suitable smoothness con-
ditions on the function f (·) which are easily verifiable. See Armillotta and Fokianos
[4, Sects. 2.2–2.3] for details about stability conditions.

Denote by Xi,t = n−1
i

∑N
j=1 ai jY j,t the so called network effect; it represents the

average impact of node i’s connections. Recall models (1)–(2). The parameter vec-
tor can be split in two parts θ = (θ(1)′, θ (2)′)′, where the vectors θ(1) and θ(2) are of
dimensionm1 andm2, respectively, such thatm1 + m2 = m. In general, θ(1) denotes
parameters associated with the linear part the model, whereas θ(2) denotes the vector
of nonlinear parameters. For t = 1 . . . , T , both (1)–(2) have element-wise compo-
nents

λi,t = fi (Xi,t−1,Yi,t−1; θ(1), θ (2)) , i = 1, . . . , N , (3)

where fi (·) is defined as the i th component of the function f (·), and it ultimately
depends on the specific nonlinear model of interest which is taken into account.

2.1 Examples of Specific Models of Interest

We give some illustrative examples of specific nonlinear models of (3). We first
introduce the linear model as a special case.

Linear Model

Recall that Xi,t = n−1
i

∑N
j=1 ai jY j,t is the neighbourhoodmean. The first order linear

NAR(1) model,
λi,t = β0 + β1Xi,t−1 + β2Yi,t−1 , (4)

is a special case of (3), with θ(1) = (β0, β1, β2)
′, but without nonlinear parameters

θ(2). For each single node i , model (4) allows the conditional mean of the process to
depend on the past of the variable itself, for the same node i , and the average of the
other nodes j 	= i by which the focal node i is connected. Implicitly, only the nodes
connected with the node i can affect its conditional mean λi,t . The parameter β1

measures the impact of the network effect Xi,t−1. The coefficient β2 determines the
impact of the lagged variable Yi,t−1. Model (4) was originally introduced by Knight
et al. [30] and Zhu et al. [54] for the case of continuous random variables Yt , with
Yi,t = λi,t + ξi,t . Armillotta and Fokianos [3] extended (4) to count randomvariables.
In this case, (4) is the linear PNAR(1) model with Yi,t |Ft−1 ∼ Poisson(λi,t ) for
i = 1, . . . , N and a copula structure for joint distribution.
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Intercept Drift (ID)

When Yt is integer-valued, a drift in the intercept term of (4) introduces the nonlinear
model

λi,t = β0

(1 + Xi,t−1)γ
+ β1Xi,t−1 + β2Yi,t−1 , (5)

where γ ≥ 0. Model (5) behaves like a linear model for small values of γ , and γ = 0
reduces (5) to (4) exactly. Instead, when γ takes values far from zero, model (5)
introduce a perturbation, deviating from the linear model (4). Hence, (5) is a special
case of (3), with θ(1) = (β0, β1, β2)

′ and θ
(2)
0 = γ . A slightly modified version of

(5) allows to treat the case where Yt ∈ R
N , by taking the absolute value of Xi,t−1

defined at the denominator of the intercept term.

Smooth Transition (STNAR)

A Smooth Transition version of the NAR model, say STNAR(1), is specified as

λi,t = β0 + (β1 + α exp(−γ X2
i,t−1))Xi,t−1 + β2Yi,t−1 , (6)

where γ ≥ 0. This models introduces a smooth regime switching behaviour on the
network effect, by mimicking the smooth transition time series models suggested
by Haggan and Ozaki [27], Teräsvirta [44] and Fokianos and Tjøstheim [19]. When
α = 0 in (6), the linear NAR model (4) is recovered. Moreover, (6) is a special case
of (3), with θ(1) = (β0, β1, β2)

′ and θ
(2)
0 = (α, γ )′.

Threshold Effect (TNAR)

Another regime switching nonlinear time seriesmodel of particular interest is Thresh-
old NAR model, TNAR(1), defined by

λi,t = β0 + β1Xi,t−1 + β2Yi,t−1 + (α0 + α1Xi,t−1 + α2Yi,t−1)I (Xi,t−1 ≤ γ ) , (7)

where I (·) is the indicator function and γ is the threshold parameter. Unlike the
STNARmodel, (7) induces an abrupt shift in the parameters of themodels. For details
about threshold-type models, the reader is referred to Lim and Tong [34], Wang et
al. [47] and Christou and Fokianos [8], among others. When α0 = α1 = α2 = 0,
model (7) reduces to the linear counterpart (4). Clearly, θ(1) = (β0, β1, β2)

′ and
θ(2) = (α0, α1, α2, γ )′ show that (7) is a special case of (3).
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2.2 Inference

Estimation for the true unknown parameter vector θ0 in models (1) is developed by
means of quasi-maximum likelihoodmethodology, seeWedderburn [50],Gourieroux
et al. [26] and Heyde [29], for example. The Quasi Maximum Likelihood Estimator
(QMLE) is the vector of parameters θ̂ maximizing the function

lT (θ) =
T∑

t=1

N∑

i=1

(
Yi,t log λi,t (θ) − λi,t (θ)

)
, (8)

which is not necessarily the true log-likelihood of the process but it serves as an
approximation. In particular, following Armillotta and Fokianos [4], (8) is the log-
likelihood that it would have been obtained if all time series were contemporaneously
independent. Note that although the joint copula structure C(. . . , ρ) and the corre-
sponding set of parameters ρ are not included in the maximization of (8), the QMLE
is still computed under the assumption of dependence as it is implicitly taken into
account in the past values of multivariate counts Yt . Maximizing (8) simplifies com-
putations of the estimation and guarantees consistency and asymptotic normality of
the resulting estimator. The derivative of (8) yields the score function

ST (θ) =
T∑

t=1

N∑

i=1

(
Yi,t

λi,t (θ)
− 1

)
∂λi,t (θ)

∂θ
≡

T∑

t=1

st (θ) . (9)

Define ∂λt (θ)/∂θ ′ the N × m matrix of derivatives, Dt (θ) the N × N diagonal
matrix with elements equal to λi,t (θ), for i = 1, . . . , N and ξt (θ) = Yt − λt (θ) is
a Martingale Difference Sequence (MDS). Then, the empirical Hessian and condi-
tional information matrices are given, respectively, by

HT (θ) =
T∑

t=1

N∑

i=1

Yi,t
λ2
i,t (θ)

∂λi,t (θ)

∂θ

∂λi,t (θ)

∂θ ′ −
T∑

t=1

N∑

i=1

(
Yi,t

λi,t (θ)
− 1

)
∂2λi,t (θ)

∂θ∂θ ′ ,

BT (θ) =
T∑

t=1

∂λ′
t (θ)

∂θ
D−1

t (θ)�t (θ)D−1
t (θ)

∂λt(θ)

∂θ ′ ,

where �t (θ) = E
(
ξt (θ)ξ ′

t (θ) | Ft−1
)
is the conditional covariance matrix evaluated

at θ . Under suitable network assumptions and smoothness conditions on the nonlin-
ear function f (·), Armillotta and Fokianos [4] proved the consistency and asymp-

totic normality of the estimator, that is
√
NT (θ̂ − θ0)

d−→ N (0, H−1BH−1), when
N → ∞ and TN → ∞, where H and B are the theoretical Hessian and information
matrices, respectively, evaluated at the true value of the parameters θ = θ0.
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Analogous inferential result are obtained for model (2), by maximizing the quasi
log-likelihood lNT (θ) = −∑T

t=1 (Yt − λt (θ))′ (Yt − λt (θ)), being equivalent to per-
form a nonlinear Least Squares (LS) estimation of the unknown parameters.

3 Linearity Test

In this section we introduce the linearity test for nonlinear networks autoregressive
models (1)–(2), discussed in Sect. 2. Recall model (3) and consider the following
hypothesis testing problems

H0 : θ(2) = θ
(2)
0 versus H1 : θ(2) 	= θ

(2)
0 , componentwise , (10)

where, under the null hypothesis H0, the nonlinear parameters take a value θ
(2)
0 ,

which yields the linear model (4). For example, when Yt is integer-valued following
(1) and the mean process λt is defined as in (5), then θ(2) = γ and θ

(2)
0 = 0. Indeed

the problem H0 : γ = 0 versus H1 : γ > 0 becomes an hypothesis test between a
linear null assumption versus ID alternative model.

To develop a test statistic for (10), we employ a quasi-score test based on the
quasi-log-likelihood (8). This is a convenient choice, since such type of test requires
only the estimation ofmodel under the null hypothesis, whichwill be the linearmodel
(4), say θ̃ = (β̃0, β̃1, β̃2)

′; this is usually a simpler task compared to the estimation of
the nonlinear alternative model. Recall the partition of the parameters θ in (3), then
ST (θ) = (S(1)′

T (θ), S(2)′
T (θ))′ denotes the corresponding partition of the quasi-score

function (9). The quasi-score test statistic is given by

LMT = S(2)′
T (θ̃)�−1

T (θ̃)S(2)
T (θ̃) , (11)

with �T (θ̃) = J H−1
T (θ̃)J ′

(
J H−1

T (θ̃)BT (θ̃)H−1
T (θ̃)J ′

)−1
J H−1

T (θ̃)J ′, where J =
(Om2×m1 , Im2), Is is a s × s identity matrix and Oa×b is a a × b matrix of zeros.
�T (θ̃) is a the estimator for the unknown covariance matrix � = Var[S(2)

T (θ̃)]. It
can be proved that the quasi-score test (11) converges, asymptotically, to a χ2

m2

distribution [4, Theorem 7]. Then, we reject H0, if the value of LMT computed
in the available sample is greater than the critical values of the χ2

m2
distribution,

computed at ordinary significance levels. Analogous results hold for the continuous-
valued model (2).
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3.1 The Case of Non Identifiable Parameters

For model (3), consider the case where fi (·) is defined as

λi,t = β0 + β1Xi,t−1 + β2Yi,t−1 + hi (Yt−1, γ )α , (12)

where hi (Yt−1, γ ) is a B-dimensional vector of nonlinear functions, say hbi (Yt−1, γ ),
with b = 1, . . . , B, and α is the associated B-dimensional vector of nonlinear param-
eters. In practice, model (12) assumes that the nonlinear part of the network autore-
gressive models is of the form of an additive component. Note that the function
hi (·) depends on the lags of the variable and on k-dimensional vector of parameters
γ . Several nonlinear models are included in (12). For example, the STNAR model
(6), where B = 1 and hi (Yt−1, γ ) = exp(−γ X2

i,t−1)Xi,t−1, for i = 1, . . . , N , and the
TNAR model (7), where B = 3 and h1i (Yt−1, γ ) = I (Xi,t−1 ≤ γ ), h2i (Yt−1, γ )) =
Xi,t−1 I (Xi,t−1 ≤ γ ) and h3i (Yt−1, γ ) = Yi,t−1 I (Xi,t−1 ≤ γ ). Testing linearity on
model (12) is equivalent to testing

H0 : α = 0 , versus H1 : α 	= 0 , elementwise, (13)

However, in this particular case, it is not possible to estimate the value of the parameter
γ , because it is not identifiable under the null hypothesis H0.Note that the parameterγ
exists in the score partition function (9) because it is related to the nonlinear parameter
θ(2) = α.We conclude that the relevant quantities for inference and testing-see (11)—
depend on γ , that is S(2)

T (θ̃ , γ ), �T (θ̃ , γ ) and LMT (γ ). The model is then subject to
non identifiable parameters γ under the null assumption. When this problem appears
the standard theory does not apply and a chi-square type test is not suitable any more;
see Davies [11] and Hansen [28], among several other references. Clearly, the value
of the test changes over different values of γ ∈ , where  is the domain of γ . A
summary function of the test computed under different values of γ is then required;
a typical choice is gT = supγ∈ LMT (γ ). In practice, the space  is replaced by
F = (γL , γ1, . . . , γl , γU ), a grid of values for the non identifiable parameters γ ,
and the maximum of the tests computed over such grid would be the test statistics
employed for the evaluation of the test (13). Armillotta and Fokianos [4] established
the convergence of the test gT to g, when T → ∞, being a function of a chi-square
process, LM(γ ), in symbol g = supγ∈ LM(γ ). The values of the latter asymptotic
distribution cannot be tabulated, as this depends on unknownvalues of γ .We describe
next methodology for computing the p-values of the sup-type test statistic.

3.2 Bootstrapping Test Statistics

Based on the previous arguments, we suggest to approximate the p-values of the test
statistic by employing the following bootstrap algorithm
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Algorithm 1 Score bootstrap
1: for j = 1, . . . , J do
2: Generate

{
νt, j : t = 1, . . . , T

} ∼ I I DN (0, 1).

3: Compute S
ν j
T (θ̃ , γ ) = ∑T

t=1 st (θ̃ , γ )νt, j .

4: Compute the test LM
ν j
T (γ ), for γ ∈ F , and g j

T = supγ∈F
LM

ν j
T (γ ).

5: end for
6: Compute pJ

T = J−1 ∑J
j=1 I (g

j
T ≥ gT ).

An approximation of the p-values is obtained from step 6 of Algorithm1, where
gT is the value of the test statistic computed on the available sample. When the
bootstrap replication J is big enough pJ

T is a good approximation of the unknown p-
values of the test. Then, the null hypothesis H0 is rejected if pJ

T is smaller than a given
significance level. In order to test the robustness and performances of Algorithm 1,
we propose here a comparison with an alternative parametric bootstrap procedure.

Algorithm 2 Parametric bootstrap

Estimate parameters of the linear model (4), θ̃ .
for j = 1, . . . , J do

By using θ̃ at step 1, generate from (1), with f (·) defined as in (4), a bootstrap sample Ȳ j
t ,

with t = 1, . . . , T .
Compute S̄ j

T (θ̃ , γ ) from (9), by using the observations generated at step 3.

Compute the test LM
j
T (γ ), for γ ∈ F , and ḡ j

T = supγ∈F
LM

j
T (γ ).

end for
Compute p̄ J

T = J−1 ∑J
j=1 I (ḡ

j
T ≥ gT ).

The bootstrap p-values are obtained from step 7 of Algorithm2. The parametric
bootstrapmethod differs from the former approach because the source of randomness
in the bootstrap iterations is not a multiplicative Gaussian noise νt, j but a resampling
process which generates new pseudo-observations from the estimated model. The
same methods apply unaffected to the continuous-valued model (2). We omit the
details. In the following section we compare the performances of the testing methods
proposed so far.

4 Applications

In this part of the chapter we illustrate the described methodologies for testing lin-
earity for network autoregressive models on a set of synthetic and real data.
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4.1 Simulation Results

Synthetic data obtained by Monte Carlo simulation are considered in this section.
A network structure is required in the application of NAR models. Moreover, recall
that the structure of the network is completely described by its adjacency matrix
A = (ai j ) ∈ R

N×N with ai j such that ai j = 1, if there is a directed edge from i to j
and 0 otherwise. In this simulation study such network is generated following one of
the most popular network structure models, the Stochastic Block Model (SBM), see
Nowicki and Snijders [39], Wang and Wong [48] and Zhao et al. [51]. A block label
(l = 1, . . . , K ) is assigned for each node with equal probability and K is the total
number of blocks. Then, set P(ai j = 1) = N−0.3 if i and j belong to the same block,
and P(ai j = 1) = N−1 otherwise. Practically, the model assumes that nodes within
the same block are more likely to be connected with respect to nodes from different
blocks. Throughout we assume the existence of two blocks (K = 2) and N = 8. The
network is practically generated by using the igraph package of R software [10].

The observed count time series {Yt : t = 1, . . . , T = 1000} is generated recur-
sively as in (1), with λt coming from the linear model (4), using the copula-based
data generating process of Armillotta and Fokianos [3, Sect. 2.1]. A choice of
the copula function C(·) and the starting N -dimensional vector of the process λ0

are required. The selected copula structure is Gaussian, CGa
R (. . . ), with correlation

matrix R = ρ Ī , where Ī is a N × N matrix of ones; ρ = 0.5 is the copula param-
eter. Then CGa

R (. . . ) = CGa(. . . , ρ). We set λ0 = 1 and use a burnout sample, by
discarding the 300 first temporal observations to reduce the impact of the starting
value of the process. The time series observations are obtained by setting the value of
the linear parameters equal to θ(1) = (β0, β1, β2)

′ = (0.5, 0.2, 0.1)′. This procedure
is replicated S = 200 times. Then, the linear QMLE estimation θ̃ optimising (8) is
computed for each replication.

To generate the process Yt in the continuous-valued case, the random errors ξi,t
are simulated from standard normal distribution N (0, 1). For the data generating
process of the vector Yt , the initial value Y0 is randomly simulated according to its
stationary distribution [54, Proposition 1]. This is Gaussian with mean μ = β0(1 −
β1 − β2)

−11 and covariance matrix vec[Var(Yt )] = (IN 2 − G ⊗ G)−1vec(I ), where
1 = (1 . . . 1)′ ∈ R

N , I is the N × N identity matrix, G = β1W + β2 I ,⊗ denotes
the Kronecker product and vec(·) the vec operator. Once the starting value Y0 is
given, the process {Yt : t = 1, . . . , T } is generated recursively according to (4) and
Yt = λt + ξt , coming from (2). Then, the LS estimation of the linear parameters is
computed for each replication. In this case, the resulting estimator is the ordinary
least squares, which has closed form solution [54, Eq. 2.9].

We give here an example of a non standard case, by testing the linearity of model
(4) versus the STNAR model; this is done by setting the hypothesis test H0 : α = 0
versus H1 : α > 0 in (6), inducing lack of identifiability on the parameter γ . Accord-
ing to Sect. 3.1, for each of the S replications, we can approximate the p-values of the
sup-type test, supγ∈F

LMT (γ ), where F is a grid of 10 equidistant values picked
on [0.01, 3], by the two bootstrap approximation procedures described in Sect. 3.2,
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Table 1 Empirical size at nominal significance levels αH0 = {0.1, 0.05, 0.01} of the test statistics
(11) for testing H0 : α = 0 in S = 200 simulations of model (6), for N = 8, T = 1000. Data are
integer-valued and generated from (1), with the linear model (4). The empirical power is also
reported for data generated from model (6) with α = {0.3, 0.4} and γ = {0.1, 0.2}. The network is
derived from the SBM. The approximated p-values are computed by score bootstrap (pJ

T ), in the
first row, and parametric bootstrap ( p̄ J

T ), second row

Method Size Power

γ = 0.2, α = 0.3 γ = 0.1, α = 0.4 γ = 0.2, α = 0.4

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

pJ
T 0.020 0.015 0.000 0.260 0.155 0.075 0.445 0.300 0.075 0.590 0.475 0.270

p̄ J
T 0.020 0.010 0.000 0.265 0.180 0.060 0.510 0.300 0.085 0.590 0.510 0.275

Table 2 Empirical size at nominal significance levels αH0 = {0.1, 0.05, 0.01} of the test statistics
(11) for testing H0 : α = 0 in S = 200 simulations of model (6), for N = 8, T = 1000. Data are
continuous-valued and generated from (2), with the linear model (4). The empirical power is also
reported for data generated from model (6) with α = {0.3, 0.4} and γ = {0.1, 0.2}. The network is
derived from the SBM. The approximated p-values are computed by score bootstrap (pJ

T ), in the
first row, and parametric bootstrap ( p̄ J

T ), second row

Method Size Power

γ = 0.2, α = 0.3 γ = 0.1, α = 0.4 γ = 0.2, α = 0.4

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

pJ
T 0.070 0.025 0.000 0.970 0.940 0.755 0.370 0.140 0.020 0.995 0.990 0.950

p̄ J
T 0.070 0.020 0.000 0.970 0.905 0.720 0.275 0.105 0.005 0.990 0.985 0.915

with J = 299 bootstrap replications. The fraction of cases over S simulations in
which the p-value approximations is smaller than the usual significance levels 0.1,
0.05 and 0.01 is the frequency of cases where H0 is rejected and constitutes the
empirical size of the test. The empirical power of the test is again the frequency of
cases where H0 is rejected but obtained when data were generated by the model (6)
instead. This is accomplished by using the same generating mechanism described for
the linear model, by setting various combinations of values of nonlinear parameters
α = {0.3, 0.4} and γ = {0.1, 0.2}.

The results of the simulation study for the count data case are reported in Table1.
We note that the empirical size is smaller than or close to the expected nominal levels;
the empirical power is low when α is small and tends to grow for larger values of α

far from the value of the null assumption. The two bootstrap methods show similar
behavior, but the parametric bootstrap yields slightly better when compared to the
score based bootstrap. Such results show that both tests works satisfactorily with a
slight preference given to the parametric bootstrap methodology.

Table2 considers results regarding the continuous case. Firstly, we see an overall
improvement of the performances compared with the integer-valued case. This is
expected since here the errors ξt are generated from Normal random variables and
also the stationary distribution of the process Yt is Gaussian. Hence, the χ2 (process)
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distribution of the test is approached more quickly. Instead in the integer-valued case
such distribution will be reached only asymptotically, with N → ∞, TN → ∞. The
results of the two bootstrap procedures are again similar, but we note that the score
bootstrap slightly outperforms the parametric one.

4.2 New COVID-19 Cases on Italian Provinces

We study a dataset which consists of daily new cases of COVID-19 virus detected
for each province of Italy, according to the Nomenclature of Territorial Units for
Statistics, Level 3 (NUTS-3) classification, as established on Regulation (EC) No
1059/2003 of the European Parliament and of the Council. Data is provided by the
Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile.1 The
total number of provinces is N = 107. The time series starts at 25/02/2020 and
is updated daily until 07/02/2022 (T = 714). For the considered regions and time
window, we observed two instances of negative numbers of new cases. These values
are replaced by zero counts.

An undirected network structure can be derived by exploiting available data on
geographical coordinates. The geodesic distance between the centroids of pairs of
provinces {i, j} are computed, say di j . Then, two provinces {i, j} are connected with
an undirected edge if di j ≤ 200km.We consider such cut-off reasonable by consider-
ing that a smaller distance would results in few connections for most remote regions,
like the islands, whereas a bigger distance will result in a fully connected network,
i.e. a network which connects each node to all the others, which is not of interest
in the current analysis. The density of the network is 21.58%. The histogram of the
number of connections is shown in Fig. 1. The maximum number of connections is
45. The median number of connections is 22.

We see from Fig. 2 a typical time series for each province. The data show that it
is possible to detect at least two regimes of variation; one during pandemic seasonal
waves, with high numbers of daily new cases and one where the virus cases are
relatively stable for several months. We address the question that a linear model is
suitable for fitting such data. The partial autocorrelation function (PACF) of the time
series indicates a significant effect of the past counts so an autoregressive model may
be adequate to model the dataset. The median number of daily new cases is 27.

Estimation of the linear PNAR model (4) is performed by QMLE. For testing
linearity, the quasi-score linearity test is computed according to (11). For the identi-
fiable case, the asymptotic chi-square test is employed, for the nonlinear model (5),
testing H0 : γ = 0 versus H1 : γ > 0. For non identifiable case, we test linearity
against the presence of smooth transition effects, as in (6), with H0 : α = 0 versus
H1 : α > 0. A grid of 10 equidistant values in the interval F ≡ [0.001, 3] is cho-
sen for values of the nuisance parameter γ . The p-values are computed for the test

1 Dataset available at https://github.com/pcm-dpc/COVID-19/blob/master/dati-province/dpc-
covid19-ita-province.csv.

https://github.com/pcm-dpc/COVID-19/blob/master/dati-province/dpc-covid19-ita-province.csv
https://github.com/pcm-dpc/COVID-19/blob/master/dati-province/dpc-covid19-ita-province.csv
https://github.com/pcm-dpc/COVID-19/blob/master/dati-province/dpc-covid19-ita-province.csv
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Fig. 1 Histograms of
number of connections
(degrees) between provinces
of Italy
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Fig. 2 Time series of counts
and partial autocorrelation
function for the number of
daily new COVID-19 cases
in Benevento province, Italy.
Dashed blue line: 5%
confidence bands

COVID−19 cases counts, Benevento prov. Italy

Time

C
ou

nt
s

0 100 200 300 400 500 600 700

0
40

0
80

0

0 5 10 15 20 25

−0
.2

0.
2

0.
6

Time

PA
C
F

PACF of COVID−19 cases, Benevento prov. Italy



114 M. Armillotta et al.

Table 3 QMLE estimates of the linear model (4) for daily COVID-19 new cases in Italy. Standard
errors in brackets. Linearity is tested against the ID nonlinear model (5), with χ2

1 asymptotic test
(11); against the STNARmodel (6), with approximated p-values computed by score bootstrap (pJ

T ),
parametric bootstrap ( p̄ J

T ); and versus TNAR model (7)

Models β̃0 β̃1 β̃2

Linear 1.665
(0.462)

0.149
(0.016)

0.842
(0.025)

Models χ2
1 pJ

T p̄ J
T

ID 3.585 – –

STNAR – <0.001 <0.001

TNAR – 0.600 0.800

supLMT = supγ∈F
LMT (γ ) through the two bootstrap approximation procedures

described in this work. The number of bootstrap replication is set to J = 299. For the
parametric bootstrap, the generation of pseudo-observations requires the choice of a
copula and related parameter. We chose the Gaussian copula with correlation matrix
R = ρ Ī , and ρ = 0.5. Finally, a linearity test against threshold effects, as in (7), is
also performed, which leads to the test H0 : α0 = α1 = α2 = 0 versus H1 : αl > 0,
for some l = 0, 1, 2. In order to determine a feasible range of values for the non
identifiable threshold parameter, we compute the quantiles at 10% and 90% of the
empirical distribution for the process

{
Xi,t : t = 1, . . . , T

}
, at each i = 1, . . . , N .

Then, we take the minimum of 10% quantiles and the maximum of 90% quantiles
as the extremes of F , from which a grid of 10 equidistant values is picked.

The results are summarized in Table3. The estimated parameters for the linear
model (4) are highly significant. The magnitude of the network effect β1 appears
to agree with intuition, as an increasing number of cases in a province can lead
to a growth in cases found in a close geographic area. The effect of the lagged
variable has a upwards impact on the number of cases, as expected by the observed
temporal dependence. The linearity test against the nonlinear model (5) is rejected at
0.1 significance level, since the value of the test statistics is greater than the critical
values of theχ2

1 distribution, but not at 0.05 and0.01 levels. This gives amild evidence
for possible nonlinear drifts in the intercept. The linearity is strongly rejected when
tested against the STNAR model, by both bootstrap tests at all levels 0.1, 0.05 and
0.01. Nevertheless, bootstrap sup-type tests do not show evidence of threshold effects
in themodel. Then, we conclude that there is a clear evidence in accordance to regime
switching effects with smooth switching rather than abrupt shifts. These findings are
in line with the values of the time series, as shown in Fig. 2.
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