
Received 22 March 2024; revised 23 April 2024; accepted 6 May 2024. Date of publication 9 May 2024; date of current version 23 May 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3399015

AI-Driven Ground Robots: Mobile Edge Computing
and mmWave Communications at Work
GIUSEPPE BARUFFA 1, ANDREA DETTI 2, LUCA RUGINI 1 (Member, IEEE),

FRANCESCO CROCETTI1 , PAOLO BANELLI 1 (Member, IEEE),
GABRIELE COSTANTE 1 (Member, IEEE), AND PAOLO VALIGI 1 (Member, IEEE)

1Department of Engineering, University of Perugia, 06125 Perugia, Italy

2Department of Electronic Engineering, University of Rome “Tor Vergata,” 00133 Rome, Italy

CORRESPONDING AUTHOR: G. BARUFFA (e-mail: giuseppe.baruffa@unipg.it)

This work was supported in part by the University of Perugia through the Fondo di Ricerca di Base 2022 Project “Energy-Efficient Networking, Signal Processing
and Communications (EFESO)”; in part by the Fondo di Ricerca di Base 2020 Project “Systems, Algorithms, and Architectures for Information Transmission and

Processing in Future Telecommunications and Sensor Networks”; in part by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) through
the PRIN 2017 Project “Liquid Edge Computing Based on Distributed Machine Learning and Millimeter-Wave Radio Access (LIQUID_EDGE);”

and in part by the European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, Partnership on
“Telecommunications of the Future,” Program “RESTART” under Grant PE00000001, “Netwin” Project (CUP E83C22004640001).

ABSTRACT The seamless integration of multiple radio access technologies (multi-RAT) and cloud/edge
resources is pivotal for advancing future networks, which seek to unify distributed and heterogeneous
computing and communication resources into a cohesive continuum system, tailored for mobile
applications. Many research projects and focused studies are proposing solutions in this area, the
impact of which is undoubtedly increased by moving from theoretical and simulation studies to
experimental validations. To this aim, this paper proposes a testbed architecture that combines contemporary
communication and cloud technologies to provide microservice-based mobile applications with the ability
to offload part of their tasks to cloud/edge data centers connected by multi-RAT cellular networks. The
testbed leverages Kubernetes, Istio service mesh, OpenFlow, public 5G networks, and IEEE 802.11ad
mmWave (60 GHz) Wi-Fi access points. The architecture is validated through a use case in which a
ground robot autonomously follows a moving object by using an artificial intelligence-driven computer
vision application. Computationally intensive navigation tasks are offloaded by the robot to microservice
instances, which are executed on demand within cloud and edge data centers that the robot can exploit
during its journey. The proposed testbed is flexible and can be reused to assess communication and cloud
innovations focusing on multi-RAT cloud continuum scenarios.

INDEX TERMS Containerization, ground robot, millimeter wave, mobile edge computing, mobile edge
learning, object detection, orchestration, smart city, software defined networking.

I. INTRODUCTION

INTHE rapidly evolving landscape of urban development,
the concept of smart cities has emerged as a visionary

approach to address the complex challenges posed by the
growing urban population. Central to the realization of
smart cities is the integration of advanced technologies and
intelligent systems that can improve urban living, sustain-
ability, and efficiency. Among these technologies, ground
robots driven by artificial intelligence (AI) have received
significant attention due to their potential to revolutionize

various aspects of urban life, from transportation and public
safety to environmental monitoring and waste management.
However, often (small) ground robots cannot have high
computational capability on board, because of lack of space
or energy, cost, etc.
Due to the ongoing deployment of 5G networks and

other communication technologies, smart cities will be
covered by a ubiquitous communication network that will
provide low latency and high-speed Internet access [1]. The
network infrastructure will be made up of numerous access

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3104 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0003-3496-0395
HTTPS://ORCID.ORG/0000-0002-0803-1392
HTTPS://ORCID.ORG/0000-0003-0343-8166
HTTPS://ORCID.ORG/0000-0001-9134-8368
HTTPS://ORCID.ORG/0000-0002-0004-6370
HTTPS://ORCID.ORG/0000-0002-8417-9372
HTTPS://ORCID.ORG/0000-0002-0486-7678

points (AP) or base stations (BS), operating over a wide
range of frequency bands, extending from the sub-GHz at
800 MHz to the millimeter wave (mmWave) portion of the
radio frequency spectrum at 24-60 GHz, where wireless
spectrum is less crowded and a Gigabit-per-user throughput
is expected, but radio coverage is much more critical. Along
with 5G, IEEE 802.11ad is a Wi-Fi wireless communication
standard designed for operation over mmWave links in the
V band (at 60 GHz), with multi-GHz bandwidth channels,
offering improved performance on short-range static links,
thanks to beamforming and multi-gigabit access speeds [2].
IEEE 802.11ad can work indoors, but also outdoors, and can
coexist with 5G networks [3], [4], [5].
Such powerful network connectivity allows computing-

intensive AI tasks of robots to be offloaded to the data
centers of a cloud infrastructure, which can be located at
the edge of the infrastructure, i.e., near the robot for low-
latency or bandwidth-intensive robotic applications, or in a
central part of the cloud for other cases [6], [7], [8]. In fact,
mobile edge computing has emerged as a potential solution
to a number of problems faced by resource-constrained
mobile devices, which require additional computing power
to perform essential tasks for their operation [9], [10].
Mobile edge computing solves these problems by offering
a proximity-based computing and caching resource that
minimizes latency, optimizes bandwidth usage, and increases
user density, especially when combined with high-speed
radio access such as that offered by Wi-Fi [11] and
5G networks [12]. There are also ongoing standardization
proposals, such as the multi-access edge computing (MEC)
framework established by ETSI [13]. However, in this
paper, we are referring to a more generic Edge Computing
deployment not compliant with ETSI MEC specifications.
One of the application fields that could benefit from edge

computing is computer vision (CV) for robotics applications.
CV and deep machine learning are significantly expanding
the capabilities and versatility of robots, enabling them
to sense and understand the surrounding environment. In
this field, a game changing algorithm is “You only look
once” (YOLO) [14], a detection algorithm that excels at
identifying and localizing objects within images with the
help of convolutional neural networks. The original YOLO
algorithm has undergone continuous evolution [15] and is
used in various mobile robotics tasks, including real-time
obstacle detection [16], [17], object tracking as they move
within the robot field of view [18], [19], etc.
Regarding the control applications of ground robots (and

more), in recent years, developers are focusing on splitting
complex software systems into numerous microservices [20],
which interact with each other through application program-
ming interfaces (API), such as HTTP or Google remote
procedure calls (gRPC), while they are dropping support for
monolithic implementations [21], [22]. Resource allocation
for microservice applications is more efficient than for
monolithic applications, since only the overloaded microser-
vices can be replicated, rather than the entire application.

Microservice applications are more “edge native”, in the
sense that it is possible to move only some microservices
to the edge, instead of the entire application [23]. Finally,
the development effort is simplified, as each microservice
may be coded in a different programming language (based
on development, integration, and maintenance convenience),
and may be packaged as a Linux container, thus forming a
self-contained piece of software that can be developed also
by a small team [24].

Life cycle management of a microservices-based appli-
cation is usually managed by Kubernetes [25], a container
orchestration [26] framework. The Kubernetes virtualization
unit is the POD, which includes a single (or multiple)
container running an instance of a single (or multiple)
microservice. In a typical configuration, a POD runs
an instance of a microservice. Kubernetes executes the
PODs within the nodes (servers) of a cluster according to
predefined scheduling policies [25]. Specifically, when the
microservice load grows, the PODs are replicated, so that
there are many instances of the same microservice serving
the user requests, according to a load balancing strategy
that randomly distributes the load to replicas. Actually,
Kubernetes extensions, called service mesh, can implement
more complex balancing strategies, which allow a more flex-
ible request routing by automatically injecting transparent
HTTP/gRPC proxies within the PODs. The proxies intercept
any incoming and outgoing service requests to the PODs
and apply user-defined routing/balancing strategies.

A. CONTRIBUTION
This paper explores the use of available communication
and cloud technologies to implement a testbed where
mobile applications offload complex tasks to edge or cloud
computing data centers, while they move between cells
served by multiple radio access technologies (multi-RAT).
The testbed is modular, and the adopted strategies can be

modified to evaluate the effectiveness of new communication
and cloud solutions as a part of research projects or focused
studies. The testbed enables the integration of laboratory
technologies that are not easily obtainable today through
public infrastructure, such as edge data centers and mmWave
radio access. In addition, the testbed enables the integration
of public infrastructure, such as cloud data centers and
5G cellular networks, thus realizing a multi-RAT cloud
continuum environment [27].
Although the proposed testbed can be applied to a wide

range of mobile applications, as a design methodology,
we focus on a multi-RAT cloud continuum system aimed
at supporting navigation services of mobile ground robots.
These robots need to offload AI-based computer vision tasks
to edge and cloud servers to perform object detection, and
they move in a radio environment consisting of mmWave
Wi-Fi micro-cells at 60 GHz and 5G cells at 3.6 GHz.
The practical implementation problems highlighted by a

use case with ground robots are addressed by proposing
i) a general multi-RAT cloud/edge architecture that leverages

VOLUME 5, 2024 3105

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

Kubernetes, Istio service mesh, and Open vSwitch (OvS)
technologies, and ii) a design strategy for microservice
applications meant for this environment. The developed
software tools and applications, installation and operating
instructions, configuration settings, and other data, are
available in a public repository.1

In the following, we describe our system with a top-down
approach, starting from the application to the cloud, and
finally to the network. Since we used a testbed-driven design
methodology, each section starts with the general concepts
and, subsequently, dives into the technology used for their
implementation.
First, we review some related works in Section II.

Then, in Section III, we describe the considered edge
computing scenario and the related testbed technologies.
We continue in Section IV outlining the design strategy
employed for our robot application, which can also be
generalized to other types of mobile applications requiring
task offloading. Then, Section V presents the multi-RAT
cloud/edge testbed architecture used by our robot, and we
describe the technologies used by our mobile application to
offload complex AI tasks. Performance measurements are
discussed in Section VI and, finally, in Section VII we draw
conclusions and summarize the lessons learned.

II. RELATED WORKS
The offloading and distribution of complex tasks, either to
the edge or cloud, has been explored by several researchers
in the last few years. In [28], offloading is used to increase
the performance of YOLO object detectors running on the
cloud/edge rather than on smartphone hardware; the testbed
is made of a dedicated edge server, and measurements have
shown that the developed system improves multiple aspects,
such as latency, detection accuracy, and battery endurance.
In [29], GPU-equipped Kubernetes nodes are used to offload
neural network services, such as object detection, with the
purpose of defining an improved POD allocation policy.
The results have shown increased transmission bandwidth,
improved memory management, and more balanced POD
allocation. The Edge-V framework proposed in [30] is
designed to test high-bandwidth connectivity among vehicles
at mmWave frequencies and task offloading for high-burden
computational jobs. This framework demonstrated a 60%
saving in terms of latency through a testbed made of a
single edge node, which can possibly use services available
in cloud virtual machines. The offloading solutions proposed
in [28], [29], [30] have several interesting advantages, but
these solutions were either not conceived for devices without
autonomous mobility [28], [29], or not implemented with
mobile robots [30].

The authors of [31] explored the trade-off between
consumed energy and latency, in hybrid Wi-Fi/cellular
mobile edge computing systems: their optimization algo-
rithm offloads computation to minimize both consumed

1https://github.com/gbaruffa/liquid-edge-microservices-inference-public

energy and processing latency. Additionally, service caching
of frequently-requested computational resources (such as
programs, libraries, and databases) has been added in the
optimization trade-off [11], thus leading to increased benefits
in energy consumption and processing latency. The joint
use of Wi-Fi 6 and 5G in an industrial IoT environ-
ment is explored in [32], where task offloading is paired
with optimal RAT selection, to optimize transmit power,
execution delay, and overall costs: reinforcement learning
together with game theory is used in a Lyapunov-based
optimization framework. The concept of parallel multi-
RAT (Wi-Fi, 5G, etc.) usage is studied in [33], where the
authors propose an algorithm for optimal multi-RAT traffic
offloading, which is capable to equalize the different radio
technology communication delays, distribute the capacity
in intermediate relay nodes, and avoid packet reordering
delays.
For what concerns robotic aspects, the authors of [34]

introduced a service platform for robots, to be implemented
in the cloud. They designed a distributed computing architec-
ture based on Apache Sparks, with several layers functioning
as gateways, services, and algorithms: the results have shown
a timing gain with respect to a local implementation, while
preserving or improving detection accuracy and resource
scaling. Distributed robotic systems often rely on middleware
such as the Robot Operating System (ROS), whose design
principles include distribution and modularity [35]. In [36]
a robotic platform derived from ROS is presented, with
an architecture based on microservices and implemented
with Kubernetes, Docker, and Jenkins. The authors of [36]
focused mainly on continuous integration, deployment and
delivery, so that the entire process of robotic services
provisioning is automated. The investigated application is
the parking of autonomous vehicles, divided into numerous
microservices dedicated to lane detection, parking detection,
sign detection, and so on. Their results have shown that
the service invocation time is considerably reduced when
compared to that of other monolithic solutions. In [37], [38]
the authors investigated a design methodology to containerize
and orchestrate ROS-based applications, so that performance
and memory footprint overheads are minimized, and inte-
gration and verification take place before deployment.
Their findings have shown that the additional orchestration
overhead may not be negligible if careful splitting of ROS
nodes into Docker containers is not taken into account. The
implementation of a complete robotic testbed for automated
inspection has been presented in [39], where the cloud-
edge continuum paradigm has also been evaluated with 5G
radio links. Due to the strict latency requirements of robotic
applications, the communication handover between different
radio access links is an important aspect that has been
investigated in [40], [41]. The authors of [40] have shown
that orchestrated planning of container migration during the
handover phase is crucial to minimize downtime and reduce
latency. A WLAN with virtualized APs was used for the
radio links in [41] to show that the contextual information

3106 VOLUME 5, 2024

FIGURE 1. Reference scenario.

of the network is essential when migrating the virtual AP
functionality.
Although ROS supports deployment solutions based on

containerization and orchestration, most applications employ
ROS nodes that rely on a stateful paradigm (e.g., mapping
or pose estimation methods). Furthermore, ROS requires the
presence of a master node that coordinates all the other
nodes, and therefore the master node must be active. If it is
reinstantiated when switching to a different edge, it could
cause the failure of the entire ROS ecosystem.
Although we focus on a ground robot implementation, a

similar application could also be developed with unmanned
aerial vehicles (UAV). The offload of navigation control in
UAV is studied in [42], where a model-predictive control
is employed to predict the trajectory of the UAV. The
implementation of this task in a local Kubernetes cluster has
shown that the latency due to offloading represents a critical
point, especially if the edge nodes are resource-bounded, or
in case of insufficient link quality. Therefore, the reduction
of latency is a critical point not only in ground robotic
applications, like the one developed herein, but also, and
even more crucial, in UAV contexts, where the real-time
constraints are very tight.
In summary, compared to the literature [28], [29], [30],

[38], [40], we focus more on cloud-specific aspects of the
problem, that is, how to use cloud technologies to create
a distributed cloud/edge service platform, where tasks are
offloaded. Furthermore, our work provides guidelines to
design a microservice application that takes advantage of
such a platform. Finally, we remind that we have released
all software and hardware project files as open-source (see
Footnote 1), encouraging their reuse and extension.

III. REFERENCE SCENARIO
Figure 1 shows the considered scenario. The network infras-
tructure is made of mmWave Wi-Fi APs and a 5G public
network. The cloud/edge infrastructure consists of edge
data centers and a cloud data center. Each mmWave AP

steers cloud-directed traffic to an edge data center associated
with it.
A ground robot connects to the mmWave network through

a pool of network interface cards (NICs) managed by a
specific connection control strategy. To support connectivity
outside the mmWave coverage, the robot uses a 5G NIC
(e.g., a mobile phone) to connect with the 5G network.
The ground robot is equipped with a camera and runs

a CV application that can benefit from some degree
of computational offloading to cloud/edge resources. For
example, the robot navigation task may require the detection
of objects, people, or faces in the surrounding environment,
which can be performed outside the robot. Therefore, video
frames captured by the robot are sent to microservices,
running in a cloud/edge infrastructure. The microservices
perform the required operations and then send the results
back to the robot.
We focus on a cloud computing scenario in which mobile

applications use microservices run by a cloud provider,
according to a function-as-a-service model. This cloud model
requires microservice (function) instances to be activated and
replicated on demand, according to specific placement and
replication policies.
Regarding the placement policy, we consider that when a

stream of service requests arrives at an edge data center, it
is immediately served if there is a running instance of the
microservice; otherwise, a new instance of the microservice
is run. During such a cold start phase, initial requests are
rerouted toward the cloud data center, where an instance is
surely running.
Regarding the replication policy, we assume that the num-

ber of instances of the same microservice is automatically
controlled, so that each one has a CPU consumption below a
target value. When there is only a running instance, and it is
not used for a configured inactivity timeout, it is eventually
removed [43]. We assumed that an inactivity timeout is used
for edge data centers to save resources, whereas, for the
cloud data center, we always ensured the existence of at

VOLUME 5, 2024 3107

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

FIGURE 2. a) The two mmWave APs used for the testbed; b) the autonomous ground drone with the mounted cradle box; c) FreeCAD cradle box.

least a microservice instance (i.e., the inactivity timeout is
set to infinity).

A. TESTBED ARCHITECTURE AND HARDWARE
We implemented the reference scenario in the testbed, which
consists of two APs (Fig. 2a) that implement the IEEE
802.11ad standard [44] at 60 GHz and provide directional
mmWave links to the robot. These APs are MikroTik wAP
60Gx3 devices, which provide azimuth angular coverage of
nearly 180 degrees. In addition, we use a public 5G network
working at 3.6 GHz.
A cloud data center and two edge data centers are

interconnected by a gigabit Ethernet infrastructure. Each
edge data center serves a different mmWave AP. The network
latency between a mmWave AP and its edge data center is
negligible. To emulate the delay between the edge and cloud
parts of the scenario, we introduced an artificial 50 ms round-
trip time (RTT) delay to all cloud/edge communications.
Data centers are made of a cluster of servers managed by a
single Kubernetes instance.
The ground robot (Fig. 2b) is a DJI RoboMaster S1, which

was chosen for its ease of programming and low cost [45].
It has four wheels and has been modified to include our
open-source 3D-printed cradle box (Fig. 2c), in which we
mounted four 60 GHz Wi-Fi NICs, 90 degrees apart from
each other, and a Raspberry Pi 4 board to run our custom
software. The Raspberry board is connected to the robot
controller via a USB cable. The other USB ports on the
Raspberry were used for a 2.4 GHz Wi-Fi dongle, a 5G
mobile phone, and to connect a USB3 hub that hosts four
USB-Gigabit Ethernet interfaces, which are connected to the
60 GHz Wi-Fi NICs. These NICs are MikroTik wAP 60G
devices with an azimuth angular coverage of 60 degrees,
and beamforming is achieved by the integrated 36-antenna
array. Finally, an additional battery is included to power all
the devices, while a fail-safe 2.4 GHz IEEE 802.11n link
is maintained between the on-board computer and a control
computer for debugging and general control purposes. This
link is used by the testbed supervisor to start the robot client

applications and to access the mmWave stations carried by
the robot.

IV. APPLICATION DESIGN
The design of modern mobile applications is usually based
on a client-side part of the application that runs on the mobile
device, and a server-side part made up of microservices,
whose instances are executed by Linux containers in a cloud
data center. We noted that there is currently no established
technology for live migration of containers between different
data centers.2 Therefore, we assumed a cloud continuum
scenario in which microservice instances do not follow the
mobile device, but the client must leverage microservice
instances that are found (or instantiated) in the data center
associated with the radio cell serving the mobile device.
We propose an application design strategy to satisfy this

assumption, where only stateless tasks can be offloaded,
while stateful tasks must remain in the mobile device. In
this way, if the device needs to change data center due to
its mobility, the application basic performance is not altered,
because instances of the microservices running in the new
data center can operate immediately without requesting the
state of the application.

A. ROBOT APPLICATION
We applied this design strategy to an application that controls
the navigation of the ground robot in the surrounding envi-
ronment, while managing its network connectivity. Actually,
this is a microservice application, whose microservices
can implement one or more tasks. The goal of the robot

2For instance, the most widely used container runtime, runC, uses a
technology named CRIU [46] that requires a shared file system between
the source and destination hosts, which is feasible in the case of hosts
belonging to the same data center. However, this method is unsafe in
the case of hosts belonging to different data centers, because for each
I/O disk operation there is the risk of transferring data from one data
center to another, across a geographical network, consequently introducing
delays that dramatically reduce the benefits of local computation given
by edge computing. Other commercial solutions, such as Virtuozzo PaaS,
support live migration, usually only between regions within the same data
center [47].

3108 VOLUME 5, 2024

FIGURE 3. Application microservices.

application is to visually track an object of a chosen class
(e.g., a person) and follow this object.
We used a microservice application design for both the

client-side and server-side parts of the application, as shown
in Fig. 3. Specifically, the client-side part is made of two
microservices running in the robot, which are used to
control the robot movements (Navigation microservice), as
well as its connection with the fixed network (Network
microservice). In addition, there is also an object detection
task of the Navigation microservice, which is offloaded to a
server-side Object Detection microservice, whose instances
can run in cloud or edge data centers.

B. NAVIGATION CONTROL
The Navigation microservice performs a sequence of tasks
in a continuous loop. A video capture task receives a
frame from the robot camera with 640×480 resolution
and compresses it using JPEG. Then, the JPEG image is
transferred with gRPC to a remote, stateless Object Detection
task implemented by a couple of Linux containers running in
a single Kubernetes POD. Specifically, an ingress container
(Object Detection Ingress) receives the gRPC request and, in
turn, calls a YOLO container [48] that uses OpenCV [49],
and specifically its Darknet engine [50].3 The output of the
Darknet engine is a list of bounding boxes corresponding
to the detected objects, and each box has a label related to
the type of object detected (person, car, etc.). The Object
Detection Ingress enriches this list with some service metrics,
and sends it back to the robot. The received list of labeled
bounding boxes is the input to a Video Tracking task that
implements the tracking of an object, whose class is chosen
by the user, in the current video frame. This process is
responsible for pairing the positions of the same object,
in two consecutive frames, so that only a specific object
is tracked. The tracking information is then used by a
Navigation Control task to steer the robot toward the tracked
object.
Note that the stateless nature of the offloaded Object

Detection task allows the navigation control to use different

3If CUDA GPU acceleration is available and enabled, NVIDIA
cuDNN [51] is leveraged to accelerate the detection.

FIGURE 4. Network microservice.

instances of the Object Detection microservice without
any operational problems. Instance switching occurs when
the application changes the data center that serves it, as
the new data center has another instance of the Object
Detection microservice. In addition, instance switching can
also take place when the cloud/edge orchestrator (i.e.,
Kubernetes) decides to increase the number of replicas of
the microservice.

C. NETWORK CONTROL
The Network microservice implements a connection control
function that periodically checks the link status on each
available radio interface, and then selects the best link. The
architecture used for connection control is shown in Fig. 4.
We used the OvS Linux tool to create an OpenFlow software
bridge, to which we added the four IEEE 802.11ad NICs of
the robot. The 5G phone interface is not bridged.
The robot has two IP addresses, one for the 5G NIC and

another one for the OvS bridge, both received through DHCP
mechanisms. Therefore, we are considering a scenario where
each RAT is requested to provide the robot with a different
IP address.4 In addition, each mmWave NIC has a local
private IP address, to be accessed by the connection control
function that retrieves radio metrics, such as the receive
signal strength indicator (RSSI).
In order to exchange traffic with the fixed network, the

robot uses a single interface at a time. The connection control
function configures the 5G phone as the default gateway
when the strongest mmWave signal is below a configurable
threshold (e.g., −80 dBm); otherwise, the bridge is used as
the default gateway route. In this latter case, OpenFlow rules
are used to control the traffic exchange between the robot
and the bridged mmWave NICs. Specifically, the connection
control function injects OpenFlow rules into the OvS bridge
to forward (i) outgoing address resolution protocol (ARP)
and IP packets pointing to local IP addresses of NICs to

4This condition can be enforced both in a self-operated test scenario, i.e.,
where the RATs are all independently managed, and in a hybrid scenario,
where the mmWave RATs are managed by private entities and the 5G ones
by a public operator.

VOLUME 5, 2024 3109

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

the relevant NIC ports, (ii) the remaining outgoing traffic
to a single mmWave NIC chosen according to a specific
radio policy, and (iii) incoming traffic to the robot TCP/IP
stack, without any re-routing. Note that the use of OpenFlow
Layer 2 switching control allowed us to keep all mmWave
NICs always active, and possibly connected with the same
AP, so that the connection control function can continuously
access their radio metrics, while avoiding broadcast traffic
loops, such as ARP requests. In fact, connection loops can
occur when two or more NICs are connected to the same
AP.
Concerning the radio selection policy for choosing the best

mmWave connection, we have implemented two different
logics:

• best-metric, with a policy that selects the radio that
maximizes a specific metric (e.g., RSSI or signal-to-
noise ratio), which can be changed by the user;

• round-robin, with a policy that sequentially cycles
among all available interfaces, independently of their
link status.

The second policy is mostly used for debugging purposes,
and hence we mainly focus on the first policy. Although
several metrics can be devised, we have chosen a metric
Mi,k that combines two radio parameters provided by the ith
Wi-Fi NIC at time k: the RSSI Ri,k (power in dBm rounded
to the closest integer) and link quality Qi,k (integer between
0 and 100). Specifically, we employ the product of the two
parameters, biasing the RSSI to make it nonnegative, as
expressed by

Mi,k = (
Ri,k + 120

)
Qi,k. (1)

Intuitively, we expect that Ri,k + 120 and Qi,k are positively
correlated, therefore the chosen metric in (1) has a quadratic
behavior in Ri,k or Qi,k, while taking both parameters into
account. It is worth noting that the RSSI and quality parame-
ters may change between consecutive measurements mainly
due to the user mobility in the surrounding environment: to
avoid unnecessary switching, we include into the selection
policy a hysteresis mechanism, where switching happens
only when the best current metric of a device is significantly
larger than the metric of the device in use. Therefore, at
time k, the device with the best metric is calculated as

i+k = argmaxi{Mi,k}, (2)

and the value of its metric Mi+k ,k is compared with the metric
Mi∗k−1,k

of the device that has been previously chosen: if the
difference between the two metrics exceeds a given threshold
�M (set to 400 in our tests), the current best is updated from
i∗k−1 to i∗k = i+k . When i∗k+1 �= i∗k , the switch takes place.
This is summarized by the equation

i∗k =
{
i∗k−1, Mi+k ,k −Mi∗k−1,k

≤ �M,

i+k , Mi+k ,k −Mi∗k−1,k
> �M.

(3)

When a Wi-Fi NIC is not connected to any AP, then it
is excluded from the search process in (1)–(3). If there are

no connected Wi-Fi NICs, then the 5G NIC supplies the
fallback connection to the remote service.
Although our choice for (1)–(3) is not the only possibility,

the results in Section VI show that the chosen metric,
combined with the hysteresis mechanism, works adequately
well for our goals.

V. CLOUD/EDGE ARCHITECTURE AND SERVICES
As shown in Fig. 1, the cloud infrastructure consists of edge
data centers and a cloud data center. Edge and cloud data
centers are connected by a high-speed backbone network.
The data center resources are controlled by Kubernetes, and
to simplify orchestration, we assumed a single Kubernetes
control plane running in the cloud data center.
We have assumed that each microservice (e.g., the Object

Detection microservice) has at least one instance running in
the cloud data center. However, other instances of the same
microservice can run in edge data centers according to a
specific placement and replication policy. For instance, in
Fig. 1, the Object Detection microservice has an instance in
any data center.

A. REQUEST ROUTING
Each instance of the Object Detection microservice is
actually a Kubernetes POD. To enable access to PODs,
which are replicas of the same microservice, and to perform
load balancing among them, Kubernetes offers a resource
called Service, which exposes all these PODs through a
single endpoint, that is, an URL and an IP address internal
to the cluster. The HTTP requests targeting a Service
are routed to a randomly chosen POD of the replica
set.
This random load balancing is not suitable for edge

computing, because there is a risk that a request entering
an edge data center will be randomly forwarded to a replica
POD running in another data center, thus undermining
the latency benefits of edge computing. In general, we
argue that Kubernetes Services should not be used for load
balancing purposes when the PODs matched to a Service
are distributed across multiple data centers, and back-and-
forth exchanges between data centers must be avoided due
to latency constraints.
Consequently, the problem we face is the following: how

can we ensure that service requests (from mobile devices
to an edge data center) are served by local microservice
instances, if available, rather than randomly forwarded to
another data center by Kubernetes?
To solve this “request routing” issue, we moved the load

balancing control to a kind of Kubernetes “overlay” layer,
namely the Istio service mesh [52]. With a service mesh, the
routing of requests to PODs associated with a Service is no
longer controlled by the Kubernetes random load balancer,
but by higher-level strategies implemented by the service
mesh software. Specifically, Istio injects into each POD a
sidecar transparent proxy, which intercepts any incoming or
outgoing gRPC/HTTP request for Kubernetes Services and

3110 VOLUME 5, 2024

FIGURE 5. Request routing via Istio service mesh.

routes them to specific PODs chosen by Istio load balancing
rules rather than by the random Kubernetes one.5 Thus, we
describe the configuration we deployed for the Istio service
mesh and the network in the following.6 Without lack of
generality, we focus on a robot application that uses a single
back-end microservice. However, the proposed solution can
be reused for any type of application that possibly employs
multiple microservices.
As shown in Fig. 5, we labeled each node in a data

center with a topology identifier, e.g., region = edge1
for nodes in edge data center #1. Each data center has a
gateway node that runs an Istio Ingress POD, exposed as
a Kubernetes Service (SVC) with NodePort. Note that the
associated Kubernetes External Traffic Policy rule requires
external connections served by the local Istio Ingress POD,
instead of being randomly bounced to an Istio Ingress POD
running in other data centers. As a result, an Istio Ingress
POD running in a gateway node can be contacted using an
IP address of the gateway node on a specific default port
(e.g., 30844).
The robot application calls an URL resolved, by the DNS,

to the public IP address of the gateway node of the cloud
data center where Istio Ingress runs. When the robot uses a
60 GHz link, the access point steers traffic to the gateway
node of its edge data center, where Istio Ingress runs. The
edge data center gateway has two IP addresses, specifically
an IP address that uniquely identifies it in the mmWave
RAT network, and another one that reuses the IP address

5Testbed results on resource consumption of a sidecar proxy are reported
in [53].

6The configuration involves three types of Istio resources, named Istio
Gateway, Istio Virtual Service and Istio Destination Rule, whose YAML files
can be found in our GitHub repository (https://github.com/gbaruffa/liquid-
edge-microservices-inference-public). We do not report the details of
these files and only provide a conceptual explanation of the resulting
configuration.

of the cloud data center gateway resolved by the DNS.7 In
this way, when the robot changes the service data center,
the gRPC persistent connection to the Object Detection
microservice is closed, because the POD changed, but it is
immediately reopened with the new POD without needing
DNS resolution, since the targeted IP address is still valid.8

An Istio Ingress implements a reverse proxy that behaves
as an API gateway. We configured it to forward Object
Detection gRPC requests to Object Detection PODs accord-
ing to a sequence of load balancing policies, specifically,
Locality and Least Request, which are offered by the Istio
service mesh.
The Locality load balancing policy provides that when an

Istio Ingress receives a request from the robot, this request
is routed to an Object Detection POD, which runs in nodes
with the same labels of Istio Ingress, i.e., to PODs of the
same data center, thus achieving the local processing goals
of edge computing. If a local POD implementing the Object
Detection microservice is either unavailable in the data center
or in an error state, Istio uses a fallback approach that
forwards the request to the cloud data center. Therefore, this
solution is also resilient to possible failures and to temporary
unavailabilities of the local POD, for instance, when it is
starting up.
In the presence of POD replication, among the pool of

PODs selected by the Locality load balancing policy, Istio
uses (by default) the Least Request load balancing policy.
With this policy, every request is directed to the POD of
the pool with the lowest number of outstanding requests,

7In a production environment, this “shared” IP address (or cloud data
center subnet) could be announced locally via BGP from the edge data
center to the mobile network operator access point. Alternatively, traffic
steering can be manually configured at the access point, as in our case.

8Note that if the robot used the RESTful HTTP API to contact the
remote microservice, connection restoration would probably not take place
unless a handover occurs during the processing of an object-detection call.
Therefore, the change in the service center would occur seamlessly.

VOLUME 5, 2024 3111

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

with ties resolved at random. This ensures that the most
burdened PODs will not receive additional requests. This
policy remarkably reduces the request latency, especially in
heavy-traffic regimes [54].

B. PLACEMENT AND REPLICATION POLICY
A placement policy is a logic that decides “where” to
run microservice instances to achieve a specific goal, such
as reducing latency or network traffic. For microservice
applications, a key aspect is to take into account the
relationships between the microservices. In this paper, we
do not delve into the design of placement strategies and
we have implemented a placement and replication controller
with a simple policy that, nevertheless, fits well with our
robot application. Specifically, when a request for the Object
Detection microservice arrives at an edge data center, if no
local instance of the microservice exists, a new instance is
started with a dedicated Horizontal POD Autoscaler (HPA),
to control the number of replicas so that the CPU load of any
instance is less than 70%. To activate the new instance, the
placement controller runs a new Kubernetes deployment with
Node Affinity configured to match the topology identifier of
the edge data center nodes. In addition, the new Deployment
has a unique label used by the new HPA to select it
exclusively. To detect requests arriving at a specific data
center, the placement control continuously checks the access
logs provided by Istio Ingress. In addition, if the access logs
report no requests, after an inactivity timeout (3 minutes)
the new edge deployment and related HPA are removed. The
latter policy does not apply to the cloud data center, where
at least one instance always exists.

C. JOURNEY OF REQUESTS
It is worth summarizing the journey of robot Object
Detection requests, as detailed in the following:

• At the start of the Navigation microservice, the robot
establishes a gRPC session with the DNS name of the
cloud gateway node. This URL is resolved with an IP
address, which is routed to the cloud data center by
public Internet in case of 5G communications, or to
edge data centers in case of mmWave communications.

• Once the gRPC session is established at the gateway
node of a data center, it is handled by the local Istio
Ingress POD, and related requests are routed (proxied)
to an Object Detection POD operating in the same
data center, if it exists; otherwise, the requests are
temporarily rerouted to the cloud data center while a
new local Object Detection POD is started.

• After the starting period (also known as cold-start),
the local Object Detection POD will be used by robot
requests, thus reducing latency and network traffic.

• When the robot moves in a cell served by another
data center, the gRPC session is interrupted, but it is
immediately reestablished with the Istio Ingress running
in the new data center, without any new DNS resolution.

FIGURE 6. RTT between the robot and the data center varying the access link.

D. TESTBED POTENTIAL
The testbed architecture can be reused by any other microser-
vice application, enabling comprehensive exploration of
edge computing impact on diverse application-level choices,
including the topology of dependency graphs, the use of
internal cache, and so forth [23]. Moreover, it facilitates in-
depth investigations into various placement and replication
strategies, a pivotal aspect often addressed in academic
literature through simulations and theoretical analyses [55],
[56], [57], [58]. Additionally, it opens possibilities for
refining solutions in 5G multi-RAT environments, allowing
seamless channel selection optimization [59], [60]. Finally,
it supports the comparison of different mmWave RAT
technologies, offering valuable insights for their application
in edge computing [61].

VI. PERFORMANCE EVALUATION
We carried out two performance evaluation campaigns using
the testbed platform and software framework described
in the previous sections. First, we analyzed network-level
performance and, then, application-level performance. Recall
that the testbed consists of two 60 GHz microcell APs (AP1
and AP2) and a third 5G macrocell. The robot has 5 NICs.
NICs 1, 2, 3, and 4 are Wi-Fi at 60 GHz, each connecting
the robot to either AP1 or AP2, which route the robot traffic
to a local edge data center (Fig. 1). NIC 5 is 5G, connecting
the robot to a 5G public network, which routes the robot
traffic to a remote cloud data center.

A. NETWORK PERFORMANCE
We measured the round-trip time (RTT) and throughput
between the robot and the gateway of the serving data center,
by varying the radio access technology: we used an IP Ping
sequence to measure the RTT, and the Iperf3 tool [62] to
measure the throughput.
Fig. 6 shows the measured RTT between the robot and

the serving data center, when the robot uses AP1 at 60 GHz

3112 VOLUME 5, 2024

FIGURE 7. Throughput between the robot and the data center varying the access
link.

and when the robot uses the 5G network. We note that the
RTT is very limited for the 60 GHz AP as the robot uses the
edge data center, amounting to a delay (average and standard
deviation) of 1.6±2.0 ms. When the robot uses the 5G
network, the delay increases to 75.5±18.0 ms, as the robot
uses the remote cloud data center and public 5G/Internet.
Similarly, Fig. 7 shows the throughput between the robot and

the serving data center as the access links vary. We note that,
for 60 GHz connections, the throughput is 895±48 Mbit/s,
whereas the throughput drops to 38±8 Mbit/s for the 5G
connection, due to the low 5G reference signal received power
strength in our laboratory, i.e., about −102 dBm.
The results confirm the successful emulation of a mobile

network scenario, where robots can move from cells provid-
ing high-speed/low-latency edge computing services to cells
with low-speed/high-latency cloud computing services.

B. APPLICATION PERFORMANCE
First, we analyzed the performance of the application under
static conditions, that is, when the ground robot does not
move in the environment (Section VI-C). Next, we evaluated
the performance under dynamic conditions, when the ground
robot actively follows a moving target (Section VI-D). We
considered the detection latency as a performance indicator,
defined as the difference between the time instant when
the Navigation microservice sends a request to the Object
Detection microservice, and the time it receives the response
back. The detection latency is mainly the sum of four delays:

• transmission delay: the amount of time the Navigation
microservice requires for the transmission of a frame
to the Object Detection microservice;

• propagation delay: the network propagation delay
between the Navigation and Object Detection
microservices;

• processing delay: the processing delay due to the
execution of the YOLO algorithm by the Object
Detection microservice on the received frame;

FIGURE 8. Outputs of the Object Detection microservice: bounding boxes enclose
detected persons.

• cold-start delay: temporary delay due to redirecting the
robot requests to the cloud data center, while waiting for
the activation of a local instance of the Object Detection
microservice.

C. RESULTS IN STATIC CONDITIONS
For static measurements, we considered a samplevideo
sequence.9 in spite of a static image that could be acquired
by the robot, and object detection (without tracking) is
performed to obtain the bounding boxes of the objects
(Fig. 8).

We considered two scenarios. First, a local scenario, where
the Navigation microservice runs in the same machine that
also hosts the Object Detection microservice. In this case, the
best performance is achieved, i.e., minimum latency, since
the involved microservices are co-located. Second, a robot
scenario, where the Navigation microservice is executed by
the robot and the robot uses different access configurations,
namely: i) the AP1 at 60 GHz served by an edge data center,
to reproduce a case of edge computing with mmWave link
access, ii) the AP1 at 60 GHz served by the cloud data center,
to reproduce a case of cloud computing with mmWave link
access and, finally, iii) the 5G network served by the cloud
data center, to reproduce a case of cloud computing with
5G access. Fig. 9 shows the obtained results. The latency
of the local scenario is 22.5±1.9 ms and can be considered
an irreducible processing latency. For the non-local cases,
where the Navigation microservice runs in the robot, the best
performance is achieved with 60 GHz and edge computing,
which achieves a latency of 51.0±3.9 ms. Indeed, the
high bandwidth provided by the mmWave link enables fast
transmission of video frames between the robot and the edge
data center, which is also close to the serving AP, thus
limiting the propagation delay of the network. In the case
of 60 GHz and cloud computing, the latency increases to
217.9±78.7 ms, mainly because of the higher RTT between
the access point and the data center, where object detection

9The samplevideo sequence was composed by concatenating nine short
sequences from the “4K” section of [63], scaling the frame size to 910×480
pixels and changing the frame rate to 30 fps, for a total of 2528 frames:
the clip shows groups of people and vehicles.

VOLUME 5, 2024 3113

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

FIGURE 9. Detection latency varying the access link.

takes place. This result confirms that, in our scenario, it
is necessary to use edge computing to have an actual
application-level benefit from mmWave access; otherwise,
core network latency and throughput can undermine the
benefit of high access speed. Finally, in the case of 5G
access, the latency increases further to 284.3±70.8 ms, due to
increased network latency and reduced network throughput
(see Figs. 6–7).

In the next tests, we simulate the occurrence of a handover
between the robot and the network every 200 s. To simulate a
handover, we either change the OpenFlow rule configuration
of the OvS bridge of the robot to switch between 60 GHz
APs, or the default gateway to switch from 60 GHz APs to
the 5G network. At the beginning of the test, no instance
of the Object Detection microservice was running in the
edge data center. Consequently, when an edge data center
starts receiving requests from the robot, our placement
strategy reactively executes a new local instance of the
Object Detection microservice. The corresponding container
image may, or may not, be available on the Kubernetes node
scheduled to run the instance, and we measured performance
in both cases.
Figs. 10–11 show the detection latency and the GPU

utilization of tests when the container image is not available
in the edge Kubernetes node (the GPU is used to accelerate
YOLO object detection processing). The average delay due
to the download of the container images from the public
software repository and to the startup process is 90.7±0.7 s,
resulting from the average of multiple runs. The robot starts
its handover journey from AP1 at 60 GHz using NIC1. The
AP1 is served by the edge data center #1, as shown in
Fig. 1. The placement policy detects the presence of robot
requests for the Object Detection microservice on the edge
data center #1, and runs an instance of the microservice
there, fetching the image from the public software registry.
During this cold-start period, requests are rerouted by Istio
Locality load balancing to the Object Detection instance

FIGURE 10. Detection latency during forced handovers, with cold-start on edge
data centers and without local container image.

FIGURE 11. GPU usage of different data centers during forced handovers, with
cold-start on edge data centers and without local container image.

that runs in the cloud data center. Indeed, the detection
latency is rather high (183.4±73.4 ms) due to rerouting,
and the GPU on the cloud data center performs the object
detection job.10 After 43 s, the Object Detection container
image is completely downloaded from the software registry,
the container is booted, and the cold-start phase ends. From
this point on, the robot requests are directed to that local
instance of the Object Detection microservice, as confirmed
by the reduction of the detection latency (which drops to
50.4±12.4 ms), and the switching of GPU usage from the
cloud to edge #1. Note that there is no service interruption
during service instance switching from the cloud to the
edge, due to the stateless nature of the Object Detection
microservice. At 200 s, the robot connection is switched to

10GPUs have different hardware, so their use for the same job could be
different.

3114 VOLUME 5, 2024

FIGURE 12. Detection latency during forced handovers, with cold-start on edge
data centers and with local container image.

FIGURE 13. GPU usage of different data centers during forced handovers, with
cold-start on edge data centers and with local container image.

NIC2 without changing the AP; thus, the robot performs
an intra-data center (intra-DC) handover, and the observed
performance remains stable (latency is 51.2±4.4 ms). At
400 s, the robot switches the connection to AP2 at 60 GHz
using NIC3. The AP is served by edge data center #2, so
the robot undergoes an inter-data center (inter-DC) handover.
Again, we note a cold-start phase that, however, in this case,
lasted much longer (for 108 s, with a latency of 206±93 ms)
because of temporary Internet congestion, which slowed
down the download of container images from the registry.
After the cold-start, the latency decreases to 59.1±28.1 ms.
Finally, at 600 s, the robot connects to the 5G network,
thus performing a multi-RAT and inter-DC handover. The
latency increases to 263.0±36.8 ms, due to the increase
in transmission and propagation delay, as already shown in
Fig. 9.

FIGURE 14. Bounding box and centroid marker when tracking a person.

As shown in Figs. 12–13, a similar performance is
obtained when an Object Detection container image is
present on the edge nodes, but with a much shorter cold-
start phase, because the registry image fetching is no
longer needed. In this case, the nominal startup time of
the containers, averaged over multiple runs, is 2.9±0.2 s.
However, in practice, there are additional delays due to
the other software components of the chain. Specifically, in
Fig. 12, there is an initial delay of 6 s, no delay for the
intra-DC handover case happening at 200 s, and a delay
of 9 s for the inter-DC handover taking place at 400 s. In
summary, with respect to the cold-start case, handover delays
are reduced from tens of seconds to few seconds. Therefore,
the image preloading on edge data center can be useful to
mitigate the temporary increase of latency due to the cold-
start phase.

D. RESULTS IN DYNAMIC CONDITIONS
In this section, we present a dynamic test with the robot in
motion, while tracking a target in a video captured by its
camera. The Navigation microservice is configured to follow
a person walking through our laboratory rooms (Fig. 14).
In the test, the tracked person walks at a constant speed
along a predetermined round-trip path, completed in about
220 s. During the test, the robot computes its trajectory
and position through odometry estimation. This estimation is
used to visualize the robot position during its movement and
to highlight which radio links are active along the path, as
well as their performance. The Network Control microservice
automatically selects the radio connection according to the
policy shown in Section IV-C.

Fig. 15 shows the path of the robot as it tracks the
moving person. Different colors identify the NIC used to
contact the Object Detection microservice. NIC5 is the 5G
phone, and other NICs are for Wi-Fi at 60 GHz. Different
markers identify the Wi-Fi AP and 5G BS that are used.
This figure also shows the walls of the laboratory rooms and
the locations of the different APs.
The test begins with the robot and the person to be tracked

that are positioned near AP1. Subsequently, the person, and
then the following robot, move back and forth toward AP2.

VOLUME 5, 2024 3115

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

FIGURE 15. Trajectory computed using odometry estimation with used NIC and
AP/BS.

FIGURE 16. Detection delay during robot trajectory with used NIC and AP/BS.

Note that during movement, the robot changes APs and
NICs. At the bottom of the map, the robot uses the microcell
beamed by AP1, while in the middle, the 60 GHz signal
from AP1 drops, and consequently the robot switches to the
macrocell covered by a 5G base station through NIC5. Then,
the robot connects to AP2 at 60 GHz as it approaches the
associated microcell. On the path back to AP1, a similar
connection behavior occurs.
Fig. 16 shows the detection delay associated with different

positions of the robot over time; the different markers and
colors are used to indicate which NIC and AP/BS the robot
has been using. As expected, we observe that when the
robot is using 60 GHz and edge computing (i.e., AP1 or
AP2), the detection delay decreases significantly (latency
of 131.9±153.0 ms) with respect to using 5G and cloud
computing (latency of 337.9±194.8 ms), which also means
the system is capable of processing more frames per second

and, thus, performing better tracking jobs. The latency when
the robot is connected to AP2 is higher than when connected
to AP1, since the GPU of edge data center #2 is slower. When
5G is used, the latency grows and has a greater variability,
due to the high variable network delay and throughput that
we experienced during the test.
Overall, the results show the effectiveness of our testbed

in automatically and efficiently switching between RATs,
and properly utilizing the nearest cloud/edge resources to
offload mobile robot functions, according to a cloud/edge
computing framework [28], [29], [30], [38], [40].

VII. CONCLUSION AND LESSON LEARNED
In this paper, we propose a multi-RAT cloud continuum
testbed designed for offloading complex tasks of mobile
applications. Specifically, the testbed design has been driven
by a cloud-assisted navigation application, used by a mobile
robot, which offloads CV tasks to microservices running in
cloud/edge data centers reached by mmWave Wi-Fi and 5G
access links.
This testbed can be easily replicated in laboratory envi-

ronments to evaluate the effectiveness of novel cloud and/or
communication solutions, specifically developed for multi-
RAT cloud continuum environments. Our main findings and
recommendations emerged from the testbed development
experience are the following.

• Microservice Design with Stateless Task - Considering
the current absence of an established technology for
live migration of Linux containers among different data
centers, a microservice-based application design grants
a better exploitation of edge computing, because it
allows to split the application stateful and stateless
activities into different microservices, offloading the
stateless ones to cloud/edge resources. In this way,
if during the movement of the user device (e.g., a
robot), the service data center changes, the functionality
of the application is not altered, because instances
of the microservices running in the new data center
can operate immediately without knowing the state of
the application, as they perform only stateless tasks.
However, to ensure service continuity, it is necessary
to ensure that a mobile device finds the requested
microservices already running in the accessed edge data
center or, at least, that requests are redirected to a data
center where a running instance exists.

• Shared IP Address for Data Center API Gateway -
To avoid a long service interruption (due to possible
invalidation of DNS resolution) when the serving data
center changes, it is useful to assign the same shared IP
address to all the data center nodes, implementing an
API gateway. This IP address should be used by mobile
applications to contact cloud/edge microservices. In this
way, when the serving data center changes, a new DNS
resolution is not required, making data center handovers
much faster.

3116 VOLUME 5, 2024

• Request Routing through Service Mesh - A Kubernetes
cluster may host multiple instances of the same
microservice, i.e., replication occurs. Actually, for load
balancing purposes, Kubernetes operates on a TCP/IP
connection basis. Each incoming connection for a
microservice is routed to microservice replicas, chosen
at random. Therefore, there is a risk that a connection,
originating from a mobile device to a microservice,
is not served in its local data center but by an
instance running in another data center, undermining
the latency reduction we seek with edge computing.
Besides, a balancing choice is maintained for the whole
duration of the connection, thus making this mechanism
ineffective in the case of persistent connections, such
as in the case of gRPC. To solve this problem, we can
move request routing (or load balancing) to a higher
layer, by installing Istio service mesh services in the
cluster, with a setup that prefers local microservice
instances, and uses remote instances only for fallback
purposes. Moreover, Istio performs load balancing on a
(HTTP/gRPC) request basis, which is also effective in
case of persistent connections.

ACKNOWLEDGMENT
The authors thank Tommaso Tamarindi and Alberto Dionigi
for their help in setting up the software tools.

REFERENCES
[1] M. J. Shehab, I. Kassem, A. A. Kutty, M. Kucukvar, N. Onat,

and T. Khattab, “5G networks towards smart and sustainable cities:
A review of recent developments, applications and future perspec-
tives,” IEEE Access, vol. 10, pp. 2987–3006, 2022.

[2] P. Wang, B. Di, and L. Song, “Cellular communications over
unlicensed mmWave bands with hybrid beamforming,” IEEE Trans.
Wireless Commun., vol. 21, no. 8, pp. 6064–6078, Aug. 2022.

[3] X. Xu, Q. Chen, H. Jiang, and J. Huang, “Millimeter-wave NR-
U and WiGig coexistence: Joint user grouping, beam coordination,
and power control,” IEEE Trans. Wireless Commun., vol. 21, no. 4,
pp. 2352–2367, Apr. 2022.

[4] Y. Kakkad, D. K. Patel, S. Kavaiya, S. Sun, and M. López-Benítez,
“Optimal 3GPP fairness parameters in 5G NR unlicensed (NR-U)
and WiFi coexistence,” IEEE Trans. Veh. Technol., vol. 72, no. 4,
pp. 5373–5377, Apr. 2023.

[5] Y. Gao, Z. Zhang, H. Hu, X. Wang, Y. Jin, and X. Chu, “Fair and
efficiency coexistence between NR-U and WiGig networks enabled
by a matching-based framework with forbidden pairs,” IEEE Trans.
Veh. Technol., vol. 72, no. 9, pp. 11814–11827, Sep. 2023.

[6] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Trans. Intell. Transp.
Syst., vol. 24, no. 2, pp. 2169–2182, Feb. 2023.

[7] Z. Ning et al., “Dynamic computation offloading and server deploy-
ment for UAV-enabled multi-access edge computing,” IEEE Trans.
Mobile Comput., vol. 22, no. 5, pp. 2628–2644, May 2023.

[8] X. Dai et al., “Task co-offloading for D2D-assisted mobile edge com-
puting in industrial Internet of Things,” IEEE Trans. Ind. Informat.,
vol. 19, no. 1, pp. 480–490, Jan. 2023.

[9] H. Jiang, X. Dai, Z. Xiao, and A. Iyengar, “Joint task offloading
and resource allocation for energy-constrained mobile edge comput-
ing,” IEEE Trans. Mobile Comput., vol. 22, no. 7, pp. 4000–4015,
Jul. 2023.

[10] P. A. Apostolopoulos, G. Fragkos, E. E. Tsiropoulou, and
S. Papavassiliou, “Data offloading in UAV-assisted multi-access edge
computing systems under resource uncertainty,” IEEE Trans. Mobile
Comput., vol. 22, no. 1, pp. 175–190, Jan. 2023.

[11] W. Fan et al., “Joint task offloading and service caching
for multi-access edge computing in WiFi-cellular heterogeneous
networks,” IEEE Trans. Wireless Commun., vol. 21, no. 11,
pp. 9653–9667, Nov. 2022.

[12] G. Damigos, T. Lindgren, and G. Nikolakopoulos, “Toward 5G edge
computing for enabling autonomous aerial vehicles,” IEEE Access,
vol. 11, pp. 3926–3941, 2023.

[13] (ETSI Stand. Co., Sophia Antipolis, France). Multi-Access Edge
Computing (MEC). Accessed: Apr. 10, 2024. [Online]. Available:
https://www.etsi.org/technologies/multi-access-edge-computing

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 779–788.

[15] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A
comprehensive review of YOLO architectures in computer vision:
From YOLOv1 to YOLOv8 and YOLO-NAS,” Mach. Lear. Knowl.
Extr., vol. 5, no. 4, pp. 1680–1716, 2023.

[16] D. H. D. Reis, D. Welfer, M. A. D. S. L. Cuadros, and
D. F. T. Gamarra, “Mobile robot navigation using an object recognition
software with RGBD images and the YOLO algorithm,” Appl. Artif.
Intell., vol. 33, no. 14, pp. 1290–1305, 2019.

[17] T. Shimoda, S. Koga, and K. Sato, “Autonomous motion control
of a mobile robot using marker recognition via deep learning in
GPS-denied environments,” J. Robot. Mechatron., vol. 35, no. 1,
pp. 136–144, 2023.

[18] S. Singh, A. Suri, J. Singh, M. Singh, Nikita, and D. K. Yadav,
“Object identification and tracking using YOLO model: A CNN-based
approach,” in Proc. Int. Conf. Mach. Learn. Inf. Process. (ICMLIP),
2021, pp. 153–160.

[19] J. Zhou, L. Feng, R. Chellali, and H. Zhu, “Detecting and tracking
objects in HRI: YOLO networks for the NAO ‘I see you’ func-
tion,” in Proc. 27th IEEE Int. Symp. Robot Human Interact. Commun.
(RO-MAN), 2018, pp. 479–482.

[20] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert,
“Microservices,” IEEE Softw., vol. 35, no. 3, pp. 96–100,
May/Jun. 2018.

[21] L. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, and
R. Roszczyk, “Comparative review of selected Internet communication
protocols,” Found. Comput. Decis. Sci., vol. 48, no. 1, pp. 39–56,
Mar. 2023.

[22] A. Singleton, “The economics of microservices,” IEEE Cloud
Comput., vol. 3, no. 5, pp. 16–20, Sep./Oct. 2016.

[23] A. Detti, “Microservices from cloud to edge: An analytical discus-
sion on risks, opportunities and enablers,” IEEE Access, vol. 11,
pp. 49924–49942, 2023.

[24] A. Sill, “The design and architecture of microservices,” IEEE Cloud
Comput., vol. 3, no. 5, pp. 76–80, Sep./Oct. 2016.

[25] F. Lumpp, F. Fummi, H. D. Patel, and N. Bombieri, “Enabling
Kubernetes orchestration of mixed-criticality software for autonomous
mobile robots,” IEEE Trans. Robot., vol. 40, pp. 540–553, 2024.

[26] Y. Gong, H. Yao, J. Wang, D. Wu, N. Zhang, and F. R. Yu,
“Decentralized edge intelligence-driven network resource orchestration
mechanism,” IEEE Netw., vol. 37, no. 2, pp. 270–276, Mar./Apr. 2023.

[27] S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hästbacka, and
D. Taibi, “Cloud continuum: The definition,” IEEE Access, vol. 10,
pp. 131876–131886, 2022.

[28] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A
mobile deep learning framework for edge video analytics,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), 2018, pp. 1421–1429.

[29] J. Kim, S. Ullah, and D.-H. Kim, “GPU-based embedded edge
server configuration and offloading for a neural network service,” J.
Supercomput., vol. 77, pp. 8593–8621, Aug. 2021.

[30] F. Raviglione, C. Casetti, and F. Restuccia, “Edge-V: Enabling
vehicular edge intelligence in unlicensed spectrum bands,” in Proc.
IEEE 97th Veh. Technol. Conf. (VTC), 2023, pp. 1–5.

[31] W. Fan, J. Han, L. Yao, F. Wu, and Y. Liu, “Latency-energy
optimization for joint WiFi and cellular offloading in mobile
edge computing networks,” Comput. Netw., vol. 181, Nov. 2020,
Art. no. 107570.

[32] F. Zhou, L. Feng, M. Kadoch, P. Yu, W. Li, and Z. Wang, “Multiagent
RL aided task offloading and resource management in Wi-Fi 6 and
5G coexisting industrial wireless environment,” IEEE Trans. Ind.
Informat., vol. 18, no. 5, pp. 2923–2933, May 2022.

VOLUME 5, 2024 3117

BARUFFA et al.: AI-DRIVEN GROUND ROBOTS: MOBILE EDGE COMPUTING AND mmWave COMMUNICATIONS

[33] A. Ali and K. Ali, “Multiradio parallel offloading in multiaccess edge
computing: Optimizing load shares, scheduling, and capacity,” IEEE
Internet Things J., vol. 11, no. 3, pp. 4047–4062, Feb. 2024.

[34] J. Liu, F. Zhou, L. Yin, and Y. Wang, “A novel cloud platform for
service robots,” IEEE Access, vol. 7, pp. 182951–182961, 2019.

[35] J. Zhang, F. Keramat, X. Yu, D. M. Hernández, J. P. Queralta,
and T. Westerlund, “Distributed robotic systems in the edge-cloud
continuum with ROS 2: A review on novel architectures and
technology readiness,” in Proc. 7th Int. Conf. Fog Mobile Edge
Comput. (FMEC), 2022, pp. 1–8.

[36] Z. Yin, J. Liu, B. Chen, and C. Chen, “A delivery robot cloud
platform based on microservice,” J. Robot., vol. 2021, Feb. 2021,
Art. no. 6656912.

[37] F. Lumpp, M. Panato, F. Fummi, and N. Bombieri, “A container-
based design methodology for robotic applications on Kubernetes
edge-cloud architectures,” in Proc. Forum Specif. Des. Lang. (FDL),
2021, pp. 1–8.

[38] F. Lumpp, M. Panato, N. Bombieri, and F. Fummi, “A design flow
based on Docker and Kubernetes for ROS-based robotic software
applications,” ACM Trans. Embed. Comput. Syst., vol. 2023, pp. 1–25,
Apr. 2023.

[39] A. Motz et al., “Mobile robots enabled by intelligent edge–reference
model and testbed setup,” in Proc. 54th Int. Symp. Robot. (ISR Eur.),
2022, pp. 1–8.

[40] M. V. Ngo, T. Luo, H. T. Hoang, and T. Q. Ouek, “Coordinated
container migration and base station handover in mobile edge
computing,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM),
2020, pp. 1–6.

[41] M. Groshev, G. Baldoni, L. Cominardi, A. de la Oliva, and R. Gazda,
“Edge robotics: Are we ready? An experimental evaluation of current
vision and future directions,” Digit. Commun. Netw., vol. 9, no. 1,
pp. 166–174, Feb. 2023.

[42] A. S. Seisa, S. G. Satpute, B. Lindqvist, and G. Nikolakopoulos, “An
edge-based architecture for offloading model predictive control for
UAVs,” Robotics, vol. 11, no. 4, p. 80, Aug. 2022.

[43] “Fission—A framework for serverless functions on Kubernetes.” fis-
sion, Accessed: Apr. 11, 2024. [Online]. Available: https://fission.io

[44] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 3: Enhancements for Very High
Throughput in the 60 GHz Band, IEEE Standard 802.11ad-2012,
Dec. 2012.

[45] S. Evripidou, K. Georgiou, L. Doitsidis, A. A. Amanatiadis,
Z. Zinonos, and S. A. Chatzichristofis, “Educational robotics:
Platforms, competitions and expected learning outcomes,” IEEE
Access, vol. 8, pp. 219534–219562, 2020.

[46] “CRIU—Live migration.” criu, Accessed: Apr. 11, 2024. [Online].
Available: https://criu.org/Live_migration

[47] (Virtuozzo Softw. Co., Schaffhausen, Switzerland). Virtuozzo—
Environment Migration Between Regions. Accessed: Apr. 11, 2024.
[Online]. Available: https://www.virtuozzo.com/application-platform-
docs/environment-regions-migration/

[48] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” 2018, arXiv:1804.02767.

[49] J. Howse and J. Minichino, Learning OpenCV 4 Computer Vision with
Python 3: Get to Grips With Tools, Techniques, and Algorithms for
Computer Vision and Machine Learning. Birmingham, U.K.: Packt
Publ. Ltd, 2020.

[50] J. Redmon. “Darknet: Open source neural networks in C.” Accessed:
Jun. 1, 2023. [Online]. Available: http://pjreddie.com/darknet/

[51] S. Chetlur et al., “cuDNN: Efficient primitives for deep learn-
ing,” 2014, arXiv:1410.0759.

[52] O. Sheikh, S. Dikaleh, D. Mistry, D. Pape, and C. Felix, “Modernize
digital applications with microservices management using the Istio
service mesh,” in Proc. 28th Annu. Int. Conf. Comput. Sci. Softw. Eng.
(CASCON), 2018, pp. 359–360.

[53] “Istio—Performance and scalability.” istio,
Accessed: Apr. 11, 2024. [Online]. Available:
https://istio.io/latest/docs/ops/deployment/performance-and-scalability

[54] X. Zhou, F. Wu, J. Tan, Y. Sun, and N. Shroff, “Designing
low-complexity heavy-traffic delay-optimal load balancing schemes:
Theory to algorithms,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1,
no. 2, pp. 1–30, 2017.

[55] C. T. Joseph and K. Chandrasekaran, “IntMA: Dynamic interaction-
aware resource allocation for containerized microservices in cloud
environments,” J. Syst. Archit., vol. 111, Dec. 2020, Art. no. 101785.

[56] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-
component applications in edge computing environments,” IEEE
Access, vol. 5, pp. 2514–2533, 2017.

[57] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with Kubernetes,” Comput.
Commun., vol. 159, pp. 161–174, Jun. 2020.

[58] W. Lv et al., “Microservice deployment in edge computing based on
Deep Q learning,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11,
pp. 2968–2978, Nov. 2022.

[59] R. Maldonado, C. Rosa, and K. I. Pedersen, “Multi-link techniques
for new radio-unlicensed URLLC in hostile environments,” in Proc.
IEEE 93rd Veh. Technol. Conf. (VTC), 2021, pp. 1–6.

[60] A. Roy, P. Chaporkar, A. Karandikar, and P. Jha, “Online radio access
technology selection algorithms in a 5G multi-RAT network,” IEEE
Trans. Mobile Comput., vol. 22, no. 2, pp. 1110–1128, Feb. 2023.

[61] Y. J. Guo, M. Ansari, R. W. Ziolkowski, and N. J. Fonseca, “Quasi-
optical multi-beam antenna technologies for B5G and 6G mmWave
and THz networks: A review,” IEEE Open J. Antennas Propag., vol. 2,
pp. 807–830, 2021.

[62] J. Dugan et al., (ESnet/Lawrence Berkeley Nat. Lab., Berkeley, CA,
USA).iPerf—The Ultimate Speed Test Tool for TCP, UDP and SCTP.
Accessed: Apr. 11, 2024. [Online]. Available: https://iperf.fr/

[63] (Xiph.Org Found. Softw. Co., Somerville, MA, USA). Xiph.Org
Video Test Media. Accessed: Apr. 11, 2024. [Online]. Available:
https://media.xiph.org/video/derf/

GIUSEPPE BARUFFA was born in Perugia, Italy, in
1970. He received the Laurea degree in electronic
engineering and the Ph.D. degree in telecommu-
nications from the University of Perugia, Perugia,
in 1996 and 2001, respectively. In 2005, he
visited the Swiss Federal Polytechnic of Lausanne,
Lausanne, Switzerland. Since 2005, he has been
an Assistant Professor with the Department of
Engineering, University of Perugia. His main
research interests include digital television broad-
casting, joint source/channel video coding, and
LPWAN sensor networks.

ANDREA DETTI is currently a Professor of
Wireless Networks and Cloud Computing with the
Department of Electronic Engineering, University
of Rome “Tor Vergata.” He is the coauthor of many
papers in journals and conference proceedings
and has participated in several EU-funded projects
with coordination and research roles. His current
research interests include 5G networks, cloud/edge
computing, and AI applied to these sectors.
He is currently an Associate Editor of IEEE
TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT.

LUCA RUGINI (Member, IEEE) was born in
Perugia, Italy, in 1975. He received the Laurea
degree (cum laude) in electronic engineering and
the Ph.D. degree in telecommunications from the
University of Perugia, Perugia, Italy, in 2000 and
2003, respectively. In 2007, he visited the Delft
University of Technology, Delft, The Netherlands.
He is currently an Assistant Professor with the
Department of Engineering, University of Perugia.
His research interests lie in the area of signal
processing for communications. He has been

serving as an Area Editor for Digital Signal Processing since 2023. He
served as an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS

from 2014 to 2018, for Digital Signal Processing from 2012 to 2022, and
for the EURASIP Journal on Advances in Signal Processing from 2015 to
2022.

3118 VOLUME 5, 2024

FRANCESCO CROCETTI received the Ph.D.
degree in information engineering from the
University of Perugia in 2022. He was an
Exchange Visitor with the Agile Robotics and
Perception Lab, New York University, USA. He
is currently a Postdoctoral Researcher with the
Intelligent Systems, Automation, and Robotics
Laboratory and a Lecturer of Industrial Robotics
with the Department of Engineering, University
of Perugia. His research interests are in field of
automation, fault diagnosis, robotics, and machine
learning.

PAOLO BANELLI (Member, IEEE) received the
Laurea degree (cum laude) in electronics engineer-
ing and the Ph.D. degree in telecommunications
from the University of Perugia, Perugia, Italy, in
1993 and 1998, respectively. Since 2019, he has
been a Full Professor with the Department of
Engineering, University of Perugia, where he has
been an Associate Professor since 2005, and an
Assistant Professor since 1998. He was a Visiting
Researcher with the University of Minnesota,
Minneapolis, MN, USA, in 2001, and a Visiting

Professor with Stony Brook University, Stony Brook, NY, USA, from 2019
to 2020. His research interests include signal processing and optimization for
wireless communications, graph signal processing and learning, and signal
processing for biomedical applications. He served as an Associate Editor for
the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2013 to 2016 and
EURASIP Journal on Advances in Signal Processing from 2013 to 2019.
He has been serving as an Associate Editor for the IEEE OPEN JOURNAL

OF SIGNAL PROCESSING since 2020. In 2009, he was the General Co-Chair
of the IEEE International Symposium on Signal Processing Advances for
Wireless Communications. He was a member of the IEEE Signal Processing
for Communications and Networking Technical Committee from 2011 to
2013.

GABRIELE COSTANTE (Member, IEEE) received
the Ph.D. degree in robotics from the Department
of Engineering, University of Perugia in 2016,
where he is currently an Associate Professor with
the Intelligent Systems, Automation and Robotics
Laboratory and a Lecturer of the courses computer
vision and robot perception, and machine learning
and data analysis. His main research interests
include artificial intelligence, robotics, computer
vision, and machine learning.

PAOLO VALIGI (Member, IEEE) received the Ph.D.
degree from the University of Rome “Tor Vergata”
in 1991. Since 2004, he has been a Full Professor
with the Department of Engineering, University of
Perugia. He is currently the Head of the Intelligent
Systems, Automation and Robotics Laboratory
Research Group. His research interests include
robotics, nonlinear control, and systems biology.

Open Access funding provided by ’Università degli Studi di Perugia’ within the CRUI CARE Agreement

VOLUME 5, 2024 3119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

