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Abstract: The kinematic synthesis of compliant mechanisms based on flexure-hinges is 10 

not an easy task. A commonly used method is to refer to an equivalent rigid model, re- 11 

placing the flexure-hinges with rigid bars connected with lumped hinges, to use the al- 12 

ready known methods of synthesis. This way, albeit simpler, hides some interesting is- 13 

sues. This paper addresses the elasto-kinematics and the instantaneous invariants of flex- 14 

ure-hinges with a direct approach, making use of a nonlinear model to predict their be- 15 

haviour. The differential equations that govern the nonlinear geometric response are 16 

given in a comprehensive form and are solved for flexure-hinges with constant sections. 17 

The solution of the nonlinear model is used to obtain an analytical description of two in- 18 

stantaneous invariants: the centre of instantaneous rotation (c.i.r.) and the inflection circle. 19 

The main result is that the c.i.r. locations, namely the fixed polode, is not conservative but 20 

is loading-path dependent. Consequently, all other instantaneous invariants are loading- 21 

path dependents, and the property of instantaneous geometric invariant (i.e. undepend- 22 

ent on the motion time-law) can no longer be used. This result is analytically and numer- 23 

ically proved. In other words, it is shown that a careful kinematic synthesis of compliant 24 

mechanisms cannot be addressed only considering the kinematics as in rigid mechanisms, 25 

but it is essential to take into consideration the applied loads and their histories. 26 

Keywords: Compliant Mechanisms; Instantaneous Invariants; MEMS; Large Displacements; Non- 27 

Linear Analysis 28 

 29 

1. Introduction 30 

In the last two decades, compliant mechanisms [1-3] have produced a growing in- 31 

terest in academic and industrial fields [4,5]. This types of mechanisms manifest their mo- 32 

tion through the deformation of some very slender parts [6-8], instead of kinematic pairs. 33 

Compliant mechanisms have some advantages if compared to lumped pairs: they do not 34 

require lubrication or maintenance inasmuch they have a monolithic form (directly re- 35 

placeable if failure occurs), they can be made by low-cost additive manufacturing, they 36 

are not affected by clearance, friction and wear on contacting parts and they may be very 37 

light. These features make them ideal for micro-electro-mechanical systems (MEMS) [9- 38 

18] and micro-opto-electromechanical systems (MOEMS) [19-20], precision engineering 39 

[21-24], including biological micro-manipulators [25-26], eventually driven by piezoelec- 40 

tric actuators (PEA) [27-30]. 41 

On the other hand, the design of compliant mechanisms is tricky; their motion involves 42 

large displacements/rotations [31-35] (therefore a high nonlinear geometric behaviour) of 43 

the slender joints (flexure hinges), which require to be faced with a nonlinear structural 44 
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approach. The main challenge regarding the design of these mechanisms is to find con- 45 

solidated methodologies to define the adequate sizing of flexible joints, such as to realize 46 

the required trajectory (kinematic synthesis), but also able to guarantee the desired fatigue 47 

life. 48 

The introduction of deformable bodies implies that compliant mechanisms do not depend 49 

on a countable number of degrees of freedom (dof) as it is customary for rigid bodies; this 50 

dramatically increases the complexity of the design phase [36,37]. For this reason, in liter- 51 

ature, many authors make use of pseudo-rigid models [2], in which the compliant behav- 52 

iour is approximated (strictly for small movements around the reference configuration) 53 

using an equivalent rigid mechanism formed by the identified ideal constraints [38,39]. 54 

This strategy aims to apply the standard methodologies of kinematic synthesis. Different 55 

studies concern this aspect in which the pseudo-rigid model is used for various types of 56 

flexure hinges: leaf [40], circular [41], parabolic [42] and notched [43]. The result is that 57 

some lumped hinges and flexural springs replace the flexural hinges (the more lumped 58 

hinges and springs are used, the more the accuracy increases). Their locations are a func- 59 

tion of the geometry of the compliant mechanisms but also of the applied load directions 60 

and intensities. Therefore, it is straightforward to observe that the design of compliant 61 

mechanisms must be considered a multi-objective problem.  62 

In this paper, we collect, analyze and discuss some important features regarding the de- 63 

sign of compliant mechanisms: the elasto-kinematics analysis for some simple configura- 64 

tions as well as the derivation of the instantaneous geometric and kinematic invariants. 65 

2. A comprehensive Analytical model of the Flexure-Hinges Kinematics 66 

A faithful analytical characterization of rigid bodies connected via flexure hinges 67 

(Figure 1) should consider that, since the high flexibility of the joints, the configuration 68 

changes if the load involves large rotations/displacements of the rigid parts but also the 69 

deformable parts (although small strains are assumed) [44-47]. Therefore, it is necessary 70 

to involve fully nonlinear models.  71 

 72 

Figure 1. Connection of two rigid bodies through a flexure-hinge. 73 

Figure 2 shows a generic 2D flexure-hinge (curvilinear) in two positions. Three reference 74 

systems describe the deformed and undeformed configurations along the reference lines; 75 

these are parametrized by the curvilinear abscissa 𝑠 (of the undeformed configuration). 76 

The reference systems are: the global (inertial), identified through the orthogonal unit vec- 77 

tors 𝒊𝑋, 𝒊𝑌 (for vector and tensor quantities, bold font is used), and two (local, non-inertial) 78 
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mobile frames 𝒆̅𝑥(𝑠), 𝒆̅𝑦(𝑠) and 𝒆𝑥(𝑠), 𝒆𝑦(𝑠), the first associated with the undeformed 79 

configuration and the second with the deformed one. Being the motion two dimensional, 80 

the unit vector 𝒊𝑍 = 𝒊𝑋 × 𝒊𝑌 is the same for all triads. 81 

The two mobile frames can be expressed in Cartesian components (i.e. by respect to the 82 

global frame) through the change-of-basis orthogonal tensors 𝜦𝜗, 𝜦𝜓 as follow: 83 

𝒆̅𝑖(𝑠) = 𝜦𝜗 ∙ 𝒊𝑖 (1) 

𝒆𝑖(𝑠) = 𝜦𝜓 ∙ 𝒊𝑖 (2) 

Where the subscript 𝑖 is used in place of 𝑋, 𝑌 or 𝑥, 𝑦. 84 

𝜦𝜗(𝑠) = 𝒆̅𝑥 ⊗ 𝒊𝑋 + 𝒆̅𝑦 ⊗ 𝒊𝑌 = (3) 

= cos 𝜗  𝒊𝑋 ⊗ 𝒊𝑋 − sin 𝜗  𝒊𝑋 ⊗ 𝒊𝑌 + sin 𝜗  𝒊𝑌 ⊗ 𝒊𝑋 + cos 𝜗 𝒊𝑌 ⊗ 𝒊𝑌  

𝜦𝜓(𝑠) = 𝒆𝑥 ⊗ 𝒊𝑋 + 𝒆𝑦 ⊗ 𝒊𝑌 = (4) 

= cos 𝜓 𝒊𝑋 ⊗ 𝒊𝑋 − sin 𝜓 𝒊𝑋 ⊗ 𝒊𝑌 + sin 𝜓 𝒊𝑌 ⊗ 𝒊𝑋 + cos 𝜓 𝒊𝑌 ⊗ 𝒊𝑌  

The angles 𝜗(𝑠), 𝜓(𝑠) are shown in Figure 2. 85 

 86 

Figure 2. Generic undeformed and deformed configurations. 87 

Based on the previous equations, it is possible to define the curvatures of the reference 88 

lines, important intrinsic quantities that characterize the configuration. Applying the de- 89 

rivative of the eq.s(1,2) by respect to 𝑠 and using again eq.s(1,2) to express the results in 90 

the mobile frames 𝒆𝑥(𝑠), 𝒆𝑦(𝑠), they turn out: 91 

𝑑𝒆̅𝑖(𝑠)

𝑑𝑠
= 𝑲̅ ∙ 𝒆𝑖 = 𝒌̅ × 𝒆𝑖  (5) 

𝑑𝒆𝒊(𝒔)

𝑑𝑠
= 𝑲 ∙ 𝒆̅𝒊 = 𝒌 × 𝒆̅𝒊 (6) 

in which: 92 
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𝑲̅(𝑠) =
𝜕𝜦𝜗

𝜕𝑠
(𝜦𝜗)𝑇 (7) 

𝑲(𝑠) =
𝜕𝜦𝜓

𝜕𝑠
(𝜦𝜓)

𝑻
 (8) 

are the curvature tensors of the undeformed and deformed reference lines, respectively. 93 

The terms in eq.s(7,8) are skew-symmetric tensors (Appendix A); therefore, it is possible 94 

to simplify eq.s(5,6) using the curvature vectors, which are the axial vectors of the skew- 95 

symmetric curvature tensors: 96 

𝒌̅(𝑠) =
𝑑𝜗

𝑑𝑠
 𝒊𝑍 (9) 

𝒌(𝑠) =
𝑑𝜓

𝑑𝑠
 𝒊𝒁 (10) 

A one-dimensional model is adopted; therefore, for each point, the motion that occurs 97 

during the configuration change is due to two translations components along 𝒆𝑥 , 𝒆𝑦, and 98 

a cross-section rotation, assumed transversely rigid [48]. This allows to separately exam- 99 

ine the axial (ε), shear (γ) and rotational (𝜒) strains. Adopting a Lagrangian approach, the 100 

radius vector which identifies the reference line of the deformed configuration is (Figure 101 

2): 102 

𝒓(𝑠) = 𝑋 𝒊𝑋 + 𝑌 𝒊𝑌 (11) 

where 𝑋(𝑠), 𝑌(𝑠) are the position of the generic point of the deformed configuration by 103 

respect to the global reference system, only functions of the curvilinear abscissa 𝑠 of the 104 

undeformed configuration.  105 

The prime derivative of 𝒓 is close to 𝒆𝑥 , but the two vectors differ due to axial and shear 106 

strain: 107 

𝑑𝒓(𝑠)

𝑑𝑠
= (1 + 𝜀)𝒆𝑥 + 𝛾 𝒆𝑦 =

𝜕𝑋

𝜕𝑠
𝒊𝑋 +

𝜕𝑌

𝜕𝑠
𝒊𝑌 (12)  

Using the reverse of the eq.(2), namely 𝒊𝑖 = (𝜦𝜓)
𝑇

∙ 𝒆𝑖(𝑠), to express the right side of the 108 

eq.(12) by respect to the mobile frame, the following relations occur: 109 

𝜀(𝑠) =
𝑑𝑋

𝑑𝑠
 cos 𝜓 +

𝑑𝑌

𝑑𝑠
 sin 𝜓 − 1 (13) 

𝛾(𝑠) = −
𝑑𝑋

𝑑𝑠
 sin 𝜓 +

𝑑𝑌

𝑑𝑠
 cos 𝜓 (14) 

For slender structures, i.e. when the ratio between the half of thickness and the curvature 110 

radius is ≪ 1 [49,50], the rotational strain is: 111 

𝜒(𝑠) = (𝒌 − 𝒌̅) ∙ 𝒊𝑍 =
𝑑𝜓

𝑑𝑠
−

𝑑𝜗

𝑑𝑠
 (15) 

Therefore, the Green-Lagrange strains are given by: 112 

𝜀𝑥(𝑠, 𝜉) = 𝜀 − 𝑦𝜒 (16) 

𝛾𝑥𝑦(𝑠) = 𝛾 (17) 

where 𝑦 is the coordinate along 𝒆𝑦 that identify the points on the cross-section. 113 

Assuming that the beam is made of an isotropic elastic material, the stress components 114 

are: 𝜎𝑥 = 𝐸𝜀𝑥  , 𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦, where 𝐸, 𝐺 are the axial end shear moduli of elasticity. 115 

In this one-dimensional model, the flexure hinge exchanges forces and moments with the 116 

rigid bodies it connects through its ends. For convenience, the load quantities are referred 117 
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to the global reference system. At 𝑠 = 0,  the force and moment vectors 𝑭0 = 𝐹𝑋
0 𝒊𝑋 + 118 

𝐹𝑌
0 𝒊𝑌 , 𝑴0 = 𝑀𝑍

0 𝒊𝑍  are applied, while in 𝑠 = 𝐿 act, the loads 𝑭𝐿 = 𝐹𝑋
𝐿  𝒊𝑋 + 𝐹𝑌

𝐿 𝒊𝑌  , 𝑴𝐿 = 119 

𝑀𝑍
𝐿 𝒊𝑍. Along the length of the flexure-hinge can also act translational and rotational dis- 120 

tributed loads 𝒒(𝑠) = 𝑞𝑋(𝑠) 𝒊𝑋 + 𝑞𝑌(𝑠) 𝒊𝑌 , 𝒎(𝑠) = 𝑚𝑍(𝑠) 𝒊𝑍. It is worth pointing out that 121 

distributed loads are usually omitted in the studies regarding flexure-hinges, as most of 122 

the forces are exchanged at the extremes. In this treatment, we include these types of loads 123 

because there are some applications in which compliant mechanisms are driven using a 124 

distribution of smart materials (e.g. distributed piezoelectric actuators [51] or shape 125 

memory alloys [52]); in these cases, the effects of smart-material-based actuators can man- 126 

ifest as distributed loads. 127 

At a generic point 𝑠, forces and moment 𝑭(𝑠) = 𝐹𝑋(𝑠)𝒊𝑋 + 𝐹𝑌(𝑠)𝒊𝑌 , 𝑴(𝑠) = 𝑀𝑍(𝑠)𝒊𝑍 re- 128 

sult. Imposing that the flexure-hinge respects the equilibrium in the deformed configura- 129 

tion, forces and moment at the generic curvilinear abscissa 𝑠 can be expressed as a func- 130 

tion of the applied loads [53]. Assuming 𝑭0, 𝑴0 the following equations results: 131 

𝐹𝑋(𝑠) = −𝐹𝑋
0 − ∫ 𝑞𝑋(𝑠̃) 𝑑𝑠̃

𝑠

0

 (18) 

𝐹𝑌(𝑠) = −𝐹𝑌
0 − ∫ 𝑞𝑌(𝑠̃) 𝑑𝑠̃

𝑠

0

 (19) 

𝑀𝑍(𝑠) = −𝑀𝑍
0 − 𝑌𝐹𝑋

0 + 𝑋𝐹𝑌
0 + ∫ [(𝑌̃ − 𝑌)𝑞𝑋(𝑠̃) − (𝑋̃ − 𝑋)𝑞𝑌(𝑠̃) − 𝑚𝑍(𝑠̃)] 𝑑𝑠̃

𝑠

0

 (20) 

where 𝑋(𝑠), 𝑌(𝑠) depend on 𝑠, while 𝑋̃(𝑠̃), 𝑌̃(𝑠̃) on the dummy variable 𝑠̃. 132 

Appendix B shows the eq.s(18-20) when known forces and moment 𝑭𝐿 , 𝑴𝐿 are given at 133 

𝑠 = 𝐿, and makes explicit the relations between 𝑭0, 𝑴0 and 𝑭𝐿 , 𝑴𝐿. 134 

The axial and shear internal forces 𝑁(𝑠), 𝑇(𝑠) act in the normal and orthogonal direction 135 

of the cross-section, that is counterclockwise rotated of the small angle 𝛾 by respect to the 136 

mobile frame  𝒆𝑥 , 𝒆𝑦. The shear distortion effect on the direction of the internal forces can 137 

be neglected, obtaining: 𝑵(𝑠) = (𝑁 − 𝛾𝑇) 𝒆𝑥 + (𝑇 + 𝛾𝑁) 𝒆𝑦 ≅ 𝑁 𝒆𝑥 + 𝑇 𝒆𝑦. Therefore, the 138 

internal forces 𝑵(𝑠) can be obtained from 𝑭(𝑠) using eq.(2): 139 

𝑵(𝑠) = 𝜦𝜓 ∙ 𝑭(𝑠) (21) 

or, in components: 140 

𝑁(𝑠) = 𝐹𝑋(𝑠) cos 𝜓 + 𝐹𝑌(𝑠) sin 𝜓 (22) 

𝑇(𝑠) = −𝐹𝑋(𝑠) sin 𝜓 + 𝐹𝑌(𝑠) cos 𝜓 (23) 

Due to the planar motion, the internal moment is simply 𝑴(𝑠) = 𝑀𝑧(𝑠). 141 

Being 𝝈(𝑠, 𝜉) = 𝜎𝑥 𝒆𝑥 ⊗ 𝒆𝑥 + 𝜏𝑥𝑦  (𝒆𝑥 ⊗ 𝒆𝑦 + 𝒆𝑦 ⊗ 𝒆𝑥) the stress tensor (having neglected 142 

the shear distortion effect again), the internal forces and moment 𝑵(𝑠), 𝑴(𝑠) can be ex- 143 

pressed as the integration along the cross-section of the stress vector 𝒕 = 𝝈 ∙ 𝒆𝑥 = 𝜎𝑥  𝒆𝑥 + 144 

𝜏𝑥𝑦 𝒆𝑦: 145 

𝑵(𝑠) = ∫ 𝒕

𝐴

𝑑𝐴    ;     𝑴(𝑠) = ∫(𝑦 𝒆𝑦) × 𝒕

𝐴

𝑑𝐴 (24) 

From which, using eq.s(16,17) and assuming the local reference as principal of inertia and 146 

with the origin on the barycenter of the section, the forces-strains relationships are: 147 

𝑁(𝑠) = 𝐸𝐴𝜀   ;    𝑇(𝑠) = 𝐺𝐴𝑠𝛾   ;       𝑀(𝑠) = 𝐸𝐼𝜒    (25) 
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where 𝐴(𝑠), 𝐼(𝑠) are the area and moment of the inertia of the cross-section, and 𝐴𝑠(𝑠) is 148 

the effective shear area [48,54]. 149 

The three unknows that identify the deformed configuration are 𝑋, 𝑌, 𝜓; they can be found 150 

applying the eq.s(22,23,25) in the eq.s(13-15): 151 

𝑑𝑥

𝑑𝑠
= cos 𝜓 + (

cos2 𝜓

𝐸𝐴
+

sin2 𝜓

𝐺𝐴𝑠

) 𝐹𝑋(𝑠) − (
1

𝐺𝐴𝑠

−
1

𝐸𝐴
) sin 𝜓 cos 𝜓 𝐹𝑌(𝑠)  (26) 

𝑑𝑦

𝑑𝑠
= sin 𝜓 − (

1

𝐺𝐴𝑠

−
1

𝐸𝐴
) sin 𝜓 cos 𝜓 𝐹𝑋(𝑠) + (

sin2 𝜓

𝐸𝐴
+

cos2 𝜓

𝐺𝐴𝑠

) 𝐹𝑌(𝑠) (27) 

𝑑𝜓

𝑑𝑠
=

𝑑𝜗

𝑑𝑠
+

𝑀(𝑠)

𝐸𝐼
 (28) 

The eq.s(26-28) form a nonlinear first-order ODE system and holds for every type of flex- 152 

ure-hinges (with variable section, initially curvilinear, etc.). It is not possible to solve them 153 

analytically in a general form (i.e. for all types of load conditions) [31,33,45]. The boundary 154 

conditions (b.c.) on the eq.(26,27) are trivial, i.e. 𝑋(𝑠 = 0) = 𝑋0  , 𝑌(𝑠 = 0) = 𝑌0, namely the 155 

choice of the location of the global reference system. More interesting are the b.c. of the 156 

eq.(28), which represents the difficulties encountered in solving this system; in general, 157 

𝜓(𝑠 = 0) = 𝜓0 is unknown, but above all, it is unknown the bending moment 𝑀𝑍
0 at the 158 

origin (namely, the curvature 𝜓′(𝑠 = 0) = 𝜓0
′ ). The b.c. regarding the bending moment 159 

can usually be known at the end 𝑠 = 𝐿 (e.g. the case of a cantilever beam loaded by con- 160 

centrated forces at the end), and this entails that the b.c. problem becomes a boundary 161 

value problem (b.v.p.). As it is well known, the numerical methods to solve ODE only 162 

work with initial value problems (i.v.p.); therefore, to solve a b.v.p., a shooting method 163 

should be adopted [31,33] that involves integrating several times the systems (26-28). 164 

Often the eq.(28) appears as a second-order ODE; applying the derivative of eq.(28), being 165 

careful to use the Leibniz integration rule (differentiation under the integral sign) for the 166 

derivative of the eq.(20), one obtains: 167 

𝑑2𝜓

𝑑𝑠2
+ (

1

𝐸𝐼

𝑑2𝐸𝐼

𝑑𝑠2
) 

𝑑𝜓

𝑑𝑠
=

𝑑2𝜗

𝑑𝑠2
+

1

𝐸𝐼
[(

𝑑 𝐸𝐼

𝑑𝑠
)

𝑑𝜗

𝑑𝑠
+

𝑑𝑦

𝑑𝑠
𝐹𝑋(𝑠) −

𝑑𝑥

𝑑𝑠
𝐹𝑌(𝑠) + 𝑚𝑧] (29) 

This form does not change the aforementioned difficulties; the unknows remain 𝜓0
′  and 168 

𝜓0, but the form of the eq.(29) can be analytically integrated in some cases that will be 169 

used in the following to provide some benchmark results regarding the computation of 170 

the fixed and mobile polodes of compliant mechanisms. 171 

Furthermore, it is important to emphasize (for what follows) that in compliant mechanism 172 

applications, the forces and moments are not directly applied at the flexure-hinges ends 173 

but along the rigid bodies connected with it. In this case, the forces and moments 174 

𝐹𝑋
0, 𝐹𝑌

0, 𝑀𝑍
0 or 𝐹𝑋

𝐿 , 𝐹𝑌
𝐿 , 𝑀𝑍

𝐿 applied to the flexure-hinge are also function of the unknows an- 175 

gles 𝜓0 or 𝜓𝐿 . Consider Figure 3, where a flexure-hinge connects two rigid bodies, of 176 

which the one on the left is clamped. The rigid body on the right is loaded at point P with 177 

the forces and moment 𝑭𝑃 = 𝐹𝑋
𝑃  𝒊𝑋 + 𝐹𝑌

𝑃 𝒊𝑌  , 𝑴𝑃 = 𝑀𝑍
𝑃  𝒊𝑍 . Applying the static equiva- 178 

lence, the forces and moment 𝐹𝑋
𝐿 , 𝐹𝑌

𝐿 , 𝑀𝑍
𝐿 experienced by the flexure-hinge are not only a 179 

function of known quantities as 𝐹𝑋
𝑃, 𝐹𝑌

𝑃 , 𝑀𝑍
𝑃 and 𝑥𝑃 , 𝑦𝑃 , but also by the unknow angle 𝜓𝐿  180 

(or 𝜓0): 181 

𝐹𝑋
𝐿 = 𝐹𝑋

𝑃 (30) 

𝐹𝑌
𝐿 = 𝐹𝑌

𝑃 (31) 
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𝑀𝑍
𝐿 = 𝑀𝑍

𝑃 + [𝑥𝑃 𝒆𝑥(𝐿) + 𝑦𝑃  𝒆𝑦(𝐿)] × (𝐹𝑋
𝑃   𝒊𝑋 + 𝐹𝑌

𝑃   𝒊𝑌) = (32) 

= 𝑀𝑍
𝑃 + (𝑥𝑃 cos 𝜓𝐿 − 𝑦𝑃 sin 𝜓𝐿) 𝐹𝑌

𝑃 − (𝑥𝑃 sin 𝜓𝐿 − 𝑦𝑃 cos 𝜓𝐿) 𝐹𝑋
𝑃 182 

 183 

Therefore, as previously mentioned, in this scenario the applied moment 𝑀𝑍
𝐿 depends on 184 

the unknow angle 𝜓𝐿 . 185 

This case is an example in which the b.c. are a b.v.p., inasmuch the moment 𝑀𝑍
0 at the 186 

origin is unknown, but it must be found such that at the end of the computation the final 187 

moment 𝑀𝑍
𝐿 obtained from the curvature 𝜓′(𝐿) respects eq.(32). In the following section, 188 

some analytical solution of eq.s(26-28) are presented under some simplifying assumption. 189 

 190 

Figure 3. Flexure-hinge loaded by forces and moment applied in a generic point of the rigid body 191 
connected with it.  192 

2.1. Analytical solution 193 

An analytical solution of the eq.s(26,27,29) can be found taking into account some 194 

assumptions: the extensional and shear strains are negligeble (𝜀 = 𝛾 = 0 𝑜𝑟 𝐸𝐴, 𝐺𝐴𝑠 → 195 

∞) , the section has a constant shape (𝐸𝐼 = 𝑐𝑜𝑛𝑠𝑡. ) , the initial curvature is constant 196 
(𝜗′ = 𝑐𝑜𝑛𝑠𝑡. ) and the distributed loads are null (𝑞𝑋 = 𝑞𝑌 = 𝑚𝑍 = 0). Although the ana- 197 

lytical solution requires the assumption of a constant section, this is a valuable solution, 198 

inasmuch for notched flexure-hinges the main deformable part is the central ones with 199 

constant section [63] (Figure 3). 200 

Under these conditions, the forces 𝐹𝑋 ,  𝐹𝑌 (eq.s(18,19 or B1,B2)) acting at a generic point 201 

𝑠 are constant, and the eq.s(26,27,29) becomes: 202 

𝑑𝑋

𝑑𝑠
= cos 𝜓 (33) 

𝑑𝑌

𝑑𝑠
= sin 𝜓 (34) 

𝐸𝐼 
𝑑2𝜓

𝑑𝑠2
= 𝐹𝑋 sin 𝜓 − 𝐹𝑌 cos 𝜓 (35) 

Multiplying both sides of the latter equation by 𝜓′, eq.(35) can be integrated, obtaining: 203 
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𝐸𝐼

2
(

𝑑𝜓

𝑑𝑠
)

2

= 𝑐 − 𝐹𝑋 cos 𝜓 − 𝐹𝑌 sin 𝜓 (36) 

where 𝑐 is an integration constant; if b.c. at 𝑠 = 0 are applied: 204 

𝑐 = 𝐹𝑋 cos 𝜓0 + 𝐹𝑌 sin 𝜓0 +
𝐸𝐼

2
(𝜗′ +

𝑀𝑍
0

𝐸𝐼
)

2

 (37) 

otherwise, if b.c. at 𝑠 = 𝐿 are applied: 205 

𝑐 = 𝐹𝑋 cos 𝜓𝐿 + 𝐹𝑌 sin 𝜓𝐿 +
𝐸𝐼

2
(𝜗′ +

𝑀𝑍
𝐿

𝐸𝐼
)

2

 (38) 

Eq.(36) can be rearranged as follows: 206 

𝑑𝜓

𝑑𝑠
= 𝑠𝑖𝑔𝑛(𝜓′) 𝑓(𝜓) (39) 

in which: 207 

𝑓(𝜓) = √
2

𝐸𝐼
(𝑐 − 𝐹𝑋 cos 𝜓 − 𝐹𝑌 sin 𝜓) (40) 

The function 𝑠𝑖𝑔𝑛(𝜓′) is unknown and generally piecewise defined; it defines the sign of 208 

the curvature. This is a crucial point; being the ODE system in eq.(33-35) nonlinear, more 209 

than one solution generally exist. These multiple possible solutions of the deformed shape 210 

have an unknown number of inflection points (i.e. points where the curvature 𝜓′ = 0, and 211 

therefore the sign of the curvature changes). Furthermore, the presence of one or more 212 

inflection points depends on the position of the applied load in the deformed (unknown) 213 

configuration. A priori determination of the distribution of inflection points (i.e. the exact 214 

determination of 𝑠𝑖𝑔𝑛(𝜓′)) as only function of the magnitude of the applied loads is, until 215 

now, an open problem. We will not deal with that in the following, but we present the 216 

solution limited to at most 1 inflection point. 217 

If no internal inflection points are present, the angle 𝜓(𝑠) is monotone and the sign func- 218 

tion is trivial: 219 

𝑠𝑖𝑔𝑛(𝜓′) = ±1    ∀   𝜓(𝑠) ∈ (𝜓0, 𝜓𝐿) (41) 

but the latter can be zero at the extremities if the terms (𝜗′ +
𝑀𝑍

0

𝐸𝐼
) or (𝜗′ +

𝑀𝑍
𝐿

𝐸𝐼
) are nulls 220 

in 𝜓0 or 𝜓𝐿 . 221 

If an inflection point exists, eq.(39) is null at a point 𝑠𝑖𝑛 , which corresponds to an angle 222 

𝜓(𝑠 = 𝑠𝑖𝑛) = 𝜓𝑖𝑛  : 223 

𝐹𝑋 cos 𝜓𝑖𝑛 + 𝐹𝑌 sin 𝜓𝑖𝑛 = 𝑐 (42) 

Latter equations can be manipulated to obtain a relation between the angle 𝜓𝑖𝑛 and the 224 

triplet 𝜓0, 𝜗′, 𝑀𝑍
𝐿 or 𝜓𝐿 , 𝜗′, 𝑀𝑍

0, respectively if the eq.(37) or (38) is chosen for 𝑐: 225 

𝜓𝑖𝑛 = arcsin (
𝑐

√𝐹𝑋
2 + 𝐹𝑌

2
) − 𝜑 (43) 

where: 226 

𝜑 = atan2(𝐹𝑌, 𝐹𝑋) (44) 

The authors suspect that if multiple inflection points 𝜓𝑖𝑛,1 , 𝜓𝑖𝑛,2, … , 𝜓𝑖𝑛,𝑘 exists, the rela- 227 

tion between the generic inflection-point angle 𝜓𝑖𝑛,𝑘 and the angle 𝜓0 or 𝜓𝐿 , can always 228 

be found with the eq.(42), but the sign-equation and the closure equation (eq.(46))  must 229 
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be subdivided into parts. This issue has not yet been thoroughly investigated, and it is 230 

beyond the scope of the present paper. 231 

The sign function for a single inflection point appears in a more articulated form than 232 

eq(41), namely as a piecewise-defined function: 233 

𝑠𝑖𝑔𝑛(𝜓′) = {

𝑠𝑖𝑔𝑛(𝜓0
′ )    𝑖𝑓   𝜓(𝑠) ∈ (𝜓0, 𝜓𝑖)

0             𝑖𝑓     𝜓(𝑠) = 𝜓𝑖  

𝑠𝑖𝑔𝑛(𝜓𝐿
′ )    𝑖𝑓   𝜓(𝑠) ∈ (𝜓𝑖 , 𝜓𝐿)

 (45) 

where 𝑠𝑖𝑔𝑛(𝜓0
′ ) , 𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) are constant values that can be ±1, and again eq.(45) can be 234 

zero at the extremities if the terms (𝜗′ +
𝑀𝑍

0

𝐸𝐼
) or (𝜗′ +

𝑀𝑍
𝐿

𝐸𝐼
) are nulls in 𝜓0 or 𝜓𝐿 . 235 

Both in the case of zero or a single inflection point, the determination of 𝜓𝑖𝑛 is condi- 236 

tioned by the knowledge of 𝜓0 or 𝜓𝐿 . To find the latter, still unknown, it is necessary to 237 

continue the integration of eq.(39), obtaining: 238 

𝐿 = ∫
𝑠𝑖𝑔𝑛(𝜓′) 𝑑𝜓

𝑓(𝜓)

𝜓𝐿

𝜓0

 (46) 

Eq.(46) appears as a closure equation which involves only geometric variables and applied 239 

loads; it is not possible to integrate analytically eq.(46), and the search for the unknown 240 

parameter (𝜓0 𝑜𝑟 𝜓𝐿) involves an attempt method [44,45]. It is important to observe that 241 

the function 𝑓(𝜓) also depends on 𝜓𝐿 . 242 

Once solved the eq.(46) with the considered geometry and loads, the deformed shape can 243 

be obtained through the integration of the eq.s(33,34), using the relation 𝑑𝑠 = 𝑑𝜓/𝜓′, ap- 244 

plying the eq.(39) and the b.c. 𝑋0 = 𝑋(𝑠 = 0)  , 𝑌0 = 𝑌(𝑠 = 0): 245 

𝑋(𝜓) = 𝑋0 + ∫  
𝑠𝑖𝑔𝑛(𝜓̃′) cos 𝜓̃ 

𝑓(𝜓̃)

𝜓

𝜓0

𝑑𝜓̃ (47) 

𝑌(𝜓) = 𝑌0 + ∫  
𝑠𝑖𝑔𝑛(𝜓̃′) sin 𝜓̃

𝑓(𝜓̃)

𝜓

𝜓0

𝑑𝜓̃ (48) 

where 𝜓̃ is a dummy variable and 𝜓(𝑠) ∈ [𝜓0, 𝜓𝐿] 246 

Similarly to eq.(46), it is not possible to integrate analytically eq.s(47,48), which require of 247 

a numerical integration to be computed. However, eq.s(46-48) are computationally advan- 248 

tageous if compared to a full-length numerical integration required to compute eq.s(26- 249 

28); this is because eq.s(46-48) allows computing the results also on a single point (e.g. the 250 

end point), which is very advantageous in the computation of the instantaneous invari- 251 

ants which are treated in the following section. 252 

If an inflection point exists, eq.s(46-48) involve improper integrals. To avoid complications 253 

due to singularity, eq.s(46-48) are evaluated by applying a trick reported in Appendix C.  254 

3. Instantaneous Geometric and Kinematic Invariants for compliant mechanism 255 

The kinematic synthesis of rigid planar mechanisms is often performed using instan- 256 

taneous geometric and kinematic invariants [55-59]. The first types of invariants (geomet- 257 

ric) are more useful, as they have the important property of being independent of the 258 

motion time-law. They include important geometric loci, such as the fixed and mobile 259 

polodes (and their curvature, appearing in the Euler-Savary formula), the first Bresse's 260 

circle (zero normal acceleration), the cubic curve of stationary curvature, the Ball’s point 261 

and the Burmester points. The second types (kinematic) define instantaneous properties 262 

of the motion but are a function of the motion time-law (i.e. angular velocity, acceleration 263 

etc.). Some examples of instantaneous kinematic invariants are the second Bresse's circle 264 
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(zero tangential acceleration), the centre of the accelerations (i.e. the point with null accel- 265 

eration, the intersection between the first and second Bresse’s circles, other than the centre 266 

of instantaneous rotation), the jerk and Javot centres, etc. 267 

The instantaneous invariants, mainly geometric ones, are essential to set in analytical form 268 

problems of kinematic synthesis [59-62]. 269 

At the best literature knowledge of the authors, for compliant mechanisms, the instanta- 270 

neous invariants are not yet used with their analytical form. As mentioned in §1, pseudo- 271 

rigid models commonly are used [2,38,39] in which the flexure-hinges are replaced by 272 

rigid bars connected with lumped hinges. However, this approach implies that the bar 273 

lengths and the positions of the lumped hinges must be changed during the motion as the 274 

centre of instantaneous rotation moves, and their positions change as a function of the 275 

applied load. 276 

In this section, the determination of the instantaneous invariants is addressed with a direct 277 

approach, considering the real deformable behaviour of flexure-hinges. 278 

The first instantaneous geometric invariant investigated is the centre of instantaneous ro- 279 

tation. In order to study the relative motion, the case of a flexure hinge connected with a 280 

fixed and a mobile rigid body is taken into account. The position of a generic point 𝑀 of 281 

the mobile rigid body in Figure 4 is: 282 

 283 

Figure 4. Generic configuration of two rigid bodies (fixed and mobile) connected by a 284 

flexure-hinge 285 

𝒓𝑀 = 𝒓𝐿 + 𝒓𝑀𝐿 (49) 

where: 286 

𝒓𝑀 = 𝑋𝑀 𝒊𝑋 + 𝑌𝑀  𝒊𝑌 (50) 

𝒓𝑳 = 𝑋𝐿 𝒊𝑿 + 𝑌𝐿 𝒊𝒀    (51) 

𝒓𝑀𝐿 = 𝑥𝑀  𝒆𝑥(𝐿) + 𝑦𝑀  𝒆𝑦(𝐿) = 𝜦𝜓𝐿
∙ 𝒙𝑀𝐿  (52) 

in which eq.(2) has been used in eq.(52). The others terms that appear in eq.s(51,52) are: 287 

𝑋𝐿 = 𝑋(𝜓 = 𝜓𝐿) , 𝑌𝐿 = 𝑌(𝜓 = 𝜓𝐿) , 𝒙𝑀𝐿 = 𝑥𝑀  𝒊𝑋 + 𝑦𝑀  𝒊𝑌 and 𝜦𝜓𝐿
= 𝜦𝜓(𝜓 = 𝜓𝐿). 288 



Micromachines 2023, 14, x FOR PEER REVIEW 11 of 24 
 

 

In other words, 𝑋𝑀, 𝑌𝑀 are the coordinates of the generic point 𝑀 by respect to the global 289 

reference system, while 𝑥𝑀 , 𝑦𝑀 are the coordinate of the same point by respect to the mo- 290 

bile frame 𝒆𝑥(𝜓𝐿), 𝒆𝑦(𝜓𝐿), having its origin at the end of the flexure-hinge. 291 

The coordinates of the centre of instantaneous rotation (c.i.r.) 𝑋𝐶 , 𝑌𝐶  (still unknown) of the 292 

mobile rigid body expressed in the global reference system, by definition, do not change 293 

for an infinitesimal motion:  294 

𝑑𝒓𝐶 = 0 = 𝑑𝒓𝐿 + d𝒓𝐶𝐿 (53) 

The coordinates 𝑥𝐶 , 𝑦𝐶  of the c.i.r., expressed by respect to the mobile frame, do not mod- 295 

ify during the infinitesimal motion due to the rigidity of the mobile rigid body. The only 296 

changeable terms are 𝑋𝐿 , 𝑌𝐿  and 𝒆𝑥(𝜓𝐿), 𝒆𝑦(𝜓𝐿) , all functions of the final angle 𝜓𝐿  297 

(eq.s(2,47,48)). Hence: 298 

𝑑𝒓𝐶

𝑑𝜓𝐿

= 0 =
𝑑𝒓𝐿

𝑑𝜓𝐿

+
𝑑𝜦𝜓𝐿

𝑑𝜓𝐿

∙ 𝒙𝐶𝐿   ⇒   𝒙𝐶𝐿 = − (
𝑑𝜦𝜓𝐿

𝑑𝜓𝐿

)

𝑇
𝑑𝒓𝐿

𝑑𝜓𝐿

 (54) 

Or, in components: 299 

𝑥𝐶(𝜓𝐿) =
𝑑𝑋𝐿

𝑑𝜓𝐿

 sin 𝜓𝐿 −
𝑑𝑌𝐿

𝑑𝜓𝐿

 cos 𝜓𝐿 (55) 

𝑦𝐶 (𝜓𝐿) =
𝑑𝑋𝐿

𝑑𝜓𝐿

 cos 𝜓𝐿 +
𝑑𝑌𝐿

𝑑𝜓𝐿

 sin 𝜓𝐿  (56) 

Eq.s(55,56) are the Cartesian equations of the mobile polode, namely the position of the 300 

c.i.r. by respect the mobile frame. Using eq.s(49,52,54), the equation of the fixed polode 301 

are given: 302 

𝒓𝐶 = 𝒓𝐿 − 𝜦𝜓𝐿
∙ (

𝑑𝜦𝜓𝐿

𝑑𝜓𝐿

)

𝑇
𝑑𝒓𝐿

𝑑𝜓𝐿

   (57) 

Eq.(57) in components turn out: 303 

𝑋𝐶(𝜓𝐿) = 𝑋𝐿 −
𝑑𝑌𝐿

𝑑𝜓𝐿

  (58) 

𝑌𝐶(𝜓𝐿) = 𝑌𝐿 +
𝑑𝑋𝐿

𝑑𝜓𝐿

  (59) 

The eq.s(55,56,58,59) are generally valid. In what follows, they are made explicit taking 304 

into account the case examined in §2.1. in which the flexure-hinge is loaded by different 305 

types of loads 𝐹𝑋
𝑃 , 𝐹𝑌

𝑃 , 𝑀𝑍
𝑃 ; this scenario can be analytically explained using eq.s(47,48). 306 

Although eq.s(47,48) are valid only for flexure-hinges with constant section, all results 307 

obtained through the use of eq.s(47,48) may be extended to notched flexure hinges if an 308 

equivalent length of the main deformable part (with constant section) is estimated [63]. 309 

Differentiating eq.s(47,48) computed in 𝜓 = 𝜓𝐿  by respect to 𝜓𝐿 , considering that the 310 

terms 𝑐, 𝐹𝑋, 𝐹𝑌 are function of 𝜓𝐿 , and Leibniz integration rule (differentiation under 311 

the integral sign) is used, it results: 312 

𝑑𝑋𝐿

𝑑𝜓𝐿

=
𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) cos 𝜓𝐿 

(𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

− ∫ 𝑠𝑖𝑔𝑛(𝜓′)
𝑑𝑓(𝜓)

𝑑𝜓𝐿

 
cos 𝜓

 𝑓(𝜓)2

𝜓𝐿

𝜓0

𝑑𝜓 (60) 

𝑑𝑌𝐿

𝑑𝜓𝐿

=
𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) sin 𝜓𝐿 

(𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

− ∫ 𝑠𝑖𝑔𝑛(𝜓′)
𝑑𝑓(𝜓)

𝑑𝜓𝐿

 
sin 𝜓

 𝑓(𝜓)2

𝜓𝐿

𝜓0

𝑑𝜓 (61) 
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where, using eq.s(30,31,B1,B2) for the derivatives of 𝐹𝑋, 𝐹𝑌: 313 

𝑑𝑓(𝜓)

𝑑𝜓𝐿

=
1

𝐸𝐼 𝑓(𝜓)
[

𝑑𝑐

𝑑𝜓𝐿

−
𝑑𝐹𝑋

𝑃

𝑑𝜓𝐿

cos 𝜓 −
𝑑𝐹𝑌

𝑃

𝑑𝜓𝐿

sin 𝜓] (62) 

differentiating eq.(38) using eq.(32): 314 

𝑑𝑐

𝑑𝜓𝐿

=
𝑑𝐹𝑋

𝑃

𝑑𝜓𝐿

cos 𝜓𝐿 − 𝐹𝑋
𝑃 sin 𝜓𝐿 +

𝑑𝐹𝑌
𝑃

𝑑𝜓𝐿

sin 𝜓𝐿 + 𝐹𝑌
𝑃 cos 𝜓𝐿 + (𝜗′ +

𝑀𝑍
𝐿

𝐸𝐼
) 

𝑑𝑀𝑍
𝐿

𝑑𝜓𝐿

 (63) 

in which 𝑀𝑍
𝐿 is reported in eq.(32), and its derivative is: 315 

𝑑𝑀𝑍
𝐿

𝑑𝜓𝐿

=
𝑑𝑀𝑍

𝑃

𝑑𝜓𝐿

+ [(
𝑑𝐹𝑌

𝑃

𝑑𝜓𝐿

− 𝐹𝑋
𝑃) 𝑥𝑃 + (

𝑑𝐹𝑋
𝑃

𝑑𝜓𝐿

− 𝐹𝑌
𝑃) 𝑦𝑃] cos 𝜓𝐿 + (64) 

− [(
𝑑𝐹𝑋

𝑃

𝑑𝜓𝐿

+ 𝐹𝑌
𝑃) 𝑥𝑃 + (

𝑑𝐹𝑌
𝑃

𝑑𝜓𝐿

+ 𝐹𝑋
𝑃) 𝑦𝑃] sin 𝜓𝐿 316 

 317 

A dimensionless parameter 𝜏 ∈ [𝜏0, 𝜏1] can be introduced to “chronologically” evaluate 318 

the trend of the loading-path. In other words, the parameter 𝜏 acts as an ordering varia- 319 

ble, to identify the configuration change as a function of it. Therefore, the applied loads 320 

become a function of it 𝐹𝑋
𝑃(𝜏), 𝐹𝑋

𝑃(𝜏), 𝐹𝑋
𝑃(𝜏), where the loads applied at the initial and final 321 

configurations are 𝐹𝑋
𝑃(𝜏0), 𝐹𝑌

𝑃(𝜏0), 𝑀𝑍
𝑃(𝜏0)  and 𝐹𝑋

𝑃(𝜏1), 𝐹𝑌
𝑃(𝜏1), 𝑀𝑍

𝑃(𝜏1)  respectively (Fig- 322 

ure 5). 323 

As a consequence, the final angle 𝜓𝐿(𝜏) become a function of the parameter 𝜏, and the 324 

derivatives that appear in eq.s(62-64) becomes: 325 

𝑑𝐹𝑋
𝑃

𝑑𝜓𝐿

=
𝐹𝑋

𝑃̇

𝜓𝐿̇

     ;      
𝑑𝐹𝑌

𝑃

𝑑𝜓𝐿

=
𝐹𝑌

𝑃̇

𝜓𝐿̇

     ;      
𝑑𝑀𝑍

𝑃

𝑑𝜓𝐿

=
𝑀𝑍

𝑃̇

𝜓𝐿̇

 (65) 

where the notation ( )̇  indicates the derivatives by respect the parameter 𝜏. 326 

 327 

Figure 5. Generic loading paths 328 

 329 

To recap, for one d.o.f. rigid mechanisms, 𝜓𝐿  is a function of time 𝑡 and the relationship 330 

between them would result unique; this implies that the polodes are instantaneous geo- 331 

metric invariants. For a compliant mechanism, instead, 𝜓𝐿  is a function of the applied 332 

loads' intensity but also of the loading-histories and loading-rates. In other words, the 333 

polodes are not conservative; if two different loading-paths are applied (e.g. two different 334 
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motion time-laws to obtain two different dynamic loads), the c.i.r. locations (i.e. fixed and 335 

mobile polodes) differ. Therefore, the polodes are not instantaneous geometric invariants, 336 

and for compliant mechanisms instantaneous-invariants that are independent of the mo- 337 

tion time-law cannot be assessed. 338 

There is only one situation where, for static loading, the polodes are conservative (i.e. are 339 

not loading-path dependents); this occurs when the flexure-hinge are loaded by only a 340 

concentrated moment. For this case, a fully analytical solution of the fixed and mobile 341 

polodes is provided in Appendix D. 342 

Another important instantaneous invariant that is worth to define analytically is the first 343 

Bresse’s circle (or inflection circle) [59,62,64,65]. It is the locus of points that instantane- 344 

ously translate (i.e. have zero normal acceleration). The curvature of a generic point 𝑀 of 345 

the mobile rigid body (Figure 4) is: 346 

𝑘𝑀 =

𝑑𝑋𝑀

𝑑𝜓𝐿
 
𝑑2𝑌𝑀

𝑑𝜓𝐿
2 −

𝑑2𝑋𝑀

𝑑𝜓𝐿
2  

𝑑𝑌𝑀

𝑑𝜓𝐿

[(
𝑑𝑋𝑀

𝑑𝜓𝐿
)

2

+ (
𝑑𝑌𝑀

𝑑𝜓𝐿
)

2

]

3
2

  (66) 

To find the locus of points 𝑋𝑖𝑛 , 𝑌𝑖𝑛 which have zero normal acceleration (i.e. an instanta- 347 

neous inflection in their trajectory), hence zero curvature of their trajectory, it is sufficient 348 

to set to zero the eq.(66): 349 

𝑑𝑋𝑖𝑛

𝑑𝜓𝐿

 
𝑑2𝑌𝑖𝑛

𝑑𝜓𝐿
2 −

𝑑2𝑋𝑖𝑛

𝑑𝜓𝐿
2  

𝑑𝑌𝑖𝑛

𝑑𝜓𝐿

= 0 (67) 

Using eq.(49), one obtains: 350 

𝑑𝑋𝑖𝑛

𝑑𝜓𝐿

=
𝑑𝑋𝐿

𝑑𝜓𝐿

− 𝑥𝑖𝑛  sin 𝜓𝐿 − 𝑦𝑖𝑛  cos 𝜓𝐿 (68) 

𝑑2𝑋𝑖𝑛

𝑑𝜓𝐿
2 =

𝑑2𝑋𝐿

𝑑𝜓𝐿
2 − 𝑥𝑖𝑛  cos 𝜓𝐿 + 𝑦𝑖𝑛  sin 𝜓𝐿  (69) 

𝑑𝑌𝑖𝑛

𝑑𝜓𝐿

=
𝑑𝑌𝐿

𝑑𝜓𝐿

+ 𝑥𝑖𝑛  cos 𝜓𝐿 − 𝑦𝑖𝑛  sin 𝜓𝐿  (70) 

𝑑2𝑌𝑖𝑛

𝑑𝜓𝐿
2 =

𝑑2𝑌𝐿

𝑑𝜓𝐿
2 − 𝑥𝑖𝑛  sin 𝜓𝐿 − 𝑦𝑖𝑛  cos 𝜓𝐿 (71) 

Applying eq.s(68-71) the eq.(67) turns out:  351 

𝑥𝑖𝑛
2 + 𝑦𝑖𝑛

2 + 𝑎 𝑥𝑖𝑛 + 𝑏 𝑦𝑖𝑛 + 𝑐 = 0 (72) 

where: 352 

𝑎 = (
𝑑𝑌𝐿

𝑑𝜓𝐿

−
𝑑2𝑋𝐿

𝑑𝜓𝐿
2) cos 𝜓𝐿 − (

𝑑𝑋𝐿

𝑑𝜓𝐿

+
𝑑2𝑌𝐿

𝑑𝜓𝐿
2) sin 𝜓𝐿  (73) 

𝑏 = (
𝑑2𝑋𝐿

𝑑𝜓𝐿
2 −

𝑑𝑌𝐿

𝑑𝜓𝐿

) sin 𝜓𝐿 − (
𝑑2𝑌𝐿

𝑑𝜓𝐿
2 +

𝑑𝑋𝐿

𝑑𝜓𝐿

) cos 𝜓𝐿  (74) 

𝑐 =
𝑑𝑋𝐿

𝑑𝜓𝐿

 
𝑑2𝑌𝐿

𝑑𝜓𝐿
2 −

𝑑2𝑋𝐿

𝑑𝜓𝐿
2  

𝑑𝑌𝐿

𝑑𝜓𝐿

 (75) 

Eq.(72) is a circumference. Therefore, the parametric equations of the inflection circle by 353 

respect to the mobile frame are: 354 
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𝑥𝑖𝑛 = 𝑐𝑥 + 𝑅 cos 𝑢 (76) 

𝑦𝑖𝑛 = 𝑐𝑦 + 𝑅 sin 𝑢  (77) 

where 𝑢 ∈ [0,2𝜋]  is the parameter, 𝑪 = 𝑐𝑥  𝒊𝑋 + 𝑐𝑦 𝒊𝑌 = −
1

2
[𝑎 𝒊𝑋 + 𝑏 𝒊𝑌]  , 𝑅 = 355 

1

2
√𝑎2 + 𝑏2 − 4𝑐 are the centre and radius of the inflection circle (74,75). The parametric 356 

equations of the inflection circle by respect the fixed frame are (eq.(49)): 357 

𝑋𝑖𝑛 = 𝑋𝐿 + 𝑥𝑖𝑛  cos 𝜓𝐿 − 𝑦𝑖𝑛  sin 𝜓𝐿  (78) 

𝑌𝑖𝑛 = 𝑌𝐿 + 𝑥𝑖𝑛  sin 𝜓𝐿 + 𝑦𝑖𝑛  cos 𝜓𝐿   (79) 

The eq.s(76-79) of the inflection circle are analytically defined if the second derivative of 358 

𝑋𝐿 , 𝑌𝐿 is made explicit (prime derivative is defined by eq.s(60,61)). Therefore, differentiat- 359 

ing eq.s(60,61) one obtains:  360 

𝑑2𝑋𝐿

𝑑𝜓𝐿
2 =

𝑠𝑖𝑔𝑛(𝜓𝐿
′ ) cos 𝜓𝐿  

𝐸𝐼 (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

3 [𝐹𝑌
𝑃 cos 𝜓𝐿 − 𝐹𝑋

𝑃 sin 𝜓𝐿 + (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

𝑑𝑀𝑍
𝐿

𝑑𝜓𝐿

] + 
(80) 

−
𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) sin 𝜓𝐿 

(𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

−
𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) cos 𝜓𝐿  

𝐸𝐼 (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

2  
𝑑𝑀𝑍

𝐿

𝑑𝜓𝐿

+ 361 

− ∫
𝑠𝑖𝑔𝑛(𝜓′) cos 𝜓

𝑓(𝜓)2

𝜓𝐿

𝜓0

[
𝑑2𝑓(𝜓)

𝑑𝜓𝐿
2 −

2

𝑓(𝜓)
(

𝑑𝑓(𝜓)

𝑑𝜓𝐿

)

2

] 𝑑𝜓 362 

 363 

𝑑2𝑌𝐿

𝑑𝜓𝐿
2 =

𝑠𝑖𝑔𝑛(𝜓𝐿
′ ) sin 𝜓𝐿  

𝐸𝐼 (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

3 [𝐹𝑌
𝑃 cos 𝜓𝐿 − 𝐹𝑋

𝑃 sin 𝜓𝐿 + (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

𝑑𝑀𝑍
𝐿

𝑑𝜓𝐿

] + 
(81) 

−
𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) cos 𝜓𝐿 

(𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

−
𝑠𝑖𝑔𝑛(𝜓𝐿

′ ) sin 𝜓𝐿  

𝐸𝐼 (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
)

2  
𝑑𝑀𝑍

𝐿

𝑑𝜓𝐿

+ 364 

− ∫
𝑠𝑖𝑔𝑛(𝜓′) sin 𝜓

𝑓(𝜓)2

𝜓𝐿

𝜓0

[
𝑑2𝑓(𝜓)

𝑑𝜓𝐿
2 −

2

𝑓(𝜓)
(

𝑑𝑓(𝜓)

𝑑𝜓𝐿

)

2

] 𝑑𝜓 365 

 366 

where: 367 

𝑑2𝑓(𝜓)

𝑑𝜓𝐿
2 =

1

𝐸𝐼 𝑓(𝜓)
[

𝑑2𝑐

𝑑𝜓𝐿
2 + (

𝑑𝐹𝑌
𝑃

𝑑𝜓𝐿

−
𝑑2𝐹𝑋

𝑃

𝑑𝜓𝐿
2) cos 𝜓 + (

𝑑𝐹𝑋
𝑃

𝑑𝜓𝐿

−
𝑑2𝐹𝑌

𝑃

𝑑𝜓𝐿
2) sin 𝜓 +]

+
1

𝑓(𝜓)
 (

𝑑𝑓(𝜓)

𝑑𝜓𝐿

)

2

 

(82) 

𝑑2𝑐

𝑑𝜓𝐿
2 = (

𝑑2𝐹𝑋
𝑃

𝑑𝜓𝐿
2 − 𝐹𝑋

𝑃 +
𝑑𝐹𝑌

𝑃

𝑑𝜓𝐿

) cos 𝜓𝐿 + (
𝑑2𝐹𝑌

𝑃

𝑑𝜓𝐿
2 −

𝑑𝐹𝑋
𝑃

𝑑𝜓𝐿

− 𝐹𝑌
𝑃) sin 𝜓𝐿 + (83) 

+ (
1

𝐸𝐼

𝑑𝑀𝑍
𝐿

𝑑𝜓𝐿

)

2

+ (𝜗′ +
𝑀𝑍

𝐿

𝐸𝐼
) 

𝑑2𝑀𝑍
𝐿

𝑑𝜓𝐿
2  368 

𝑑2𝑀𝑍
𝐿

𝑑𝜓𝐿
2 =

𝑑2𝑀𝑍
𝑃

𝑑𝜓𝐿
2 + [(

𝑑2𝐹𝑌
𝑃

𝑑𝜓𝐿
2 − 2

𝑑𝐹𝑋
𝑃

𝑑𝜓𝐿

− 𝐹𝑌
𝑃) 𝑥𝑃 + (

𝑑2𝐹𝑋
𝑃

𝑑𝜓𝐿
2 − 2

𝑑𝐹𝑌
𝑃

𝑑𝜓𝐿

− 𝐹𝑋
𝑃) 𝑦𝑃] cos 𝜓𝐿 (84) 
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− [(2
𝑑𝐹𝑌

𝑃

𝑑𝜓𝐿

− 𝐹𝑋
𝑃 +

𝑑2𝐹𝑋
𝑃

𝑑𝜓𝐿
2) 𝑥𝑃 + (2

𝑑𝐹𝑋
𝑃

𝑑𝜓𝐿

− 𝐹𝑌
𝑃 +

𝑑2𝐹𝑌
𝑃

𝑑𝜓𝐿
2) 𝑦𝑃] sin 𝜓𝐿  369 

In which: 370 

𝑑2𝐹𝑋
𝑃

𝑑𝜓𝐿
2 = 𝐹𝑋

𝑃̈ −
𝐹𝑋

𝑃̇

𝜓𝐿̇

 𝜓𝐿̈    ;      
𝑑2𝐹𝑌

𝑃

𝑑𝜓𝐿
2 = 𝐹𝑌

𝑃̈ −
𝐹𝑌

𝑃̇

𝜓𝐿̇

 𝜓𝐿̈     ;      
𝑑2𝑀𝑍

𝑃

𝑑𝜓𝐿
2 = 𝑀𝑍

𝑃̈ −
𝑀𝑍

𝑃̇

𝜓𝐿̇

 𝜓𝐿̈ (85) 

 371 

For the case in which only a concentrated moment is applied, a fully analytical solution of 372 

the inflection circle is reported Appendix D. Following the flow of what above done, it is 373 

possible to find the analytical description of many other geometric loci important for the 374 

kinematic synthesis: the second Bresse’s circle, the centre of accelerations, the cubic of sta- 375 

tionary curvature, the Burmester points, etc.  376 

4. Numerical examples and experimental evidence  377 

In this section some numerical applications of the results obtained in §2 and §3 are 378 

shown. The analytical formulation given by eq.s (46-48) is used. If length, bending stiff- 379 

ness and loads are given, the only unknown is the angle 𝜓𝐿 . The latter needs to be ob- 380 

tained using an attempt method on eq.(46). A fast method to address this issue is the bi- 381 

section algorithm [31,33,45], which requires an interval search 𝜓𝐿 ∈ [𝜓𝐿1, 𝜓𝐿2] (which can 382 

be chosen very wide, e.g. (0,2𝜋) to satisfy any load and configuration conditions). The 383 

error tolerance of the end angle is set to 10−8 in the following examples. 384 

 385 

Figure 6. Flexure-hinge loaded by a concentrated moment applied to the mobile rigid 386 

body 387 

 388 

The kinematic of a flexure-hinge connecting to two rigid bodies, constrained and mobile, 389 

is examined. The material of the flexure-hinge is ABS with 𝐸 = 2.3 𝐺𝑃𝑎, the length is 𝐿 = 390 

30 𝑚𝑚, and the constant section is rectangular, 1 𝑚𝑚 thick and 3 𝑚𝑚 wide. The load is 391 

applied on the mobile rigid body at 𝑥𝑃 = 5 𝑚𝑚. 392 

The first case (Figure 6) concerns a straight flexure-hinge, where a pure moment acts on 393 

the mobile rigid body. This situation gives a fully analytical solution reported in Appen- 394 

dix D. The applied moment is set equal to 𝑀𝑍
𝑃 = 𝜋𝐸𝐼/𝐿, such as to obtain a final angle 395 

𝜓𝐿 = 𝜋. Figure 6 shows the trajectory of the end-point and of the c.i.r. (i.e. the fixed po- 396 

lode), and the inflection circle computed in the final configuration. This is a special case, 397 

inasmuch the presence of only one type of load guarantees that the polode is conservative, 398 

i.e. loading-path undependent. It is possible to observe that the initial position of the c.i.r. 399 
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coincides with the centre of the flexure-hinge, but it moves away during the configuration 400 

change, being located more and more out of the flexure-hinge axis and closer to the fixed 401 

body. For this reason, the pseudo-rigid body approach due to the Howell’s simplest ver- 402 

sion [2], which involves a single lumped hinge in the middle of the flexure-hinge, causes 403 

a significant error in the predicted motion [40].  404 

 405 

Figure 7. Flexure-hinge loaded by two different loading-paths 406 

 407 

A less trivial example is shown in Figure 7. In this case, an initially curved flexure-hinge 408 

(𝜗′ = 10 𝑚−1) is connected to a rigid body loaded with both forces and a moment. The 409 

two loading paths (detailed in Figure 7) have a linear trend but two different final loads. 410 

As could be expected, for two different final loads the two fixed polodes differ, and 411 

therefore all the instantaneous invariants (being them dependent on the location of the 412 

c.i.r.). 413 

 414 

Figure 8. Flexure-hinge loaded by two loading-paths with the same final loads but differ- 415 

ent rate-trends 416 

 417 
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The case in Figure 8 examines the influence of the loading-trend on the c.i.r. locations, 418 

keeping the same final loads. The first loading-path is the same as above, while the second 419 

achieves the same final loads, but they grow in a nonlinear way.  420 

The two fixed polodes differ, as is evident in Figure 8. Note that the initial positions of the 421 

c.i.r. do not coincide either. 422 

This result is less intuitive than the previous one, but it proves that, generally, 423 

instantaneous invariants are not conservative for compliant mechanisms.  424 

Therefore, it is not possible to foresee the motion and their features (i.e. instantaneous 425 

invariants) of whatever flexible mechanism if the dynamic knowledge of all acting loads 426 

is unknown. In the above presented examples, indeed, the c.i.r. locations differ 427 

remarkably. In other words, one should be very careful to address the kinematic synthesis 428 

of compliant mechanisms using the same method used for rigid ones connected through 429 

kinematic pairs. 430 

 431 

Figure 9. Experimental setup 432 

 433 

Some experiments have been conducted on flexible PVC beam, constrained with two 434 

almost rigid pipes at the ends; one is fixed, and the other, free, is subjected to gravity, as 435 

shown in Figure 9. The bending stiffness of the flexible beam has been estimated through 436 

material testing and section measurement. The extrapolation of experimental data is 437 

conducted through a digital image analysis by the alinement of the instruments throgh 438 

laser beams. The same experimental measurements are used to perform the method 439 

introduced in this paper. The comparisons between experimental evidence and numerical 440 

prediction compare the overall (i.e. between the initial and final configuration) centre of 441 

rotation, as shown in Figure 9 (first case of Table 1).  The two centres of rotation are close, 442 

demonstrating that the method allows correctly following considerable displacements. It 443 

is interesting to evidence that the trajectory of the c.i.r. (i.e. the fixed polode) during the 444 

motion are not a-priori predictable only by knowledge of the initial and final 445 

configurations, but it is mandatory to perform a reliable kinematic analysis. In Table 1 446 

four cases are examined according to the length of the flexible-joint, where the 447 

experimental and predicted coordinates of the centre of rotation and final angles are 448 
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reported. All the results show good agreement with small or relevant displacements, but 449 

the error increases inversely proportional to the length, probably due to lower precision 450 

of data acquisition if compared with the total displacement.  451 

Table 1. Experimental and predicted position of rotation’s centre and final end-angle for four 452 
lengths of flexible-joint. 453 

Flexible-joint 

lenghts 

 [mm] 

Experimental 

centre of rotation 

    [mm] 

Predicted centre  

of rotation 

 [mm] 

Experimental 

final angle 

[deg] 

Predicted 

final angle 

[deg] 

360 (87.3, -238.6) (83.7, -242.9) 41.6 42.7 

270 (85.2, -169.4)     (85.3, -168.2) 33.0 32.6 

180 (70.7, -100.1) (71.4, -97.4) 22.2 21.5 

90 (40.3, -47.1) (41.5, -38.9) 12.47 10.16 

5. Conclusions 454 

The paper investigates the elasto-kinematics and the kinematic-features of motion (i.e. in- 455 

stantaneous invariants) of compliant mechanisms based on flexure-hinges. A comprehen- 456 

sive deduction of the differential equation that governs flexure-hinge's nonlinear geomet- 457 

ric behaviour is presented. These equations are analytically addressed, assuming that ex- 458 

tensional and shear strains are neglected, the section and the initial curvature are constant, 459 

and the distributed loads are null. The analytical solution provides remarkable computa- 460 

tionally advantages compared to numerical methods (e.g. Runge-Kutta); it allows manag- 461 

ing a single point of interest (e.g. the extreme of the flexure-hinge), avoiding a full-length 462 

integration. This feature is crucial to deduce the analytical expressions of instantaneous 463 

invariants that require the derivatives of the end-point of the flexure-hinge. Two instan- 464 

taneous invariants are investigated, the centre of instantaneous rotation (c.i.r.) and the 465 

inflection circle (first Bresse’s circle). The main obtained result is that the c.i.r. locations 466 

(i.e. fixed polode) are not conservative, i.e. they depend on the loading-path. Therefore, 467 

all the other instantaneous invariants are not conservative; as a consequence, the notion 468 

of instantaneous geometric invariants (i.e. undependent on the motion time-law) decays.  469 

These results are numerically verified in some examples, and a simple experimental vali- 470 

dation has been conducted by optical means with the aim to verify that the step-by-step 471 

analysis drives to the final configuration experienced.  472 

The obtained equation, although given for flexure-hinge with constant section, may be 473 

extended to notched flexure hinges observing that the main deformation is due to the 474 

central part with constant section. Furthermore, the achieved results could open a way to 475 

define the Jacobian constraint matrix (used in multibody codes) of flexure-hinges, where 476 

it should appear not only as a function of the geometry and material properties but also 477 

of the applied loads. 478 

Appendix A – Proof of the skewness of the Curvature Tensor 479 

The change-of-basis 𝜦 is an orthogonal tensor: 480 

𝜦(𝜦)𝑇 = 𝑰 (A1) 

Applying the derivative by respect to 𝑠 of the eq.(A1), it turns out: 481 

𝜕𝜦

𝜕𝑠
(𝜦)𝑇 = −𝜦

𝜕(𝜦)𝑇

𝜕𝑠
= − [

𝜕𝜦

𝜕𝑠
(𝜦)𝑇]

𝑇

  (A2) 

That is the definition of a skew-symmetric tensor. Therefore, the curvature tensors in 482 

eq.(7,8) are skew-symmetric. 483 

Appendix B – Other relations regarding the equilibrium 484 
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The forces and moment 𝑭(𝑠), 𝑴(𝑠) applied at the generic curvilinear abscissa 𝑠 can 485 

also be expressed as functions of the applied loads 𝑭𝐿 , 𝑴𝐿 at 𝑠 = 𝐿, as well as the distrib- 486 

uted loads: 487 

𝐹𝑋(𝑠) = 𝐹𝑋
𝐿 + ∫ 𝑞𝑋(𝑠̃) 𝑑𝑠̃

𝐿

𝑠

 (B1) 

𝐹𝑌(𝑠) = 𝐹𝑌
𝐿 + ∫ 𝑞𝑌(𝑠̃) 𝑑𝑠̃

𝐿

𝑠

 (B2) 

𝑀𝑍(𝑠) = 𝑀𝑍
𝐿 − (𝑌𝐿 − 𝑌)𝐹𝑋

𝐿 + (𝑥𝐿 − 𝑥)𝐹𝑌
𝐿 + (B3) 

+ ∫ [−(𝑌̃ − 𝑌)𝑞𝑋(𝑠̃) − (𝑋̃ − 𝑋)𝑞𝑌(𝑠̃) + 𝑚𝑍(𝑠̃)] 𝑑𝑠̃
𝐿

𝑠

 488 

where 𝑋𝐿 = 𝑋(𝑠 = 𝐿) , 𝑌𝐿 = 𝑌(𝑠 = 𝐿) are the coordinates of the point in 𝑠 = 𝐿. 489 

By applying the moment equilibrium with the pole at 𝑠 = 0, the components of 𝑭0, 𝑴0 490 

can be expressed as function of 𝑭𝐿 , 𝑴𝐿: 491 

𝐹𝑋
0 = −𝐹𝑋

𝐿 − ∫ 𝑞𝑋(𝑠) 𝑑𝑠

𝐿

0

 (B4) 

𝐹𝑌
0 = −𝐹𝑌

𝐿 − ∫ 𝑞𝑌(𝑠) 𝑑𝑠

𝐿

0

 (B5) 

𝑀𝑍
0 = −𝑀𝑍

𝐿 + 𝑌𝐿𝐹𝑋
𝐿 − 𝑋𝐿𝐹𝑌

𝐿 + (B6) 

+ ∫ [𝑌 𝑞𝑋(𝑠) − 𝑋 𝑞𝑌(𝑠) − 𝑚𝑍(𝑠)] 𝑑𝑠
𝐿

0

 

On the contrary, by applying the moment equilibrium with the pole at 𝑠 = 𝐿, the compo- 492 

nents of 𝑭𝐿 , 𝑴𝐿 can be expressed as function of 𝑭0, 𝑴0: 493 

𝐹𝑋
𝐿 = −𝐹𝑋

0 − ∫ 𝑞𝑋(𝑠) 𝑑𝑠

𝐿

0

 (B7) 

𝐹𝑌
𝐿 = −𝐹𝑌

0 − ∫ 𝑞𝑌(𝑠) 𝑑𝑠

𝐿

0

 (B8) 

𝑀𝑍
𝐿 = −𝑀𝑍

0 − 𝑌𝐿𝐹𝑋
0 + 𝑋𝐿𝐹𝑌

0 + (B9) 

+ ∫ [−(𝑌𝐿 − 𝑌)𝑞𝑋(𝑠) − (𝑋𝐿 − 𝑋)𝑞𝑌(𝑠) − 𝑚𝑍(𝑠)] 𝑑𝑠
𝐿

0

 

Appendix C – A useful trick to avoid the singularities of some integrals 494 

In the presence of an inflection point, the denominator of the eq.s(42-44) becomes null 495 

for 𝜓(𝑠) = 𝜓𝑖𝑛. If an internal inflection point occurs at 𝜓(𝑠) = 𝜓𝑖  the integral of eq.(42), 496 

using eq.(41) also, can be separated into two contributes: 497 

𝐿 = ∫
𝑠𝑖𝑔𝑛(𝜓′)

𝑓(𝜓)
𝑑𝜓

𝜓𝑖𝑛

𝜓0

+ ∫
𝑠𝑖𝑔𝑛(𝜓′)

𝑓(𝜓)
𝑑𝜓

𝜓𝐿

𝜓𝑖𝑛

 (C1) 
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The previous integrand function becomes singular for 𝜓𝑖 . Therefore, to overcome this 498 

problem [66], we introduce a very small positive quantity 𝜖 ≪ 1 (numerically 𝜖 ≅ 10−4 499 

can be sufficient) such that: 500 

𝐿 = 𝑠𝑖𝑔𝑛(𝜓0
′ ) [ ∫

 𝑑𝜓

𝑓(𝜓)

𝜓𝑖−𝜖

𝜓0

+ ∫
 𝑑𝜓

𝑓(𝜓)

𝜓𝑖𝑛

𝜓𝑖𝑛−𝜖

] + 𝑠𝑖𝑔𝑛(𝜓𝐿
′ ) [ ∫

 𝑑𝜓

𝑓(𝜓)

𝜓𝐿

𝜓𝑖𝑛+𝜖

+ ∫
 𝑑𝜓

𝑓(𝜓)

𝜓𝑖𝑛+𝜖

𝜓𝑖𝑛

] (C2) 

The two integrals with extremes of integration [𝜓𝑖𝑛 − 𝜖, 𝜓𝑖𝑛] and [𝜓𝑖𝑛 , 𝜓𝑖𝑛 + 𝜖], by vir- 501 

tue of the smallness of 𝜖 can be linearized (and then integrated) using the change of var- 502 

iables 𝜓 = 𝜓𝑖𝑛 − 𝜔, that implies 𝜔 ∈ [0, 𝜖], obtaining: 503 

𝑓(𝜓) = 𝑓(𝜓𝑖𝑛 − 𝜔) ≅ (C3) 

≅ √
2

𝐸𝐼
[𝑐 − 𝐹𝑋(cos 𝜓𝑖𝑛 + 𝜔 sin 𝜓𝑖𝑛) − 𝐹𝑌(sin 𝜓𝑖𝑛 − 𝜔 cos 𝜓𝑖𝑛)] 504 

Hence: 505 

𝐼1(𝜖) = ∫
 𝑑𝜓

𝑓(𝜓)

𝜓𝑖𝑛

𝜓𝑖𝑛−𝜖

= ∫
 𝑑𝜔

𝑓(𝜓𝑖𝑛 − 𝜔)

𝜖

0

= √2𝐸𝐼  
√𝐴̃ + 𝜖𝐵̃ − √𝐴̃

𝐵̃
 (C4) 

𝐼2(𝜖) = ∫
 𝑑𝜓

𝑓(𝜓)

𝜓𝑖𝑛+𝜖

𝜓𝑖𝑛

= ∫
 𝑑𝜔

𝑓(𝜓𝑖𝑛 − 𝜔)

0

−𝜖

= √2𝐸𝐼  
√𝐴̃ − √𝐴̃ − 𝜖𝐵̃

𝐵̃
 (C5) 

where: 506 

𝐴̃ = 𝑐 − 𝐹𝑋 cos 𝜓𝑖𝑛 − 𝐹𝑌 sin 𝜓𝑖𝑛  (C6) 

𝐵̃ = 𝐹𝑌 cos 𝜓𝑖𝑛 − 𝐹𝑋 sin 𝜓𝑖𝑛  (C7) 

Therefore, the integral of eq.(43) (or eq.(C1)) in the presence of an inflection point turn out 507 

as: 508 

𝐿 = 𝑠𝑖𝑔𝑛(𝜓0
′ ) [ ∫

 𝑑𝜓

𝑓(𝜓)

𝜓𝑖𝑛−𝜖

𝜓0

+ 𝐼1] + 𝑠𝑖𝑔𝑛(𝜓𝐿
′ ) [ ∫

 𝑑𝜓

𝑓(𝜓)

𝜓𝐿

𝜓𝑖𝑛+𝜖

+ 𝐼2] (C8) 

and the singularity no longer appears. 509 

The same trick can be applied to the integrals in eq.(44,45), obtaining: 510 

𝑋(𝜓) = 𝑋0 + 𝑠𝑖𝑔𝑛(𝜓0
′ ) [ ∫

 cos 𝜓̃

𝑓(𝜓̃)

𝜓𝑖𝑛−𝜖

𝜓0

𝑑𝜓̃ + 𝐼3] + (C9) 

+ 𝑠𝑖𝑔𝑛(𝜓𝐿
′ ) [ ∫

cos 𝜓̃

𝑓(𝜓̃)
𝑑𝜓̃

𝜓

𝜓𝑖𝑛+𝜖

+ 𝐼4] 

𝑌(𝜓) = 𝑦0 + 𝑠𝑖𝑔𝑛(𝜓0
′ ) [∫

 sin 𝜓̃

𝑓(𝜓̃)

𝜓𝑖𝑛−𝜖

𝜓0

𝑑𝜓̃ + 𝐼5] + 

(C10) 

+𝑠𝑖𝑔𝑛(𝜓𝐿
′ ) [∫

sin 𝜓̃

𝑓(𝜓̃)
𝑑𝜓̃

𝜓

𝜓𝑖𝑛+𝜖

+ 𝐼6] 511 

where: 512 
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𝐼3(𝜖) =
𝐼1(𝜖) cos 𝜓𝑖𝑛

𝑠𝑖𝑔𝑛(𝜓𝐿
′ )

+
2 sin 𝜓𝑖𝑛

3𝐵̃2
[(𝜖𝐵̃ − 2𝐴̃)√𝐴̃ + 𝜖𝐵̃ + 2𝐴̃√𝐴̃] (C11) 

𝐼4(𝜖) =
𝐼2(𝜖) cos 𝜓𝑖𝑛

𝑠𝑖𝑔𝑛(𝜓𝐿
′ )

+
2 sin 𝜓𝑖𝑛

3𝐵̃2
[(𝜖𝐵̃ + 2𝐴̃)√𝐴̃ − 𝜖𝐵̃ − 2𝐴̃√𝐴̃] (C12) 

𝐼5(𝜖) =
𝐼1(𝜖) sin 𝜓𝑖𝑛

𝑠𝑖𝑔𝑛(𝜓𝐿
′ )

+
2 cos 𝜓𝑖𝑛

3𝐵̃2
[(𝜖𝐵̃ − 2𝐴̃)√𝐴̃ + 𝜖𝐵̃ + 2𝐴̃√𝐴̃] (C13) 

𝐼6(𝜖) =
𝐼2(𝜖) sin 𝜓𝑖𝑛

𝑠𝑖𝑔𝑛(𝜓𝐿
′ )

+
2 cos 𝜓𝑖𝑛

3𝐵̃2
[(𝜖𝐵̃ + 2𝐴̃)√𝐴̃ − 𝜖𝐵̃ − 2𝐴̃√𝐴̃] (C14) 

It is worth pointing out that the eq.s(C2,C9,C10) hold even if an inflection point happens 513 

at one end (e.g. a cantilever beam loaded by a concentrates force at the end)), simply con- 514 

sidering that 𝜓𝑖𝑛 = 𝜓0 or 𝜓𝑖𝑛 = 𝜓𝐿 . 515 

Appendix D – Fully Analytical solution of polodes (fixed and mobile) and inflection 516 

circle for a flexure-hinge loaded by a concentrated moment 517 

Taking into account the assumptions of §2.1, the deformed configuration of a flexure- 518 

hinge loaded only by a concentrated moment 𝑀𝑍
𝑃 is represented by the following para- 519 

metric equations [53]: 520 

𝜓(𝑠) = 𝜓0 + (𝜗′ +
𝑀𝑍

𝑃

𝐸𝐼
) 𝑠 (D1) 

𝑋(𝑠) = 𝑋0 +
sin [(𝜗′ +

𝑀𝑍
𝑃

𝐸𝐼
) 𝑠]

(𝜗′ +
𝑀𝑍

𝑃

𝐸𝐼
)

  (D2) 

𝑌(𝑠) = 𝑌0 +
1 − cos [(𝜗′ +

𝑀𝑍
𝑃

𝐸𝐼
) 𝑠]

(𝜗′ +
𝑀𝑍

𝑃

𝐸𝐼
)

 (D3) 

From the latter equations, the terms 𝑋𝐿 , 𝑌𝐿 ,
𝑑𝑋𝐿

𝑑𝜓𝐿
,

𝑑𝑌𝐿

𝑑𝜓𝐿
,

𝑑2𝑋𝐿

𝑑𝜓𝐿
2 ,

𝑑2𝑌𝐿

𝑑𝜓𝐿
2 that forms the parametric 521 

equations of the fixed and mobile polodes in eq.s(55,56,58,59) and the inflection circle in 522 

eq.s(74-77) can be made explicit. Setting 𝜓0 = 𝑋0 = 𝑌0 = 0 for the sake of clarity, one ob- 523 

tains: 524 

𝜓𝐿 = (𝜗′ +
𝑀𝑍

𝑃

𝐸𝐼
) 𝐿 (D4) 

𝑋𝐿 =
𝐿 sin 𝜓𝐿

𝜓𝐿

        (D5) 

𝑌𝐿 =
𝐿 (1 − cos 𝜓𝐿)

𝜓𝐿

 (D6) 

𝑑𝑋𝐿

𝑑𝜓𝐿

=
𝐿 − 𝑋𝐿

𝜓𝐿 
− 𝑌𝐿   (D7) 
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𝑑𝑌𝐿

𝑑𝜓𝐿

= 𝑋𝐿 −
𝑌𝐿

𝜓𝐿

       (D8) 

𝑑2𝑋𝐿

𝑑𝜓𝐿
2 =

𝑋𝐿 − 𝐿

𝜓𝐿
2 −

𝑑𝑌𝐿

𝑑𝜓𝐿

−
1

𝜓𝐿

𝑑𝑋𝐿

𝑑𝜓𝐿

 (D9) 

𝑑2𝑌𝐿

𝑑𝜓𝐿
2 =

𝑑𝑋𝐿

𝑑𝜓𝐿

−
1

𝜓𝐿

𝑑𝑌𝐿

𝑑𝜓𝐿

+
𝑌𝐿

𝜓𝐿
2 (D10) 
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