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Introduction

The aim of this thesis is to study gauged supergravities as effective descriptions for
addressing the problem of moduli stabilisation in compactifications of string theory. The
various formulations of string theory all point towards a unique theory (M-theory) which
is generally thought to be a consistent proposal for a description of quantum gravity. Such
a consistent theory of quantum gravity is something that theoretical physicists have been
searching for for a long time. The reason behind all these difficulties is to be found in
the intrinsic complications stemming from the attempt of combining together Quantum
Field Theory (QFT) and General Relativity (GR) into a unique theory. QFT and GR are
the bearing pillars of high-energy physics and we will try now to give a brief historical
overview of them both.

QFT originates from the idea of merging together the physics of the very small
(Quantum Mechanics) with Einstein’s theory of Special Relativity describing objects trav-
elling in proximity of the speed of light. In such a framework, elementary particles (like
electrons, photons, etc.) are interpreted as quanta of a propagating field which can be
created and destroyed by means of interactions. The biggest triumph of QFT is often
considered to be the prediction of very accurate experimental measurements such as the
so-called (g — 2)e, i.e. the gyromagnetic factor of the electron in the context of Quantum
Electrodyanmics.

Following this line in QFT, non-Abelian gauge theories have been used to describe the
three fundamental interactions of nature (excluding gravity). These are the electromag-
netic force, the weak nuclear force and the strong nuclear force. The idea of gauge theories
is that of using symmetries as an organising principle in physics. In particular, a gauge
symmetry is a local symmetry of a system and through the process of promoting a global
symmetry to a local one, the description of interactions emerges in a natural way.

The best experimentally tested theory that describes the three fundamental interac-
tions and includes all the elementary particles that we have observed so far, is called the
Standard Model (SM) and it consists of a QFT with gauge group SU(3) x SU(2) x U(1),

the first factor describing strong interactions and the other two the electroweak ones. Be-
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sides this internal symmetry, the SM also exhibits the Poincaré group (translations and
Lorentz transformations) as spacetime symmetry required by Special Relativity. This very
elegant, construction of the SM crucially relies on the so-called Higgs mechanism in order
to give mass to all the elementary particles in a gauge-invariant way, that is, respecting

the gauge symmetry of the theory.

However, this mechanism should be driven by a scalar particle (the Higgs boson) that
had not been detected by any particle accelerator before LHC (Large Hadron Collider),
the new machine that is collecting data at present at CERN. Still, up to the electroweak
scale (Aew ~ 250 GeV), the SM seemed to be perfectly working according to all previous
experiments. Detecting the Higgs boson was the first goal of the LHC and the analysis of
2012 has already shown the presence of a signal compatible with the Higgs at mp ~ 126
GeV. During its second period of activity, LHC will register collisions involving centre-of-

mass energies up to /s = 14 TeV.

So far, the SM offers a valuable framework for describing three out of four fundamental
interactions in nature, but still misses out gravity. This is the object of study of the other
building block of theoretical high-energy physics which is GR. This theory was proposed
by Einstein in 1914 in order to classically describe gravity as a geometric effect. The main
idea is that any source of energy (matter, etc.) curves the spacetime around it so that
all the objects move along geodesics in a curved geometry as an effect of gravitational
interaction, whether or not they have a mass. This feature makes gravity the dominant

force at cosmological scales, where all the other interactions cease to be relevant.

GR has been widely tested at the experimental level and amongst its greatest successes
we can mention e.g. the prediction for the anomalous precession of Mercury’s perihelion,
or the explanation of the phenomenon of gravitational lensing, i.e. the deflection of light
beams in the vicinity of strong gravitational fields like those ones produced by galaxy
clusters. From the formal perspective, the possibility of describing the same physics in any
arbitrary reference frame can be viewed as the invariance under local reparametrisations
and Lorentz transformations. This allows one to regard GR as a gauge theory where
the symmetries that have been made local are then coordinate translations and Lorentz

transformations.

Unfortunately, though, unlike the SM, GR happens to be a non-renormalisable theory,
1.e. it is very sensitive to physics at higher energy scales. This completely spoils the
predictive power of the theory beyond a certain scale. Thus, GR should be treated as an
effective description which still needs a UV completion at high energies. Precisely because
of its power-counting non-renormalisability, GR predicts the existence of spacetime sin-
gularities (black holes), which represent regions in spacetime where the curvature reaches
infinity. Whenever one finds infinities in classical computations, the inevitable conclusion
is that such a description should be abandoned in favour of the quantum theory. So, at the

end, one can estimate that the typical scale at which quantum gravity is needed in order
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to understand physics is Mp; ~ 10" GeV, which is normally referred to as the Planck

scale.

Searching for a theory of quantum gravity implies, as we said, the combination of QFT
and GR. On the other hand, this would provide a unification of all the four fundamental
interactions in nature. Since we are now used to describing interactions by means of
symmetries, this in some sense has as a first consequence the necessity of finding more
fundamental symmetries which combine internal and spacetime symmetries in an elegant
and simple universal formulation. Indeed, all the efforts of theoretical physicists since the

last century have been focused on this aim.

Following the goal of unification, physicists started looking for gauge groups containing
both the internal symmetries of the SM and the Poincaré group in a non-trivial way. By
'non-trivial” here we mean that the two parts should not commute in order to go beyond
the direct product structure. This means that there should exist new conserved charges

which do not commute with the Poincaré group, hence non-scalar charges.

This attempt resulted in 1967 in a very important statement known in the scientific
literature as the Coleman-Mandula Theorem [1]. This theorem states that it is impossible
to construct a field theory in D > 2 including tensorial conserved charges other than the
Poincaré generators (4-momentum and angular momentum). The proof involves several

technical assumptions which we do not discuss here.

As a way out in order to circumvent the result by Coleman and Mandula, people
thought of the possibility of having spinorial conserved charges. Spinors are objects
transforming in representations of the universal covering of rotation groups. As a con-
sequence, this possibility led to a deeply novel sort of symmetries, which mix bosons and
fermions. Such a symmetry is commonly referred to as supersymmetry and its associated
conserved charges are then called supercharges. The inclusion of supercharges in the al-
gebra describing the symmetries of a given theory generalises the concept of Lie algebra
to superalgebras.

Later on, supersymmetry was used in particle physics (see ref. [2] to read more about
this) to build supersymmetric extensions of the SM, like e.g. the MSSM (Minimally
Supersymmetric Standard Model). Such a model assumes the existence of supersymmetric
partners for all the SM particles, whose masses could have been made higher (and hence
not observable so far) by a soft supersymmetry breaking mechanism. The benefit of the
MSSM is mainly that of solving the hierarchy problem of the SM by removing quadratic
divergences in favour of logarithmic ones. This improved UV behaviour occurs thanks to
supersymmetry and it reduces a lot the fine-tuning that one needs to introduce in order
to overcome the aforementioned hierarchy.

From a phenomenological perspective, supersymmetry has several consequences that
one might presently be able to test at LHC. Firstly, the MSSM would favour, at least in

its maximally constrained version, a lighter Higgs boson (mpg < 120 GeV). The current
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peak which would be compatible with the Higgs at 126 GeV would require a version of
the MSSM with a less constrained parameter space. Secondly, for what is concerning
flavour physics, supersymmetry is expected to significantly affect certain cross-sections
at the TeV scale that we should be able to observe at LHC. This would happen via the
appearence of powers of tan 5 in the expressions of the corresponding loop-induced MSSM

cross-sections [3].

Still during the 1960’s and in a completely independent line of investigation, physicists
started to study the possibility of constructing a theory at high energy scales by making
the assumption that the fundamental objects are tiny vibrating strings. The general idea
was that the vibrational modes of the string should correspond with observable particle
states. In this way bosonic string theory was first conceived as a way of describing strong
interactions. Nevertheless, around 1973/°74, an alternative theory for strong interactions
was developed, which goes under the name of Quantum Chromodynamics (QCD) and
it became immediately clear that string theory was not the correct candidate for the

description of strong interactions.

Subsequently, supersymmetry was employed to give birth to superstring theory and ob-
tain a completely tachyon-free theory describing the dynamics of strings. Only then string
theory started to be considered as a possible candidate for describing quantum gravity,
since it was found to contain the graviton (i.e. the quantum of the gravitational field) in
the spectrum and to reproduce ten-dimensional supergravities (supersymmetric versions
of GR) in the low-energy limit. Furthermore it does not suffer from non-renormalisability
like GR and supergravity. Moreover, people began to realise that it allows for gauge groups
which are in principle big enough for containing the SM interactions as well. Following
this line, one is naturally led to the hypothesis that string theory might be the unified

theory that we are looking for.

Later, in the mid 1990’s people started discovering the most peculiar and interesting
feature of string theory, that is the presence of dualities. These are essentially relations
between different theories in different regimes which allow one to view them as different
limits of the same theory. It was indeed realised that the five different formulations of
string theory known and perturbatively investigated up to that moment were in fact related
to one another by taking different limits of a unique theory (M-theory), which we already

mentioned at the very beginning of this introduction.

Another issue that string theory brings into the game is that of extra dimensions.
In fact, a consistent quantisation of the superstring requires the target-space to be ten-
dimensional. The extra challenge for string theorists became then that of finding some
mechanisms providing compactifications of string theory down to four dimensions in order
to make contact with the evidences of our low-energy observations. Historically, the first
compactifications which were studied were on particular Ricci-flat six-dimensional internal

manifolds called Calabi-Yau manifolds. These have the nice feature of preserving some
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supersymmetry and of giving rise to Minkowski vacua in four dimensions.

However, in the last fifteen years another fact came out of some cosmological obser-
vations: our universe contains dark energy. This source of energy/matter in the universe
satisfies an anomalous equation of state with respect to ordinary matter or radiation and it
corresponds to the vacuum energy present in our universe. Dark energy can be accomod-
ated inside GR by including an extra term to the Einstein equations which is often called
cosmological constant and normally denoted by A. Combined measurements coming from
supernovae [4,5], the Cosmic Microwave Background (CMB) radiation [6,7] and the Ba-
ryonic Acoustic Oscillations (BAO) [8,9] concluded that we live in a universe with positive
and small cosmological constant and gave rise to what we call nowadays the concordance

model of cosmology. The energy/matter content giving the best fit is depicted in figure 1.

74% Dark Energy

Figure 1: The concordance model of cosmology predicts that our universe has a cosmological
constant A > 0. In a recent phase of the history of the universe the vacuum energy took

over and became the dominant energy content.

The cosmological constant drives an accelarated expansion of the universe which is de-
scribed by de Sitter spacetime. This suggests that, after dark energy started to dominate,
our universe started approaching a de Sitter vacuum rather than a Minkowski one. This
implies that the suitable string compactifications for phenomenological purposes should
give rise to de Sitter vacua. One can show that plain Calabi-Yau compactifications present
the unfortunate feature of producing a large amount of massless scalar fields (a.k.a. mod-
uli). Hence, in order to reproduce de Sitter vacua, one should go beyond these well-known
compactifications.

An extra motivation for considering accelerated expanding universes in string theory
is that of embedding inflationary models within string theory. Inflation describes a phase
of accelerated expansion of the universe right after the big bang. This was proposed to
explain an almost perfect homogeneity and isotropy relating regions in the sky which had
never been in causal contact with each other throughout the history. Inflationary models
are described by a quasi-de Sitter phase driven by a scalar field called the inflaton.

The above issues provide two challenges for string theory compactifications related
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to de Sitter. The first one is finding de Sitter vacua in order to describe the late-time
accelerating phase we are approaching now. The second one is embedding inflation in
string theory by providing examples of compactifications in which quasi-de Sitter phases
are possible with a very flat potential for the inflaton. These approaches in string theory
result in what is often called string cosmology and they have been extensively followed in

several directions in the last decade.

Concentrating for a moment on inflation, it is a particularly striking fact that string
theory suggests some preferred classes of inflationary models, in which, for instance, no
detectable tensor modes are present in the spectrum of cosmological perturbations of the
early universe. This information, which is encoded in the CMB, can still be detected now,
and is the result of frozen quantum fluctuations grown to observable size in the present
universe. Precision measurements on the CMB carried out in the last decade by WMAP
[10-12] already provided very precious data, although the existence of tensor perturbations
still remains an open question. There is a possibility that the PLANCK satellite, which
is currently collecting data, might tell us more about this. Such an experimental input
would be a valuable opportunity for constraining models of inflation, among which there

are stringy inflationary proposals.

Coming now back to the search for de Sitter vacua in string theory, right after the
experimental detection of the cosmological constant, the existence of a huge 'zoo’ of vacua
[13,14] (about 10°% 1) was conjectured on the basis of statistical analysis. This enormous
amount of different string vacua is often referred to as the landscape. However, there
has been more recently a lot of debate on this after the many failed attempts of finding

classical (i.e. at tree level) de Sitter solutions from string theory compactifications.

Going beyond the search for classical solutions in string theory, people have considered
the possibility of stabilising the moduli in an anti-de Sitter vacuum by means of quantum
non-perturbative effects [15] and subsequently providing an uplifting to de Sitter by means
of several mechanisms. In ref. [15] such an uplifting was provided by additional extended
sources breaking supersymmetry explicitely. Nevertheless, this mechanism completely
ignores the backreaction of such sources and some recent analyses indicate that it might
cause the arising of a singularity [16,17] and possibly related instabilities [18]. In ref. [19]
the possibility of D-term uplifting was considered. However, later in refs [20,21] the
inconsistency of this construction was pointed out due to the violation of gauge invariance
occurring in a supergravity model with D-terms and yet vanishing F-terms. In ref. [22] a
valid proposal is given to overcome this inconsistency. The third possible type of uplifting

mechanism is F-term uplifting, which was worked out e.g. in ref. [23].

A parallel but somehow related research line has regarded supergravity models as lower-
dimensional effective descriptions coming from flux compactifications. In this context a lot
of work has been done in the case of flux backgrounds preserving minimal supersymmetry

in four dimensions. Some work has been done also in the context of compactifications
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preserving larger amount of supersymmetry. A very welcome ingredient (or even crucial
in the case of (half-)maximal supergravities) for obtaining de Sitter solutions turns out
to be given by non-geometric flures. These objects appear as deformation parameters in
the lower-dimensional effective description even though they do not have a clear higher-
dimensional interpretation. Their appearence was first conjectured in ref. [24] based on
duality covariance arguments.

The aim of this thesis will be to follow this last research line, that is, to study gauged
supergravities as effective descriptions arising from string compactifications. The final goal
is to first formulate the complete dictionary between fluxes and deformation parameters of
lower-dimensional supergravities. Subsequently, one can think of studying the landscape
of vacua of particular classes of string compactifications through their effective gauged
supergravity description. Finally, one could use the framework of gauged supergravities
in order to understand the role of string dualities, since at that level they are realised
as symmetries. The hope is that this could shed a light on the still unclear origin of
non-geometric fluxes.

The thesis is organised as follows. In chapter 1 the various string theories and string
dualities are reviewed. In chapter 2 supersymmetry is discussed and supergravities (low
energy limits of string theory) and their deformations are introduced. In chapter 3 an
overview of string compactifications is provided as mechanisms for generating a potential
for moduli fields and subsequently some duality covariant proposals for describing non-
geometric fluxes are introduced. In chapter 4 we discuss the orbit classification of gaugings
of maximal and half-maximal supergravities in dimension seven and higher; subsequently
we provide a Double Field Theory uplift for each orbit of theories. In chapter 5 we firstly
introduce the dictionary between half-maximal gauged supergravities in four dimensions
and orientifold reductions of type string theories with fluxes. Secondly, we study the
landscape of vacua of geometric type IIA and IIB compactifications and furthermore give
some example of locally geometric backgrounds in type IIB. In chapter 6 we show how
to embed type II flux backgrounds without supersymmetry-breaking local sources inside
maximal gauged supergravity in four dimensions and examine the full mass spectrum
of a class of type IIA solutions. Finally, some additional material can be found in the

appendices.






Chapter 1

String Theory and Dualities

In this chapter we will discuss some generalities about string theory as the main can-
didate for a description of quantum gravity. We will start from the simpler example of
the bosonic string to move further to the discussion of the different formulations of string
theory and dualities as a way of relating them together. Later on, we will briefly deal with
the case of the superstring and argue that supergravities in ten dimensions can be ob-
tained as low energy effective descriptions thereof. Finally, we will introduce the concept

of branes and extended objects in string theory.

1.1. The Bosonic String

The original idea is that of writing an action for a 1-dimensional object (string)
propagating in a D-dimensional background described by the coordinates {X*}, with
w=0,..., (D—1). During its motion, the string describes a surface (a (1+1)-dimensional
submanifold described by the coordinates (1,0) = o®, with a = 0,1) embedded in the
background spacetime which is often called world-sheet. From this perspective, the motion
of the string is described by the dynamics of D scalar fields { X*(7, )} which parametrise

the worldsheet. The free action describing the aforementioned system reads
T
§=-3 /dea\/Eho‘ﬁgW(X)(‘)aX”E)BX”, (1.1)

where hqg is the world-sheet metric, h = | det(hqag)|, guv is the background metric and 7'
is the tension of the string (i.e. mass / volume unit).

The world-sheet metric h,g contains in principle only 1 on-shell degree of freedom
after gauge fixing (by making use of the diffeomorphism invariance of (1.1)). The peculiar
fact about the above action is that it has another extra symmetry with respect to Weyl
rescalings of the form

haﬁ — Ahag s (1.2)

where A is an arbitratry function of the world-sheet coordinates (7,0). Moreover, the
theory described by (1.1) is renormalisable by power-counting.
We shall start studying the free propagation of a string in a Minkowski background,
i.€.
g = diag(—1, +1,...,+1) . (1.3)
(D-1)
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The action (1.1) has the following world-sheet symmetries

e XH = £X0u XM , ) )
{ ¢ § (diffeomorphisms)

Schap = & Oyhag — 200p)

(1.4)
oAXH =0 , )
(Weyl rescalings)
5Aha,8 = Aha/j ,
together with the following global (target space) Poincaré symmetry
SXM = ah, XY 40
¢ + (1.5)
dhap = 0 ,

with a,, = n,,a”, antisymmetric. By making use of two diffeomorphisms &, and a Weyl
rescaling A, one can always gauge away all the degrees of freedom of the world-sheet metric
such that

ha,@ = Napg = diag(fl, +1) . (1.6)
To be more precise, under local Weyl rescalings, the action (1.1) transforms as
1
58 = 4 /d%\/ﬁh‘w Tos A(o) . (1.7)

where Ti,5 = —% ﬁ 525 5 is the stress-energy tensor associated with the scalar fields {X#}.

This implies that, in order for the action to be invariant under local Weyl rescalings, we

actually need to impose the following constraint
hP Ths = 0. (1.8)

Moreover, the gauge choice (1.6) is only compatible with the equations of motion for hqs
once the condition
T = 0 (1.9)

is satisfied.
Once the gauge choice (1.6) is made and the constraint (1.9) is imposed, one can derive

the following equations of motion

oOxXr = (82 -02) X+ = 0 . (1.10)

T

These equations of motion have as a consequence that the stress-energy tensor Tpg is
conserved. If we now look carefully at the variation of the action with respect to X*, we

will see that it contains the following boudary terms
=T /dT 0c X" 60X |o=r — 0o X" X, |o=0] , (1.11)

which can be set to zero by means of suitable boundary conditions (b.c.). The physical in-
terpretations of these is requirement that no energy-momentum flow occurs at the extrema

of the string. The possible b.c. are
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* 0o XHMp=0,r =0, (Neumann b.c. for opens strings)
» (XHo=0r =0, (Dirichlet b.c. for opens strings)
s XH(1,0) = X¥(1,0+m). (periodic b.c. for closed strings)

The general solution to the equations of motion (1.10) is easily written in light-cone

world-sheet coordintes o+ = 7 + o
XHo) = Xh(oh) + XI(o7), (1.12)

where the subscripts R’ and ’L’ stand for (right-)left-moving.
Let us now concentrate on the case of closed strings, for which one has to impose
periodic b.c.; (the R and L part of) the solution generally given in (1.12) can be then

expanded in Fourier modes as follows

Xy = izt 4+ %p”(T—O‘) + % S Lafetin(r—o)
. P L, , (1.13)
Xp = 30+ 3 (r+0) + 5 ¥ pane )
n#0

where /£ is the fundamental string length and o), and &}, are the Fourier components of

the right-(left-)movers respectively. The reality condition of the solution (1.12) implies
ziph e R, oh = (o,)" and ah = (&",)" . (1.14)

The physical interpretation of the constants z# and p* in the expressions (1.13) for X ]’%
and X7 is that of postion and momentum of the centre of mass of the string.

By requiring that the coordinates X* and the corresponding momenta satisfy canonical
Poisson Brackets (PB) at equal times, one finds that the Fourier modes o and & have to
satisfy the following PB!

[, aplpg = im0 )
(&, Gplpg = —imn" dmyno (1.15)
[O/n%a &Z]PB =0 )

with the convention that aff = af = % pt. After introducing the Fourier components of

the stress-energy tensor Ti,g

Lm = % Z Om—n * Op and f/TrL = % Z dm_ndn ) (116)
nez nez

one finds that their PB describe a Virasoro algebra
[Lm, Lplpg = i (m —n) Lypqn , (1.17)

and the same holds for L’s, whereas [L, L]pg = 0.

1Please note that these PB are independent of the string tension and length after choosing T = -

_1
2ra’ "
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Aspects of the Quantum Theory

Bosonic string theory can be quantised following different approaches yet giving rise
to the same final result. The possible different approaches historically studied are the

following

= Old Covariant Method: inspired by the quantisation procedure a la Gupta-

Bleuler followed in electrodynamics,

= Modern Covariant Method: type of BRST quantaisation based on the introduc-
tion of Faddeev-Popov ghosts,

= Light-cone Gauge Quantisation: solving explicitely the constraints on 7,3 by

breaking covariance from the start.

By following the preferred quantisation procedure, one will promote the PB previousely
introduced to commutators between operators. This leads to a central extension of the
Virasoro algebra at a quantum level coming from the normal ordering prescription.

One discovers that a and & suitably normalised behave as creators and annihilators.
Hence, by making use of them, one can uniquely construct the space of physical states.
Following, e.g. the old covariant method, the general presence of ghosts (i.e. negative
squared norm states) arises from the Minkowskian signature of the metric. The spectrum
of physical states only turns out to be free of ghosts for D = 26. If one follows different
quantisation procedures, this conclusion remains valid.

If we focus on the case of closed bosonic strings, we find out that there is a vacuum
state |0) corresponding to a tachyonic scalar, whose mass is given by M? = —4/a’. The
first excited states, instead, constitute the massless spectrum and include the following
objects

29) = ol ol [0) (1.18)

where the operators of the type o’ ; denote transverse creation operators. Such an object

lives then in the following representation of the little group SO(24)

24®24 =10 276 @ 299 . (1.19)
80 u Ea

The above irrep’s describe the following massless fields
» the metric g,.,
= a two-form by,
= a scalar ¢, often called the dilaton.

This field content is often referred to as the common sector of all string theories.
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1.2. Superstring Theory

In the previous section we have seen that bosonic string theory still suffers from the
presence of a tachyon even in the closed string sector, which clearly would make our theory
not unitary. Besides, there is no room for fermions in the spectrum of the bosonic string.
In order to try to improve these unwanted features, we will supplement the action (1.1)
with extra fermionic world-sheet degrees of freedom called ¥*. For some further reading
on the topic, we suggest to take a look at refs [25,26].

Let us consider the action

S = -

S / d*o Vh (haﬂ Oa Xt 05X, — i p” aazpu) : (1.20)

where p® is a 2-dimensional realisation of gamma matrices (see section 2.1 for the formal

aspects of spinors and supersymmetry):

0 — 0 4
O = t . pt = v with {pa, pﬁ} = —onoP
1 0 v 0

By adding these two extra terms in the action

1 1 —
Sy = —— [ d*oVh (Xa PP P " 05X, + Z(w%) (X P p™ xg)) : (1.21)

e

one finds that the full action S = 57 + S5, apart from having a symmetry under Weyl
rescalings that generalises the form presented in the purely bosonic case, has a completely

novel type of symmetry

S XM = eH :
ot = _ipae(aaXu_WX"‘) ’ (1.22)
dchap = —2i€paxp :
deXa = Oqe ,

where € is an arbitrary Majorana spinor (see again section 2.1) in 2 dimensions. This
symmetry relates bosonic fields (X* and hag) to fermionic ones (1) and x.) and is nor-
mally called supersymmetry. Particular realisations of supersymmetry in field theory will
be presented in the next chapter.

Finally, there is an extra local symmetry transforming only the fermions x, (and

leaving all the other fields invariant) in the following way

OXa = ipal (1.23)

where 7 is again a Majorana spinor. Just as in the bosonic case, one can gauge away
all the degrees of freedom inside the world-sheet metric by using local diffeomorphisms
and Weyl rescalings and perform the gauge choice in (1.6). Moreover, we can now make

use of the two supersymmetries generated by € and the two extra fermionic symmetries
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generated by 7 in order to gauge away X,. Summarising, once we use all the symmetries

at our disposal, we can always perform the following gauge choice

ha,B = Tap 5 Xa = 0 . (1'24)

At this point, we can vary the total action to get the following equations of motion for
XH and yH
OxX* =0 and POt =0 (1.25)
Wave eqn Dirac eqn
which have to be supplemented with the constraints that guarantee the consistency of
the gauge choice performed in (1.24). These translate into the vanishing of the currents
associated with the symmetries we made use of, i.e. the stress-energy tensor Tj,3 and a
supercurrent 7,

1 !
Joa = Epﬁpaw“aﬁXu =0 >

i | (1.26)
Top = 0aX' Xy + ¥ pladpythu = 0

Similarly to the bosonic case, one can solve the equations of motion (1.25) by intro-
ducing the same right- and left-movers for X# and doing something analogous for " in

light-cone coordinates
(o) = YR(e™) + vp(e7) . (1.27)

After choosing by convention ¥g(7,0) = 4 (7,0), we have two inequivalent possilities

for fixing the b.c. at o = m:

o Ygr(r,m) = +¢¥r(r,7) , (Ramond (R) b.c.)
(1.28)
o Yp(r,m) = —Yr(r,m) . (Neveu-Schwarz (NS) b.c.)

From the above b.c., e.g. in the case of closed strings, we get the following mode expansions

b = L S diento)
¥ \ii ”iz d¥ e—in(t+0) (R)
R = 5 n €
V2 nez
v = 1 Z bﬁe—ir(T—a) , (1.29)
V2 T‘E(Z‘i’l)
X Jo (NS)
vp = 7 Z bt e ir (1+0)
T‘G(Z‘i’%)

When quantising the theory, one can follow the same approaches briefly described at
the end of section 1.1. The starting point is again introducing canonical commutation
relations (coming from classical PB) for X* and canonical anti-commutation relations for
y*. This operation results in creation and annihilation operators: (a, &) type for the
bosons, (b, b) type for fermions with NS b.c. and finally (d, d) type for fermions with R
b.c.
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Quadratic cobinations of creators and annihilators give now rise to the new Fourier
components of T,,3 and 7, and generate a graded extension (see def. of superalgebras in
section 2.1) of the Virasoro algebra given in (1.17), with central extensions again related
with the process of quantisation. In the case of the superstring, the consistency of the
quantum theory requires the critical dimension to be D = 10. However, the resulting
quantum theory still contains a tachyon in the NS sector just like in the bosonic case.

Supersymmetry requires the total number of physical degrees of freedom associated to
bosons and fermions to be equal (see the theorem stated in section 2.1). This is achieved
by the so-called Gliozzi-Scherk-Olive (GSO) projection [27], which defines a notions of
fermionic parity and eliminates all the states in the spectrum being parity odd. The GSO
projection leaves one with a massless sector consisting of an NS vector and a R spinor,

that is, in terms of irrep’s? of the little group SO(8)
8v & 8 +— A, & X (1.30)

which exactly defines the field content of an A/ = 1 vector multiplet (see table 2.3).
The different choices for what is regarding the GSO projection give rise to inequivalent

string theories, which we summarise in this paragraph

» Type II String Theories: Y and v}, are treated independently when it comes to
perform the GSO projection. This gives rise to two inequivalent choices, depending

on whether it selects opposite or equal signs (called type ITA and IIB, respectively):

(1 © 28 @ 35v)Ns-Ns @ (8v @ 56v)r-Rr
ITA: (8y @ 8¢) ® (8y @ 8) = ( o 7
@ ((8s @ 56s)xsr @ (8¢ & B6C)R-NS)p
(1 d 28 d 35V)NS-NS ) (1 D 28 p 35C)R,-R,
IIB: (8y @ 8¢c) ® (8v ® 8c) = ( e ,
@ ((8s @ 56s)xsr @ (8s ® 565)RNS)

which gives exactly the field content of type ITA and IIB supergravities in D = 10,

as we will see in (2.18).

» Type I String Theory: it consists of open and closed strings; it is A/ = 1 super-
symmetric and the universal field content (i.e. NS-NS and NS-R) is supplemented
by 496 vector multiplets which describe an SO(32) gauge theory. Such a theory can
be as well obtained by modding out type IIB string theory with respect to a Zo
parity flipping the sign of the world-sheet coordinates.

= Heterotic String Theories: constructed by combining the bosonic left-moving
sector with the fermionic right-moving one. The bosonic sector then has to be

compactified from D = 26 down to D = 10, giving rise to internal gauge symmetries.

2All throughout the text 8y, 8s and 8c denote the triality of SO(8) irrep’s of dimension 8, i.e. the

vector and the spinors of the two chiralities.
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Anomaly cancellation forces the only two consistent possibilities to be SO(32) and
Eg X Eg.

The common sector of both type I and heterotic string theories exactly matches the field
content of N' = 1 supergravity in D = 10. This common sector is then coupled to 496
vector multiplets which describe a gauge theory with gauge group SO(32) or Eg x Eg.

Summarising, we have seen that the low-energy spectrum of all the five consistent
string theories recovers the field content of the possible supergravities in ten dimensions.
Moreover, these degrees of freedom also turn out to be described by a low energy effective
action which is that of ten-dimensional supergravities (coupled to vector multiplets in the
case of N =1).

1.3. Beyond Ordinary Field Theory: Dualities

In the previous section we have seen that five different string theories in ten dimensions
can be constructed perturbatively. We would like to stress that string theory contains two
deeply different types of perturabtive expansions: the first one is in terms of the string
coupling g, which is equal to e? for backgrounds with constant dilaton and it plays the
role of & in loop expansions; this is a quantum theory defined on the spacetime. g;
corrections take us away from the supergravity limit but simply by completing it with
quantum corrections. Moreover, there is a second and dramatically different expansion
defined on the world-sheet which is carried out with respect to o’. o’ corrections take us
away from the field theory description and hence they have a purely stringy nature and
do not have any analogue in QFT.

However, in general perturbation theory is insufficient to completely understand the
physics described by a given quantum theory. In QFT, for instance, one often needs
the so-called path-integral formulation of the theory in order to capture possible non-
perturbative effects. Unfortunately, no analogue of the path-integral formulation is known
in string theory. Still, there is one interesting feature of string theories that can be seen
as an opportunity to understand some physical features thereof. One is able to prove that
the five string theories are related amongst them via dualities. Duality relates equivalent
descriptions of a theory in which perturbation theory is done around different points,
that is, dual descriptions are different ways of taking the limit i.e. A — 0. The general
advantage of dual descriptions is that, whenever a description enters the strong coupling
regime and hence pertution theory is not to be trusted anymore, its dual description
will conversely be in the semi-classical limit. To read more about dualities and non-
perturbative aspects of string theory, we recommend refs [28,29].

The situation depicted in figure 1.1 precisely shows how all the different string theories
simply are different perturabtive expansions of the so-called M-theory, which is often

regarded as the best candidate to a unified description of gravity and gauge theories. This
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theory has the peculiarity of not having a coupling like g; anymore and its low-energy

limit is given by eleven-dimensional supergravity (see section 2.2).

B

ITA |
M-theory

Es x Eg heterotic SO(32) heterotic

Figure 1.1: The different string theories in ten dimensions as different perturbative limits

of an eleven-dimensional theory called M-theory.

As an example, let us now examine in detail the explicit nature of the dualities relating
some string theories in figure 1.1. We will start observing that type IIA and type IIB string
theories are related by what we call T-duality. This duality has perturbative nature, i.e.
it can be proven order by order in (gs) perturbation theory. Its origin in this case is the
fact that the two aforementioned string theories become the same theory in D = 9 when
reducing them on a circle S'. The dictionary between the ITA and IIB side of the duality

is constructed by

a/

:FB’

where R4 p are the radii of the circle S in the two compactifications. The (1.31) implies

Ra (1.31)

that T-duality interchanges the role of momentum and winding modes in the spectrum.
From the world-sheet perspective, the above T-duality acts as
9 9

S (1.32)

Wwo—
where the direction labelled here by ’9’ is the compact one. The action of T-duality on
the massless NS-NS sector fields g,,,, b, and ¢ is known in the literature as the Buscher
rules [30]. This duality manifests itself at the level of the nine-dimensional theory as an
SO(1,1;Z) symmetry. As we will see later in table 1.2, this gets generalised to SO(d, d; Z)
when reducing type II (A or B it does not matter!) on a torus T

As a further example, we want to illustrate the deeply different nature of S-duality,

which is yet non-perturbative and hence intrinsically difficult to prove. In constrast with

the previous case of T-duality, where the theories can be compared order by order in g5 and
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different contributions from different orders never mix, here such a mixing will occur. This
makes it meaningless to compare the spectra state by state on the two sides of the duality.
Indeed, such non-perturbative dualities are normally conjectured and subsequently tested.
The instruments at our disposal in order to test S-duality are those objects which are

protected by supersymmetry like

» the spectrum of BPS (i.e. partially supersymmetric) states (see non-renormalisation

theorems which protect supersymmetric objects from quantum corrections),

» the low-energy effective Lagrangian (constrained by supersymmetry to match the

supergravity action).

S-duality turns out to transform type IIB string theory into itself, the bosonic massless

sector transforming as described in table 1.1. One can actually show that such S-duality

sector | IIB fields | S-duals
Guv Juv
NS-NS by C/(ﬁ,)
¢ —¢
ol )
R-R ng) b
1 1
Clapo | Clapo

Table 1.1: The transformation law of the massless IIB fields under S-duality. For back-
grounds with constant dilaton, such a duality takes gs — g%, thus interchanging in the

spectrum the role of perturbative objects and solitons.

can be completed to form a larger discrete group of non-pertirbative dualities given by
0 —1
SL(2,Z), of which S-duality represents the element Lo > . This duality generalises

the concept of electromagnetic duality for Maxwell theories [31].

The full net of dualities relating the different five string theories is presented in fig-
ure 1.2.

In type II theories, one can think of combining perturbative and non-perturbative
dualities by applying a chain of S- and T-dualities. In such a way, one realises that
they contain an enhanced duality group called consisting of more general dualities usually
called U-dualities. When reducing M-theory on a torus 7", such a duality manifests itself
as an E,(,)(Z) symmetry [32]. The duality groups of the compactified type II theories are

summarised in table 1.2.
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11d M-theory

Sl Sl
N N
10d — A B I Het SO(32) Het EgxEg |——
16 D9 /Q
\ T x /
- S5—

st st

Figure 1.2: The net of all the dualities connecting the five string theories in ten dimen-
sions and their links with M-theory. Please note that type II theories (on the left of the
diagram) have 32 supercharges, whereas, after modding out by the discrete symmetry ),
supersymmetry is broken such in a way that the other theories on the right (type I and

heterotic) only retain 16 supercharges.

D T-duality U-duality
9 0(1,1;7) SL(2,7Z)
8 || SL(2,Z) x SL(2,Z) | SL(2,Z) x SL(3,7Z)
7 SL(4,7Z) SL(5,Z)
6 0(4,4;7) O(5,5;7Z)
5 O(5,5;Z) Eg(6)(Z)
4 0(6,6;7) E77)(Z)

Table 1.2: The various T-(U-)duality groups emerging as symmetries of type II (M-)
theories on a T'O~P (TP ). Please note that the corresponding supergravity theories
enjoy the full continuous symmetries, as we will see in the next chapter. Quantum effects

i string theory break the duality groups to the discrete subgroups shown here.

1.4. Branes and Sources

In the previous section we have seen that dualities are a very peculiar feature of string
theory and that they generally relate descriptions in weakly and strongly coupled regime
to each other. We also saw that non-perturbative dualities are very difficult to test and
that analysing the spectrum of BPS states can be an important instrument in this sense.

In the spectrum of the various string theories, not only can we find states representing
excitations of the so-called fundamental string itself, but by making use of dualities, also

extended objects called branes appear as solitonic states in the spectrum. These extended
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objects have a world-volume action which is very similar to the world-sheet action of a
string. Upon imposing certain b.c., the aforementioned branes can define backgrounds in
string theory which preserve partial amounts of supersymmetry (BPS branes).

For example, Dp-branes are extended objects whose world-volume is (p+1)-dimensional
and Neumann b.c. are fixed on it, whereas in all the transverse directions, Dirichlet b.c.
are chosen. Dp-branes can be charged electrically under the R-R gauge potential C*+1)
or magnetically under C(7=P). Identically one could imagine to have branes which are
electrically (magnetically) charged under NS-NS gauge potentials. In this case, though,
we only have the b-field at our disposal, thus resulting in the fundamental string (which we
denote by NS1) and the NS5-brane. The tension (i.e. mass per volume unit) of the various
objects named above is in general a function of the couplings g; and ¢ in string theory
and solitonic objects have a tension which scales as negative powers of the couplings such
that it becomes very high in the weakly coupled regime. This information is collected in
table 1.3.

The extended objects introduced above all have positive tension. Furthermore, one
can introduce orientifold planes (Op), which are objects with negative tension located
at the fixed points of some discrete involution. The main difference with respect to e.g.
D-branes is that O-planes are strictly speaking no dynamical objects, in the sense that, as
we just saw, their position in the target space is not dynamically determined. Besides, on
D-branes one can construct a gauge theory upon the introduction of extra matter content.

Other extended objects in string theory are the so-called KK monopoles (after Kaluza-
Klein). These objects are highly non-perturbative and they are charged under mixed
symmetry fields like the dual graviton. In D = 10, they are sometimes referred to as
KKb5-branes even though, strictly speaking they are only pre-branes, in the sense that
they become branes upon T-dualisation. The conjecture is that, since the KK monopole
is T-dual to an NS5-brane, its tension should still scale as g; 2. We suggest refs [33,34] to

find more about dualities in string backgrounds containing branes and orientifold planes.

Branes Tension

NS1 0?2
NS5 g2 05"

Dp 9;1 gs—(zﬂrl)

Table 1.3: The tension (mass per volume unit) of several extended objects in string theory

as a function of gs and £s.

Let us go back to type IIB string theory in order to see which branes can be coupled
to the massless fields of the theory. In the NS-NS sector, the only gauge potential is the

Kalb-Ramond 2-form b and hence we can have fundamental strings NS1 and NS5-branes,
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which are respectively electrically and magnetically charged under b. In the R-R sector,
instead, we have C(©, ¢ and CW; with respect to these fields D(-1), D1 and D3 are
electrically charged, whereas D7, D5 and again D3 are magnetically charged. Please note
that the D(—1) has the peculiarity of being localised both in space and time, thus it
is a particular type of instanton. In table 1.4 we summarise how S-duality acts on the
BPS objects of the IIB spectrum. As we said previously, these provide a very import
opportunity for testing S-duality.

I1B 1B’
(90, ) | (9% :95%)
NS1 D1
NS5 D5
D1 NS1
D3 D3
D5 NS5
D7 D7

Table 1.4: The action of S-duality on type IIB branes. By acting with the full SL(2,7.), we
can show that D3-branes are singlets, whereas (NS1, D1) and (NS5, D5) are doublets and
hence we could obtain the dyonic (p,q)-string or 5-brane. D7-branes belong to a triplet of
7-branes labelled by the integers (p,q,r). However, acting with SL(2,7) on the D7, one

only has access to a 2-dimensional conjugacy class spanned by D7 and D7 [35].






Chapter 2

Gauged Supergravities

As we concluded in the previous chapter, supergravity theories in ten and eleven di-
mensions give a low-energy effective description of string theory and M-theory respectively.
Upon toroidal reduction, these supergravities are related to supergravities in D < 10. In
this chapter we will briefly review how supergravities in various dimensions can be obtained
by supersymmetrising a gravity theory. We will refer to them as ungauged supergravities.
Furthermore we will show how to introduce deformations in supergravities to give rise
to gauged supergravity theories. In order to arrive there, we will need to first discuss

supersymmetry and its relation to gravity.

2.1. Supersymmetry

As already sketched in the introduction, supersymmetry is the result of the search for
a fundamental symmetry unifying spacetime and internal symmetries in a non-trivial way.
This is realised by certain spinorial conserved charges Q) called supercharges. These are
such that

Q .
bosons — fermions ,

and they square to bosonic transformations, such as translations, Lorentz transformations,
ete.

Spinors in 1 4+ (D — 1) dimensions are the building blocks of fermionic representa-
tions of SO(1, D — 1). These are precisely the objects that one needs in order to discuss
supersymmetry in given spacetime dimensions and signatures. In the so-called Dirac
representation, the Lorentz generators are given by %’Y;w = % (Y4, 7v], where the Dirac

matrices {Yu},_o  p_, satisfy the Clifford algebra

{'Y,ua'yu} = 277,Lw ) (2-1)

where 1, =diag(—1,+1,---,+1) is the Minkowski metric. Such a representation has real
N——

D—1
dimension equal to 2[P/21+1 where [x] denotes the integer part of x. However, depending

on different spacetime dimensions and signatures, the components of a Dirac spinor might
not all transform amongst themselves, yet they might contain different irreducible pieces,
which are obtained by imposing some Lorentz-invariant constraint on a Dirac spinor. For

instance, in any even dimension, one can have chiral spinors. These are obtained by
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imposing a chirality condition on a given Dirac spinor

(—i)D/2+1
Y X = TE’“ By - Yup | X = £X, (2.2)

where e#1#D represents the Levi-Civita symbol in D dimensions and the + and the —
refer to right- and left-handed spinors respectively. Chiral spinors have therefore only
2[P/2] independent real components.

Another possible projection is a reality condition giving rise to Majorana spinors.

These irreducible spinors are objects satisfying the following constraint

x'e=x", (2.3)

which reduces indeed to a reality condition for the components of y whenever the charge-
conjugation matrix C is chosen to be equal to 7. In any other case, (2.3) plays only the
formal role of a reality condition without being it in a strict sense.

In general, whenever one decomposes a Dirac spinor y in terms of its chiral components,
these will violate the Majorana condition (2.3). Nevertheless, there are some special
cases in which the conditions (2.2) and (2.3) can be satisfied simultaneously by some
irreducible spinors having only 2[P/2]-1 reql independent components. These spinors are
called Majorana-Weyl (MW) spinors.

The complete details about spinors in various spacetime dimensions and signatures
have been worked out in large detail in ref. [36]. For the sake of simplicity, we refrain from

the full discussion and summarise some relevant information in table 2.1.

D (mod 8) | Spinor irrep’s | Real components
1,3 M 2(D-1)/2
2 MW 2P/2—1
4,8 M oD/2
5,7 D o(D+1)/2
6 W 2b/2

Table 2.1: The different irreducible spinors in various dimensions, but always with one
single time direction. D stands for ’Dirac’, M stands for Majorana’, W for "Weyl’ and
MW for ‘Majorana-Weyl’ spinors.

In a theory, the amount of supercharges has to be a multiple N of the number of real
components of an irreducible spinor in D dimensions'. The supercharges are then objects

of the form @, where i = 1,...,N and « is an irreducible spinor index.

IThis is required by Lorentz invariance, since the components of an irreducible spinor all transform into

each other under an SO(1, D — 1) transformation.
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Each supercharge relates two fields whose helicity differs by %, thus filling the so-called
supermultiplets (representations of supersymmetry) with fields of increasing helicity. Be-
cause of this, there is an upper bound [37] on the maximal number of supercharges that a
theory can have if we do not want our supermultiplets to contain fields with spin higher
than two. This requirement is related to the difficulties encountered in constructing an
interacting Lagrangian for higher-spin particles even at a classical level?. In particular,
in theories with global supersymmetry, one cannot have more than 16 supercharges in
the game in order to avoid gravitational degrees of freedom which would require gauged
supersymmetry. In theories with local supersymmetry (supergravities), one is allowed to
include up to spin 2 degrees of freedom. This enhances the maximal amount of super-
charges to 32. We will refer to these theories as maximal supergravities. We would like
to stress that this general analysis can be done by discarding the possibility of including
higher-spin fields in the theory. However, the study of the dynamics of higher-spin fields
has been studied over the years in the literature [38-41] and it has recently received new
attention [42-46].

Summarising, the introduction of supersymmetry provides a unification of spacetime
and internal symmetries by promoting ordinary Lie algebras to superalgebras [47], objects
in which the supercharges Q°,, appear as fermionic generators. A superalgebra & is defined

as follows:
= G is a graded vector space, i.e. it admits a map
gr: 6 — Zs, (2.4)
which decomposes & into 6@ & &™) such that

gr(B)=0mod 2 , VB € 60

gr(F)=1mod2 , VF ¢ 60 (25)
which define bosonic (B) and fermionic (F') generators respectively,
» there exists a bilinear and supercommutative internal composition law {, |
{A, B] = (-1)teWe® B 4] (2.6)
such that
e {, ] is additive with respect to gr,
gr({4, B]) = gr(4) + gr(B) , (2.7)
e the super-Jacobi identities are satisfied for any A, B, C € &,
(—1)Her@er@ 114 B, C] + (cyclic perm.) = 0. (2.8)

2This statement refers to the assumption of higher-spin fields in a Minkowski background.
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A classification of superalgebras can be found in ref. [48]; among the physically relevant
superalgebras we find e.g. the orthosymplectic superalgebra Osp(4|N) [49], which has
as bosonic Lie algebra SO(3,2) x SO(N) and corresponds to the AdS superalgebra. An-
other important superalgebra is the superconfromal one SU(2,2|N), having as Lie algebra
SO(4,2) x SUWN) x U(1).

Basically, a superalgebra defines an extension of an ordinary Lie algebra generated by a
set of bosonic generators by the addition of a set of fermionic generators, for which the com-
mutation relations with the bosonic symmetries and the anti-commutation relations among
themselves are specified. Together with this 'fermionic’ extension, a superalgebra includes
a new bosonic symmetry called R-symmetry, which is defined as the largest subgroup of
the automorphism group of the supersymmetry algebra that commutes with Lorentz trans-
formations. Therefore, R-symmetry transforms the internal index : = 1,..., N carried by
the supercharges. For more details about the origin of supersymmetry and superalgebras

we refer to [50].

The Different Supermultiplets

In any supersymmetric theory, all the fields must be arranged into supermultiplets,
which are representations of supersymmetry grouping together all the different degrees of
freedom that are related to each other by supersymmetry (i.e. superpartners). A possible
approach to construct different supermultiplets is that of using the superfield formal-
ism. Superfields are objects defined on the so-called superspace, which is an extension
of ordinary spacetime obtained by supplementing it with a number of Grassmann (i.e.
anticommuting) coordinates depending on the value of N/. However, we are not going to
discuss this approach here in detail. The most common supermultiplets encountered in

supergravity are

= Gravity multiplets: It is the minimal multiplet containing the graviton. It con-
tains all the fields that represent the supersymmetry algebra on-shell. The explicit
field content of these multiplets is given in table 2.2 for D = 4.

= Vector multiplets: These multiplets contain only states with spin up to 1 and
they exist only for A/ < 4. As it happens in type I string theory, the gauge fields of
these multiplets can gauge an extra Yang-Mills-like group which is not part of the
superalgebra. The explicit field content of these multiplets is given in table 2.3 for
D=4

= Chiral multiplets: These are multiplets which only contain states with spin 0
and 1/2. In four dimensions, they only exist in N' = 1 theories. Supersymmetry
requires the scalars to span a Kdhler-Hodge manifold, as we will see in more detail in
section 2.4. The field content of chiral multiplets in D = 4 is presented in table 2.4
together with that one of hypermultiplets.
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field | s [N=1|N=2|N=3|N=4|N=5|N=6|N=38
G | 2 1 1 1 1 1 1 1
Yy | 3 1 2 3 4 5 6 8
A, |1 1 3 6 10 16 28
: 1 4 11 26 56
¢ |0 2 10 30 70

Table 2.2: The field content of the gravity multiplets in D = 4 for the various supergravity
theories with different values of N'. The number of on-shell degrees of freedom are to be
multiplied by 2 for every state with s > 0. Please note that the N = 7 analysis gives the
same field content as in the N' =8 case. Adapted from ref. [51].

field | s | N=1 | N=2 | N=4
A, |1 1 1 1
A3 1 2 4
6 |0 2 6

Table 2.3: The field content of the vector multiplets in D = 4 for the various supergravity
theories with different values of N'. The number of on-shell degrees of freedom are to be
multiplied by 2 for every state with s > 0. Please note that the N = 3 analysis gives the
same field content as in the N' =4 case. Adapted from ref. [51].

» Hypermultiplets: They are the analog of chiral multiplets for N' = 2 theories and
they also only contain states with spin 0 and 1/2. N = 2 supersymmetry restricts

the scalar to span a so-called Quaternionic Kdhler (QK) manifold.

field | s | N =1 | N =2
1

AL 1 2

o |0 2 4

Table 2.4: The field content of chiral (N = 1) and hypermultiplets (N' = 2) in D = 4.
The number of on-shell degrees of freedom are to be multiplied by 2 for every state with
s> 0. Adapted from ref. [51].

» Tensor multiplets: These multiplets include the presence of antisymmetric tensors

T,,. However, in dimensions four and five, such tensors can be dualised to scalars



32 GAUGED SUPERGRAVITIES

and vectors respectively®. In D = 6, instead they can have (anti-)selfduality prop-
erties and hence tensor multiplets have a completely new physical content. Tensor

multiplets can appear in D = 6 N = (2,0) supergravity (iib) (see table 2.5).

Generically, supersymmetry is realised on-shell (i.e. only when the equations of motion
are satisfied), in the sense that the supersymmetry algebra closes only up to terms which
are zero when evaluated at a solution of the equations of motion. In order to construct
an off-shell realisation of supersymmetry, one typically needs to introduce a bunch of
auziliary fields whose variation under supersymmetry transformations precisely cancels
the contributions coming from other fields which prevent the superalgebra from closing
off-shell. These auxiliary fields are, however, non-dynamical since there is no kinetic
term associated to them in the Lagrangian. Besides, they are very difficult to interpret
physically since their dimensionality is larger than (D — 1)/2.

Once the field content of a supersymmetric theory is determined, the following theorem
always turns out to hold:

The number of fermionic degrees of freedom always matches the number of bosonic ones
. any realisation of supersymmetry whenever the right-hand side of the anticommutation
relation between two supersymmetries is an invertible operator.

This relation between bosonic and fermionic degrees of freedom is exactly what makes
a supersymmetric theory much more constrained on the one hand, but, on the other hand,
much better-behaved in the UV, since there are certain physical quantities computable

from the theory which are protected by supersymmetry.

2.2. Ungauged Supergravities

A relativistic gravity theory in 1 + 3 dimensions such as Einstein’s general relativity
(GR) describes all the objects as sources of the energy-momentum tensor curving spacetime
around them, thus rendering gravity a geometric effect. However, one can always describe
spacetime by means of a so-called locally inertial frame, in which spacetime looks locally
flat and it is only when moving away from a given point that one can see the spacetime
curvature as an effect of gravitational interaction. This locally inertial frame corresponds
to the choice of a certain tetrad (i.e. vierbien) e, which can be arbitrarily rotated at
every point and is subject to local diffeomorphisms.

This manifestly shows that GR is invariant under local Lorentz transformations and
translations; these objects generate the Poincaré algebra iso(1, 3)

(M, MP?) = —2 5[[5 My [Py My = 0y Py s [P B =0, (2.9)

3We would like to stress that, in D = 5, the presence of 2-forms still causes important physical differences

in the gauged theory (see the line referring to D = 5 in table 2.7).
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where M,,,, = M|,,| represent the SO(1, 3) Lorentz generators, P, denote spacetime trans-
lations and all the spacetime indices can be raised and lowered by using the metric 7.
GR can be obtained in a very elegant way by gauging the Poincaré algebra [52,53] given

above, where the vierbein e, and the spin connection w,ﬂb

are regarded as independent
gauge fields. This construction is called first order formalism [54] and in general it gives
rise to a description of gravity with torsion. This formalism turns out to play an important
role in supergravity, in that the fermionic fields induce a torsion as a consequence of the
equations of motion.

Supergravities in various dimensions are supersymmetric extensions of GR. Their local
symmetries are certain superalgebras extending the bosonic spacetime symmetries, e.g. the

super-Poincaré algebra, which reads

(M, MP?] = _25[[5 MV]U] ) [Py Myy| = Nuly Bp) » [Py, )] =0,

My, Qo] = =1 ()" Qs [P Qa] =0, {Q0 Q7g} = (1#C7") 5 Pud?
(2.10)

where 7, 7 = 1,... N run over the number of supersymmetries. Since Majorana spinors

in 1+ 3 dimensions have 4 independent real components, the maximal theory corresponds
to N = 8. In the rest of the thesis, we shall refer to the case A/ = 1 in four dimensions
as minimal supersymmetry, whereas any other case with A/ > 1 will be called extended
supersymmetry.

Other superalgebras called superconformal are obtained by performing the same super-
symmetric extension of SO(2,d) algebras, which describe the symmetries of a conformal
field theory (CFT) in d dimensions. Superconformal algebras have been used in the past in
order to construct supergravity theories in different dimensions and with different amounts
of supersymmetry. See for instance refs [55,56] for the construction of minimal supergrav-
ity in four dimensions and refs [57,58] for the case of extended supergravities. Furthermore,
the reader can find the topic presented in a more pedagogical approach in ref. [59]. We
would like to stress that so far superconformal algebras have been used merely as a tool
for constructing supergravities and, even though there are some indications that they
might play a more fundamental role (e.g. in the context of supersymmetric charged black

holes [60]), their relevance in supergravity still remains unclear.

The Different Supergravity Theories

In section 2.1 we showed the different irreducible spinors in various dimensions and we
also presented a bound on the total number of supercharges that a supergravity theory
can have. If we combine these two pieces of information, we are able to see which are
the values of N which are possible for different values of D. Given N > 1, according
to whether chirality is defined in D dimensions, one might have different possibilities

in the choice for the chirality of the different supersymmetry generators (see e.g. the
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case of N' = 2 supergravities in D = 10 — IIA and IIB). This gives rise to the 'zoo’ of
all possible supergravity theories in various dimensions. The different supergravities for
different values of D are summarised in table 2.5.

Theories with 32 supercharges are often called mazimal supergravities, whereas those
ones with 16 are called half-mazimal supergravities. N = 1 theories in any D are of-
ten referred to as minimal supergravities, but the corresponding number of supercharges
increases with D, up to D = 11 where the minimal and the maximal theory coincide.
More details about the possible supergravities in different dimensions can be found in
refs [61-65].

D Supergravities (N) N2 of supercharges

11 1 32

10 (1,0)=1, (1,1)= 1A, (2,0)=1IB 16, 32, 32

9,8, 7 1,2 16, 32

6 (1,0) = 1, (1,1) = iia, (2,0) = iib 8, 16, 16
(2,1), 3,00*, (2,2), 3,1)*, (4,0)* 24, 24*, 32, 32*, 32*

5 1,2, 3, 4 8, 16, 24, 32

4 1,2,3,4,5, 6,8 4, 8, 12, 16, 20, 24, 32

Table 2.5: The possible supergravities in different dimensions labelled by the number N
of supersymmetries. Theories with 16 or more supercharges can have different gaugings.
Theories with up to 16 supercharges can be coupled to matter multiplets (vector, tensor or
hypermultiplets, depending on the case). Please note that the theories in D = 6 marked
with a * [66,67] cannot be constructed in terms of a metric tensor but, instead, in terms
of a more complicated irrep of the Poincaré group. So, strictly speaking, they are not

supergravity theories.

In section 1, we have mentioned that supergravity theories emerge as low energy effect-
ive descriptions of string and M-theory. Given this as a starting point, the most natural
question that one can ask after looking at table 2.5 is whether all the aforementioned
supergravities have their origin from string theory. This issue goes under the name of
universality of supergravities and it has been discussed from different perspectives in the
literature.

Starting from D = 11, we see that there a unique supergravity theory and it corres-
ponds exactly with the low energy limit of M-theory. In D = 10, there are two inequivalent
maximal supergravities, i.e. type IIA and type IIB which are in perfect agreement with
the corresponding superstring theories discussed in section 1.2. As for NV = 1, there is
a unique possibility, even though we have not yet specified the possible 496-dimensional

gauge groups. Recently [68] it has been proven that the only consistent (i.e. anomaly



2.2 UNGAUGED SUPERGRAVITIES 35

free) gaugings at a quantum level are Eg x Eg and SO(32), which exactly match the two
possible heterotic string theories.

Unfortunately, we are still unable to complete the picture: the more we go down with D
and N\, the more possibilities open up and it is not obvious how to generate all the lower-A/
supergravities from some dimensional reduction of string theory. There are some cases in
which this uplift still remains an open problem. For example, the N' = (1,0) supergravity
in D = 6 with gauge group Eg x E7 x U(1)g, for which still no link with string theory is
known. However, still in D = 6, there have been interesting recent developments in the
context of universality [69].

One of the main goals of the present work is address the problem of universality in the
context of gauged half-maximal and maximal supergravities in various dimensions. This
issue will be analysed mainly in section 4, even though other chapters contain sections

which are not completely unrelated to it.

The Scalar Cosets Gy/H in Extended Supergravities

For the main purpose of this work, let us concentrate on half-maximal and maximal
supergravities. The fields of these supergravity theories transform in certain irrep’s of
the global symmetry group Gg. In particular, the scalars span the adjoint representation
of Gy; however, all the scalar modes corresponding to compact Gy generators are not
physical, in the sense that they can always be rotated away. As a result, the physical
degrees of freedom span a coset Go/H, where H is the maximal compact subgroup of Gy.

Therefore, the scalars can be represented by a vielbein V which transforms under global

Gy transformations from the left and local H transformations from the right
Y — LVh(x), (2.11)

where L € Gy and h(x) € H. The role of the vielbein V is going to be crucial both in the
ungauged and in the gauged theory in order to construct couplings between p-form gauge
fields and fermions. This is due to the fact that fermions only transform with respect to
H but not with respect to Gg and hence one needs the scalar coset representative V to
mediate all the interactions between fermions and bosons by converting local H indices
into global G ones and vice versa.

The total number of physical scalars is then equal to the dimension of the coset space
Go/H. In every D, these numbers are presented in table 2.6 and 2.7 of section 2.3. These
scalars are divided into dilatons and azions. The number of dilatons can be easily derived
from the eleven-dimensional origin; after a reduction 11 — D = 11 — d, one has a dilaton
for any reduced dimension, thus d in total. This exactly corresponds to the number of
Cartan generators inside Go (the rank of go). All the other scalars are axions and their

number turns out to be equal to the number of positive roots of Gy.
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As the above analysis shows, the global symmetry group Gg is generally bigger than
simply SL(d), which is what the eleven-dimensional origin of maximal supergravities would
suggest. This is the reason why historically G was called "hidden symmetry’ [70,71]. Nev-
ertheless, quite recently a new formalism has been developed which allows us to understand
this hidden symmetry from Kac-Moody algebras. When compactifying eleven-dimensional
supergravity on a T''!, one finds a duality symmetry described by the infinite-dimensional
algebra Eqq :E§r++. A non-linear realisation of Ej; was conjectured in ref. [72] to de-
scribe an extension of eleven-dimensional supergravity. Subsequently, in ref. [73], non-
linear realisations of E1; were also shown to give rise to extensions of type ITA and type
IIB supergravity. In general, the duality group of maximal supergravity in D dimensions
comes from the decomposition of E;; [74] into Ap_1 x Gp

E/D_/ x Ap_q1 (2.12)
duality group  gravity line
where Ap_; =SL(D) represents the diffeomorphism group in D dimensions (i.e. space-
time symmetry) and Gp is such that the product Ap_; X Gp is a maximal subgroup of
E11 and it represents the duality group of maximal supergravity in D dimensions. Further
work in the same line was done in refs [75-77].

This construction can be reproduced in the context of half-maximal supergravities [78§]
by using different Kac-Moody decompositions. The first example is the rank-11 algebra
Dg‘++, which works in the case of 10 — D vector multiplets; in other cases, different Kac-
Moody algebras have been used (see e.g. BI " and B ™" in ref. [78]). The Kac-Moody
approach to (half-)maximal supergravities consists then in disintegrating the preferred
Kac-Moody algebra into the gravity line (Ap_1) times the duality group. In this way,
the full spectrum of the theory and its deformations can be determined. The general idea
is sketched in the examples in figures 2.1 and 2.2. More details on this approach can be

found in ref. [79]. For similar analyses in theories with 8 supercharges see ref. [80,81]. We

11 10 9 8 7 6 5 I 4 3 2
O @ @

Figure 2.1: Decomposition of Ey1 in terms of (Ay x Ag) x Az. All the black nodes neigh-
bouring the gravity line are disabled and the cyan nodes represent the duality symmetry of

the maximal theory in eight dimensions.

have briefly presented the Kac-Moody approach as a valid method for deriving the duality
symmetries, the spectra and the consistent deformations of extended supergravities, but
we would like to stress that it still remains unclear whether Kac-Moody symmetries play

a more fundamental role in supergravities and string theory. The case of E1; has recently
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Figure 2.2: Decomposition of Dg ™t in terms of (A1 x A1) x Az. Again, all the black
nodes neighbouring the gravity line are disabled and the cyan nodes represent the duality

symmetry of the half-mazximal theory in eight dimensions.

received a lot of attention in the literature [82-85], but there is still no final answer to the
question whether E1; can provide an organising principle for understanding the symmetries

of eleven-dimensional supergravity.

Maximal Supergravities in D = 11

In D = 11, a Majorana spinor has 32 real components and hence the only possible
supersymmetric theory that one can have is maximal supergravity, which, in this case,
corresponds to A/ = 1. Maximal supersymmetry restricts the field content to one massless
supermultiplet, i.e. the gravity multiplet. These massless degrees of freedom are classified

in terms of SO(9) irrep’s, where SO(9) is the little group. They are divided into
D=11: (44a84)pa (128)p <+  {ex® Cuvp; Vu} (2.13)

which represent the vielbein, a 3-form gauge potential and a Majorana gravitino respect-

ively. The full action reads [86]

1 — 1 1
S = M/d“:ne [e““ e Ryuyan(w) — ¥, 4" D, <2 (w + d’)) Yo — ﬂGWW Gvpo
o i
- @% (,yaﬁyéz/p + 12’7aﬁ gpw gép) Q;Z)p (Gaﬁwi + Gaﬂ'yé)
2\/§ _ 131l ST v
T Gty Gags e | (214)
where
Wpab = W,uab(e) + K,uab )
. 1 — — _
Wypab = Wuab(e) T (w,u Ya — Yo Vu¥b + Yy Va wu) )
1 _ _ 1,
Kuab = _Z (@Z}#'qu/)a - wa7M¢b + wb7a¢ﬂ) + ng7 p,uabwp ’
. 3
Guupa = 48[#Cupa} + 5 \/51,!)[“ Tvp @%] ) (215)

and the covariant derivative D acts on spinors as usual Dy, = 0,9, + iwyab b P, .
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This theory has an on-shell RT™ symmetry acting as
Guv — A2 Juv > C;wp — A3 O;wp ) 1/};1 — )\1/2 % ) (2'16)

where A € RT. However, the Lagrangian (2.14) has a non-trivial weight under the
rescaling (2.16). This implies that this RT cannot be promoted to an off-shell symmetry.
Such a symmetry is often referred to in the literature as trombone symmetry [87]. The
presence of the trombone symmetry is a general feature of all ungauged supergravities in

any D.

Maximal Supergravities in D = 10

In D = 10 with one time direction, MW fermions are the irreducible spinors. The max-
imal theories correspond to N' = 2; since the two supersymmetry generators in the theory
are real and chiral, there are two discrete inequivalent possibilities (see also table 2.5):
N = (1,1) (opposite chiralities) and N' = (2,0) (same chirality). These correspond to
type IIA and type IIB respectively. The consistence of the corresponding superalgebra in
ITA and IIB implies the possibility of extension by including gauge symmetries of different
rank. This translates into the fact that the two inequivalent supergravities have different
types of gauge fields.

In this subsection we will explicitly follow the conventions of ref [88]. Again because
of maximal supersymmetry, only the gravity multiplet is allowed; its on-shell degrees of

freedom rearranged in terms of SO(8) irrep’s read

ITA: ((1 ® 28 @ 35y) @ (8y & 56v)), & ((8s ® 565) & (8¢ @ 56¢))y

(2.17)
I1B : (1 ®28@35y) ® (1@ 28@350)), @ (2 (8 @ 56g))y, -
The degrees of freedom in (2.17) can be translated into the following field contents
HA:  {gus Bun & O, O v
(2.18)

1B : {gw,, By, ¢, CO, C2), C¥oolsp; Vs x} :

where the subscript SD on C'® stands for self-dual and the fermions 1, and x are chosen
in ITA to be real and containg two irreducible spinors of both chiralities, whereas in IIB,
they are complex and containg two irreducible spinors of only one chirality.

After introducing the modified field strenghts for the p-form potentials
G = qc@ — gB A €42 | (2.19)
one can define the duality relation between a (d + 1)-form and a (9 — d)-form

xGOD) = (—1)(@dH+D)/2 o(4=d) 8/2 Gld+1) (2.20)

which turns out to give rise to a self-duality (SD) condition for G®), which is the field
strength of C'Y) appearing in (2.18).
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The bosonic part of the Lagrangian of type IIA supergravity reads

— valr_Yom2 - L o—eigpz _ 1 (4=d) /2 | (d+1) |2
fun = VG |R - (007 — GeHP - 3 09 gl
d=1,3
1 (a0 pac® B)] , (2.21)

where H is the field strength associated to the NS-NS 2-form B. Type ITA supergravity
has two different R* symmetries: the first one is the trombone symmetry, analog to the
one already encountered in D = 11, whereas the second one is a proper symmetry of the

Lagrangian and it acts on the fields in the following way
e® 5 Ae?, B o A2, c) 5 \1/2¢c0) 0B 5 \T1/40B) (2.22)

and leaves the rest of the fields invariant.

The bosonic part of the Lagrangian of type IIB supergravity reads

1 2 L 40 1 (4—d) ¢/2 | ~(d+1) |2
g — — = — = H — =
fun = V7G| 5007 - je P - g 3 ctiaer )

1
-5 <c<4> A dC@ A B)] : (2.23)
which has to be supplemented by the SD condition for G®). Since there is no way of
having an off-shell formulation of type IIB supergravity which already takes this condition
into account, (2.23) defines what is often called a pseudo-action. Type IIB supergravity
has two different symmetries: a trombone symmetry (which is, as always, only realised

on-shell) and an SL(2) symmetry. Any element

C

A% = < ¢ Z > € SL(2) (2.24)

acts on the fields in the second row of (2.18) in the following way

L, ertb , B® = (A, B, cW - cW
ct + d B
by — CT*+d1/4¢ . e + d\**
H cT + d wo o X cT + d X5
where, for convenience, we have defined 7 = C© + je % and B® = (—B, 0(2)). In

ref. [89] the SL(2) covariant reformulation of type IIB supergravity can be found. Type
IIB string theory breaks SL(2) into its discrete subgroup SL(2,7Z). This group contains the
so-called S-duality transformation which flips the sign of the dilaton ¢ in a background
with vanishing axion C©). Because of its very definition, S-duality turns out to be a

non-perturbative duality relating the strong- and weak-coupling regimes.
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2.3. The Embedding Tensor Formalism

Any ungauged supergravity in any dimension can be deformed (i.e. gauged) by pro-
moting a certain subgroup of its global bosonic symmetry to a local one. In the last decade,
a very powerful formalism has been developed in the context of extended supergravities in
order to give an exhaustive formulation of the consistent gaugings of supergravity. This is
called embedding tensor formalism [90-92]. In this section we will briefly present a general
discussion in the case of (half-)maximal supergravities in various dimensions; for more
details on this part, we refer to [93]. An analogous formalism may be developed also in
the minimally extended case (i.e. N = 2 in four dimensions, see for instance ref. [94]),
but this goes beyond the aim of this thesis.

The global symmetry group of the (half-)maximal theory, which is fixed by supersym-
metry?, turns out to rigidly determine and organise all the possible deformations, which
can therefore be described in a universal covariant formulation. As we will see later on
more explicitly, the global symmetries of these theories can be interpreted as the remnant
of dualities relating the different string theories from which they originate.

From now on, we will denote the global symmetry group of our ungauged supergravity
theory by Gy. The gauging procedure promotes a subgroup G C Gy to a local symmetry.
This procedure breaks the symmetry of the gauged theory from Gg to G. However, there
is a way of promoting the structure constant of the gauge algebra to an embedding tensor
© which transforms under the full Gy. To summarise this point, as long as one considers
© as a tensor, the full Gy covariance of the theory is recovered.

After gauging GG, one needs to introduce minimal couplings of the vector gauge fields
in order to preserve gauge invariance. This implies replacing ordinary derivatives 0,
with covariant ones D, in the Lagrangian. The algebra gy = lie(Go) is generated by

{tata=1,...dim(go)» Where a is an adjoint index. They satisfy

lta, ts] = fag'ty . (2.25)

Let us denote by V the representation in which the vectors AHM of the theory in exam
transform (for examples see tables 2.6 and 2.7). These vectors will now transform under

both global Gy transformations L® and local G transformations AM (z)
SLAM = —Lo [t M AN aAM = §,AM (2.26)

In order to construct the covariant derivative D, we need to relate indices of V' (M, N, ...)
to adjoint indices («, f3,...); this will allow us to write down a minimal coupling for the

vector gauge fields. This is explicitly done by a linear map

© : V. — g, (2.27)

4Actually, in the half-maximal case, it is only fixed after choosing the number of vector multiplets
n that one wants to couple to gravity, whereas in the maximal theory it is really fixed since maximal

supersymmetry does not allow for extra matter content.
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called embedding tensor which precisely specifies how the vectors enter the gauging pro-
cedure, hence completely specifying the gauged theory. The map defined in (2.27) allows

us to write down the gauge-covariant derivative as
Dy =0, — gAMOn L, , (2.28)

where g denotes the gauge coupling.

The embedding tensor © also explicitly specifies the generators Xy, of the gauge group
Xy = Oty . (2.29)

As a consequence of (2.27), the embedding tensor will in general transform in the tensor
product between the conjugate representation of V' (which we will denote by V') and
the adjoint representation gg of Gp. This will in general contain several irrep’s 6;, with
1=1,...n

OeV g =0D06 - ®0, . (2.30)

However, consistency and supersymmetry restrict © to only live in a subset of all the
possible irrep’s in the r.h.s. of (2.30). This goes under the name of linear constraint (LC);
the procedure of imposing the LC can be regarded as projecting out all the embedding
tensor irrep’s which are forbidden by consistency. It is worth mentioning that, after
imposing gauge invariance of the vectors and the higher-rank tensor fields, supersymmetry
will in general still impose further restrictions. This is why it is normally stated that the
LC is eventually demanded by supersymmetry, even though we would like to stress that,
except for very few counterexamples, bosonic consistency already requires the LC in most
of the cases®. The set of consistent deformations of (half-)maximal supergravities in various
dimensions is shown in tables 2.6 and 2.7.

Gauge transformations A act in the following way on ©
SAON® = gAM ©,,° ([tﬂ]NP Op® — f3,° @NV) . (2.31)

Requiring gauge invariance of the embedding tensor implies a set of quadratic constraints
(QC) which are then needed for consistency. These QC can be rewritten in terms of the

gauge generators (Xps) NP = Xun' expressed in the V representation. This yields
(X, Xn] = —Xun? Xp | (2.32)

which translates immediately into the closure of the gauge algebra. This set of QC (2.32)
contains both a symmetric and an antisymmetric part in M <> N, which are respectively
interpreted as a condition imposing the antisymmetry of the brackets and the Jacobi
identities. We would like to stress that the tensor Xy/n' representing the generalised

structure constants of the gauge group is in general not antisymmetric in M < N and,

5In any case, the reason why this turns out to be the generic situation still remains obscure.
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D Go H # scalars | vectors &)

9 | R*xSL(2) SO(2) 3 Lia) ® 203 | 2013 ® 3(q
8 | SL(2) x SL(3) | SO(2) x SO(3) 7 (2, 3 (2,3) @ (2, 6)
7 SL(5) SO(5) 14 10/ 15 @ 40'

6 | SO(,5) | SO(5)xSO(5) 25 16 144

5 Eo(s) USp(8) 42 27’ 351

4 Er(7) SU(8) 70 56 912

Table 2.6: Summary of some important facts about mazimal gauged supergravities in vari-
ous D. As one can see here, the number of physical scalar degrees of freedom and the

number of embedding tensor components increase rather fast when moving to lower di-

mensions.
D Go H # scalars vectors ©
9 | R*xSO(1,n) SO(n) 14n (141) ) OeH
8 | R*xSO(2,n) S0(2) x SO(n) 1420 (24n) ) neH
7 | R*xS0(3,n) SO(3) x SO(n) 1+3n (3+4n) ., 1enef]
6a | RT xSO(4,n) SO(4) x SO(n) 1+ 4n (4+4n) ;) Oe [
6b|  SO(5,n) SO(5) x SO(n) 5n none none
5 | R*xSO(5,n) SO(5) x SO(n) L+5n | (54n),y ® 1 | DOo[]e E
4 | SL(2) x SO(6,7) | SO(2) x SO(6) x SO(n) | 2+ 6n (2, 64n) 2,0 @ (2, @)

Table 2.7: Summary of some important facts about half-maximal gauged supergravities in
various D. The free parameter n represents the number of extra vector multiplets that can
be coupled to the gravity sector. Only in the case D = 6b the theory does not contain any

vectors; in this case n represents the number of self-dual tensor multiplets.

indeed, consistency only requires that Xy, N)P is killed whenever contracted with Xp.
Precisely because of this, the embedding tensor formulation of a gauged supergravity
requires the introduction of higher-rank form potentials in the theory.

Any embedding tensor configuration O satisfying the LC and QC, i.e. schematically
P(®) = 0 (LC) , (2.33)
P,O®0) = 0 (QC) , (2.34)

defines a consistent gauged theory, where, in (2.33) and (2.34), P; and Ps represent suitable

projectors selecting the forbidden linear and quadratic irreducible pieces that © could in
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principle generate.

In many explicit cases in various D, gauged supergravities have been worked out in
detail in the literature by making use of the embedding tensor formalism. For further
details on this topic, we want to refer to [92,95-99] and [100] for gauged maximal and

half-maximal supergravities respectively.

Fermions and Supersymmetry

So far we have seen that the ungauged theory defines how deformation parameters
modify the terms in the Lagrangian for p-form potentials in order for the gauged action to
be gauge-invariant. This is basically done by means of the minimal substitution 0 — D
and by defining gauge-covariant field strenghts. Nevertheless, this does not yet guarantee
invariance under supersymmetry.

The aim of this section is to understand how to deform the Lagrangian in order to ob-
tain a well-defined, gauge-invariant action which, on top of this, preserves supersymmetry.
We shall see that the addition of couplings between the fermions and a scalar potential,
both driven by the embedding tensor, together with an extra gauge-covariant topological
term, restores supersymmetry. As a consequence, one also needs to modify the supersym-

metry transformations for the fermions and therefore the Killing spinor equations.
‘Cgauged = ‘Cungauged [a — D] + ﬁtop + Efermi mass T £pot . (2-35)

We already saw that scalars in (half-)maximal supergravities span the coset geometry
Go/H, where Gy is the global symmetry group and H its maximal compact subgroup.
All the fermions only tranform non-trivially under local H transformations and, as we
already observed in section 2.2, the scalar coset representative V needs to mediate all the
interactions with the p-forms. Moreover, in the gauged theory, V is also needed in order
to couple the fermions to the embedding tensor.

In particular, the fermions always transform under the R-symmetry (see def. in sec-
tion 2.1) group, which is in general only a subgroup of H. It only coincides with the full
H in maximal theories, whereas in half-maximal theories it is strictly a proper subgroup
of H. The gravity multiplet contains two different types of fermions: the gravitino v,
(helicity 3/2) and the dilatino x (helicity 1/2). The inclusion of n extra vector multiplets
(only possible in the half-maximal case): the gaugino A (again helicity 1/2). The way
these different fermions transform with respect to H is given in tables 2.8 and 2.9. Let
us now examine the term Lermi mass 10 (2.35) in the simpler case of maximal supergravit-

ies®. By fermionic mass terms we mean bilinear couplings between the fermions without

5The maximal case is simpler because H = Hpg. In half-maximal theories, H = Hpg x SO(n) and
fermions in the gravity multiplet (¢, and x) are SO(n) singlets. The gaugini A, instead, transform non-
trivially under SO(n) and one must introduce new fermionic couplings (giving rise to new T-tensor irrep’s)

which transform non-trivially under SO(n) as well.
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D H Hpg W, irrep’s Y irrep’s

9 SO(2) U(1) Ly © 1y 2141 © 2 1y

8 | SO(2) x SO(3) U(2) 201 ® 211) | 2041) D 21y ® d(ss) D Ay
7 SO(5) USp(4) 4 16

6 | SO(5) x SO(5) | USp(4) x USp(4) | (1, 4) @ (4, 1) (5,4) ® (4, 5)

5 USp(8) USp(8) 8 48

4 SU(8) SU(8) 8®8 56 © 56

Table 2.8: R-symmetry groups of the various mazximal supergravities in D > 3. The

different fermions’ irrep’s are given with respect to Hpg.

D H Hp 1y, irrep’s X irrep’s A irrep’s

9 SO(n) none

8 | SO(2) x SO(n) U(1) Loy © 1y | Lay @ 1y | Lay @ 1o
7 | SO(3) x SO(n) SU(2) 2 2 2

6 | SO(4) xSO(n) | SUQR)xSU@) | (2,1) & (1,2) | (2,1) & (1,2) | (2,1) & (1, 2)
5 | SO(5)xSO(n) | USp(4) 4 4 4

4 SO(G) X SO(n) U(4) 4(+1) D Z(—l) 4(+1) (&%) Z(—l) 4(+1) (&) Z(—l)

Table 2.9: R-symmetry groups of the various half-maximal supergravities in D > 3. The

different fermions’ irrep’s are given with respect to Hpg.

derivatives. These couplings, as we commented before, must be mediated by the scalar

fields through V. Schematically, they are the form

671 'Cfermi mass — 9 (Al @M VNV 1/11/ + AQY'.YM ¢,u + A3YX) + h.c. ) (236>

where e is the determinant of the spacetime vielbein, g the gauge coupling and A;, A and
Ajs represent some tensors linear in the embedding tensor and depending on the scalars.
These objects are usually called fermionic shifts, for a reason which will become clear in
a moment.

Part of the terms in (2.36) are needed to cancel the supersymmetry variation of the
new couplings in the Lagrangian between the gauge fields. The rest of them, need a

modification of the Killing spinor equations induced by the gauging

(5 wﬂ)gauged = (5 wﬂ)ungauged + gA1€ , (237)
(5 X)gauged = (5 X)ungauged + gA2 € , (238)
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where € parametrises a local supersymmetry transformation and A; and A, are the same
objects appearing in (2.36). As we already anticipated, the modification of (2.37) and

(2.38) implies the presence of a new potential term in (2.35) of the form
e Loy = —g?V = 2¢% (JAi]* — |42)?) (2.39)

where A; and A, depend on the scalars.

The T-tensor

In the last section we formally introduced the fermionic shifts A;, As and As. We
already saw that these are certain combinations of the embedding tensor and scalars
which only transform with respect to local H transformations. These objects are obtained
from © by acting on any of its fundamental indices of Gy with V from the right. What
we then get is often called the T-tensor [101]. Group-theoretically, it corresponds with
the branching of the embedding tensor (Gg) irrep’s with respect to its maximal compact

subgroup H:

HCGy
—

©O=0D0d--- T=0t1®te® )@ @lop® )& . (2.40)

The irreducible components t;; of the T-tensor are precisely the building-blocks of the
fermionic shifts. We will give the explicit construction in due course in the following
chapters whenever examining a specific theory in detail. For the moment we summarise
in table 2.10 the decomposition in T-tensor irrep’s in the case of maximal supergravities

in various dimensions.

D H = Hp T-tensor irrep’s

9 U(l) 1(_2) @ 1(_1) @ 1(0) @ 1(+1) @ 1(+2)

8 U(1) x SU(2) 1(_1) @141 @ 3(_1) ¥ 3(+1) & 5(_1) S¥ 5(+1)

7 USp(4) 135314 35

6 | USp(4) x USp(4) (4,4) © (4, 16) & (16, 4)
5 USp(8) 36 @ 315

4 SU(8) 36 © 36 @ 420 & 420

Table 2.10: The irreducible components of the T-tensor in gauged maximal supergravities
in D > 3. These irrep’s contribute to the different fermionic quadratic couplings inside

Efermi mass driven by Aly As and As.

In general, we can say that the T-tensor analysis turns out to be very useful in order to

study the problem of the stabilisation of the scalars into a maximally symmetric vacuum
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and computing the mass spectra for the scalars at the critical points. This is related to the
fact that, for such an analysis, we need the formulation of the gauged supergravity theory
in exam in a specific point of moduli space (i.e. the scalar coset Go/H, in this case).
Whenever specifying the theory to a particular point, the full Gy covariance is broken to
its compact part H and hence the T-tensor becomes the natural object to use.

In this section, we hope to have covered some relevant generalities about the embedding
tensor and the T-tensor. The fact that the global symmetry group differs for any D implies
that the development of the formalism for a specific theory and the group-theoretical
analysis behind it needs a case-by-case study. In the following chapters, some specific
theories will be studied and examined in detail. This will allow us to use them for various

physical purposes.

2.4. Minimal D = 4 Supergravities and Deformations

In the previous sections we have introduced maximal supergravities in D = 10, 11 and
subsequently we have discussed the embedding tensor formalism as a tool for classifying
deformations of extended supergravities. In this section, we will now discuss minimal
supergravities in D = 4 and a particular set of deformations which will be relevant for us
later in this thesis.

The minimal amount of supercharges in four dimensions is 4, corresponding to N’ = 1
(see table 2.5). AN = 1 supergravities in D = 4 have a universal part coming from the
gravity multiplet containing the graviton e,* and a Majorana gravitino 1,,. The universal
part of the action is made out of an Einstein term plus a Rarita-Schwinger term describing
the dynamics of a spin-3 particle coupled to gravity (see e.g. refs [51,102,103])

1 _
S = 3.2 d*ze (ea“ e Ryyap(w) — Y, ~HVP Dl,wp) , (2.41)
where D, = 0,1, + %wu“b 7% 4),,. The above action is invariant under the following

local supersymmetry transformations

Se = 5€v" Py, Sty = Dye (2.42)

only at a linear level in 9 if w is the usual torsion-free connection w(e). In order for the
(2.41) to be invariant at all orders one needs to include interaction terms in the Lagrangian
which are higher-order in the gravitino. These terms are obtained by correcting w(e) with

torsion terms quadratic in .

The Coupling to Chiral Multiplets

As we saw in table 2.4, N' = 1 theories allow for an arbitrary number n of chiral
multiplets. The total field content is described by

(%, A%} (2.43)

a=1,..n
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where each of the 2% is a complex scalar field and each of the A% is a chiral fermion.
These fields describing physical degrees of freedom must be supplemented by an extra
unphysical compensator multiplet {zo, )\0}. The above multiplets can be combined into
{z[ Y } I=0,...m" In section 2.1 we already saw that supersymmetry restricts the complex
scalar fields to span a Kéhler-Hodge manifold. A Kahler manifold Mg is a manifold
of real dimension 2n + 2 described by local complex coordinates 2! = ¢! + i¢!™", for
I =0,...,n such that

s My is Hermitian, i.e. there exists a coordinate system in which the metric takes
the form
ds? = 2K;7d2" ® dz’ |

» the hermitian metric K;; defines a closed Kdahler form
J = —2iK,;ds" A dz
with dJ = 0.

As a consequence, every Kahler manifold has a metric which, locally in every coordinate
patch, can be written as
K7 = 618jK(z,2) , (2.44)

where the real function K(z,Z) is called Kdahler potential. Please note that K is not
uniquely determined by (2.44) since the following transformation (therefore called Kahler
transformation)

K(z,2) — K(z2,2) + f(2) + f(2) (2.45)

leaves the metric K7 invariant and therefore it is called Kahler symmetry. Such a sym-
metry transforms the fermions non-trivially and defines a U(1) bundle on the Kéhler
manifold. This ensures that Kahler transformations are locally well-defined on intersec-
tions of charts. In order for Mg to be Kahler-Hodge the following topological condition
has be satisfied by the Kéahler form J

C]// J =4dmn, (2.46)

where ¢ is the charge defining the U(1) covariant derivatives and n a suitable integer”.
Going back to our N' = 1 supergravity coupled to chiral multiplets, the n complex
scalars {zI } will span a Kéahler manifold Mg and the Kéhler metric will determine the

kinetic Lagrangian for the scalar fields

Lign = —K;70,2"0#%7 . (2.47)

"Mathematically, the condition (2.46) requires the existence of a line bundle L — My such
that [51] c1(L) = [J], where ¢1 denotes the first Chern class and [J] the cohomology class defined by the

Kéhler form.
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Superpotential Deformations

N = 1 supergravity coupled to chiral multiplets can be deformed by adding an arbit-
rary holomorphic function W (z) called superpotential. W (z) is invariant under coordinate
transformations on Mg and we will see later how it transforms under Kéhler transforma-
tions in order to keep physical quantities invariant. Superpotential deformations of N =1

supergravity have the following physical consequences:

= A scalar potential is induced for {zI } of the form
Vo= ek (—3]W]2 + KIJDIWDJW> , (2.48)

where K17 is the inverse Kihler metric and the covariant derivative D is defined as
D/W = oW + 0rKW.

» Quadratic fermionic couplings to the scalars (often called fermionic mass terms) arise

of the form

1 T _
Ltermi mass = 7 Ma/o ¥y (L=7) 7" v — 5 muy X' x7 +mrd, X"+ he., (2.49)

where
m3/2 = eK/2W ’

mry = X2 DD;W | (2.50)

1
mr = EGK/QD]W

» The fermions 1), and x! have modified supersymmetry rules by terms in which the

superpotential enters. These new scalar-dependent terms are

1 1 o
@y = 5e2Wa . (0xT)y = —ﬁeK/QK”DjW . (2.51)

From (2.51) we can see that, in a maximally symmetric vacuum with only non-zero
scalar vev’s, having D;W # 0 inevitably breaks supersymmetry, whereas having W # 0
does not necessarily imply supersymmetry breaking since the supersymmetry variation
of the gravitino always has the universal contribution in (2.42) given by the covariant
derivative of € which can compensate the W term. Looking at (2.48), one realises that the
negative definite contribution in the scalar potential is the only contribution associated
with supersymmetric vacua, which therefore can only be Minkowski and anti-de Sitter
(AdS). De Sitter (dS) vacua are only possible by turning on the positive contribution in
(2.48) and hence can never be supersymmetric. Moreover, from (2.50) one can infer that
the cosmological constant in a supersymmetric vacuum can be interpreted as the gravitino

mass.



Chapter 3

Flux Compactifications

Starting from the various string theories in ten dimensions described in chapter 1,
one needs to construct compactifications thereof in order to make contact with four-
dimensional low energy descriptions. The first comapctifications studied in the literature
were those ones on Ricci-flat six-dimensional manifolds (e.g. tori or Calabi-Yau (CY)
manifolds). Unfortunately, as we mentioned in the introduction, these turned out to give
to rise to a number of massless scalars (a.k.a. moduli) which are in contradiction both
with particle phenomenology and with the precision tests of GR.

In this chapter we will briefly review flux compactifications as a mechanism for gener-
ating a scalar potential for the moduli. The lower-dimensional effective description is gen-
erically a gauged supergravity and it enjoys a duality symmetry coming from the winding
modes of strings along the compact internal directions. This naturally suggests the intro-
duction of non-geometric flures, whose name derives from their unclear string-theoretical
origin. In the last section we discuss T-duality covariant proposals such as Generalised
Complex Geometry (GCG) and Double Field Theory (DFT) as possible frameworks in

which to address the problem of the higher-dimensional origin of non-geometric fluxes.

3.1. Dimensional Reductions

In this section we want to analyse a class of well-understood (geometric) compactific-
ations of string theory. This corresponds to studying the propagation of superstrings on

a background of the form

My = M(1,9—d) x Mg, (3.1)

where M g_g) indicates the (10 — d)-dimensional background spacetime and My is the
compact internal d-dimensional manifold. The physical properties of the lower-dimensional
effective theory obtained after the compactification procedure depend on the internal geo-

metry of My.

Kaluza-Klein Reductions

The original construction of a compactification was done in the context of pure gravity
theories. In refs [104, 105] they considered the reduction of five-dimensional Einstein

gravity on a circle S*. This construction is called Kaluza-Klein (KK) reduction, after
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the authors of the above references. Starting from the Einstein Lagrangian in D + 1

dimensions?!

C = ViR, (32)

one can compactify the (D + 1)-th direction y on S'. The coordinates 2™

are split into
(x*, y), where p runs from 0 to D —1. As a consequence of the periodicity in y, the metric

admits a Fourier decomposition of the form

gMN xuay ZQMN :I;:U' L ’ (33)
nez

where L is the compactification radius. The KK reduction consists of the aforementioned
compactification on a circle, together with the restriction to the massless sector of the
lower-dimensional theory. This approach is justified by observing that all the non-zero
modes in the expansion (3.3) have a mass which is proportional to 1/L and hence relatively
large if L is chosen to be small enough.

The reduced D-dimensional theory describes a vector A, and a scalar ¢ in addition to

the metric g,,. The reduction Ansatz is the following
g = 2*%ds® + e 22 P729 (dy + A)? (3.4)

where A = A, dz" and o? =

dimensional Lagrangian reads

m. After performing the reduction, the D-

1

1 - —1)«a v
L=+—g (R - 5(<9¢)2 - € 2(b-1) ¢FWFﬂ> : (3.5)

where Fy,, = 20,4, is the field strength associated to A,. The Lagrangian (3.5) de-
scribes the Einstein-Maxwell theory in D-dimensions coupled to the scalar field ¢ (often

called dilaton). The corresponding equations of motion read

Cuv = 5 (04000 — 5(09)* gw) + 3¢ 2PV (F, BP — [ F2gu)
V. (6—2 (D-1)a¢ F/W) =0 , (3.6)

O¢ = —3(D— ae2(P-Na¢ g2

9

where G, is the Einstein tensor, F 2 = F,, F* and O = 0, 0*. From the third equation
of motion in (3.6), one immediately realises that setting ¢ = const. is inconsistent, which
means that the dilaton associated with the size of the compactification circle has to be
dynamical. After such a reduction on a circle, part of what used to be spacetime (external)
symmetry in the (D + 1)-dimensional theory becomes gauge (internal) symmetry in the
D-dimensional theory, as summarised in figure 3.1.

In a more general context, as we saw at the beginning of the section, one needs to com-

pactify more than one dimension in order to relate four-dimensional (or any other D < 9)

!Note that here all the hatted quantities indicate (D 4 1)-dimensional objects.
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D — dim.
diffeomorphisms
(D +1) — dim.
diffeomorphisms
U(1)

gauge symmetry

Figure 3.1: The KK reduction from D+1 to D breaks higher-dimensional diffeomorphisms

into lower-dimensional diffeomorphisms plus U(1) gauge transformations.

supergravity to string theory. The straightforward generalisation of the above construc-
tion is a so-called toroidal reduction, where Mg is chosen to be T% = S x ... x S!. The
—_—

d times
dimensional reduction of type IT supergravity on 7% (or equivalently of eleven-dimensional

supergravity on 79%1) gives rise to maximal (ungauged) supergravity in 10 —d dimensions.
Instead, if one wants to go beyond the ungauged case to include a scalar potential, one has
to go beyond tori and deal with internal manifolds with non-trivial geometry. However,

there is no guarantee that such compactifications are consistent in the general case.

A KK reduction is called consistent [106] when all the gauge bosons of the isometry
group G of the compact manifold are retained in a truncation keeping only a finite number
of lower-dimensional fields, with the essential requirement that setting the truncated fields
to zero is consistent with their own equations of motion. Put in another way, the reduction
ansatz is consistent if all the higher-dimensional equations of motion are satisfied as a
consequence of the equations of motion for the retained lower-dimensional fields. It is
only in very exceptional cases that such consistent KK reductions on compactifying spaces

other than tori are possible.

A particular class of compactifications which has received attention in the literature is
that of coset reductions, which include the relevant case of sphere reductions?. These are
particularly interesting since they preserve supersymmetry completely and they can be
used for obtaining semisimple gaugings of maximal supergravities in various dimensions.
Nevertheless, only in very few cases this procedure has been proven to be consistent.
The known sphere compactifications giving rise to gauged maximal supergravities are

summarised in table 3.1. A further discussion on this point can be found in refs [107,108].

SO(d+1)
SO(d) *

2Please note that the sphere S% can be seen as the coset space
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D | Gauging Origin

8 | SO(3) ITA on S? [109)

7 | SO(5) | 11D on S* [110,111]
6 | SO(5) ITA on S* [112]

5| SO(6) IIB on S° [113]

4 | SO(8) 11D on S7 [114]

Table 3.1: The semisimple compact gaugings of maximal supergravities obtained from
sphere reductions of mazrimal supergravities in D = 10 or 11. For every case we give the
refs where the consistency of the corresponding sphere reduction is discussed. We would
like to stress that the S° reduction, which provided the first evidence for the AdS/CFT

correspondence [115], has not yet fully been proven to be consistent.

Twisted Reductions

In the previous section we have seen how a toroidal reduction of a gravity theory
can give rise to theories in lower dimensions including lower-spin degrees of freedom (i.e.
vectors and scalars). However, such reductions do not contain any mechanism to stabilise
the scalar fields into a vacuum by giving them a mass. Subsequently, we saw that going
beyond toroidal compactifications is not only needed, but in general very difficult to achieve
because of consistency issues. As an example of this, we briefly discussed sphere reductions.

In this section, we will see how to exploit the global symmetry of a gravity theory
in order to obtain a deformed lower-dimensional theory, i.e. in which the field strenghts
associated to the gauge fields are modified and a scalar potential appears. In this context
we mean by twisted reduction the dimensional reduction over a group manifold [116] (SS).
These reductions will turn out to be very useful since their consistence can proven in a
very simple and general way.

A group manifold G is a set equipped with both a group structure defined by a mul-
tiplication operation and a differentiable manifold structure. The extra compatibility
condition between the two so far independent structures is that the group multiplication
operation and the map defining the inverse of a group element are differentiable maps.
This allows us to introduce a coordinate system {y™}, _; dim(c) 10 terms of which one
is able to parametrise the general element g(y) € G. Because of the definition of group
manifold, one can always define the following two diffeomorphism (i.e. differentiable co-

ordinate transformations)
g > A(h)g=hg , g > Agr(h)g=gh , (3.7)

which are called left and right multiplication, respectively. However, Ay, and Agr are not

isometries of the metric in general. Still, one can always define a set of left-invariant
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1-forms {c™}

T, o™ = g tdg , (3.8)

where {7}, } are the generators of G and d = dy™ Byim' Expressed on the coordinate basis

of 1-forms {dy™}, the left-invariant forms read
o™ = UM, (y)dy" (3.9)
where U™, (y) are suitable functions on G. It turns out that the quantities

fon? = —2(O N (U)o, Uy (3.10)

m

do not depend on y and exactly represent the structure constants of G. The left-invariant

1-forms {¢™} define a class of metrics on G for which Ay, is an isometry
dst, = gmno™ @ o™ . (3.11)

These isometries defined by Ay are generated by a basis of Killing vectors {L,,} which

satisfy the so-called Maurer-Cartan equations
[Lma Ln] = fmnp Lp s (3.12)

where f,,F are given in (3.10). Please note that there exist group manifolds for which
fmn™ # 0, but strictly speaking they are not good compactifying internal manifolds [116],

since their volume form is trivial in cohomlogy and hence it is not well-defined [117].

Reductions of Gravity on Twisted Tori

Starting from the Ansatz for toroidal reductions (generalisation of (3.4) for a T¢ with

coordinates (z#, y™))
82 = 29 ds? 1+ 2P0 M, (dy™ + A™, dz) (dy" + A", da) | (3.13)

where m, n = 1, ..., d and

_ d (D-2)«
a2:2(D+d—2)(D—2) = (3.14)

we promote the internal part of the metric to the left-invariant metric on a d-dimensional

group manifold defined in eqn. (3.11). This procedure yields the following reduction Ansatz
ds* = 22%ds® + PP My, (0™ + A™, dat) (6" + A", dz") (3.15)

where ¢™ = U™,, dy™. The consistency of this construction is guaranteed by group theory,
in the sense that the KK truncation retains as lower-dimensional fields only those ones
which are left-invariant. An inconsistency in the reduction would imply the appearence

of left-invariant fields in the equations of motion of the truncated fields. However, this
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is impossible because one can never build a quantity which is not left-invariant out of
left-invariant fields.

As sketched in fig. 3.1, the reduction Ansatz (3.4) breaks the D-dimensional diffeo-
morphisms into (D — d)-dimensional diffeomorphisms times an internal symmetry GL(d).
The general idea of these twisted reductions is to make use of the y-dependent GL(d)
transformation U (called twist matriz) in the compactification procedure. According to
the (3.10), U will turn on non-zero structure constants f,,” which will appear in the
lower-dimensional theory as deformation parameters linearly modifying the field strengths
of the vectors A™, and inducing a quadratic scalar potential.

By evaluating the Einstein Lagrangian (3.2) for the Ansatz (3.13), one finds

L=+\—g|R+ iTr(DHMD“M_l) - %(6@2 - ieﬂa—ﬂ)qﬁanFmWFW - v} ,

(3.16)
with
lew = 28[M Amy} — fnpm Anu AP, and DMan = 8M Myn + 2fq(mp Aqu Mn)p ,
(3.17)
whereas the scalar potential V' reads
1 —Q m n S m nr
V = 162(5 V(2 frun? Fog™ M™ 4 frn? for® M™M™ M) (3.18)

where M"™" represents the inverse of M,,,.

The lower-dimensional deformed theory is exactly the one obtained by gauging a sub-
group of GL(d), which is the global symmetry group of the undeformed lower-dimensional
theory obtained by means of a toroidal compactification. For compactifications of ten- or
eleven-dimensional supergravities, the deformation parameters f,,,” are often called met-
ric flur (wmpP) since they are associated with the spin connection of the internal manifold.

Another ingredient that can be added to these compactifications are the so-called
gauge fluzes. These are possible whenever a p-form gauge potential appears in the D-
dimensional theory coupled to gravity in a sort of Einstein-Maxwell theory. Gauge fluxes
are then nothing but the components of the aforementioned gauge potential integrated
along the internal directions. Such an integration gives rise to non-vanishing fluxes only

when the internal manifold admits non-trivial p-cycles.

3.2. String Compactifications with Metric and Gauge Fluxes

In the previous section we have shown how compactifications of theories including
gravity give rise to lower-dimensional theories with non-trivial internal symmetry, even
though in general we saw that it might be difficult to find the internal geometry being

able to describe the correct lower-dimensional effective description (e.g. all the moduli
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stabilised in a dS vacuum). In this section we will review (geometric) flux compactifications
in string theory with the inclusion of gauge and metric fluxes.

As we saw more in general in the previous sections, toroidal reductions of string theory
unfortunately give rise to a lower-dimensional ungauged supergravity, where therefore all
the moduli are massless. What one needs is to land in a gauged supergravity, e.g. in
D = 4, in order to effectively see a potential for the moduli fields. A way of generating
a gauging in the effective theory is to include flures in the compactification procedure.
We extensively saw in the previous sections that curving the internal manifold is a source
of potential that corresponds to adding metric flux. Now we will see which is the set of
fluxes that have been studied in string compactifications and which kind of physics they
give rise to.

Since the turn of the millenium, a lot of progress has been made in the context of flux
compactifications of string theory in order to obtain four-dimensional effective descrip-
tions with a number of desired features. In particular, from a phenomenological point
of view, one is interested in a vacuum with small but positive cosmological constant and
spontaneously broken supersymmetry. This implies the necessity of finding de Sitter (dS)
solutions from string theory compactifications. In addition to modelling dark energy, these
are relevant for embedding descriptions of inflation in string theory. Moreover, Anti-de
Sitter (AdS) solutions are employed in holographic applications in order to study physical
systems which have a conformal symmetry realised in the UV. Interesting reviews in flux

compactifications are refs [118,119].

Flux Compactifications in Type II String Theory

Many type II string theory constructions related to flux backgrounds compatible with
minimal supersymmetry have been studied so far. In particular, the mechanism of inducing
an effective superpotential from fluxes [120] has been extensively studied in the literature
for those compactifications giving rise to a so-called STU-model as low energy description
[121-125]. These theories arise from the 7°/(Zy x Zs) orbifold compactifications of type
IIB with O3/O7-planes (and duals thereof).

After denoting by {nm}m:1,...,6 the basis of 1-forms on the torus, the Zs x Zso orbifold
action is defined by?

O = (oY, o0t P n®) e (nh 0P = =t =P =)

6

(3.19)
b2 = (n', A %ot 0 0% — (=t =0 0ot =0t %)

the full Zy x Zg being {1, 61, 02, 61602}. Such an orbifold action forces the factorisation of

T® shown in figure 3.2. The above orbifold action has no invariant 1-forms (nor 5-forms),

3Here we follow the conventions in ref. [126].
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nt n’ n°

Figure 3.2: T6 = T? x T? x T3 torus factorisation and the coordinate basis.

whereas it admits the following set of invariant 2-forms (and dual 4-forms)

_ 12 _ 34 _ 56
w1 =17 y W2 =1 y W3 =1 ;
(3.20)
Ol = P62 = 126 g3 o 123
where n'?2 = n' A n?, and the following invariant 3-forms
135 235 451 613
Qo =1 , a1 =17 ; Q2 =1 , a3 =1 )
(3.21)
B0 = p246 Bl = pli6 82 = 362 B3 = P2
After choosing the normalisation
/ n'23456 = volg | (3.22)
Me
the invariant forms defined above satisfy
fMG ag N 50 = —volg , fMG ar N 5‘] = volg 5}] , (3.23)

where I, J = 1, 2, 3.
The Kihler 2-form J can be expanded in terms of the H2(Meg,Z) basis elements
introduced in (3.20) as
J = Ajwi + Aywy + Azws , (3.24)

where {A;} are real moduli (often called Kdhler moduli) measuring the area of the surface
of T? for I = 1,2,3. The holomorphic 3-form 2 is, instead defined in terms of the
H3(Me,Z) basis elements introduced in (3.21) as

127.

3
Q:ozo—}-am'l—|—BI%—|—,6’07'17'27'37 (3.25)
T

where {’TI } are some extra complex moduli (often called complex structure moduli).

The six geometric moduli introduced in (3.24) and (3.25) come from the internal com-
ponents of the ten-dimensional metric tensor and generate the moduli space parametrising
the possible metrics on 76/ (Zy x Zsy) away from singularities. These metrics can be ex-

plicitely written as

3
Ar 1\ 2 2 -
dst = ;Im(ﬂ) (‘7_1|2 @)% + ()7 = 2Re(rD) ' @ 7721) _ (3.26)
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Compactifications of type IIB string theory on a T/ (Zs x Zs3) orbifold break super-
symmetry down to % of the original amount, thus giving rise to effective four-dimensional
descriptions preserving A/ = 2 supersymmetry.

Subsequently we will further break supersymmetry to N’ = 1 by means of the following

Zo action

o = (YA ad 0t 0t n®) — (=0t =% =P, =t =P, —n®) . (3.27)

The combined action of the orientifold ¢ with the orbifold group generated by #; and
0y gives rise to a Z3 parity describing O3- and O7-planes in the type IIB duality frame.
The T9/ (Zo x 7Zs) orbifold and orientifolds thereof are very interesting setups since the
internal manifold is its own mirror. The situation in CY compactifications is much more
complicated and one needs mirror symmetry [127] to relate different CY manifolds which
are linked to each other via dualities. In the Zo X Zo orbifold, instead, one can have low-
energy effective descriptions which are related by dualities and are still formally described
by the same effective theory, where only the fields and the couplings have been transformed.
In particular, this means that everything which we are here introducing in the context of
type IIB compactifications with O3- and O7-planes can reformualted or reinterpreted,e.g.
in the language of type IIA with O6-planes.

The O3-planes are described by the involution ¢ given in (3.27), which are required
to sit at each of the 4 x 4 x 4 = 64 fixed points of 0. The O7-planes, instead, are in a
triplet and are described by the involutions {0 61, o 03, 0 61 62}.

The moduli space of type IIB orientifolds with O3- and O7-planes is given by {S, T7, Ur},
where S represents the so-called aziodilaton, T are the Kahler moduli and U; are the com-

plex structure moduli

S = Cy+ ie ? ,
1 L,
T = —— f (04 ANwr +te AJAK) ) (3.28)
VOlG Me
UI = TI ’
SL(2)\”
with I # J # K. These scalars span a coset manifold given by <SO(2)> . Please note

that the expression of 17 simplifies due to the absence of Cy and By which are projected
out by the orientifold action. These compactifications, as anticipated above, preserve
N = 1 supersymmetry and the dynamics of the scalars in the case with no fluxes is totally

encoded in the following Kéhler potential

3 3
K = —log (=i (S—28)) = > log (=i (Tr —Tr)) — > log(—i (U —Ur)) . (3.29)
=1 I=1

In the absence of fluxes, the Lagrangian for the above 7 complex moduli is only given by

the kinetic part given in terms of K that we already introduced in (2.47). Now we will
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discuss how the introduction of fluxes induces a potential for the above scalars which can
be written, as according to (2.48), from a superpotential.

Gauge fluxes are constant non-zero background values that the field strengths of the
p-form fields in the theory can aquire. In type IIB with O3- and O7-planes, the only
allowed gauge fluxes are Hz and F3, which are associated with both the NS-NS H3 and
R-R Fj 3-forms respectively. These field strengths are given by

F3 = F3 —H3 ANCy+ F3

_ (3.30)
Hs = dBs + Hj

The background fluxes introduced in (3.30) can be now expanded on the basis of 3-forms

introduced in (3.21), thus yielding

Hg = byag + ng) ay + ng) B] + bg 50 ,

()

_ (3.31)
F3 = azag + ay

ar + CLSI) B+ agB°

The above fluxes induce a superpotential deformation in the effective N' = 1 description

which was first studied in ref. [128]. The superpotential W reads

W = (Fs — SHs) A Q. (3.32)
Me

After plugging here the expression of the holomorphic 3-form €2 given in (3.25), one finds
W = P (Ur) + P,(Up) S, (3.33)

where P; and P» are cubic polynomials in the complex structure moduli given by

U, Uy U
P (Ur) = ao — Zagl) Ur + Zaél)% —a3U U Us
' I ' n U 11]2 Us (3.3)
P(U) = —bo + 00 Ur — zbyT + by Uy U Us
7 7

The N = 1 supergravity defined by the above superpotential has a no-scale feature due to
the absence of the moduli 7. This implies that they appear as completely flat directions
in the scalar manifold. The line of including some non-perturbative effects such as gaugino
condensation [129] has been considered as a possible mechanism to further stabilise the
Kahler moduli (see e.g. refs [22,130]).

From now on, for simplicity, we will restrict ourselves to the so-called isotropic limit
of the T%/(Zy x 7Zs) orbifold, which basically reduces to 3 the number of independent

compex moduli vevs by imposing

T1 = T2 = T3 =T and U1 = U2 = U3 =U s (335)
: SL(2) \* . .
which span the scalar coset m . As far as the fluxes are concerned, the isotropic

limit implies the following identifications

agl) = a§2) = ags) =a; and bgl) = ng) = b§3) =b . (3.36)
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The theories described by this scalar content and the superpotential deformations thereof
are often referred to in the literature as STU-models. Apart from being simpler, we will
see in chapter 5 that these N' = 1 theories have an interesting relation with particular
truncations of NV = 4 gauged supergravities. The most general isotropic superpotential for
these supergravity models is up to linear in S and up to cubic in T" and U, and therefore
it admits 2 x 4 x 4 = 32 couplings. These couplings, as we will see in the next section,
are related to the complete set of generalised fluzes.

As we were anticipating previously, the simplicity of the Zs x Zso orbifold allows us to
interpret the superpotential appearing in the effective A/ = 1 description as arising from
any compactification in the preferred duality frame. After choosing the duality frame,
what will change is the flux label that one assigns to every superpotential coupling within
the STU-model. In particular, also the set of allowed geometric fluxes will give rise to
different superpotentials depending on the choice of duality frame.

The most general geometric (i.e. gauge and metric fluxes) set of fluxes in type IIB
with O3- and O7-planes only consists of F3 and Hjs fluxes, since metric flux turns out to

be projected out by the orientifold involution. The corresponding superpotential reads?
Wekp = Pr(U) + SPy(U) , (3.37)

with Pr(U) = ap —3a1U +3axU? — agU? and Py(U) = by — 3by U + 3by U? — b3 U3.
In type ITA with O6-planes [121], the set of geomteric fluxes includes some metric flux,
even though part of it is still projected out by the orientifold involution, only half of
the components of the possible NS-NS gauge flux H and R-R gauge fluxes. The precise
dictionary will be explained in detail later.

As originally argued in ref. [131], applying a T-duality transformation to a background
given by the NS-NS flux H,. along the a direction gives rise to the metric flux wy.*, which,
as we saw previously, can be interpreted as the structure constants of the isometry algebra
of the internal space. Furthermore, since type 1IB is invariant under S-duality, it makes
sense to construct a set of fluxes closed under S-duality. It turns out that such a duality
transformation corresponds to an inversion of the axiodilaton S and hence it interchanges
all the superpotential couplings linear in S with those ones independent of S. Thus, within
type IIB geometric compactifications, F3 and Hs are a doublet under S-duality.

The N =1 effective descriptions presented above are a very useful playground to un-
derstand the mechanism of moduli stabilisation with fluxes. With respect to the string
theory interpretation of the theories at hand, progress in this direction has been (par-
tially) motivated by the search for dS solutions. Firstly, a no-go result was proven which
rules out the possibility of having dS solutions in the presence of only gauge fluxes [132].
Further generalisations have investigated the possibility to circumvent this no-go theorem

by including metric fluxes, see e.g. refs [133-139].

“We put the label GKP on this superpotential after the authors of ref. [120] who first considered this

setup and analysed the vacua structure thereof.
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However, by taking a look at the landscape of these geometric compactifications of
type II theories, classical dS vacua with no tachyonic directions (i.e. fully stable) have
not been found so far. In particular, if one analyses the subset of A/ = 1 constructions
admitting an uplift to extended supergravities, the situation becomes even harder and we
will see that dS solutions (even unstable) are ruled out. This, together with the purpose
of constructing a duality-invariant completion to geometric compactifications, will lead us

towards non-geometric flures in a very natural way.

Flux Compactifications in Heterotic String Theory

A different context to discuss flux compactifications is that of heterotic string theory.
These compactifications preserve half-maximal supersymmetry and let O(d, d) symmetry
emerge very naturally as T-duality group. In this section we will see how covariance with
respect to T-duality in the NS-NS sector of heterotic compactifications already suggests
the concept of non-geometric fluxes and the link with other constructions like Generalised
Geometry and Double Field Theory.

In ref. [140] twisted reductions of heterotic string theory on a 7% have been considered.
The undeformed case (i.e. pure toroidal reduction with no twist) gives rise to half-maximal
supergravity in 10 —d dimensions coupled to 16 vector multiplets, which enjoys an O(d, d+
16) as global symmetry. They found that the twist parameters induce a gauging of the
effective half-maximal supergravity and transform as tensors under O(d,d + 16) dualities
(exactly as the embedding tensor © should do).

We start from the (bosonic) low energy action of heterotic string theory

16
1 1
S = /dl% V-Ge® (R + (09)% — g Howp H"? = 5 S R, F”‘”) . (3.38)

I=1

16
where H,,, = 3 (8[HBVp] — % > AI[u FI,,p]> is the modified field strength of the NS-NS
=1
2-form By, and F' I w =2 8[MAI v is the field strength of Al u- After reduction, the internal
field components of G, B and A (Gyn, Byn and Al with M = 1,...,d) combine into
a scalar matrix which spans the coset

0(d, d + 16)
0(d) x O(d+16) -

The twisted reduction is done by means of the following Ansatz for the Zehnbein

o EA VN
E%p = <60“ o “) , (3.39)
M

where a = (o, A) and m = (u, M). This construction turned out to formally reproduce
the scalar potential coming from part of the electric sector of half-maximal supergravity

in D = 4 coupled to 16 vector muliplets. In the following part we are going to ignore
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the presence of the extra vector multiplets and concentrate on the common sector of the
theory, in which all the fields and deformations are arranged into irrep’s of O(d, d). Some
concrete constructions of twisted reductions can be found in the context of heterotic [141]
and M-theory [142] compactifications respectively.

In the previous section, we saw that w fluxes in the NS-NS sector can be obtained
by applying a T-duality along an isometry direction to a background generated by Hj
flux. This implies that the equivalence between the two backgrounds is valid within
the supergravity approximation as established by the so-called Buscher rules [30] (see
section 1.3). However, the full embedding tensor deformations of the (10 — d)-dimensional
theory admit as a universal piece a full 3-form of O(d,d) fynp. When decomposing
faunp into irrep’s of the diffeomorphism subgroup GL(d) C O(d,d), one realises that the
geometric set of fluxes (i.e. {Hpmp, wmn} where the fundamental index of O(d,d) M
splits into (,,, ™) of GL(d)) only accounts for half of the total number of components of

the 3-form. This has two related consequences:

= There are some embedding tensor deformations of the effective half-maximal su-
pergravity which cannot be obtained by means of geometric compactification and
hence do not have a clear higher-dimensional origin. These correspond to possible
extra ingredients in the compactification procedure that we do not fully understand.

Therefore we call them non-geometric fluxes. This situation is sketched in figure 3.3.

= Even starting from a perfectly geometric background described by Hs and w fluxes,
a general T-duality transformation would take it to an effective description including
non-geometric fluxes [24]. The challenge of flux compactifications becomes that of
establishing whether new physics (e.g. dS vacua, stability, etc.) related to the
presence of non-geometric fluxes can occur. If this turned out to be the case, then
the second aim would be that of finding an uplift for theories including non-geometric

fluxes.

3.3. Non-geometric Fluxes

As we saw in the previous sections, the study of non-geometric backgrounds is mainly
motivated by duality covariance arguments [24], but also by the search for classical vacua
in string theory [143] with a special regard for dS solutions [138]. In this section we
will first briefly introduce the set of generalised fluxes in heterotic compactifications and
subsequently go back to STU-models arising from type II compactifications and introduce

there the complete duality covariant flux-induced superpotential.
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String Theory

Gauged
Sllp Cl‘gl‘ﬁVi[iCS clear higher- non-geometric

; : e
in lower dim. TEIRInE sren fhuxes

Figure 3.3: The complete set of embedding tensor deformations of the lower-dimensional
theory s split into those ones which have a clear higher-dimensional origin and hence
have a one-to-one mapping with geometric fluzes, and those ones for which such a higher-

dimensional origin is not known.

T-duality Invariant Heterotic Fluxes

Previously we argued that the geometric set of heterotic fluxes only reproduces half
of the 3-form deformations that every half-maximal supergravity allows for. In this sub-
section we shall concentrate on the D = 4 case, even though we would like to stress that
none of the things presented here will crucially depend on this. To be precise, in fact,
the four-dimensional case has the special feature of the SL(2) electromagnetic duality
enhancing the 3-form fy;yp to an SL(2) doublet foarnp of 3-forms, where o = (+, —).
Nevertheless, a twisted toroidal reduction of heterotic string theory on a T, only gives
rise to the purely electric (i.e. only the + components are non-zero) sector of N'= D =4
supergravity. Restricting to fiasnyp makes the D = 4 case perfectly analogous to all the
others where a single O(d, d) 3-form fy;np is allowed as deformation®.

From the four-dimensional point of view, O(6, 6) is a symmetry that relates equivalent
effective descriptions with different higher-dimensional origins. Geometric twisted com-
pactifications turn out to only be invariant under the GL(6) subgroup of O(6,6) describing
diffeomorphisms and gauge transformations of the B-field on the 6-torus. In order to gen-
erate the full 220 of O(6,6) (i.e. the 3-form representation), one needs to generalise the
prescriptions of T-duality beyond the Buscher rules by considering the possibility of per-

PPlease note that in all half-maximal supergravities (see table 2.7) other deformations are possible, but
their higher-dimensional origin is not so clear and hence we restrict to gaugings in the 3-form which at

least contain a geometric subset, non-geometric fluxes only representing the T-duality completion thereof.
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forming it along directions in which no isometries are present [144]. This allows us to

complete the duality chain
T,

where the second T-duality T, is still legitimate in the supergravity sense but it produces
the so-called @ flux which describes a locally geometric background for which, though, a
global description is not possible; the third T-duality 7}, to obtain the so-called R flux, on
the contrary, is done in a direction with no isometries and hence it describes a background
which does not even allow for a local description.

As already anticipated above, the NS-NS (non-)geometric fluxes introduced in the
duality chain (3.40) turn out to exactly fill out all the GL(6) irrep’s coming from the
decomposition of the 3-form of O(6,6):

G O
220 MUY 90 o @84 @ (6 @8L) & 20

f VMNP Hmnp wnpm men R™Mnp

(3.41)

Please note that the 6 and 6’ irrep’s present in (3.41) correspond with the traces of w and
@ respectively and they must be included in the counting in order to obtain the full 220,
even though there might be some consistency subtleties related to these backgrounds. For
instance, in the case of a background with only metric flux, if this is not traceless, the
volume form cannot be correctly defined because of cohomology issues. This would make
it a problematic compactification from the mathematical viewpoint.

By including the complete set of generalised fluxes given in (3.41), one obtains the full
electric sector of gauged N = 4 supergravity with gaugings purely in the 220. The fluxes
turn out to reproduce the structure constants of the underlying 12-dimensional gauge
algebra generated by {Z,,, X m}mzl,...,ﬁ- Zm are the six KK generators and correspond to
the internal coordinate transformations dx™ = A", whereas X™ represent the generators
associated with the internal gauge transformations of the B-field dBpy = 9. The

brackets read

[Zma Zn] = Wma? Zp + Hmnp XP )
Zm, X" = —wmp" XP + Qu'™ Z,, (3.42)
[Xm, Xn] _ men XP + R 7,

These first relations between heterotic compactifications with non-geometric fluxes and
gauged N = 4 supergravities already suggest the importance of half-maximal supergrav-
ities in understanding the role of T-duality as an organising principle for string compacti-
fications.

At this point there are two relevant questions that one could try to address. Firstly, one
could wonder whether including non-geometric fluxes in our effective description always

gives rise to new physics. By this we mean that it would be very important to be able to
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classify fluxes in terms of T-duality orbits to see which backgrounds are genuinely non-
geometric and which other can be dualised to geometric ones. The second question could
be, suppose one finds truly non-geometric flux backgrounds, how can one construct an
uplift to string/M-theory? The origin of non-geometric fluxes by itself already suggests
that, in order to describe those backgrounds, a construction or framework might be needed
in which T-duality is promoted to a fundamental symmetry rather than just being a
symmetry of the compactified versions of string theory. Examples of such constructions
are Generalised Complex Geometry and Double Field Theory. In chapter 4 we will try to
address both of these issues in the context of Double Field Theory.

Generalised Fluxes in Type IIB Compactifications

In section 3.2 we have introduced the Zs x Zg orbifold and shown that orientifolds
thereof admit an effective N/ = 1 description with a superpotential for the moduli induced
by the presence of fluxes. Subsequently, we concentrated on the isotropic case, which is
described by an STU-model. There we saw that, in type IIB with O3- and O7-planes,
the only geometric background fluxes allowed are gauge fluxes, both NS-NS (H3) and R-R
(F3). The superpotential induced by these was given in (3.37) and, as we will see, happens
not to be invariant under duality transformations.

The aim of this subsection will be that of studying which kind of dualities these theories
possess and how these transform the effective description. The following step, then will be
writing down the fully duality invariant superpotential and interpreting its new couplings
introduced for duality arguments as non-geometric fluxes. We will call the fluxes forming
the complete set obtained in this way generalised fluxes. This approach was first followed
in refs [145,146]. For a complete review of supergravity models induced by generalised
fluxes in the Zg x Zg orbifold, we recommend refs [126,147].

An STU-model enjoys a global symmetry of the form
Go = SL(2)s x SL(2)r x SL(2)y , (3.43)

where the first factor can be interpreted as S-duality, while the rest generates a combination
of S- and T-dualities. Note that the supergravity theory has the full continuous symmetry,
whereas when all quantum corrections are included in string theory the above groups are
broken into discrete SL(2,Z) factors (see table 1.2).

a b

As we already saw in chapter 1, the general A = (
c

) € SL(2)g act on the

axiodilaton S as
aS + b

cS +d ’
and the same do SL(2)p and SL(2)y on T and U, respectively. In order for the effective
theory to be invariant under (3.44), the superpotential W needs to transform as

1
cS +d

S (3.44)

W (s) w(s) . (3.45)
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This fact implies that the superpotential couplings (i.e. the fluxes) must transform as well
under SL(2)g [24] and the same for T-dualities. In particular, all the fluxes are paired into
irrep’s of Gy. For instance, F3 and Hs have to transform as a doublet of SL(2)g

()= (oo (e »

As a consequence, the fully duality invariant superpotential must contain all the couplings
up to linear in S and up to cubic in T" and U.

Within the NS-NS sector, starting from H flux and following the chain in (3.40),
one could in principle generate w, () and R just as in the heterotic case. However, the
orientifold projection only allows for non-vanishing ) flux. Towards the complete set of
generalised fluxes, one finds the necessity of introducing the so-called P-flux building an
S-duality doublet together with @ [145]. This completes the S-duality invariant set of

fluxes which still admit a locally geometric description. The corresponding superpotential

is given by
ploc. seom) — (P 4 Py S) + 3T (Pg + PpS), (3.47)
with
Pr=ag—3a1U+3aU%—a3U® |, Pg=by—30hU+3bU?-bU>,
Po=co+CiU—-CoU? —c3U3 : Pp=dy+D1U—DyU? —dsU?,
(3.48)

where, for the sake of convenience, we have introduced the flux combinations C; = 2¢;—¢;
D; =2d; — d; entering the superpotential, and hence the scalar potential and any other
physical quantity.

Nevertheless, T-duality covariance requires yet new fluxes (called primed fluzes in
ref. [146]) to complete all the STU polynomials. These fluxes do not have any interpret-
ation even in the context of Generalised Geometry or Doubled Geometry, which were all
naturally developed in the heterotic duality frame where these fluxes are absent.

The complete set of generalised fluxes is presented in tables 3.2 and 3.3 and the fully

duality covariant induced superpotential W reads

where the unprimed sector was defined in (3.48) and the primed sector is given by

Prpr=ay+3abU+3ay U+ aj U? : Py =by+ 30U + 36, U? + b, U3,
Py = —cy+ CLU +CLU? — ¢ U? ., Ppr=—dy+DyU+D,U?-dyU?,
(3.50)

with O/ =2¢, — & and D) =2d, - d;.
We will see in chapter 5 that a particular subset of all the theories described by the

duality invariant superpotential (3.49) originate from a truncation of N' = 4 supergravity.
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couplings Type 1IB Type ITA fluxes
1 Fij Foijk ag
U Fije Faip ay
U? Fipe Fo; as
U3 Fope Iy as
s Hijy, H;jp, —bo
SU Hije wi;© —by
SU? Hipe Q" —by
SU? Hape Rabe s
T Qi Hapk co
TU Qe = Qi . Qd | wred =wi’ , we | @, @
TU? QP =Qc |, Qp | QT =0, Q| o, &
TU? Q" Riic c3
ST P, —dy
STU PY =p  plbe —dy , —d;
STU? Pt =pai  pi —dy , —ds
STU? P —dy

Table 3.2: Mapping between unprimed fluxes and couplings in the superpotential both in
type IIB with O3 and O7 and in type IIA with O6. The siz internal directions depicted in
figure 3.2 are split into “ — 7 labelled by i = 1,3,5 and “|” labelled by a = 2,4,6. Note
that the empty bozes in type IIA are related to the presence of dual fluzes analogous to the
‘primed’ notation in type IIB.

This will be the case whenever the couplings in W satisfy the N' = 4 QC required for the
consistency of the gauging. On the other hand, from a stringy viewpoint, these QC should
be interpreted as the requirement that all the supersymmetry-breaking objects (branes

and dual branes) are absent.

3.4. T-duality Covariant Constructions

In the previous section we have seen that the existence of non-geometric fluxes was
first conjectured in order for the low energy effective theory to be duality covariant and
subsequently they turned out to be a crucial ingredient for dS extrema. Dualities are
correctly encoded in the global symmetry of the underlying gauged supergravity in four

dimensions [148]. In this sense, T-duality singles out the important role of half-maximal
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couplings Type 1IB Type ITIA fluxes
T3 U3 P aj
13 U? Fre a
T3U Frite ab
T3 Frabe a
ST3U? 'k ~b)
ST3U? H"™° —b
ST3U H'e —b,
ST? H'™ —bf
T?U? Q" <o
T?U? Q/ajk =Q'" . Q" ¢, 4
°U Q" =Q4;" Q/i]’k ey, &
T2 Q' oA
ST2U? Pyt —d}
ST2U? || Pl" =Py, P ~d, , —d,
ST?U || Py =Pla, Py" ~dy , —dj
ST? Py —dj

Table 3.3: Mapping between primed fluzes and couplings in the superpotential. The con-

ventions are the as in table 3.2 and again, just as there, the empty column should be filled

i with extra dual fluxes.

supergravities, whereas, in order to supplement it with non-perturbative dualities to gen-
erate the full U-duality group, one has to consider maximal supergravity.

Concentrating in particular on T-duality [149,150], different ways have been investig-
ated in the literature in order to implement T-duality covariance at a more fundamental
level in order to gain a better understanding of how non-geometric fluxes change the com-
pactification prescription, thus appearing in the effective theory [151-153]. One direction
to follow is Generalised Complex Geometry [127,154,155], in which the internal manifold
is given a particular bundle structure in which the gauge fields now span the full T-
duality group. Another possibility is that of doubling the internal coordinates [156—158]
by supplementing them with the corresponding duals to winding modes and viewing a
non-geometric flux background as something created by means of a twisted double torus
compactification [159].

Recently, this second approach has been further developed into the so-called Double
Field Theory (DFT) [160-163], which aims to promote T-duality to a fundamental sym-
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metry even independently of whether spacetime directions are compact or not [164,165].
This theory in 104 10 dimensions is formulated in terms of a generalised metric, whose ac-
tion can be constructed to be fully O(10, 10) invariant. Moreover, there are some evidences
that the gaugings of N' = 4 supergravity might follow from DFT reductions [166-168].
This would provide a higher-dimensional origin for non-geometric flux backgrounds, even
though the concrete construction leading to the most general background still needs to be

accomplished.

Doubled Geometry

Beyond conventional geometric string backgrounds consisting of a manifold equipped
with a metric and gauge fields, one can consistently define string theory on a background
in which all the local patches are geometric but these patches need to be glued together by
special transition functions which include not only diffeomorphisms and gauge transform-
ations, but also T-duality transformations [169]. Such an object describing non-geometric
backgrounds is called T-fold and historically it represented the first T-duality covariant
proposal for understanding non-geometric fluxes beyond the effective lower-dimensional

supergravity description.

A T-fold can be introduced by means of the so-called doubled formalism [170] developed
in the context of toroidal fibrations of the form U x T% x T% where U is an open set in
the internal manifold Mg, whereas the doubled torus T¢ x T is the tangent space and
is described by the internal coordinates y™ paired up with their corresponding winding
coordinates 7, to give rise to the doubled coordinates Y™ = (y™, §,,) transforming in

the fundamental representation of O(d, d).

Let {U,} be an open cover of the internal manifold Mg, i.e. a collection of open sets
such that Mg = |J U,. Then a T-fold is constructed as the collection of patches U x T4,

in each of which oé metric g, and a two-form b, are well-defined and, on overlapping
patches U, N Ug, they are glued together in the ordinary geometric way by means of
diffeomorphisms and b-transformations. The rest of the geometric features of a T-fold lies
in the moduli fields (g + b)my, and in some U(1)?*¢ connections A, and A,. These objects
are glued together over overlaps U, N Ug by transition functions in O(d,d) x U(1)%?.

A background defined in the above way turns out to be geometric whenever the struc-
ture group I'y reduces a subgroup of GL(d). In any other case, T-folds describe non-
geometric backgrounds. The aforementioned construction can be recast in terms of a
doubled fibration 7% x T, in which O(d, d) x U(1)2? acts geometrically. Given a doubled
background, one has to perform a so-called choice of polarisation in order to reproject
the tangent bundle of the internal space back to a single torus 7% by choosing d physical

coordinates out of the 2d coordinates given by (y™, ).
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After fixing the O(d, d) metric in light-cone coordinates to be

0 1y
- ) 3.51
NMN < 1, 0 ) (3.51)

one can introduce the so-called generalised metric Hysny on such a doubled torus, which

is a symmetric O(d, d) tensor defined as

—1 o _1b
Hun = ( o0 ) , (3.52)
bg™ g—bg g

where g and b are respectively the internal components of the metric and of the NS-NS
two-form present in the theory. The introduction of the generalised metric allows one to
describe the non-linear transformation of (g4 b)m, under O(d, d) by means of the tensorial

transformation given by

H — ATHA, (3.53)

where A € O(d, d).

Twisted Reductions on Doubled Tori

The doubled formalism has been used in the context of heterotic flux compactifications
in order to produce effective supergravity descriptions including ¢ and R fluxes [158]. The

dynamics can be formulated in terms of H which describes the metric on the doubled torus
ds? = Hyn dYM @ dyV . (3.54)

In ref. [156] they considered reductions of O(d,d) invariant theories on a circle spanned
by z ~ z+ 1 with the inclusion of an O(d,d) duality twist. Such twist is specified by an
O(d, d) algebra element N™ 5, whose corresponding z-dependent group element is given
by exp(N z). This duality twist reduction takes a (10 — d)-dimensional theory exhibitng
a U(1)?? gauge symmetry to a (9 — d)-dimensional theory with a non-abelian gauge sym-
metry. If we denote by {7} M=1,.. 24 the U(1)2? generators, after the twisted reduction
they get supplemented by two extra generators {Z,, X*} corresponding, respectively, to
shits in z and b-transformations with one leg along the z direction. The new non-abelian

gauge algebra of the lower-dimensional theory reads
(Z., Tul = =Ny Ty, [T, Tn] = —Nunv X7, (3.55)

where Nyny = nup NP5 = —Nyu all the other commutators vanish.

From the viewpoint of flux compactifications, the twist matrix /N describes the follow-

NMN _ ( L O > (3.56)

m
H.pmn —Wan

ing flux configuration
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Figure 3.4: The set of generalised fluzes which are allowed in different duality frames.
Please note that doubled geometry can only describe backgrounds containing purely NS-NS
fluzes. This is the reason why only in heterotic compactifications doubled geometry and

“non-geometry” happen to coincide (see remark in ref. [172]).

and it describes a locally geometric background. At this stage, a further T-duality bringing

R flux into the game was only conjectured.

In ref. [159], instead, twisted doubled tori reductions & la Scherk and Schwarz (SS) have
been considered in order to formally reproduce gaugings of half-maximal supergravity in
D = 4. In this case, one can define the following set of left-invariant 1-forms (see ¢ in

section 3.1)

EM = UMy (Y)dY? , (3.57)

where U represents the twist matrix depending on the doubled coordinates YM = (Y™, Ym,)-

These 1-forms satisfy

1
dEM = —§prM EN A EP (3.58)

for constant f. These constants can be seen as metric flux on a doubled space and
they contain all the set of possible generalised fluxes according to the splitting of the
fundamental O(6, 6) index M into upper and lower GL(6) indices. In ref. [159] some explicit
example of U matrices are given which reproduce some particular heterotic backgrounds
with non-geometric fluxes turned on. Further work in this direction can be found in
ref. [171].

The concluding remark of this subsection is then precisely that, unlike in the heterotic
case, compactifications on doubled twisted tori in different duality frames (i.e. reduc-
tions of other string theories with or without orientifolds), do not reproduce the same
generalisation of geometric flux compactification suggested by the introduction of the first

non-geometric fluxes. This difference is depicted in figure 3.4.
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Generalised Complex Geometry

Generalised Complex Geometry (GCG) is a formalism introduced in ref. [173] that
interpolates between complex and symplectic manifolds. The basic idea is to treat tan-
gent and cotangent space of the internal manifold M, on equal footing by merging them
together into a new bundle structure whose elements are formal sums of tangent vectors
and 1-forms

X+€&E e TMgo T*My . (3.59)

The physical relevance of this construction is to be found again in (non-)geometric flux
compactifications since T-duality suggests that complex and symplectic geometry are each
other’s mirrors in string theory. Here we will only scketch some basic features of this
formalism, but we indicate refs [174-177] as very interesting and complete reviews.

From a formal point of view, a generalised almost-complex structure on such a bundle
is an endomorphism J of T My @& T* M, that squares to —1 94, thus generalising the usual
almost-complex structure on 7'M, . This generalised bundle amdits a natural metric Z
defined by

1

I(X+&Y +1n) = 5 (wy& + 1x7) (3.60)

where 1y{ = Y™&,,. In the coordinate basis (Op,, dz™™), it turns out to be proportional

1(0 1
I=- 1, (3.61)
2\ 14 0

which reduces the structure group to be O(d, d).

to the light-cone metric

A generalised almost-complex structure 7 is then a map
J  TMgee T My — TMgd T My (362)

such that
J? = 19y and J'ZTT =71 . (3.63)

This further reduces the structure group to U(%, 4).
Moreover, it turns out to be possible to define a generalisation of the Lie bracket, often

called Courant bracket, in the following way

1
X+ &Y +mle = [X Y]+ Lyn — Ly€ — 5d(xn — wb) | (3.64)
where [, | represent the ordinary Lie brackets and
Lxn = (X" Omnn) dz” + (9n Om X") dz™ . (3.65)

The brackets defined in (3.64) are still anti-symmetric and admit a non-trivial automorph-

ism defined by a closed two-form b

(X +8&) =X+ E+ixh. (3.66)
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This could be physically interpreted as a transformation of the b-field in a string back-
ground in the more general case in which b is not closed anymore.

The Courant bracket defines a set of integrability conditions for 7, which are differ-
ential constraints that J has to satisfy together with the algebraic ones given in (3.63) in

order to be called a generalised complex structure.

G Structures and Flux Compactifications

The formalism of GCG has been used in the literature [117,178,179] to study gener-
alised flux compactifications preserving e.g. N = 1 supersymmetry in four dimensions.
These analyses have been carried out by using the language of G structures, with particu-
lar relevance of SU(3) structures in type IIA compactifications [136] and SU(2) structures
in type IIB compactifications [139].

Whenever it is possible to have two commuting almost complex structures whose
product defines a positive-definite metric on T Mg & T* My, the structure group is broken
to the compact group [117] U(%) X U(%). It has been shown that a U(%) X U(%l) automat-
ically provides a metric and a b-field through the natural T-duality covariant combination
which is known as the generalised metric in DFT.

Specifying ourselves to the case d = 6, one finds that the structure group is in fact
further restricted to SU(3) x SU(3). By making use of the mapping between spinors and
polyforms, it is possible to construct the objects which define the geometry of the manifold
in terms of two so-called pure spinors ®; and ®_. These can be in turn rewritten as
bilinears of SO(d) spinors. Pure spinors are never vanishing and globally defined SO(d, d)
spinors ® mapped to bilinears 71 ® 7]; such that

my" e =0 (3.67)

for any £k < d/2. This definition turns out to be equivalent [180] to the one given in
ref. [177] in terms of Dirac structures.

For SU(3) structures, these are a real (1, 1)-type tensor J and a holomorphic (3, 0)-type
tensor 2 such that

~ 4
JAQ =0 and iQ/\Q:§J3 , (3.68)

where now, in constrast with the case of a CY manifold (i.e. Kéhler manifold with SU(3)
holonomy), J and Q do not need to be closed in general. J and 2 in (3.68) are given in
terms of the above pure spinors by

Dp= e and @l = —%Q . (3.69)

Supersymmetry equations for a given A/ = 1 background can be written in terms of the
spinors in (3.69) and subsequently, through the mapping between spinors and forms, one

can rewrite those conditions in the language of p-forms, which are much easier to handle.
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When analysing the supersymmetry equation of the following (warped) background
ds? = e*n,, det dz¥ + dst (3.70)
one schematically finds

(d— HA) (e2479®) = 0 ,

_ (3.71
(d— HA) (2479 ®y) = > 9dA A &3 + {R-R Fluxes} |, )

where ¢ is the type IIA (IIB) dilaton and ®; = &, and &3 = ®_ for type IIA and vice
versa for type I1B.

Another interesting bridge between GCG and (non-)geometric fluxes is represented by
the possibility of reinterpreting the twisted Courant bracket defining the integrable gen-
eralised complex structure of the internal manifold as a gauge algebra of the compactified
theory. Work in this direction has been done in refs [154,181,182]. In this sense, the gen-
eralised geometric structure of the internal manifold itself provides a local definition of the

non-geometric NS-NS fluxes H, w, Q and R. In terms of the following gauge generators
X = A%, dx™ + B 9,, and X, = Cymdx™ + D" O (3.72)

where A, B, C and D parametrise the full O(d, d), the flux-induced gauge algebra reads

[Xaa Xb] = wabc Xc + Habc b )
[Xaa Xb] = _Wacb X+ Qabc Xc ) (3'73)
[Xa7 Xb] — Qcab X< 4+ Rabc Xc ,

where H, w, @ and R are given in terms of derivatives of O(d, d) gauge fields. Please note

that these commutation relations exactly coincide with those ones given in (3.42).

Double Field Theory

DFT is a recent proposal that promotes T-duality to a symmetry in field theory [160,
183], and is currently defined in terms of a background independent action [161, 162].
The theory is constructed on a double space [170], and its original version was created to
describe the dynamics of closed strings on tori, the dual coordinates being associated to
the winding modes of the strings. However, the background independent action allows for
more general spaces, and SS compactifications of DFT were shown to formally reproduce
the bosonic (electric) sector of half-maximal gauged supergravities [166,167]. This already
suggests its relation to non-geometric flux compactifications.

Detailed reviews of DFT can be found in refs [184,185]. Here we will only provide a
discussion of the minimal ingredients with the corresponding references to make contact
with the results of the analysis of the following chapter. Many other interesting works on
the subject towards the implementation of T-duality covariance can be found in refs [82,

84,85,155,186-192].
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As we saw in chapter 1, T-duality relates a string background on a 7% with radius R
with the one on T with radius o/ /R via the non-compact duality group O(d,d). To give
a short review of DFT, we will here follow the conventions of ref. [184]. Starting from the

string theory world-sheet action given by
S = /d%&-j(X) 0 X0 X7, (3.74)

where + and — indicate light-come directions on the world-sheet and &;; = (Gij + Bij),
one can derive a linear fractional transformation on £. If the starting background admits
commuting isometries, such a transformation relates equivalent backgrounds. However,
this cannot be viewed as a symmetry of the world-sheet theory, since it involves non-trivial
transformations of the couplings.

From the string field theory viewpoint, this implies the appearence of winding modes
in the spectrum in addition to momentum modes. Therefore, the natural step towards
understanding T-duality at a more fundamental level, became that of geometrising it
by doubling the spacetime [193] thruogh the inclusion of “winding-type” coordinates z;
and allowing for novel spacetime rotation mixing ordinary coordinates with winding-type
coordinates.

The low-energy spacetime action of the common sector of string theory

S = /dl% —ge2¢ <R + 4(0¢)* — % yHP) , (3.75)

where H = db, is not backgound independent, since the background £ appears explicitely
and hence O(10,10) is not an actual symmetry of (3.75).

Even though a background independent formulation of closed string theory is not
known, recently such a construction has been performed for DFT. DFT is a field theory
with manifest invariance under the O(10,10) T-duality group, and therefore captures
stringy features. The coordinates are combined to form fundamental vectors XM = (z;, z?),
containing 10 spacetime coordinates 2 and 10 dual coordinates &;, i = 1, ...,10. The field
content is that of the NS-NS sector, but defined on a doubled space. The metric of the

09§,
NMN = (&;j Oij> (3.76)

global symmetry group

raises and lowers the indices of all the O(10,10) tensors, thus relating spacetime com-
ponents to winding-type ones. On the other hand, the dilaton ¢ is combined with the
determinant of g in a T-invariant way e 2¢ = /—ge 29,

After introducing the following derivative opretors

0 0 = 0 0
Di = or — gzkaijk and Dl = GY% + gzkai:i'k y

(3.77)
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one is able to write down the following background independent action

1 . . 1 . ) _ _
S = f A0z @10z ¢—2d |: — Z ng gjl ngklppgij + Z gkl (ngzk 'Dlgjl + DI, ’D’Elj)

(3.78)

The action (3.78) is invariant under

E — (@& +Db)(cE+d)" and dr— d , (3.79)

b
where ¢ J > € 0(10,10). Such a background independent action can be rewritten
c

by making use of the generalised metric (see also definition in (3.52)), which is given in
terms of the ordinary metric g;; and the Kalb-Ramond field b;; by the following symmetric
element of O(d, d)

ij — g by

Huv = 7, ) (3.80)
bi 9" gij — bk g™ by

such that Hp pHTN = 6. In this formulation, the O(10,10) invariant and background

independent action [162] can be written as

S = fdloxdloi'e_w (1 HMN 9, HEQ ONHpg — %’HMN ONHER OoHmp
8 (3.81)
—200d ONHMN 4 4 HMN aMdaNd> .

The gauge invariance of DFT and closure of its gauge algebra gives rise to a set of
constraints that restrict the coordinate dependence of the fields and gauge parameters.
The original cubic formulation [160] turned out to require the so-called Weak Constraint
(WC), which imposes

oOMA =0, (3.82)

where A represents a field or a gauge parameter. This constraint was found to arise from
the level-matching condition in the sigma model, which has to be imposed in the massless

sector of closed string theory (see also chapter 1)
0=1Lo—Lo= —pwt, (3.83)

where p; are the momenta and w’ the winding number of a given state in the spectrum.
The final background independent formulation, on the other hand, was found to require
yet another more restrictive constraint [161], which was therefore called Strong Constraint
(SC). This constraint not only requires the operator dp;0™ to annhilate fields and gauge
parameters, but also any product of them.
Later on though, in ref. [168], a more general formulation of DFT was proposed in

which gauge invariance does not necessarily imply the SC. The first remark made there
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is that the very first formulation of DFT with the WC — which was consistent up to
cubic level — does not really make sense as a complete theory, since the WC is not gauge
invariant. The only subcase which gives rise to a well-defined theory is DFT with the SC,
which once solved, gives us back ten-dimensional supergravity. In general, though, one
finds that gauge invariance and the closure of the twisted Courant brackets require a much
more involved slice constraint, which even depends on several combinations of fields and
gauge parameters and this makes it cumbersome to solve it in full generality.

A possible set of solutions to such a constraint is given by restricting the fields and
gauge parameters to satisfy the SC. In such a situation, they can always be T-dualised
to a frame in which the dependence on dual coordinates is cancelled. This restriction
arises naturally in the context of toroidal compactifications. In such case, DFT provides
an interesting framework in which ten-dimensional supergravity can be rotated to T-dual
frames [151-153]. Different backgrounds violating the SC will be considered in the next
chapter in the context of twisted reductions of DFT and we will see how these are related

to non-geometric backgrounds in string theory.



Chapter 4
Duality Orbits and Double Field Theory

As we saw in the previous chapter, compactifications in duality covariant construc-
tions such as GCG and DFT have proven to be suitable frameworks to reproduce gauged
supergravities containing non-geometric fluxes. However, it is a priori unclear whether
these approaches only provide a reformulation of old results, or also contain new physics.
To address this question, we classify the T- and U-duality orbits of gaugings of (half-)
maximal supergravities in dimensions seven and higher. It turns out that all orbits have
a geometric supergravity origin in the maximal case, while there are non-geometric orbits
in the half-maximal case. We show how the latter are obtained from compactifications
of DFT. Some additional and technical material related to this chapter can be found in
appendix A. Most of the results of this chapter were first obtained in refs [194,195].

4.1. Why Duality Orbits?

In the context of half-maximal [100] and maximal [196] gauged supergravities, not only
does supersymmetry tightly organise the ungauged theory, but also it strictly determines
the set of possible deformations (i.e. gaugings). The development of the so-called embed-
ding tensor formalism (see section 2.3) has enabled one to formally describe all the possible
deformations in a single universal formulation, which therefore completely restores duality
covariance. Unfortunately, not all the deformations have a clear higher-dimensional origin,
in the sense that they can be obtained by means of a certain compactification of ten- or
eleven-dimensional supergravity.

One of the most interesting open problems concerning flux compactifications is to
reproduce, by means of a suitable flux configuration, a given lower-dimensional gauged
supergravity theory. Although this was done in particular cases (see for example refs [125,
197]), an exhaustive analysis remains to be done. This is due to fact that, on the one
hand we lack a classification of the possible gauging configurations allowed in gauged
supergravities and, on the other hand, only a limited set of compactification scenarios
are known. Typically, to go beyond the simplest setups one appeals to dualities. The
paradigmatic example [24] starts by applying T-dualities to a simple toroidal background
with a non-trivial two-form generating a single Hg,. flux. By T-dualising this setup, one
can construct a chain of T-dualities leading to new backgrounds (like twisted-tori or T-

folds) and generating new (dual) fluxes, like the so-called Q. and R®°. We saw in the
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previous chapter that it is precisely by following duality covariance arguments in the lower-
dimensional effective description that non-geometric fluxes were first introduced in order
to explain the mismatch between particular flux compactifications and generic gauged
supergravities. From the viewpoint of the lower-dimensional effective theory, it turns
out that half-maximal and maximal gauged supergravities give descriptions which are
explicitly covariant with respect to T- and U-duality respectively. This is schematically

depicted in table 4.1, even though only restricted to the cases we will address in this

chapter.
D T-duality U-duality
9 0(1,1) RT x SL(2)
8 | 0(2,2) =SL(2) x SL(2) | SL(2) x SL(3)
7 0(3,3) =SL(4) SL(5)

Table 4.1: The various T- and U-duality groups in D > 6. These turn out to coincide
with the global symmetry groups of half-maximal and mazximal supergravities respectively
(see tables 2.6 and 2.7).

Here we would like to emphasise that all these (a priori) different T-duality connected
flux configurations by definition lie in the same orbit of gaugings, and therefore give rise to
the same lower-dimensional physics. In order to obtain a different gauged supergavity, one
should consider more general configurations of fluxes, involving for example combinations
of geometric and non-geometric fluxes, that can never be T-dualised to a frame in which the
non-geometric fluxes are absent. For the sake of clarity, we depict this concept in figure 4.1.
Unfortunately, the original background independent formulation of DFT introduced in the
previous chapter requires the SC for consistency and gauge invariance. This was found to
imply that every consistent background (i.e. satisfying the SC) can be rotated to a locally
geometric one by means of an O(d, d) transformation [161]. In this scenario, DF'T cannot
possibly open up new T-duality orbits like orbit 1 in figure 4.1.

Subsequently, an indication has been given that gauge consistency of DFT does not
need the WC and SC [168]. Following this direction, we could wonder whether relaxing
these constraints can provide a higher-dimensional origin for all gaugings of extended
supergravity through DFT. Our aim in the present work is to assess to what extent DFT
can improve our description of non-geometric fluxes by giving a higher-dimensional origin
to orbits which do not follow from standard supergravity compactifications. We will call
such orbits of gaugings non-geometric (in figure 4.1 they are represented by orbit 1).

As a starting point for this investigation, we will address the problem in the context
of maximal and half-maximal gauged supergravities in dimension seven and higher, where
the global symmetry groups are small enough to allow for a general classification of orbits,

without needing to consider truncated sectors. We will show that in the half-maximal
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Geometric

configurations

Flux configurations

Figure 4.1: The space of fluz configurations sliced into duality orbits (vertical lines). Mov-
ing along a given orbit corresponds to applying dualities to a certain flux configuration
and hence it does not imply any physical changes in the lower-dimensional effective de-
scription. Geometric fluxes only constitute a subset of the full configuration space. Given
an orbit, the physically relevant question is whether (orbit 2 between A and B) or not
(orbit 1) this intersects the geometric subspace. We refer to a given point in an orbit as a

representative.

supergravities in seven and higher dimensions, where the classifications of orbits can be
done exhaustively, all the orbits (including geometric and non-geometric) admit an uplift
to DFT, through SS [116] compactifications on appropriate backgrounds. We provide
explicit backgrounds for every orbit, and discuss their (un)doubled nature. The result
is that truly doubled DFT provides the appropriate framework to deal with orbits that
cannot be obtained from supergravity. In contrast, in maximal supergravities in eight and
higher dimensions, all orbits are geometric and hence can be obtained without resorting
to DFT.

4.2. Twisted Reductions of DFT

While toroidal compactifications of DFT lead to half-maximal ungauged supergrav-
ities, SS compactifications on more general doubled spaces are effectively described by
gauged supergravities like the ones we will analyse in the next sections. If the internal
space is restricted in such a way that there always exists a frame without dual coordinate
dependence, the only orbits allowed in the effective theory are those admitting represent-
atives that can be obtained from compactifications of ten-dimensional supergravity. This
is not the most general case, and we will show that some orbits require the compact space
to be truly doubled, thus capturing information of both momentum and winding modes.

Recently in ref. [168], a new set of solutions to the constraints for DFT has been found.
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For these solutions the internal dependence of the fields is not dynamical, but fixed. The
constraints of DFT restrict the dynamical external space to be undoubled, but allows for
a doubling of the internal coordinates as long as the QC (see section 2.3) for the gaugings
are satisfied. Interestingly, these are exactly the constraints needed for consistency of
gauged supergravity, so there is a priori no impediment to uplift any orbit to DFT in this
situation. In fact, in the following sections we show that all the orbits in half-maximal
D = 7,8 gauged supergravities can be reached from twisted double tori compactifications
of DFT.

In the SS procedure described in section 3.1, the coordinates X are split into external
directions X and compact internal Y coordinates. The former set contains pairs of O(D, D)
dual coordinates, while the latter one contains pairs of O(n,n) dual coordinates, with
d = D + n. This means that if a given coordinate is external (internal), its dual must
also be external (internal), so the effective theory is formally a (gauged) DFT. The SS
procedure is then defined in terms of a reduction ansatz, that specifies the dependence of
the fields in (X,Y)

Hun(X,Y) = UY) ’;Q(X)AB U(Y)By, d(X,Y) = J(X) + A(Y) . (4.1)
Here the hatted fields H and d are the dynamical fields in the effective theory, paramet-
erising perturbations around the background, which is defined by U(Y) and A(Y). The
matrix U is referred to as the twist matriz, and must be an element of O(n,n). It contains
a DFT T-duality index M, and another index A corresponding to the T-duality group of
the effective theory. When DFT is evaluated on the reduction ansatz, the twists generate

the gaugings of the effective theory

faBc 3npa (U HYMp(U N omUP ur (4.2)
Ea = (U HM 4 —2UHM 40N | (4.3)

where fapc and &4 build the generalised structure constants of the gauge group in the
lower-dimensional theory. Note that these relations generalise eq. (3.10).

Although U and A are Y dependent quantities, the gaugings are forced to be constants
in order to eliminate the Y dependence from the lower-dimensional theory. When the
external-internal splitting is performed, namely d = D+n, the dynamical fields are written
in terms of their components which are a D-dimensional metric, a D-dimensional 2-form,
2n D-dimensional vectors and n? scalars. These are the degrees of freedom of half-maximal
supergravities. Since these fields are contracted with the gaugings, one must make sure
that after the splitting the gaugings have vanishing Lorentzian indices, and this is achieved
by stating that the twist matrix is only non-trivial in the internal directions. Therefore,
although formally everything is covariantly written in terms of O(d, d) indices A, B, C, ...,
the global symmetry group is actually broken to O(n,n). We will not explicitly show how
this splitting takes place, and refer to [166] for more details. In this work, for the sake
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of simplicity, we will restrict to the case £4 = 0, which should be viewed as a constraint
for A. Also we will restrict to O(n,n) global symmetry groups, without additional vector
fields.

There are two possible known ways to restrict the fields and gauge parameters in DF'T,
such that the action is gauge invariant and the gauge algebra closes. On the one hand,
the so-called WC and SC can be imposed

ouoMA=0, oyAIMB=0, (4.4)

where A and B generically denote products of (derivatives of) fields and gauge parameters.
When this is the case, one can argue [161] that there is always a frame in which the fields
do not depend on the dual coordinates. On the other hand, in the SS compactification
scenario, it is enough to impose the WC and SC only on the external space (i.e., on hatted
quantities)

oOMA=0, oyAoMB=0, (4.5)

and impose QC for the gaugings

feapffop=0. (4.6)

This second option is more natural for our purposes, since these constraints exactly coin-
cide with those of half-maximal gauged supergravities’ (which are undoubled theories in
the external space, and contain gaugings satisfying the QC).

Notice that if a given U produces a solution to the QC, any T-dual U will also.
Therefore, it is natural to define the notion of twist orbits as the sets of twist matrices
connected through T-duality transformations. If a representative of a twist orbit generates
a representative of an orbit of gaugings, one can claim that the twist orbit will generate
the entire orbit of gaugings. Also, notice that if a twist matrix satisfies the WC and SC,
any representative of its orbit will, so one can define the notions of undoubled and truly

doubled twist orbits.

Non-geometry VS weak and strong constraint violation

Any half-maximal supergravity can be uplifted to the maximal theory whenever the

following constraint holds?
fape fP¢ = 0. (4.7)

This constraint plays the role of an orthogonality condition between geometric and non-

geometric fluxes. Interestingly, the constraint (4.7) evaluated in terms of the twist matrix

"We are working under the assumption that the structure constants not only specify the gauging, but
all couplings of the theory. Reproducing the correct structure constants therefore implies reproducing the
full theory correctly, as has been proven in D =4 and D = 10 [166, 167,190, 198].

2D = 4 half-maximal supergravity is slightly different because its global symmetry group features an
extra SL(2) factor; for full details, see [199,200].
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U and X can be rewritten as follows (by taking relations (4.2) and (4.3) into account)
fape FAPC = —30pUApaP (U™ | — 240pA0PA + 249p0° X . (4.8)

The RHS of this equation is zero whenever the background defined by U and ) satisfies the
WC and SC. This immediately implies that any background satisfying WC and SC defines
a gauging which is upliftable to the maximal theory. Conversely, if an orbit of gaugings
in half-maximal supergravity does not satisfy the extra constraint (4.7), the RHS of this
equation must be non-vanishing, and then the WC and SC must be relaxed. In conclusion,
the orbits of half-maximal supergravity that do not obey the QC of the maximal theory
require truly doubled twist orbits, and are therefore genuinely non-geometric. This point
provides a concrete criterion to label these orbits as non-geometric. Also, notice that these
orbits will never be captured by non-geometric flux configurations obtained by T-dualising
a geometric background?.

For the sake of clarity, let us briefly review the definitions that we use. A twist orbit
is non-geometric if it doesn’t satisfy the WC/SC, and geometric if it does. Therefore, the
notion of geometry that we consider is local, and we will not worry about global issues
(given that the twist matrix is taken to be an element of the global symmetry group, the
transition functions between coordinate patches are automatically elements of O(n,n)).
On the other hand an orbit of gaugings is geometric if it contains a representative that
can be obtained from ten-dimensional supergravity (or equivalently from a geometric twist
orbit), and it is non-geometric it does not satisfy the constraints of maximal supergravity.

We have now described all the necessary ingredients to formally relate dimensional
reductions of DF'T and the orbits of half-maximal gauged supergravities. In particular, in

what follows we will:

1. Provide a classification of all the orbits of gaugings in maximal and half-maximal

supergravities in D > 7.
2. Explore mechanisms to generate orbits of gaugings from twists, satisfying
» U(Y) € O(n,n)
= Constant fapc
= fpapffop =0

3. Show that in the half-maximal theories all the orbits of gaugings can be obtained
from twist orbits in DFT.

4. Show that in the half-maximal theories the orbits that satisfy the QC of maximal

supergravity admit a representative with a higher-dimensional supergravity origin.

3However, we would like to stress that, in general, it is not true that an orbit satisfying the QC
constraints of maximal supergravity (4.7) is necessarily generated by an undoubled twist orbit. An example

can be found at the end of section 4.
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For these we provide concrete realisations in terms of unboubled backgrounds in
DFT. Instead, the orbits that fail to satisfy (4.7) require, as we argued, truly doubled

twist orbits for which we also provide concrete examples.

5. Show that there is a degeneracy in the space of twist orbits giving rise to the same
orbit of gaugings. Interestingly, in some cases a given orbit can be obtained either

from undoubled or truly doubled twist orbits.

In the next sections we will classify all the orbits in (half-)maximal D > 7 supergrav-
ities, and provide the half-maximal ones with concrete uplifts to DFT, explicitly proving

the above points.

Parametrisation of the duality twists

Here we would like to introduce some notation that will turn out to be useful in the
uplift of orbits to DFT. We start by noting the double internal coordinates as Y4 = (4, y%)
with a = 1,...,n. As we saw, the SS compactification of DFT is defined by the twists
U(Y) and A(Y). The duality twist U(Y) is not generic, but forced to be an element of
O(n,n), so we should provide suitable parameterisations. One option is the light-cone

parameterisation, where the metric of the (internal) global symmetry group is taken to be

NAB = (]1On 1()”) . (4.9)

The most general form of the twist matrix is then given by

U(Y) = (g eOT> (11; ]10n> (10" ]i ) : (4.10)

with e € GL(n) and B and 8 are generic n X n antisymmetric matrices. When 5 = 0,

of the form

e = e(y®) and B = B(y®), the matrix e can be interpreted as a n-dimensional internal
vielbein and B as a background 2-form for the n-dimensional internal Kalb-Ramond field
b. Whenever the background is of this form, we will refer to it as geometric (notice that
this still does not determine completely the background, which receives deformations from

scalar fluctuations). In this case the gaugings take the simple form

fabe = 3(6_1)a[a(6_1)5b(6_1)WC]a[CVBB’ﬂ ’
e = 20e7)Pple™)g05e%
fabc — fabc =0. (411)

If we also turn on a [B(y®), the relation of e, B and  with the internal g and b
is less trivial, and typically the background will be globally well defined up to O(n,n)
transformations mixing the metric and the two-form (this is typically called a T-fold). In

this case, we refer to the background as locally geometric but globally non-geometric, and
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this situation formally allows for non-vanishing f®. and f®¢. Finally, if the twist matrix
is a function of 7,, we refer to the background as locally non-geometric. Notice however,
that if it satisfies the WC and SC, one would always be able to rotate it to a frame in

which it is locally geometric, and would therefore belong to an undoubled orbit.

Alternatively, one could also define the cartesian parametrisation of the twist matrix,

by taking the metric of the (internal) global symmetry group to be of the form

1, 0
- . 4.12
NAB ( 0 —h) (4.12)

This formulation is related to the light-cone parametrisation through a SO(2n) trans-
formation, that must also rotate the coordinates. In this case the relation between the
components of the twist matrix and the internal g and b is non-trivial. We will con-
sider the O(n,n) twist matrix to contain a smaller O(n —1,n — 1) matrix in the directions
(v%, ..., 4™, G2, ..., Un ) fibred over the flat directions (3, §1). We have seen that this typically

leads to constant gaugings.

Of course these are not the most general parameterisations and ansatz, but they will
serve our purposes of uplifting all the orbits of half-maximal supergravity to DFT. Inter-

esting works on how to generate gaugings from twists are [159,201].

4.3. U-duality Orbits of Maximal Supergravities

Following the previous discussion of DFT and its relevance for generating duality
orbits, we turn to the actual classification of these. In particular, we start with orbits
under U-duality of gaugings of maximal supergravity. Moreover, we will demonstrate that

all such orbits do have a higher-dimensional supergravity origin.

Starting with the highest dimension for maximal supergravity, D = 11, no known
deformation is possible here. Moreover, in D = 10 maximal supergravities, the only
possible deformation occurs in what is known as massive IIA supergravity? [206]. It
consists of a Stiickelberg-like way of giving a mass to the 2-form Bs. Therefore, such a
deformation cannot be interpreted as a gauging. The string theory origin of this so-called
Romans’ mass parameter is nowadays well understood as arising from D8-branes [207].
Furthermore, its DFT uplift has been constructed in ref. [208]. Naturally, the structure
of possible orbits becomes richer when going to lower dimensions. In what follows we will

perform the explicit classification in dimensions nine and eight.

4Throughout this chapter we will not consider the trombone gaugings giving rise to theories without

an action principle, as discussed in e.g. refs [202-205].
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Orbits and origin of the D =9 maximal case
Maximal D =9 gauged supergravity

The maximal (ungauged) supergravity in D = 9 [209] can be obtained by reducing
either massless type IIA or type IIB supergravity in ten dimensions on a circle. The

global symmetry group of this theory is
Go = Rt x SL(2) .

Note that Gy is the global symmetry of the action and hence it is realised off-shell, whereas
the on-shell symmetry has an extra R™ with respect to which the Lagrangian has a non-
trivial scaling weight. This is normally referred to as the trombone symmetry. As a
consequence, the on-shell symmetry contains three independent rescalings [88,203], which

we summarise in table 4.2. The full field content consists of the following objects which

ID || e, | A, | A | A2 | Bt | Bu? | Cup | € | x | € | | XA L
all 213100 3 3 3 00|09
slol s do [ A3 [H[F]5]5]o 0
vyl oo 1 |-1]| 1| -1/|0 0 [2]-2]0]| 0 |0
s 80| 2| 2 2 2 4 | =F| 00| 7|78

Table 4.2: The scaling weights of the nine-dimensional fields. As already anticipated,
only three rescalings are independent since they are subject to the following constraint:
8a— 488 — 18y —99 = 0. As the scaling weight of the Lagrangian L shows, 5 and y belong
to the off-shell symmetries, whereas o and § can be combined into a trombone symmetry

and an off-shell symmetry.

arrange themselves into irrep’s of Rt x SL(2):

9D : e, Ay A B Cup o, =X +Hie ) U, A A (4.13)
N—_——
bosonic dof’s fermionic dof’s
where p,v,--- denote nine-dimensional curved spacetime, a,b,--- nine-dimensional flat
spacetime and i, j, - - - fundamental SL(2) indices respectively.

The general deformations of this theory have been studied in detail in ref. [99], where
both embedding tensor deformations and gaugings of the trombone symmetry have been
considered. For the present scope we shall restrict ourselves to the first ones. The latter
ones would correspond to the additional mass parameters myp and (mq1, mya) in refs [99,
203], which give rise to theories without an action principle.

The vectors of the theory {A,, A,'} transform in the V' = 114y ® 2(_3) of RT x
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SL(2), where the R scaling weights are included as well>. The resulting embedding tensor

deformations live in the following tensor product
go®V = 14y © 22043 @ 3y D 443) - (4.14)

The LC projects out the 4(,3), the 14 and one copy of the 2,3 since they would
give rise to inconsistent deformations. As a consequence, the consistent gaugings are
parameterised by embedding tensor components in the 2,3y @ 3(_4). We will denote
these allowed deformations by % and ().

The closure of the gauge algebra and the antisymmetry of the brackets impose the
following QC

€ij 0 lﬂjk =

ol Ik —

[an}

21 (4.15)
4 (4.16)

[en}

The R* x SL(2) orbits of solutions to the QC

The QC (4.15) and (4.16) turns out to be very simple to solve; after finding all the
solutions, we studied the duality orbits, i.e. classes of those solutions which are connected
via a duality transformation. The resulting orbits of consistent gaugings in this case are

presented in table 4.3.

ID 6! K gauging
1 diag(1,1) SO(2)
2 | (0,0) | diag(1,—1) | SO(1,1)
3 diag(1,0) R+
4 | (1,0) | diag(0,0) R

Table 4.3: All the U-duality orbits of consistent gaugings in mazximal supergravity in D = 9.
For each of them, the simplest representative is given. The subscripts 5 and v refer to the

rescalings summarised in table 4.2.

Higher-dimensional geometric origin

The four different orbits of maximal D = 9 theory have the following higher-dimensional

origin in terms of geometric compactifications [210]:

= Orbits 1 — 3: These come from reductions of type IIB supergravity on a circle with
an SL(2) twist.

®The R™ factor in the global symmetry is precisely the combination (% o — %5) of the different res-

calings introduced in ref. [203].
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= Orbit 4: This can be obtained from a reduction of type IIA supergravity on a circle
with the inclusion of an RE twist.
Orbits and origin of the D = 8 maximal case
Maximal D = 8 gauged supergravity

The maximal (ungauged) supergravity in D = 8 [109] can be obtained by reducing

eleven-dimensional supergravity on a 7°. The global symmetry group of this theory is
Gy = SL(2) x SL(3) .

The full field content consists of the following objects which arrange themselves into irrep’s
of SL(2) x SL(3):

8D . eua; A/,Lamv B,u,yma C,qu7 Lmjv ¢7 X 7 w,LL? XI ) (417)
~ ———
bosonic dof’s fermionic dof’s
where p,v,--- denote eight-dimensional curved spacetime, a,b, - -- eight-dimensional flat

spacetime, m,n, - -- fundamental SL(3), I, J,--- fundamental SO(3) and «, 3,--- funda-
mental SL(2) indices respectively. The six vector fields A,*™ in (4.17) transform in the
V' = (2,8'). There are eleven group generators, which can be expressed in the adjoint
representation gg.

The embedding tensor © then lives in the representation gg ® V, which can be de-

composed into irreducible representations as
gV =2-(2,3)®(2,6)®(2,15)® (4,3) . (4.18)

The LC restricts the embedding tensor to the (2,3) @ (2,6) [93]. It is worth noticing
that there are two copies of the (2,3) irrep in the above composition; the LC imposes
a relation between them [148]. This shows that, for consistency, gauging some SL(2)

generators implies the necessity of gauging some SL(3) generators as well. Let us denote

the allowed embedding tensor irrep’s by Eqam and fo ("™ respectively.
The QC then read [194,211]
P laplsy = 0, (1,3 (4.19)
f"esp = 0, (3,3 (4.20)
€ (€mgr fa F5™ + fa&pm) = 0.  (1,3) @ (1,15) (4.21)

Any solution to the QC (4.19), (4.20) and (4.21) specifies a consistent gauging of a sub-
group of SL(2) x SL(3) where the corresponding generators are given by

1
(onm)ﬁ’y = 53 gﬂm - 553 fam , (4.22)

3

1
e = e = 2 (Bn = F 00 8am) (4.29
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The SL(2) x SL(3) orbits of solutions to the QC

We exploited an algebraic geometry tool called the Gianni-Trager-Zacharias (GTZ)
algorithm [212]. This algorithm has been computationally implemented by the SINGULAR
project [213] and it consists in the primary decomposition of ideals of polynomials (see
chapter 5 for more details). After finding all the solutions to the QC by means of the
algorithm mentioned above, one has to group together all the solutions which are connected
through a duality transformation, thus obtaining a classification of such solutions in terms
of duality orbits. The resulting orbits of consistent gaugings® in this case are presented in
table 4.4.

ID f+m = Em §-m gauging
1 | diag(1,1,1) SO(3)
2 | diag(1,1,—-1) SO(2,1)
3 | diag(1,1,0) diag(0,0,0) | (0,0,0) | (0,0,0) 1S0(2)
4 | diag(1,-1,0) ISO(1,1)
5 | diag(1,0,0) CS0O(1,0,2)
6 | diag(0,0,0) | diag(0,0,0) | (1,0,0) | (0,0,0) Solvy x Solvs
7 | diag(1,1,0)
8 | diag(1,—1,0) diag(0,0,0) | (0,0,1) | (0,0,0) Solvs x Solvs
9 diag(1,0,0)
1 10
10 | diag(1, —1,0) ( 110 ) 2(0,0,1) | (0,0,0) | Solva x SO(2) x Nils(2)
000

Table 4.4: All the U-duality orbits of consistent gaugings in mazximal supergravity in D = 8.
For each of them, the simplest representative is given. We denote by Solv, C SL(2) and
Solvs C SL(3) a solvable algebra of dimension 2 and 3 respectively. To be more precise,
Solvy identifies the Borel subgroup of SL(2) consisting of 2 X 2 upper-triangular matrices.
Solvs, instead, is a Bianchi type V algebra.

Higher-dimensional geometric origin

s Orbits 1 — 5: These stem from reductions of eleven-dimensional supergravity on a
three-dimensional group manifold of type A in the Bianchi classification [214]. The
special case in orbit 1 corresponds to a reduction over an SO(3) group manifold and

it was already studied in ref. [109].

Recently, also the possible vacua of the different theories have been analysed [194]. As we will explain

later in this section, it was found that only orbit 3 has maximally symmetric vacua.
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= Orbit 6: This can be obtained from a reduction of maximal nine-dimensional su-

pergravity on a circle with the inclusion of an R twist inside the global symmetry

group.

= Orbits 7 — 9: These can come from the same reduction from D = 9 but upon

inclusion of a more general RT™ x SL(2) twist.

= Orbit 10: This orbit seems at first sight more complicated to be obtained from a
dimensional reduction owing to its non-trivial SL(2) angles. Nevertheless, it turns
out that one can land on this orbit by compactifying type IIB supergravity on a
circle with an SL(2) twist and then further reducing on another circle with RT x
SL(2) twist given by the residual little group leaving invariant the intermediate nine-

dimensional deformation.

Remarks on the D = 7 maximal case

The general deformations of the maximal theory in D = 7 are constructed and presen-
ted in full detail in ref. [96]. For the present aim we only summarise here a few relevant
facts.

The global symmetry group of the theory is SL(5). The vector fields AMM N — AN[M N]
transform in the 10" of SL(5), where we denote by M a fundamental SL(5) index. The

embedding tensor © takes values in the following irreducible components
10 ® 24 = 10 ® 15 @ 40’ & 175. (4.24)

The LC restricts the embedding tensor to the 15 @ 40’, which can be parameterised by
the following objects

Youny, and  ZPNEPwigh ZBMNPL = (4.25)
The generators of the gauge algebra can be written as follows
(Xun)p? = 5[612\4 Ynip — 2€emnprs 2799, (4.26)
or, identically, if one wants to express them in the 10,

(XMN)pQRS =2 (XMN)[p[R 5211 . (4.27)

The closure of the gauge algebra and the antisymmetry of the brackets imply the following

QC

YMQ Z9N.P + 2€pRrsTU ZRIN ZTUP — , (4.28)

which have different irreducible pieces in the 5 @& 45" @ 70’. Unfortunately, in this case,
both the embedding tensor deformations and the QC reach a level of complexity that
makes an exhaustive and general analysis difficult. Such analysis lies beyond the scope of

our work.
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The Critical Points of Maximal D = 8 Supergravities

Before going to the discussion of T-duality orbits of half-maximal theories, we would
like in this paragraph to schematically present the study of critical points of maximal
eight-dimensional supergravities. To this end, we will briefly summarise the results of
ref. [194] where the analysis of the scalar potential and its derivatives was preformed in
full generality. The first result of the above reference, in fact, is the derivation of the scalar
potential itself that we briefly sketch here. The scalar degrees of freedom present in (4.17)

can rearranged into the following coset representatives

—¢ 209 ® o
W — ( ¢ +;< o ) . Muw = L, 'L, 76 . (4.29)
xe e
of SL(2)/SO(2) and SL(3)/SO(3), respectively.
The gravity /scalar part of the action reads [215]

_ 1 8 1 -1 1 -1
S = 167TGg/al T e <R + 4Tr(8M(9M ) + 4Tr(8W8W )> , (4.30)

where e is the determinant of the vielbein. The full bosonic action, in addition to the
terms in (4.30), contains kinetic terms for the vector fields, the two- and three-forms and
finally Chern-Simons terms.

The most general ansatz for the scalar potential induced by the gauging, consists of

the following terms
V=w [fa™" f5P (a Mypp Mg + b My Myg) + cEamépnM™"] (4.31)

W8 and M™" denote the inverse matrices of Wap and M, appearing in (4.29), and
a, b and ¢ are coefficients that are going to be determined. The way used for fixing
these coefficients is to restrict them by means of the scalar potential in maximal D = 7
supergravity, which we have just presented above.

In addition to the embedding tensor deformations extensively described in the previous
paragraph, we need to introduce the scalar sector and scalar potential of maximal D =7
supergravities. Such scalar sector is described by the SL(5)/SO(5) coset geometry (see
table 2.6) parametrised by the symmetric matrix My with inverse MM, This divides
the isometry group of the scalar manifold SL(5) into unphysical scalar degrees of freedom
(generating the adjoint representation of SO(5)) and physical scalar fields completing them
to the 24, i.e. the adjoint representation of SL(5). Maximal supersymmetry completely

and uniquely determines the scalar potential to be of the form

1
V = @ <2MMNYNPMPQYQM — (MMNYMN)2> +

+ ZMNPZQRS (MMQMNRMPS — MMQMNPMRS> . (4.32)
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Every gauging in D = 8 must be an at most six-dimensional subgroup of the global
symmetry group SL(2) x SL(3). After dimensional reduction to D = 7, the global sym-
metry group gets enhanced with respect to what one would naively expect”; for this reason,
one would certainly expect any consistent gauging of the eight-dimensional theory to be
reduced to a consistent gauging of the seven-dimensional theory where the gauge group,
though, undergoes an enlargement just in the same way as for the global symmetry group.
This statement implies that the irreducible components of the embedding tensor in eight
dimensions must be obtained as a truncation of the embedding tensor in D = 7. This
implies the possibility of deriving the scalar potential of maximal D = 8 gauged super-
gravity from the expression of the seven-dimensional scalar potential given in (4.32), after
understanding how the eight-dimensional degrees of freedom associated with internal sym-
metries sit inside SL(5) irrep’s. To this end, we need the branching of some relevant irrep’s
of SL(5) with respect to irrep’s of SL(2) x SL(3), which is a maximal subgroup thereof.

The embedding turns out to be unique and it gives rise to the following decompositions

5 —  (2,1)e(1,3), (4.33)
15 —  (1,6) @ (2,3) @ (3,1), (4.34)
24 —  (1,1) & (1,8) @ (2,3) @ (2,3) & (3,1), (4.35)
00 —  (1,3) @ (1,8) @ (2,1) & (2,6') & (2,3) & (3,3").  (4.36)

The decomposition (4.33) essentially tells that the fundamental SL(5) index M = 1,2,3,4,5
goes into (a; m), where o = +, — and m = 1, 2, 3 represent fundamental SL(2) and SL(3)
indices respectively. The decomposition (4.35) tells us how the SL(2) x SL(3) scalar de-
grees of freedom (living in the (1,8) & (3,1)) are embedded in the adjoint of SL(5). It
is worth mentioning at this point that we are losing a Cartan generator in the branching
procedure; such an abelian generator is realised as an extra R factor corresponding to
a dilaton in the seven-dimensional theory, with respect to which any eight-dimensional
object should have a scaling weight which we are omitting. This extra scalar exactly ac-
counts for the (1,1) irrep appearing in (4.35). The truncation that we need consists then
in switching off all the off-diagonal axionic excitations (spanning the (2,3) and (2,3’)

terms in (4.35)), thus resulting in the following parametrisation

€3UW[J ‘ 0

Muyn = , (4.37)

0 e 2 Myn

where o is the extra dilaton corresponding to R*, whereas Wr; and M,,,, parametrise the
SL(2)/SO(2) and SL(3)/SO(3) cosets respectively. It has been checked explicitly that the
scaling weights of all the terms in the D = 8 scalar potential with respect to the extra R™

are all equal such that it is perfectly consistent to set o = 0 in the rest of our derivation,

"One would expect RT x SL(2) x SL(3), whereas it turns out to be enlarged to an SL(5).
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since any other constant value can be seen as a change of normalisation of the potential
energy in the Lagrangian.

The embedding tensor of the D = 8 theory is embedded as follows inside the one of
D = 7 theory

1 1
gomn _ _ pman Z Eaﬂfﬁmn _ T6 Em”peaﬁgﬂp , (438)
1
gmna _ < By (4.39)
Yam =Y = é‘am . (440)

One can check that substituting (4.38), (4.39) and (4.40) into the D = 7 quadratic con-
straints (4.28) exactly leads to the ones in D = 8 as shown in (4.19), (4.20) and (4.21).
One can finally apply the decomposition rules (4.37) and (4.38), (4.39) and (4.40)
on the D = 7 scalar potential (4.32), so that the relative coefficients in (4.31) can be
determined, and by taking the normalisation of the action (4.30) into account one can
further fix the overall factor of (4.31). Then the D = 8 scalar potential is fully derived:

1
V=g WP o™ f5P (2Myp Mg — Mynn Mpg) + EamEsnM™] . (4.41)

In total there are 7 scalars for the coset Sé(é)) X Sé(é)) In (4.29) we already gave a

parametrisation for the SL(2) scalars; now we also specify a parametrisation of the vielbein
L appearing in (4.29) containing the information about the SL(3) scalars, which is given
by

—é o) P1+¢P2
e Pl yie 2 X2€e 2
; $1—9P2 P1+¢2
LmZ = 0 e 2 x3e 2 . (442)
P1t+d2
0 0 e 2

Subsequently, by substituting such a parametrisation into the scalar potential (4.41)

and requiring that

%
m =0, (4.43)
one obtains 7 equations which represent the extremality condition for the scalar potential.
Since the full theory enjoys a global SL(2) x SL(3) duality symmetry, one can choose to
solve these equations in the origin of moduli space (setting all 7 scalars to zero®.). As we
will explain in more detail in chapter 5, this can always be done without loss of generality
by performing a non-compact duality transformation. This will translate the 7 equations
of motion for the scalars into a set of 7 quadratic conditions in the embedding tensor
components. Furthermore the quadratic constraints (4.19), (4.20) and (4.21) give another
30 equations in the embedding tensor components which need to be satisfied for the

solution to be consistent. This set of 37 equations appears in the form an ideal consisting

8This translates into W = 15 and M = 13, from which it becomes manifest that the origin still presents
a residual SO(2) x SO(3) invariance.
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of homogeneous polynomial equations which can be solved for the components &,,, and
fo (M),

As explained in the footnote 8, we still have compact duality transformations that we
can use in order to simplify the general form of £ and f without spoiling the choice of
solving the equations of motion in the origin. For instance, we can make use of an SO(3)
transformation in order to diagonalise f_"", whereas for the moment we do not need to
exploit SO(2) transformations.

By making again use of the GTZ algorythm [212] (see chapter 5), we find in the end

only one SO(2) x SO(3) orbit of solutions, in which the simplest representative is given by

4= s S =6 = §em = 0, (4.44)

oS O >
o > O
o O O

where A represents an arbitrary real parameter, with V' = 0 (Minkowski). This theory
belongs to orbit 1 in table 4.4, whereas all the other orbits of consistent theories listed
there turn out to have no critical points.

The solutions given in (4.44) turn out to always non-supersymmetric and have the

following mass spectrum

0 (x5), 822 (x2), (4.45)

where, though, at least the SL(2) dilaton ¢ can never be stabilised at any higher-order

level since it corresponds to the overall e? behaviour typical of no-scale supergravities.

4.4. T-duality Orbits of Half-maximal Supergravities

After the previous section on maximal supergravities, we turn our attention to theories
with half-maximal supersymmetry. In particular, in this section we will classify the orbits
under T-duality of all gaugings of half-maximal supergravity. We will only consider the
theories with duality groups RT x SO(d,d) in D = 10 — d, which places a restriction on
the number of vector multiplets. For these theories we will classify all duality orbits, and
find a number of non-geometric orbits. Furthermore, we demonstrate that DF'T does yield
a higher-dimensional origin for all of them.

Starting from D = 10 half-maximal supergravity without vector multiplets, it can be
seen that there is no freedom to deform this theory, rendering this case trivial. In D =9,
instead, we have the possibility of performing an Abelian gauging inside R* x SO(1,1),
which will depend on one deformation parameter. However, this is precisely the para-
meter that one expects to generate by means of a twisted reduction from D = 10. This
immediately tells us that non-geometric fluxes do not yet appear in this theory. In order

to find the first non-trivial case, we will have to consider the D = 8 case.
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Orbits and origin of the D = 8 half-maximal case
Half-maximal D = 8 gauged supergravity

Half-maximal supergravity in D = 8 is related to the maximal theory analysed in the
previous section by means of a Zy truncation. The action of such a Zg breaks SL(2) x SL(3)
into R* x SL(2) x SL(2), where SL(2) x SL(2) = O(2,2) can be interpreted as the T-
duality group in D = 8 as shown in table 4.1. The embedding of R* x SL(2) inside SL(3)

is unique and it determines the following branching of the fundamental representation

3 — 1(+2) 5> 2(,1) s

m — (e,1),
where the RT direction labeled by e is parity even, whereas i is parity odd, such as the
other SL(2) index a. In the following we will omit all the RT weights since they do not

play any role in the truncation.

The embedding tensor of the maximal theory splits in the following way

(2.3) — 24 @ (2,2),
(2,6)) — [24] @ (2,2) @ (23] ,
where all the crossed irrep’s are projected out because of Zo parity. This implies that the
consistent embedding tensor deformations of the half-maximal theory can be described by
two objects which are doublets with respect to both SL(2)’s. Let us denote them by an;
and b,;. This statement is in perfect agreement with the Kac-Moody analysis performed
in ref. [78]. The explicit way of embedding a,; and b,; inside &, and f,"" is given by
foai. = foa.i = ¢ Qaj (4'46)
§ai = 4bai (4.47)
The QC given in (4.19), (4.20) and (4.21) are decomposed according to the following

branching

(1,3) — (1,1) & (9],

3.3) — (3,1) ® (32,

(1,15) — (1L,1) 9 2=F2) 0 2 (1,3) @ (B4 .
As a consequence, one expects the set of Zg even QC to consist of 3 singlets, a (3,1) and 2
copies of the (1,3). By plugging (4.46) and (4.47) into (4.19), (4.20) and (4.21), one finds

€ e byibg; = 0, (1,1) (4.48)
P el agbgy = 0, (1,1) (4.49)
O"Be aniag; = 0, (1,1) (4.50)
aﬁaa(ibﬁj) = 0 (1,3) (4.52)
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With respect to what we expected from group theory, we seem to be finding a (1, 3) less
amongst the even QC. This could be due to the fact that Zs even QC can be sourced by
quadratic expressions in the odd embedding tensor components that we truncated away.
After the procedure of turning off all of them, the two (1,3)’s probably collapse to the
same constraint or one of them vanishes directly.

The above set of QC characterises the consistent gaugings of the half-maximal theory
which are liftable to the maximal theory, and hence they are more restrictive than the pure
consistency requirements of the half-maximal theory. In order to single out only these we
need to write down the expression of the gauge generators and impose the closure of the

algebra. The gauge generators in the (2,2) read
Xai)y ™ = £ 67 ey e 5168 bss — 2876 by + = 576 b 0 85 by . (4.53
(Oél)ﬁj —55%5 Aol + ajﬁi_iﬁia]"i_iﬁjaz'i"eaﬁe jéi.(. )

The closure of the algebra generated by (4.53) implies the following QC

P € (aniap; — baibs;) = 0, (1,1) (4.54)
€P €7 (anibg; + baibs;) = 0, (1,1) (4.55)
€7 aibs; = 0, (3,1) (4.56)
ePayibsy = 0. (1,3) (4.57)

To facilitate the mapping of gaugings a,; and by; with the more familiar f4pc and €4
in the DFT language, we have written a special section in the appendix A.2. The mapping

is explicitly given in (A.16).

The O(2,2) orbits of solutions to the QC

After solving the QC given in (4.54), (4.55), (4.56) and (4.57) again with the aid of
SINGULAR., we find a 1-parameter family of T-duality orbits plus two discrete ones. The

results are all collected in table 4.5.

1D Qi boi gauging

1 | diag(cosa,0) | diag(sina,0) | Solve x SO(1,1)

2 | diag(1,1) | diag(~1,-1)
3 | diag(1,-1) diag(—1,1)

SL(2) x SO(1, 1)

Table 4.5: All the T-duality orbits of consistent gaugings in half-mazximal supergravity in
D = 8. For each of them, the simplest representative is given. Solvy refers again to the

solvable subgroup of SL(2) as already explained in the caption of table 4.4.
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Higher-dimensional geometric origin

The possible higher-dimensional origin of the three different orbits is as follows:

= Orbit 1: This orbit can be obtained by performing a two-step reduction of type I
supergravity. In the first step, by reducing a circle, we can generate an RT x SO(1,1)
gauging of half-maximal D = 9 supergravity. Subsequently, we reduce such a theory
again on a circle with the inclusion of a new twist commuting with the previous
deformation. Also, these orbits include a non-trivial £4 gauging, so we will not

address it from a DFT perspective.

= Orbits 2 — 3: These do not seem to have any obvious geometric higher-dimensional
origin in supergravity. In fact, they do not satisfy the extra constraints (4.7), so one

can only hope to reproduce them from truly doubled twist orbits in DFT.

Therefore we find that, while the half-maximal orbits in D = 9 all have a known geometric
higher-dimensional origin, this is not the case for the latter two orbits in D = 8. We have

finally detected the first signals of non-geometric orbits.

Higher-dimensional DFT origin

As mentioned, the orbits 2 and 3 lack of a clear higher-dimensional origin. Here we
would like to provide a particular twist matrix giving rise to these gaugings. We chose

to start in the cartesian framework, and propose the following form for the SO(2,2) twist

matrix
1 0 0 0
U— 0 cosh(my!'+ng) 0 sinh(my'+ng) (4.58)
0 0 1 0
0 sinh(my' +ng) 0 cosh(my' +ni)

This is in fact an element of SO(1, 1) lying in the directions (7, 3?), fibred over the double
torus (71,y"'). Here, the coordinates are written in the cartesian formulation, so we must
rotate this in order to make contact with the light-cone case.

For this twist matrix, the WC and SC in the light-cone formulation read (m + n)(m —
n) = 0, while the QC are always satisfied. The gaugings are constant, and when written

in terms of a,; and b,; we find

(4.59)

(q; = —bo; = diag <_m+n m_n> )

22 242
so orbit 2 is obtained by choosing m = 0, n = —2+/2, and orbit 3 by choosing m =
—2+/2, n = 0. Notice that in both cases the twist orbit is truly doubled, so we find the

first example of an orbit of gaugings without a clear supergravity origin, that finds an

uplift to DFT in a truly doubled background.
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Orbits and origin of the D = 7 half-maximal case
Half-maximal D = 7 gauged supergravity

A subset of half-maximal gauged supergravities is obtained from the maximal theory
introduced at the end of section 4.3 by means of a Zy truncation. Thus, we will in this
section perform this truncation and carry out the orbit analysis in the half-maximal theory.
As we already argued before, this case is not only simpler, but also much more insightful
from the point of view of understanding T-duality in gauged supergravities and its relation
to DFT.

The action of our Zy breaks? SL(5) into R* x SL(4). Its embedding inside SL(5) is

unique and it is such that the fundamental representation splits as follows
5 — 144 ® 41 (4.60)

After introducing the following notation for the indices in the R™ and in the SL(4) direc-
tions

M — (o, m), (4.61)

we assign an even parity to the ¢ direction and odd parity to m directions.

The embedding tensor of the maximal theory splits according to
15 — 14 A4 10, (4.62)
00 — Xo6a010 @24, (4.63)

where again, as in the D = 8 case, all the crossed irrep’s are projected out because of Zo
parity. This implies that the embedding tensor of the half-maximal theory lives in the
1® 6 @ 10 @ 10’ and hence it is described by the following objects

This set of deformations agrees with the decomposition Dg‘++ — Az x Ag given in
ref. [78]. The objects in (4.64) are embedded in Y and Z in the following way

Y<><> — 0’ (465)
1
Y, = 3 My (4.66)
mn,< 1 mn
gmon  _  _gomn _ iMm” + igm” (4.68)
16 16 ’

9The Zs element with respect to which we are truncating is the following USp(4) =SO(5) element

12 0
a =
0 -1

projecting out half of the supercharges.
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where for convenience we defined """ = %em”pq Epg-
Now we will obtain the expression of the gauge generators of the half-maximal theory
by plugging the expressions (4.65) — (4.68) into (4.26). We find

1 1 ~ rq
(Xmn)y" = 5 0% Mgy = 5 (M n g) : (4.69)

which extends the expression given in ref. [216] by adding an antisymmetric part to M
proportional to £&. Note that the £ term is also the only one responsible for the trace of
the gauge generators which has to be non-vanishing in order to account for R™ gaugings.

The presence of such a term in the expression (4.69) has another consequence: the asso-
ciated structure constants that one writes by expressing the generators in the 6 (X,,,) pqrs
will not be automatically antisymmetric in the exchange between mn and pq. This implies
the necessity of imposing the antisymmetry by means of some extra QC!.

The QC of the maximal theory are branched into

5 — 1a X, (4.70)
45 — A ® 6 & 15 ¢ 24, (4.71)
70 — 1040 Xao 10 @15 ¢ 360 (4.72)

By substituting the expressions (4.65) — (4.68) into the QC (4.28), one finds

66 = 0, (6) (4.73)

(410 + €)My = 0, (1@ 15) (4.74)

My € = & (M + €)= 0, (1@ 15) (4.75)
oM™ = 0. (10" (4.76)

Based on the Kac-Moody analysis performed in ref. [78], the QC constraints of the half-
maximal theory should only impose conditions living in the 1 & 6 @& 15 @& 15. The
problem is then determining which constraint in the 1 is already required by the half-
maximal theory and which is not.

By looking more carefully at the constraints (4.73) — (4.76), we realise that the traceless
part of (4.74) exactly corresponds to the Jacobi identities that one gets from the closure
of the algebra spanned by the generators (4.69), whereas the full (4.75) has to be imposed
to ensure antisymmetry of the gauge brackets. Since there is only one constraint in the 6,

we do not have ambiguities there!®.

10The QC which ensure the antisymmetry of the gauge brackets are given by

(an)pq”’ Xrs + (mn < pq) = 0, where X is given in an arbitrary representation.

1YWe would like to stress that the parameter  within the half-maximal theory is a consistent deformation,
but it does not correspond to any gauging and hence QC involving it cannot be derived as Jacobi identities

or other consistency constraints coming from the gauge algebra.
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We are now able to write down the set of QC of the half-maximal theory:

(Mmp + 5mp> M, — % (an an) 5;” = 0, (15) (4.78)
My € + Emp MP" = 0, (15) (4.79)
s gmn gpq = 0. (1) (480)

We are not really able to confirm whether (6.25) is part of the QC of the half-maximal
theory, in the sense that there appears a top-form in the 6 from the D§++ decomposition
but it could either be a tadpole or a QC. This will however not affect our further discussion,
in that we only consider orbits of gaugings in which 8 = 0. The extra QC required in

order for the gauging to admit an uplift to maximal supergravity are
M™ My, = 0, (1) (4.81)

oM™ = 0. (10 (4.82)

The O(3,3) orbits of solutions to the QC in the 10 ® 10’

The aim of this section is to solve the constraints summarised in (6.25), (6.26), (6.27)
and (6.28). We will start by considering the case of gaugings only involving the 10 & 10'.
This restriction is motivated by flux compactification, as we will try to argue later on.

The only non-trivial QC are the following
rm 1 Y m
M™ My — (8179 My ) 57 = 0, (4.83)

which basically implies that the matrix product between M and M, which in principle
lives in the 1 & 15, has to be pure trace. We made use of a GL(4) transformation in order
to reduce M to pure signature; as a consequence, the QC (4.83) imply that M is diagonal
as well [172]. This results in a set of eleven 1-parameter orbits'? of solutions to the QC
which are given in table 4.6.

As we will see later, some of these consistent gaugings in general include non-zero
non-geometric fluxes, but at least in some of these cases one will be able to dualise the

given configuration to a perfectly geometric background.

Higher-dimensional geometric origin

Ten-dimensional heterotic string theory compactified on a T° gives rise to a half-

maximal supergravity in D = 7 where the SL(4) =SO(3, 3) factor in the global symmetry

12We would like to point out that the extra discrete generator 5 of O(3,3) makes sure that, given a
certain gauging with M and M, it lies in the same orbit as its partner with the role of M and —M

interchanged.
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ID M/ cosa M / sina range of « gauging
SO(4 z
1 diag(1,1,1,1) diag(1,1,1,1) | -3 <a <% (4), a3,
SOB3), a=1%
2 | diag(1,1,1,~1) | diag(1,1,1,-1) | -T<a<T SO(3,1)
SO(2,2 s
3 | diag(1,1,-1,-1) | diag(1,1,-1,-1) | -2 < a < Z (22), a3,
SO(2,1), a=7%.
4 diag(1,1,1,0) diag(0,0,0,1) -5 <a< i ISO(3)
5 | diag(1,1,-1,0) | diag(0,0,0,1) |-T<a<?Z 1SO(2,1)
Cs0(2,0,2) , z.
6 | diag(1,1,0,0) | diag(0,0,1,1) |-T <a<T (2,0,2), a7 3§
fl (SOIVG) s o = %
CS0(2,0,2) , |af < %
7 | diag(1,1,0,0) | diag(0,0,1,-1) | -F <a <5 |{ CSO(1,1,2), |of > %
go (Solvg), |af = 7.
8 diag(1,1,0,0) diag(0,0,0,1) | -5 < a < 3 b1 (Solvg)
CSO(1,1,2) z,
9 | diag(1,—1,0,0) | diag(0,0,1,-1) | - <a < T (LL2), a# g
fg (SO]V6) s o = % .
10 | diag(1,—1,0,0) diag(0,0,0,1) | -5 < a < 3 h2  (Solvg)
[ (Nilg(3 0,
11| diag(1,0,0,0) | diag(0,0,0,1) |-T <a<T (Nils(3)) o #
CSO(1,0,3), a=0.

Table 4.6: All the T-duality orbits of consistent gaugings in half-mazimal supergravity

m D = 7. Any value of o parameterises inequivalent orbits. More details about the

non-semisimple gauge algebras f1, f2, b1, b2, go and | are given in appendix A.1.

of this theory can be interpreted as the T-duality group. The set of generalised fluxes

which can be turned on here is given by (see decomposition in (3.41))

{fabcy fabcv fabca fabc} = {szbm Wabcv Qabcv Rabc} )

where a,b,c = 1,2, 3.

(4.84)

These are exactly the objects that one obtains by decomposing a three-form of SO(3, 3)
with respect to its GL(3) subgroup. The number of independent components of the above
fluxes (including traces of w and @) amounts to 1 +9+ 9+ 1 = 20, which is the number
of independent components of a three-form of SO(3,3). Nevertheless, the three-form rep-
resentation is not irreducible since the Hodge duality operator in 343 dimensions squares
to 1. This implies that one can always decompose it in a self-dual (SD) and anti-self-dual
(ASD) part

10 & 10" of SL(4) <+— 10sp @ 10xsp of SO(3,3) , (4.85)
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such that the matching between the embedding tensor deformations (M., M™") and
the generalised fluxes given in (4.84) now perfectly works. The explicit mapping between
vectors of SO(3,3) expressed in light-cone coordinates and two-forms of SL(4) can be
worked out by means of the SO(3,3) 't Hooft symbols [GA]™" (see appendix A.2). This
gives rise to the following dictionary between the M and M-components and the fluxes
given in (4.84)

M = diag (Hizs, @17, Q2*', Q3'?) , M = diag (R'®, was', ws1?, wi2®) . (4.86)
The QC given in equations (6.25)-(6.28) enjoy a symmetry in the exchange
(M, &) & (=M, =€) . (4.87)

The discrete Zg transformation n corresponds to the following O(3,3) element with de-

[0 13
n_<13 0), (4.88)

which can be interpreted as a triple T-duality exchanging the three compact coordinates

terminant —1

y® with the corresponding winding coordinates g, in the language of DFT.
Now we have all the elements to analyze the higher-dimensional origin of the orbits
classified in table 4.6.

= Orbits 1 — 3: These gaugings are non-geometric for every a # 0; for o = 0,
they correspond to coset reductions of heterotic string theory. See e.g. the S3
compactification in ref. [107] giving rise to the SO(4) gauging. This theory was
previously obtained in ref. [217] as A/ = 2 truncation of a maximal supergravity in
D=7

= Orbits 4 — 5: For any value of a we can always dualise these representatives to the

one obtained by means of a twisted T° reduction with H and w fluxes.

= Orbits 6 — 7: For any a # 0 these orbits could be obtained from supergravity
compactifications on locally-geometric T-folds, whereas for o = 0 it falls again in a

special case of the reductions described for orbits 4 and 5.

= Orbits 8 — 11: For any value of «, these orbits always contain a geometric repres-

entative involving less general H and w fluxes.

To summarise, in the half-maximal D = 7 case, we encounter a number of orbits which
do not have an obvious higher-dimensional origin. To be more precise, these are orbits
1, 2 and 3 for o # 0. The challenge in the next subsection will be to establish what
DFT can do for us in order to give these orbits a higher-dimensional origin. Again, before
reading the following subsections we refer to section 4.2 for a discussion of what we mean

by light-cone and cartesian formulations.
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Higher-dimensional DFT origin

First of all we would like to show here how to capture the gaugings that only involve
(up to duality rotations) fluxes Hgpe and wgp®. For this, we start from the light-cone
formulation, and propose the following Ansatz for a globally geometric twist (involving e

and B and physical coordinates y)

1 0 ol sin(wy w3 y?)

e = |0 cos(wawzy) — &2 cos(wr w3 y?)sin(wawsy') | (4.89)
0 ZEsin(wrws yh) cos(wy w3 y?) cos(wa w3 y')
0 0 0

B = 10 0 Hy' cos(wrwsy?) | (4.90)
0 —Hy' cos(wi wsy?) 0
1

A= ~5 log(cos(wiwsy?)) . (4.91)

This is far from being the most general ansatz, but it serves our purposes of reaching a
large family of geometric orbits. The parameters w; can be real, vanishing or imaginary,
since U is real and well-behaved in these cases. The QC, WC and SC are all automatically
satisfied, and the gaugings read

M =diag(H, 0,0,0), M=diag(0, w}, wi, w?). (4.92)

From here, by choosing appropriate values of the parameters the orbits 4, 5, 8, 10 and
11 can be obtained. Indeed these are geometric as they only involve gauge and (geo)metric
fluxes.

Secondly, in order to address the remaining orbits, we consider an SO(2,2) twist Uy
embedded in O(3,3) in the following way

0
B A B
. U= . A=0. (4.93)
0 C D

o o o =
Q o » ©
o = O O

D

This situation is analog to the SO(1,1) twist considered in the D = 8 case, but with a
more general twist. Working in the cartesian formulation, one can define the generators
and elements of SO(2,2) as

(L))" = 55%}1{ . Us=exp(trs¢') | (4.94)

where the rotations are generated by t12 and ¢34, and the boosts by the other generators.
Also, we take ¢’/ = o!7y! + B17§; to be linear.

From the above SO(2,2) duality element one can reproduce the following orbits em-
ploying a locally geometric twist (including e, B and § but only depending on y, usually
referred to as a T-fold):
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= Orbit 6 can be obtained by taking

6) a?=-p"%=—-"Z(cosa+sina), o =-3%=—-—"{(cosa+sina).

S
S

and all other vanishing.

= Orbits 7 and 9 can be obtained by the following particular identifications
¢14 — ¢23 ¢12 — ¢34 and ¢13 — ¢24

L. 12 12 1 13 13
— sina, o =-— =———=cosa, a°= =0,
V2 MV ’
1 1
9) olt=— 14:——sinoz, al? = 12:07 a?=p8=_—— cosa.
) g = 5 5= ——
All these backgrounds satisfy both the WC and the SC and hence they admit a locally

geometric description. This is in agreement with the fact that the simplest representative

(7) 0414 — _514 —

of orbits 6, 7 and 9 given in table 4.6 contains H, w and @ fluxes but no R flux.
Finally, one can employ the same SO(2, 2) duality elements with different identifications
to generate the remaining orbits with a non-geometric twist (involving both y and ¢

coordinates):

= Orbits 1, 3 can be again obtained by considering an SO(2) x SO(2) twist with
arbitrary ¢'2 and ¢3*:

(1) a'?=-2Vv2(cosa+sina), B*=2v2(cosa—sina), o =p2=0,
(3) o =—-2V2(cosa+sina), B2=2v2(cosa—sina), a?=p*=0.

= Orbit 2 can be obtained by means of a different SO(2,2) twist built out of the two

rotations and two boosts subject to the following identification
P =92 | p12 = g3 (4.95)
(2) oM =p"= 1 (cosa —sina), o?=-pM"= _ L (cosa +sina) .
V2 ’ V2
These backgrounds violate both the WC and the SC for a # 0. This implies that these
backgrounds are truly doubled and they do not even admit a locally geometric description.

Finally, let us also give an example of degeneracy in twist orbits-space reproducing the

same orbit of gaugings. The following twist
P12 = $13 @3 = 92 ¢ =l =0 (4.96)

1 1
(6) a'®=——(cosa+sina), B*=-"<(cosa—sna), o =p8=0,

V2 V2

also reproduces the orbit 6, but in this case through a non-geometric twist. What happens
in this case is that although the twist matrix does not satisfy the WC/SC, the contractions

in (4.8) cancel.
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Concluding Remarks

In this chapter we have provided a litmus test to the notion of non-geometry, by
classifying the explicit orbits of consistent gaugings of different supergravity theories, and
considering the possible higher-dimensional origins of these. The results turn out to be
fundamentally different for the cases of U-duality orbits of maximal supergravities, and
T-duality orbits of half-maximal theories.

In the former case we have managed to explicitly classify all U-duality orbits in di-
mensions 8 < D < 11. This led to zero, one, four and ten discrete orbits in dimensions
D =11,10,9 and 8, respectively, with different associated gauge groups. Remarkably, we
have found that all of these orbits have a higher-dimensional origin via some geometric
compactification, be it twisted reductions or compactifications on group manifolds or coset
spaces. In our parlance, we have therefore found that all U-duality orbits are geometric.
The structure of U-duality orbits is therefore dramatically different from the sketch of fig-
ure 4.1 in the introduction. Although a full classification of all orbits in lower-dimensional
cases becomes increasingly cumbersome, we are not aware of any examples that are known
to be non-geometric. It could therefore hold in full generality that all U-duality orbits are
necessarily geometric.

This is certainly not the case for T-duality orbits of gaugings of half-maximal su-
pergravities. In this case, we have provided the explicit classification in dimensions
7 < D < 10 (where in D = 7 we have only included three-form fluxes). The num-
bers of distinct families of orbits in this case are zero, one, three and eleven in dimensions
D =10, 9, 8 and 7, respectively, which includes both discrete and one-parameter orbits.
A number of these orbits do not have a higher-dimensional origin in terms of a geometric
compactification. Such cases are orbits 2 and 3 in D = 8 and orbits 1, 2and 3in D =7
for oo £ 0. Indeed, these are exactly the orbits that do not admit an uplift to the maximal
theory. As proven in section 4.2, all such orbits necessarily violate the WC and/or SC,
and therefore need truly doubled backgrounds. Thus, the structure of T-duality orbits is
very reminiscent of figure 4.1 in the introduction. Given the complications that already
arise in these simpler higher-dimensional variants, one can anticipate that the situation
will be similar in four-dimensional half-maximal supergravity.

Fortunately, the formalism of DFT seems tailor-made to generate additional T-duality
orbits of half-maximal supergravity. Building on the recent generalisation of the definition
of DFT [168], we have demonstrated that all T-duality orbits, including the non-geometric
ones in D = 7, 8, can be generated by a twisted reduction of DFT. We have explicitly
provided duality twists for all orbits. For locally-geometric orbits the twists only depend on
the physical coordinates y, while for the non-geometric orbits these necessarily also include
7. Again, based on our exhaustive analysis in higher-dimensions, one could conjecture that
also in lower-dimensional theories, all T-duality orbits follow from this generalised notion

of DFT.
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At this point we would like to stress once more that a given orbit of gaugings can be
generated from different twist orbits. Therefore, there is a degeneracy in the space of twist
orbits giving rise to a particular orbit of gaugings. Interestingly, as it is the case of orbit
6 in D = 7 for instance, one might find two different twist orbits reproducing the same
orbit of gaugings, one violating WC and SC, the other one satisfying both. Our notion of
a locally geometric orbit of gaugings is related to the existence of at least one undoubled
background giving rise to it. However, this ambiguity seems to be peculiar of gaugings
containing () flux. These can, in principle, be independently obtained by either adding a
B but no g dependence (locally geometric choice, usually called T-fold), or by including
non-trivial § dependence but no 5 (non-geometric choice) [166].

Another remarkable degeneracy occurs for the case of semi-simple gaugings, corres-
ponding to orbits 1 — 3 in D = 7. For the special case of « = 0, we have two possible
ways of generating such orbits from higher-dimensions: either a coset reduction over a
sphere or analytic continuations thereof, or a duality twist involving non-geometric co-
ordinate dependence. Therefore d-dimensional coset reductions seem to be equivalent to
2d-dimensional twisted torus reductions (with the latter in fact being more general, as it
leads to all values of ). Considering the complications that generally arise in proving
the consistency of coset reductions, this is a remarkable reformulation that would be in-
teresting to understand in more detail. Furthermore, when extending the notion of DFT
to type II and M-theory, this relation could also shed new light on the consistency of the
notoriously difficult four-, five- and seven-sphere reductions of these theories.

Our results mainly focus on SS compactifications leading to gauged supergravities with
vanishing &;; fluxes. In addition, we have restricted to the NS-NS sector and ignored «'-
effects. Also, we stress once again that relaxing the WC and SC is crucial in part of our
analysis. If we kept the WC, typically the Jacobi identities would lead to backgrounds
satisfying also the SC [168]. However, from a purely (double) field theoretical analysis the
WC is not necessary. A sigma model analysis beyond tori would help us to clarify the
relation between DFT without the WC and SC and string field theory on more general

backgrounds.






Chapter 5

Orientifold Compactifications

Many string theory constructions related to flux backgrounds compatible with minimal
supersymmetry have been studied so far. In particular, as we saw in chapter 3, the
mechanism of inducing an effective superpotential from fluxes has been extensively studied
in the literature [120,121,124,125,138,145,146,218,219] for those compactifications giving
rise to a so-called STU-model as low energy description. In this chapter we will firstly
give an overview of the recent progress in understanding the link between half-maximally
supersymmetric string backgrounds and gaugings of N' = 4 supergravity [125,172,197]
and secondly show how this machinery can be exploited as a powerful tool for addressing
the same issue in the context of N' = 4 compactifications.

Another interesting opportunity offered by the study of such flux compactifications
and their relation to half-maximal supergravity, is that of addressing the issue of stability
without supersymmetry in extended supergravity. More precisely, for a long time it was
believed that there are no stable vacua of maximal or half-maximal supergravity that
spontaneously break all supersymmetry. Recently [220], however, an example of an AdS
critical point which is both non-supersymmetric and stable has been found in maximal
supergravity. This adds further motivation to look for new such extrema in the half-
maximal case as well. Furthermore, the possible existence of stable dS vacua in this
context still remains an open discussion point [221]. Most of the results presented in this
chapter were first obtained in refs [172,222]. Some additional material related to this

chapter can be found in appendix B.

5.1. Gauged N =4, D = 4 Supergravities

In this section we present a brief introduction to half-maximal (N = 4) supergravity
theories in four dimensions. We mostly follow the notation and conventions of ref. [100]
to work out the N' = 4 supergravity theory invariant under the action of the Gy = SL(2)
x SO(6,6) duality group (see table 2.7) in four dimensions!.

The 24 vectors of the theory transform in the (2,12) of Gy. The SL(2) factor inside the

symmetry group is interpreted as electromagnetic duality. Beyond SL(2) x SO(6,6), one

'We focus on the theory coupled to n = 6 vector multiplets, which, as we will see in the next chapter,
can be regarded as a Zs truncation of N' = 8 supergravity. This relates it to orientifold reductions of type

II string theory.
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can embed the vector representation labelled by the indices aM, inside the fundamental
representation of Sp(24,R), where o = (+,—) is a fundamental SL(2) index and M =
1,...,12 is the SO(6,6) fundamental index. Such symplectic transformations change the
Lagrangian non-trivially such that the description that we give here would not be valid
anymore. Nevertheless, Lagrangians in different symplectic frames describe the same
theory at the level of the equation of motion.
The LC restricts the embedding tensor to the following irrep’s (see table 2.7)
0 € (2,12) & (2,220)

H,—/ H,—/ ’ (5.1)
EaM faMmNP

Quadratic Constraints and Scalar Potential

The scalars of the theory span the coset geometry

SL(2) SO(6,6)
SO(2) ™ SO(6) x SO(6)

(5.2)

We will name M,g the scalars parameterising the first factor and M), those ones

parameterising the second factor in (5.2). For the former we will use the following explicit

parameterisation
2 2%
+e
Maﬂ:&(" X) . a=(+), (5.3)
X 1
where the SL(2) indices are raised and lowered using €,5 = ¢’ with et~ = -+ = 1.

The matrix Mjysn, can be determined by starting from a ’vielbein’ denoted by VMA,
where A is an SO(6) x SO(6) index whereas M is an SO(6,6) one. This object is such
that

M =YV, (5.4)

Global SO(6,6) transformations act on V from the left, whereas local SO(6) x SO(6)
transformations act from the right. Even though V is not by itself invariant under local
SO(6) x SO(6) transformations, the particular combinations constructed out of it which
will appear in the scalar potential are. In particular, the matrix M itself is invariant.

The non-vanishing embedding tensor components {437 and foarnp have to satisfy the
following QC

i) Camé&sM =0, (5.5)
i) &L faypun =0, (5.6)
iii) 3 farpun fapg)" + 2€m faynpg =0 (5.7)
iv) e (& fopun + Carrépn) =0, (5.8)

v) €’ (faMNR fapo ™ = &5 farprp noiny — Eanr fonip + alp fﬁQ]MN) =0, (5.9)
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which correspond with the following irrep’s of the SL(2) x SO(6,6) symmetry of half-

maximal supergravity,
i) (3,1) ii) (3,66) iii) (3,495) (5.10)
iv) (1,66) v) (1,66) @ (1,2079) . (5.11)
The combination of supersymmetry and gaugings then induces the following scalar poten-
tial?
V = g farenp aqus M | MOANEALPS 1 (3N 4@ ) NS

1 3
= 1a1 fevnp foors ¥ MMNPRRS 67 San &g MP MMN (5.12)

where
MMNPQRS = €mnpqrsVvaN EVP BVQ QVR EVS £ (513)

The underlined indices here are time-like rather than light-like SO(6) indices, and they
are related by the change of basis

1 -1 16
() -

Because of this distinction between time- and space-like indices of SO(6, 6), this completely

antisymmetric tensor is invariant under local SO(6) x SO(6) transformations. Despite this,
though, one would need to compute V associated with Mjy;n explicitly in order to obtain
the full form of the scalar potential.

As we saw previously, the theory contains vector fields A, in four dimensions which

transform in the fundamental representation of SL(2) x SO(6,6),

A,u = V‘u,aM Tanm (515)

The Gauge Algebra

In the ungauged theory, only a subgroup G' = U(1)'2 ¢ SO(6,6) is realised and the
vector fields become abelian, i.e. [Thar, Tan] = 0. However, this ungauged theory can be
deformed away from the abelian structure without breaking the A/ = 4 supersymmetry

3

so that a non-abelian subgroup G C SO(6, 6) is realised. From now on” , we will restrict

to the case {4y = 0. The commutation relations defining the algebra G then read

[Tors, Tpn] = famn® Tsp (5.16)

with foynp = faMNQ nop = fa (MNP being the structure constants of G and with
nun the SO(6,6) metric. This automatically implies that only the G C SO(6,6) subgroups

2We have set the gauge coupling constant to g = % with respect to the conventions in ref. [100].
3In the main part of this chapter we will consider a group-theoretical truncation of A" = 4 supergravity

in which the (2,12) embedding tensor irrep will be entirely projected out.
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admitting sy as a non-degenerate bi-invariant metric can be realised as deformations of
the ungauged theory. In other words, the adjoint representation of G has to be embeddable
within the fundamental representation of SO(6,6). This embedding may not be unique,
resulting in non-equivalent realisations of the same G subgroup. From now on, we will use

light-cone coordinates, so that an SO(6,6) index is raised or lowered by using the SO(6, 6)

0 1g
MN
= = . 5.17
NMN =1 <]16 0 ) ( )

Let us perform the GL(6) splitting of the fundamental SO(6,6) index M = (,,,, ™)
(m,m) with m =1,...,6 and m = 1,...,6. Then, the vectors split as Torr = (Zam , Xa™)

alike, and the algebra in (5.16) can be rewritten as the set of brackets

light-cone metric

(Zam: Zgn] = famn® Zgp +  Samnp Xg¥

(Zam: X" = fam™ Zgp + fam'p Xg" 5.18)
(Xa™, Zgn] = fa"n" Zap + fa"wp Xg'

[Xava,Bn] = fo™? Zgp + famnp Xﬁp

It is worth noticing that this is only apparently a twenty-four-dimensional gauge algebra,

but in fact the actual gauging is twelve-dimensional after imposing the constraints
e farinp Tg¥ =0, (5.19)

which ensure the anti-symmetry of the brackets in (5.16). This fact is related to the
observation in ref. [159], i.e. that only the algebra realised on the vectors can be embedded
in Sp(24, R), whereas the proper gauge algebra is that one realised on the curvatures, which
is obtained from the previous one after dividing out by the abelian ideal consisting of all
generators acting trivially on the curvatures. To summarise, in order to identify the correct
gauging, one has to solve these constraints by expressing half of the generators in terms

of the other ones and plug the solution into the brackets of (5.18).

Vacua Analysis and Supersymmetry

In this section we present the strategy followed to find the complete set of extrema of
the scalar potential induced by the gaugings and tools for analysing the mass spectrum

and supersymmetry breaking.

Combining dualities and algebraic geometry techniques

The investigation of the full vacua structure of a particular truncation® is carried out

by making use of the following two ingredients:

4We will in this part specify to the SO(3) invariant sector of N = 4 supergravity, which enjoys an SL(2)
x SO(2,2) duality symmetry and contains three complex scalars called S, T and U. The whole truncation

procedure will be studied in detail later in section 5.2
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» part of the SL(2) x SO(2,2) duality group in order to reduce the extrema scanning

to the origin of the moduli space without loss of generality®.

= specific algebraic geometry techniques which permit an exhaustive identification of

the flux backgrounds producing such moduli solutions.

Provided a set of vacuum expectation values (VEVSs) for the moduli fields
Py = (So, 1o, Uo)

that satisfies the extremisation conditions of the scalar potential, 6¢V|¢0 =0, it can

always be brought to the origin of the moduli space, i.e.
So=To=Up=1, (5.20)

by subsequently applying a real shift together with rescaling upon each of the complex
moduli fields. These transformations span the non-compact part,

SL(2) x SO(2,2)
SO(2)3

G = (5.21)

of the duality group. In the case of the modulus S, they belong to the electric-magnetic
SL(2) factor, while transformations on the moduli 7" and U belong to SO(2,2). In con-
sequence, the fluxes will also transform in such a way that they compensate the trans-
formation of the moduli fields and leave the scalar potential invariant.

Because of the aforementioned argument,
restricting the search of extrema to the origin of the moduli space does not imply a lack of
generality as long as the considered set of flux components is invariant under the action
of the non-compact part of the duality group.

This statement automatically leaves us with two complementary descriptions of the
same problem: the field and the flux pictures. In the former, a consistent flux background
is fixed and the problem reduces to the search of extrema of the scalar potential in the
field space. In the latter, the point in field space is fixed (the origin) and the problem
reduces to find the set of consistent flux backgrounds compatible with the origin being
an extremum of the scalar potential. The two descriptions are equivalent since dragging
different moduli solutions down to the origin in the field space maps to a splitting of the
corresponding flux background into various ones related by elements of G in the flux
space. This correspondence is depicted in figure 6.2.

Using the flux picture results quite useful because, schematically, the scalar potential

induced by the gaugings takes the form of

V= Z (fluxes)? - (fields)hish degree (5.22)

terms

®This approach differs from that followed in ref. [223] where the invariance under the action of the

duality group was used to remove redundant flux configurations producing physically equivalent solutions.
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Figure 5.1: Sketch of the correspondence between the field picture (crossed dots) and the
flux picture (filled dots). The left diagram represents moduli space, whereas the right

diagram illustrates the space of fluzes.

hence being a sum of terms which are quadratic in the fluxes and contain high degree
couplings between the moduli fields. After deriving the scalar potential with respect to
the fields and going to the origin of the moduli space, the extremum conditions reduce to
a set of quadratic conditions on the fluxes. Putting these conditions together with the QC
coming from the consistency of the gauging that will be later given for this specific case
in (5.67), we end up with a set of homogeneous polynomial equations, namely an ideal I

in the ring Cag, ...,d5], involving the different flux components as variables,
I = < 8<1>V|q)0 y Gaﬂ A@ABCABDEC y A(aA[B CAB)D}EC> . (523)

Nonetheless, only those solutions for which all the flux components turn out to be real are
physically acceptable.

The study of non-trivial multivariate polynomial systems and their link to geometry is
the subject of algebraic geometry [224]. A powerful computer algebra system for polyno-
mial computations is provided by the SINGULAR project [213]. Moreover, a comprehensive
introduction to the specifics of this software as well as to the algebraic geometry techniques
implemented on it can be found in ref. [225]. These techniques have been shown to be
a successful approach to investigate the vacua structure of the effective supergravity the-
ories coming from flux compactifications of string theory [226,227] and some extensions
including both fluxes and non-perturbative effects® [229].

Among the set of algebraic geometry tools implemented within SINGULAR, in this
work we will make extensive use of the Gianni-Trager-Zacharias (GTZ) algorithm [212]
for primary decomposition into prime ideals (for more details on primary decomposition
algorithms, see the appendix B of ref. [226] and references therein). Specifically, we will

apply this method to decompose the ideal I of (5.23) into a set of n simpler prime ideals

SFor a computational implementation of these algebraic geometry tools into a Mathematica package

exploring vacuum configurations, see ref. [228].
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I,
I=Jindn...0J,, (5.24)

which can be solved analytically. These prime ideals will only intersect in a finite number
of disjoint points and, in general, they may have different dimension.

For the sake of simplicity, we are not running this decomposition in the most general
case in which all the forty embedding tensor components (fluxes) allowed in the SO(3)
truncation are kept. Instead, we are considering two examples of gauged supergravities
which have a well understood interpretation as type II string compactifications in the
presence of flux backgrounds: type IIA compactifications with gauge and metric fluxes
[121,123,125,230] and type IIB compactifications with gauge fluxes [120,122,231].

Even though not all the fluxes are kept in these examples, the previous argument for
going to the origin of the moduli space without loss of generality still holds since the
transformation needed to bring any moduli solution from its original location to the origin
(i.e. an element of G, ) does not turn on new flux components out of the initial setup.
We will restrict the analysis of more general flux backgrounds for which a realisation in
string theory is not known, namely those including non-geometric fluxes, to a set of simple

examples.

Supersymmetry breaking and full mass spectrum

Two further important steps in the analysis of critical points are those of computing
the amount of supersymmetry preserved at the extrema of the N/ = 4 theory and the mass
spectrum of the scalar sector. As already pointed out in the introduction, carrying out
such a computation for a whole set of vacua can help us shed further light on the relation
between supersymmetry breaking and instability, which has recently been a crucial point
of discussion in the context of extended supergravity. In order to do this, we will write
down the fermionic mass terms involving the gravitini in the Lagrangian [100] induced by
the irreducible components of the T-tensor (see section 2.3).

The fermionic sector of the theory is made out of 4 gravitini v,,;, 4 dilatini x; and 24
gaugini Ay coming from the matter sector, where i = 1,...,4 is an SU(4)time.tike index,
whereas a = 1, ..., 6 is a fundamental SO(6)space-like index. The aforementioned mass terms

then read

1 .. i i L
e Loormi mass D EA? Yui TH by — EA;J Y TH X + §A2ai] P ' THFAY + hee.

(5.25)
with Ailj = Agij ). The irreducible components of the T-tensor are
2-(10,1),_.,, ®2- (6,1 @ 2- (6,15
(2,12) @ (2,220) | WRxfU@ (10. 1)) (6:Dr )62 g e
2 (10,1) 5 &2 (6,1)_y & 2+ (6,15)_,
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and they are given in terms of the complexified SL(2) and SO(6,6) vielbeins by

Aij — B (Va)* VMM VYNik y)Pjl f,BMNP ’
Aéj = P Ve VMkl YNikyPil ngNp + % e Ve YMij fﬁM , (5.27)
Asgi? = P Vo VM VNG VEIR foynp — 1 5 PV, VM, €50

The complexified SL(2) vielbein V, is written as
V, = e?/? (S, 1) , where S=y+ie ?, (5.28)

whereas the complexified (Lorentzian) SO(6,6) vielbein Vy,[7] is built from the V™

real vielbein by using the mapping
V' = V™ [Gp)7 (5.29)

where [G,,]" represent the time-like and ASD 't Hooft symbols given in (C.21) of ap-

pendix C. This choice is consistent with

s 1
vij = (V)" = g Cijhl oM (5.30)
together with the normalisation
1 .
— V" O V" = 3 €kl V" ok (5.31)

Please note the difference with the conventions in ref. [100]. Using the gravitino mass
matrix Aij , the Killing spinor equations determining the amount of supersymmetry at

any extremum is translated into the eigenvalues equation
AY 5=/ =3V 4", (5.32)

where ¢' is an SU(4) vector and Vj is the potential energy at either an AdSs or a
Minkowski extremum.
Working in the SO(3) truncation of the SO(6, 6) theory translates into an Ailj gravitini

mass matrix of the general form
A = diag(m , K2, Ko, Iig) , with K1,k € C (533)

which reflects the splitting 4 — 1 @ 3 of the fundamental of SU(4) under the action of

SO(3). Consequently one expects that the amount of supersymmetry preserved would be
i) N =4 at those extrema where |k1| = |ka| = /—3V}.
ii) N'=3 at those extrema where |r1| > |ka| with |ke| = v/—3V5.
iii) N =1 at those extrema where |r1| < |r2| with |k1| = /=3V}.

iv) N =0 at any other extremum.
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The presented conditions for preserving supersymmetry only constrain the modulus of the
eigenvalues of A; since the relation (5.32) exhibits a U(1) x U(1) covariance. The action of
these transformations can be expressed in terms of the diagonal matrix diag(A, p, u, u),
where A\, pn € U(1).

Now it is worthwhile making a comment about the computation of the full mass spec-
trum of the scalar sector for a vacuum of the A/ = 4 theory. To this purpose we applied
the mass formula given in ref. [221], where the scalar potential of the full N'= 4 theory
has been expanded up to second order around the origin in order to be able to read off
the second derivatives of the potential with respect to all of the 38 scalars of the theory
evaluated in the origin of moduli space. The Hessian matrix evaluated in the origin is
nevertheless not yet the physical mass matrix from where one can draw conclusions about

stability of a solution. Suppose one has
-1 1 1 i j
e Ecanonic = 5 R — 5 Kz'j (8(]5 )(8(75 ) -V s (5.34)

where i =1, ..., 38, then the covariant normalised mass? at an extremum ¢q of the scalar

potential V' is then given by

1 . 0%

P

- ¥ , 5.35
=R agrasi|,_, (5.35)

(mass?)
where K% denotes the inverse of the matrix K;; appearing in (5.34). This (mass?) matrix
is known as the canonically normalised mass matrix, which is consistent with taking the
“mostly plus” signature for the space-time metric and its eigenvalues are to be read as the
values for the squared mass in natural units”. According to this definition of covariant
mass, the Breitenlohner-Freedman (BF) bound for the stability of an AdSs moduli solution
is given by [232]

3
2

>
m 4,

where m? denotes the lightest eigenvalue of the mass matrix (5.35) at the AdS, extremum.

(5.36)

The mass formulae for the masses of the SL(2) scalars, those ones of the SO(6,n) sector
and finally the mixing between them are given in ref. [221]. In the next sections, when
presenting results, we shall give both a table with the values of the masses of the scalars

in the SO(3) truncation and the full mass spectrum for comparison’s sake.

5.2. Fluxes and Embedding Tensor: the Dictionary

Now our final aim in this chapter will be to apply the whole analysis presented in the

previous section to N = 4 gaugings coming from geometric type II string compactifications.

"Every numerical value given in the following sections for the energy and the mass is computed by
setting the reduced Planck mass m, to 1, whereas one needs to reinsert the value m, = (87rG’)71/2 =

2.43 x 10'® GeV when expressing quantities in energy units.
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To this end, let us first see what gauge algebras can be induced by flux compactifications.
The starting point in this discussion are the results of Kaloper and Myers [140] (see
the second part of section 3.2). They found that the dimensional reduction of heterotic
supergravity to four dimensions leads to a non-Abelian gauge algebra if one includes fluxes.
In particular, they derived the four-dimensional effect of the following fluxes for the ten-
dimensional field content consisting of the metric, a two-form and a dilaton®.

As we saw previously, when reducing the metric from ten to four dimensions, one can
generalise ordinary dimensional reduction by replacing the torus with a group manifold
[116]. A group manifold is specified by structure constants wy,,?, where the indices run
over the dimension of the group manifold. The four-dimensional effect of such so-called
metric flux is to convert the gauge group U(1)%, that corresponds to general coordinate

transformations on the torus, to a non-Abelian group with commutation relations
(Zm, Zn)] = wmn? Zp (5.37)

where Z,, is the generator corresponding to the internal coordinate transformation dx™ =
AT

Due to the presence of the two-form gauge potential in the ten-dimensional theory,
the four-dimensional gauge algebra is actually larger. In particular, there is an additional
U(1)% corresponding to internal gauge transformations of the form 6B,,, = OmAn). We
will denote these generators by XP. These commute amongst themselves, but form a
representation of the group spanned by (5.37). Furthermore, one can introduce gauge
fluxes H,,y, for this potential. The total algebra spanned by the six Kaluza-Klein and six

gauge generators reads [140]

[Zmy Zn] = Wma? Zp + Hmnp XP
Zmy X" = oy XP , (5.38)
X™ X" = 0

Note that the resulting algebra is purely electric. Furthermore, the gauge generators span
an ideal of the algebra, and hence the full algebra is non-semi-simple.

In order to make contact with the SO(6,6) notation of N’ = 4 supergravity, one needs
to split up the SO(6,6) index ™ = (,,,™). The twelve doublets of generators then split
up according to XM = (Z%,,, X®™). The identification between the embedding tensor

and the fluxes is then apparent:

J+mnp = Hpnp frmn? = wma? (5.39)

while the magnetic components vanish.

8We will only include fluxes for the metric and the two-form. There is a similar possibility for the
dilaton, which we will not consider, that leads to gauging with non-vanishing £aas [233]. Moreover, we will

also not consider trombone gaugings of the type introduced in ref. [204] for the maximal theory.
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A natural question is how to generalise this to the case where one includes, in addition
to gauge and metric flux, also the types of non-geometric fluxes introduced in ref. [24]. In
section 3.3 we saw that the full heterotic dictionary is given by (3.41) and, following the
T-duality chain (3.40), leads to the gauge algebra that we gave in (3.42). Note that this
algebra, with all types of NS-NS fluxes, is still purely electric.

Subsequently one could reason that in the IIB duality frame with O3-planes one needs
to mod out by the Zs symmetry (—)f2QI4.9. Under this symmetry, the only allowed

fluxes are H and ). Therefore the algebra for these fluxes reads

[Zma Zn] = Hmnp XP 5
[Zma Xn] = anp Zp ; (540)
[Xm’ Xn] _ men XP

The relation between the embedding tensor and the fluxes can be easily read off from this
algebra. Before we give it, let us introduce a slight generalisation by including S-duality
related fluxes as well. For the two-form gauge potentials this is very natural, as we know
that these form a doublet (H, F') under S-duality. Similarly, it has been conjectured that
there is a doublet of non-geometric fluxes (@, P) as well [145]. Including the two doublets
of gauge and non-geometric fluxes, the relation to the embedding tensor that follows from
(5.18) is

f+mnp = Hmnpa ermnp = anp )

ffmnp = anpa ffmnp = Pmnp . (541)

The full algebra, including the commutation relations between electric and magnetic gener-
ators, then follows trivially from (5.16). Similarly, one can deduce the full set of constraints
on the fluxes from the QC given in (5.5)—(5.9) specialised to the case” &, = 0

farpun fap0 =0, € faninr fare™ =0 (5.42)

Note that the algebra (5.40) in general does not have any non-trivial ideals, and hence
is not necessarily non-semi-simple. This form of the algebra has been used in e.g. [138] in
their classification of the possible solutions of the corresponding Jacobi identities. Indeed,
they encountered simple and semi-simple possibilities. This poses a clear puzzle: we claim
to have performed a number of dualities, under which the effective description should
transform covariantly, and nevertheless the algebra (5.38) of the starting point clearly

differs from (5.40). Indeed, one is necessarily non-semi-simple while the other is not.

9The only further subtlety is that the second set of QC in (5.42) can be obtained from (5.19) by
specifying it to the adjoint representation. Nevertheless, these sets of constraints are only equivalent if
such adjoint representation is faithful, otherwise one has to take into account that the linear dependence
relations between the 24 generators have to be supplemented with the vanishing conditions for some of
them.



118 ORIENTIFOLD COMPACTIFICATIONS

What has happened? In our opinion, the confusion stems from the identification of the
starting point.

The starting point of Kaloper and Myers corresponds to the heterotic string, and
therefore contains an NS-NS two-form gauge potential. However, in order to make contact
with type II string theories with orientifold planes, e.g. the preferred duality frame of type
1IB with O3-planes, one should first perform an S-duality. This takes one to type I string
theory, or equivalently type IIB with O9-planes. In this case the two-form is not NS-NS
but rather R-R, which will be a crucial distinction when applying T-duality. As mentioned
before, in the NS-NS sector T-duality raises and lowers indices. In contrast, in the R-R

sector the effect of T-duality is to create or annihilate indices:

Foom, = Fo,p .. ,
Tp . my-Mn mi--Mmnp (543)
Foiomnp = Fingeomy, -

In other words, a gauge potential remains a gauge potential but its rank changes.

The correct starting point for our purpose is

[Zm> Zn] = Wmnl Zp + anp XP
Z, X" = —womp” XP , (5.44)
(X™ X" = 0 ,

where F,,p is the R-R three-form flux. Upon a six-tuple T-duality to go to the type IIB

duality frame with O3-planes, this transforms into

[va Zn] =0 )
(Zm, X" = Q" Z, , (5.45)
X, X7 = QP 4 Fvwz,

where F™mm = %em”pq’”qurs. This fixes the complete electric part of the gauge algebra.

The remaining part follows straightforwardly once one has made the identification between
the embedding tensor and the fluxes. Again we will give an S-duality covariant set of
fluxes, including the gauge doublet (F, H) and the non-geometric doublet (@, P). With
the algebra (5.45) this identification reads

f_mnp _ ﬁ]'mnp7 f_mnp =P,"P. (546)

The full algebra and corresponding QC then follow from (5.18) and (5.42). The latter
read

Qr[anqp}r _ Pr[mnpqp}r _ 0,

BmmQAr = QPP — BMQ =0, (5.47)
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involving only non-geometric flux, and

FT[anrpq] — ﬁT[mnPqu} =0,
i 0 4 Qo o o, 549

involving gauge fluxes as well. The fully anti-symmetric parts of the latter set of equations
imply the absence of any 7-branes; these would break supersymmetry further to N' = 1.
The same form of the algebra and QC was derived in the beautiful work!® [146] from a
different starting point.

Note the differences between the two algebras'! (5.40) and (5.45). First of all, NS-NS
fluxes induce a purely electric gauging in the former algebra [233], while in the latter this
involves magnetic generators as well. Moreover, the former can describe a (semi-)simple
algebra [138,234,235], while the latter is always non-semi-simple algebra, as it should.
This crucial difference between the two stems from the appearance of the Hodge dualised
three-form F, instead of the three-form itself, in (5.45). This qualitative difference can be
traced back to the different behaviour of NS-NS and R-R gauge potentials under T-duality.

Finally, the QC (6.26) are in general different for the two algebras. For instance, it
can be seen from the SL(2) scaling weight that the last equation of (6.26) could never
arise from (5.41). However, in the truncation where one of the two non-geometric fluxes
vanishes, e.g. P = 0, the QC bilinear in the NS-NS fluxes are in fact identical (provided
Q™ = 0). There is still a difference in the constraints bilinear in @ and F: these are

much stronger for the first identification (5.41) than those given in (6.26).

What About De Sitter?

All the gaugings that are known to give rise to dS solutions in N' = 4 gauged super-
gravity [236,237] are of the form

G:G1XG2X-", (549)

i.e. a direct product of a number of gauge factors. This is a solution to the QC (5.42) once
the Jacobi identities are separately satisfied in the different factors. Moreover, in order to
have a dS solution, the gauge group must contain electric and magnetic factors. Finally,
the gauge factors have to be specific (semi-)simple groups. In particular, we will focus
on the case of two gauge factors. Each factor is of the form SO(p,q) with p + ¢ = 4 and

embedded in an SO(3, 3) factor. A number of examples of such gaugings with dS solutions

Due to different conventions regarding the SO(6,6) and SL(6) indices, our form of the identification
(5.46) does not involve any non-trivial metrics, as in ref. [146]. Moreover, the QC given in ref. [146] are

not all linearly independent, and hence can be written in a more economic way.
"' Most of the literature that uses (5.40) takes place in an A’ = 1 context, where the scalar potential is

not given in terms of structure constants but rather a superpotential. Therefore our argument does not

affect any of the results on A/ = 1 moduli stabilisation etc.
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was discussed in [236,237]. Moreover, it was shown in ref. [238] that the contracted versions
CSO(p, q,r) with p+ ¢+ r = 4 of such gauge groups do not lead to any solutions with a
positive scalar potential. In this section we will assess to what extend one can obtain such
gaugings from the flux compactifications considered earlier.

The direct product structure (5.49) leads us to split SO(6, 6) into two SO(3, 3) factors in
which to embed G1 and G5 respectively. Without loss of generality, we will take the first to
be electric and lie in the directions {1,2,3,1,2, 3}, while the second is taken magnetic and
lies in the complementary directions. We will discuss the embedding of the first factor in
some detail; the discussion for the second factor is completely analogous. However, before
we discuss SO(4) embeddings in SO(3,3) ~ SL(4), we first generalise this to arbitrary N.

In general, the embedding of SO(V) and its analytic continuations into SL(N') can be

written in terms of the following generators in the fundamental representation
k k
(Tij)", = 40" My (5.50)

in terms of a symmetric matrix M, that can always be diagonalised by a convenient choice
of basis. It is in fact given by the identity in the case of SO(NN). These generators labelled
by antisymmetric pairs of indices satisfy the following commutation relations
[T, Tha] = fij,klmnTmn ) fij7klmn = 85[7[?Mj][k5nl]] . (5.51)
Analytic continuations of SO(NV) correspond to a number of minus signs in the M-matrix.
Contractions thereof, denoted by CSO(p,q,r) with p+ ¢+ r = N (see e.g. [238]), can
be understood in this notation by replacing r non-zero diagonal entries of M with zero
entries.
However, the most general form of CSO(p, g, r) structure constants for the special case
of N =4 is given in terms of two symmetric matrices rather than one [216], which we will

denote by M and M. The generators are then given by
(Tij)*, = 46%; My, — 2€i5u M™ (5.52)
giving rise to the following general expression of the structure constants

Fym = 85[?Mj][k5nz]] — egjujrerpre™ MK (5.53)

With such a form we need some extra consistency constraints in terms of M and M,

coming from imposing the Jacobi identities. These translate into
M MI* — 15,5 MMt =0 (5.54)

If one still diagonalises M by a convenient basis choice, the Jacobi identity imply M to

be diagonal as well. In this case the constraints reduce to

My M = Moy M* = MasM33 = My, M*. (5.55)
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Let us now connect the adjoint representation in terms of SL(4) indices to fundamental
SO(3,3) indices. This is exactly what we already showed in appendix A.2 and it leads to
the following identification between the diagonal components of the two matrices M and

M, and the components of the embedding tensor f,anp in the first SO(3,3) factor:

M = diag(fi123, f1133, fii23 f1133) >

M = diag(f+1§3, f+123, f+1§3a f+123) . (5-56)

Other components of the embedding tensor in this SO(3,3) factor, such as f, 19, corres-
pond to off-diagonal components of M and M and hence have been set equal to zero.
We have discussed in the previous sections how the embedding tensor can be sourced by
different fluxes. In particular, we have discussed the two identifications (5.41) and (5.46).
It will be illuminating to illustrate the different consequences of the two identifications in

this context. Using the first identification, the matrices are given by

M = diag(H123a Q1237 Q2317 Q312) )
M = diag(0,0,0,0) . (5.57)

In this case it would therefore be possible to use the different fluxes to generate a simple
gauge factor. Given that the discussion in the second, magnetic factor is completely
analogous, one could e.g. generate an SO(4)e] X SO(4)magn gauge group, which certainly
leads to dS solutions. However, we have argued that this is not the correct identification;

instead, one should use (5.46). In this case, the matrices read

M = diag(07Q1237Q2317Q312) 5
M = diag(Fis6,0,0,0) . (5.58)

The crucial point is that in this case the gauge flux does not enter in the M matrix to make
it non-singular; instead, it enters in the other matrix M. These singular matrices only
lead to non-semi-simple gauge groups. In particular, the matrix M gives rise to ISO(3)
and analytic continuations and contractions thereof. Provided the three components Q;7*
are non-zero, the additional parameter Fys6 does not modify the gauge group, but only
describes different embeddings of it in SO(3,3). Three of these are inequivalent, corres-
ponding to Fys¢ being positive, zero or negative. Exactly the same embeddings of ISO(3)
and ISO(2, 1) were considered in ref. 2 [238], where it was found that such gauge groups
do not give rise to scalar potentials with positive extrema.

Indeed, one can infer from the same reasoning that none of the gauge groups discussed
in [236,237] follows from a flux compactification with the identification (5.46). The simple
bottom line is that all the gauge groups necessarily consist of (semi-)simple gauge factors,

while one can only get non-semi-simple factors from flux compactifications.

!2The relation to the notation of [238] is A = (1 — Fus6)/(1 + Fuse).



122 ORIENTIFOLD COMPACTIFICATIONS

In the following subsection, we will focus on deformations arising as consistent SO(3)
truncations of the general theory and will show that they admit a string theory realisa-
tion in terms of flux compactifications in the presence of generalised background fluxes.
the underlying theories will be STU models for which we will provide the fux-induced

superpotential.

The SO(3) Truncation

Let us consider the SO(3) truncation of the full theory enjoying an SL(2) x SO(6,6)
global symmetry'3. In the following sections of this work we will be dealing with (non-)
geometric flux compactifications of type II string theory having such a low-energy effective
description. This truncation is performed by considering an SO(3) subset in SO(6,6)
and keeping in the theory only the singlets with respect to this subgroup both in the
scalar sector and in the embedding tensor part. Such a group theoretical truncation is
always guaranteed to be consistent in the sense that all of the non-singlet scalars can be
consistently set to zero in that their field equations can never be sourced by SO(3) singlets.
However, it by no means guarantees the stability of the non-singlets, and hence one must

always explicitly check the mass spectrum of these fields as well.

The Scalar Sector

The decomposition of the adjoint representation of SO(6,6) contains six scalars
66 — 6 - (1,1) @ non-singlet representations , (5.59)

amongst which two of them correspond to the product SO(6) x SO(6) and therefore they
are pure gauge. This implies that the scalar coset associated with the matter multiplets is
parameterised in terms of only four physical scalars: two dilatons (@1, ¢2) and two axions
(x1,x2). The scalar coset in this sector reduces in the following way under the SO(3)

truncation

SO(2,2)
SO(2) x SO(2)

The explicit parameterisation of Mpy;y is defined in terms of a symmetric G and an

(5.60)

antisymmetric B matrices as

G™1 -G7'B
M = , 5.61
o (304 G-BG*B) (561

where G and B are given by

2 —2¢p2 0
G oo [ X2FE X2 @1, , B= M) o1, (5.62)
—X2 1 -x1 0

!3This is the natural generalisation of the SL(3) x SL(3) truncation considered in ref. [197], and indeed

will lead to a much richer landscape of vacua.
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In consequence, we will choose the vielbein V in (5.4) to be

T 0 1
V5< € 1) ®1; ezerW?)/?( X2 ) , (5.63)

Bel e~ 0 e ¥2

with e’ e = G~1.

Using this parameterisation of the scalar sector in the truncated theory, the kinetic
terms then reduce to
1
2 (

Lin = 5 (OMag)OM™) + o (M) (OMY) (5.64)

= 1 (092 + (00 + 3001 + 367 (Dx1)? + 8(D2)? + 3 (O]

The Quadratic Constraints

First of all, the number of allowed embedding tensor components turns out to be 40,
arranged into 20 SL(2) doublets, 20 being the number of SO(3)-singlets contained in the
decomposition of the 220 of SO(6,6):

(2,220) — 20 - (2,1) @ non-singlet representations . (5.65)

A convenient way of describing these 20 SO(3)-invariant doublets is described in ref. [121],
where the relevant components of the embedding tensor are classified using the SO(2,2) x
SO(3) subgroup of SO(6,6) with embedding 12 = (4,3). In this case, one can rewrite
every SO(6,6) index M as a pair (AI), where I = 1,2,3 is a fundamental SO(3) index,
whereas A = 1,...,4 is a fundamental SO(2,2) index. Due to this decomposition, the

structure constants of the gauge algebra can be factorised as follows

farnp = faarBrckx = MaaBe €1JK (5.66)

from which one can infer that the SO(2,2)-tensor Agpc is completely symmetric. This
observation takes us back to the number of 20 as expected from the group theoretical
decomposition. What one can now do, is to write down the QC (5.42) in terms of the A

tensor. One obtains
e® Ay a5 MspEc =0, Ay aip “Ap ppc =0, (5.67)

where the extra indices «, 8 = (4, —) still represent the SL(2) phase.
The first set of constraints in (5.67) takes values in the following representation of
SL(2) x SO(2,2)

1, e m)),) , (5.68)

which has dimension 45, whereas the the second set of constraints in (5.67) takes values

in this other one

(3,HH) (5.69)
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which should not yet be thought of as only consisting of its irreducible (traceless) part and
therefore it has dimension 63. This leads us to 108 as total amount of constraints, which
can also be obtained by means of a computer. It turns out, though, that the number of
independent constraints reduces to'* 105. We will come back to this point in the next

section when investigating the superpotential formulation of our truncated theory.

Relation To Flux Compactifications

So far, we have introduced the main features of the SO(3) truncation of half-maximal
supergravity in four dimensions. As we have seen in the previous section, the scalar

manifold in the truncated theory reduces to

SL(2) 8O(2,2) SL(2) \*
SO(2) ~ SO(2) x SO(2) ~ (so(2)> ’ (5.70)

where each of the SL(2) factors can be parameterised by a complex scalar field. The
resulting supergravity models are commonly referred to in the literature as ST'U-models
(see section 3.2). They consist of three complex fields which are related to those entering
the M,g matrix in (5.3) and the Mjy;y matrix in (5.61) — through the metric G and the
B-field in (5.62) — by

S=x+ie?® , T=x1+ie# and U=x2+ie ¥2. (5.71)

Furthermore, the splitting 4 — 1 @& 3 of the fundamental representation of SU(4) ~
SO(6) R-symmetry under the action of SO(3) ensures an N = 1 structure of the su-
pergravity describing the truncated theory. This implies that it has to be possible to
formulate it in terms of a real Kihler potential K(®,®) and a holomorphic superpo-
tential W (®) (see section 2.4), where ® = (S,T,U), by using the standard minimal

supergravity formalism. According to it, the scalar potential can be worked out as

V=eK (Z K*®|DeW|? — 3]W\2> , (5.72)
?
where K®® denotes the inverse of the Kihler metric K = %, and DeW =

%% + %—{;W is the Kahler derivative.

The Kahler Potential

Let us start by noticing that the kinetic Lagrangian in (5.64) can be rewritten in terms
of the complex fields in (5.71) as

0508 oToT oUudU

Lo = K ;7001087 = —3t Tzt 7))?
k 1J (—i(S—S))2 (—i(T—T))2 (—i(U - U))2

(5.73)

"4 This fact should be understood in the following way: the trace part of (5.69) is already implied by the

remaining full set of constraints coming from both (5.68) and (5.69).
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with K7 being again the Kéahler metric. The above kinetic terms are then reproduced

from the Kéhler potential
K=—1log(-i(S—25))—3log(—i(T—T))—3log(—i(U-0)) , (5.74)

which matches the one obtained in string compactifications given in (3.29) in the isotropic

case and is valid to first order in the string and the sigma model perturbative expansions.

The Superpotential: Flux Backgrounds and Embedding Tensor

Finding out the precise superpotential Wgg(3)(®) from which to reproduce the scalar
potential in (5.12) is certainly not an easy task. The reason for this is that both scalar
potentials, namely the one computed from the superpotential and that of (5.12), do not
have to perfectly match each other but they have to coincide up to the QC in (5.67).

As for the above Kéahler potential, we want the superpotential Wso(g)(q)) also to stem
from (orientifolds of) some string compactifications from ten to four dimensions. Their
compatibility with producing an SO(3) truncation of half-maximal supergravity in four
dimensions allows for a simple interpretation of the internal space of the compactifica-
tion. It can be taken to be the factorised six-torus of figure B.1 in appendix B.1 (see
also section 3.2) whose coordinate basis is denoted n™ with m = 1,..., 6, supplemented
with a set of flux objects fitting the embedding tensor components fip/yp surviving the
truncation.

The identification between the embedding tensor components (gauging parameters) in
the supergravity side and the flux objects in the string compactification side crucially de-
pends on the string theory under investigation. As an example, when considering N =1
type IIA orientifold compactifications including O6-planes and D6-branes, only a few em-
bedding tensor components in the supergravity side are known to correspond to flux com-
ponents on the string theory side. In contrast, all of them correspond to (generalised) fluxes
in A/ =1 orientifold compactifications of type IIB string theory including O3/O7-planes
and D3/D7-branes. In this type IIB scheme [146,172], as we just saw, the correspondence

between embedding tensor components and fluxes entering the superpotential reads

Frmmp = Flonp o Frmn® = Qma® o ™y =Q™ , f = Fm
ffmnp:ﬁ/mnp y ffmnp:P/mnp y ffmnp:Pmnp s fﬁmnP:Hmnp s
(5.75)

where, for instance, F™™ = l‘em"p P By The correspondence between SO(6, 6)
and SO(2,2) embedding tensor components with known/conjectured flux objects in both
type IIA and type IIB orientifold compactifications is presented in appendix B.1.

Irrespective of the particular string theory realisation, we have explicitly checked that
the scalar potential (5.12) induced by the gaugings in the SO(3) truncated theory is
correctly reproduced, up to N' = 4 QC, from the flux-induced superpotential given in

(B.2), using the standard results in minimal supergravity.



126 ORIENTIFOLD COMPACTIFICATIONS

The superpotential in (B.2) was originally derived from a type II string theory ap-
proach in ref. [145] by using duality arguments. Concretely, they worked out the N =1
duality invariant effective supergravity arising as the low energy limit of type II orientifold
compactifications on the T°/(Zy x Z3) toroidal orbifold. More recently, this has been put
in the context of type IIB (with O3/O7-planes)/F-theory compactifications in ref. [146]
and connected to generalised geometry in ref. [239]. Finally, some aspects of the vacua
structure of this supergravity have been explored in refs [223, 227, 240] where only the
unprimed fluxes inducing the polynomials in (B.3) were considered.

A worthwhile final remark about the SO(3) truncation of half-maximal supergravity
in four dimensions is that the resulting scalar potential V is left invariant by the action
of a discrete Zo = {1, a1} symmetry. This parity symmetry transforms simultaneously
the moduli fields ® = (S,7,U) and the different fluxes f; as

a : & — - s
(5.76)

fz’ — (_1)n1+n2+n3 fz ,
where f; S™T™2U" denotes a generic term in the superpotential (B.2). This trans-
formation can be equivalently viewed as taking the superpotential from holomorphic to
anti-holomorphic, i.e., W(®) — W(®), without modifying the Kéhler potential. This
additional generator extends the SO(2,2) part of the duality group to O(2,2), while also

acting with an element of determinant —1 on the SL(2) indices.

Understanding the matching: are there unnecessary quadratic constraints?

Let us go deeper into the matching between the N' = 1 and N = 4 supergravity
formulations of the theory. This equivalence happens to hold only after the N'=4 QC in
(5.67) are imposed on the A/ =1 side as well. Some of those constraints happen to kill
some moduli dependences which are not allowed by N = 4, since they cannot be expressed
in an SL(2) x SO(6,6) covariant way, whereas some others are only needed in order to
recover the same coefficients in front of terms which are present in both of the theories. A
further subtlety is that, in total, one only needs to impose 96 out of the 105 independent
QC. This means that there are 9 QC which do not seem to be needed in order for the
matching to work. Going back to the representation theory analysis we started in (5.68)
and (5.69), one realises that (5.68) splits in the following irrep’s of SO(2,2) in the case of
the SO(3) truncated theory

(eI .=He e, 617)

that is to say, a splitting of the 45 into 6 & 9 @ 30. It turns out that all of the unneeded
constraints combine together to give the 9 irreducible component in the right-hand side
of (5.77). The reason why these constraints are not needed still remains unclear but it is

a peculiar feature of the SO(3) truncation. This can be understood by going back to the
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full theory, where those constraints combine together with other ones into a bigger irrep
of SL(2) x SO(6,6) and hence they have to be necessary as well as the other constraints
in order to have a complete matching between the A" =4 and N =1 scalar potentials.
Up to our knowledge, these results represent the first general demonstration'® of the
explicit relation between the embedding tensor formulation of A" = 4 supergravity and

the superpotential formulation of N/ = 1 supergravity in this particular truncation.

5.3. Vacua of Geometric Type ITA Compactifications

In this section we will analyse the complete vacua structure of the SO(3) truncation of
N = 4 supergravity which arises as the low energy limit of certain type ITA orientifold com-
pactifications including background fluxes, D6-branes and O6-planes. More concretely, it
is obtained from type IIA orientifold compactifications on a T /(Zsy x Z3) isotropic orbifold
in the presence of gauge R-R (Fy, Fy, Fy, Fg) and NS-NS Hj fluxes, together with metric
w fluxes, D6-branes and O6-planes. In order to preserve half-maximal supersymmetry
in four dimensions, the D6-branes have to be parallel to the O6-planes, i.e. they wrap
the 3-cycle in the internal manifold which is invariant under the action of the orientifold
involution!®.

According to the mapping between fluxes and SO(3)-invariant embedding tensor com-
ponents listed in table 3.2, this type ITA flux compactification gives rise to an N = 4
gauged supergravity for which the possible gaugings are determined in terms of the elec-

tric and magnetic flux parameters

frae=—a0 , frar=a1 , [igr=—02 , [k =03 ,
feae=-bo , [fagr="b1 , f-‘,—aBk = Co ) f+ajk: = f_ﬂz}k =C , f+al36 =
(5.78)
It is worth noticing here that in the type ITA scheme: (ag, a1, az, ag) are R-R fluxes,
(bo, co) are NS-NS Hjs-fluxes and (b1, ¢1, ¢1) are metric w-fluxes. As we just showed,
this effective supergravity admits an A" = 1 formulation in terms of the Kahler potential

in (5.74) and the superpotential
Wia =ap—3a1 U +3a2U? —az U —bg S+301 SU+3¢oT + (6¢1 —3¢)TU . (5.79)

Observe how acting upon this supergravity with the non-compact part of the duality
group, i.e. rescalings and real shifts of the moduli fields, will not turn on new couplings
in the superpotential (5.79).

The QC in (2.34) coming from the consistency of the N' =4 gauging give rise to the

5This point was also discussed in ref. [146] and we thank the authors for correspondence on their results.
16Sources invariant under the combined action of the orientifold involution and the orbifold group break

from half-maximal to minimal supersymmetry in four dimensions.
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three flux relations
C1 (Cl —51) :0 s bl (Cl —51) :0 s —as cyp — az (261 —51) :0 . (580)

The first and the second are respectively identified with the nilpotency (d? = w? = 0) of
the exterior derivative operator d = d+w A and the closure of the NS-NS flux background
dH3 = w A H3 = 0. The third one is however related to the flux-induced tadpole

/ (OJ/\F2+H3/\F0)/\C7 = Ng=wA Fy + H3 A Fy (5.81)
10d

for the R-R gauge potential C7 that couples to the D6-branes. In particular, it corresponds
to the vanishing of the components along the internal directions orthogonal to the O6-
planes,

Ng = —agco—az(2¢1 —é)=0. (5.82)
I

In contrast, the component parallel to the O6-planes, denoted Ng' , remains unrestricted

since it can be cancelled by adding sources still preserving half-maximal supersymmetry
N/ =3a3b, —agby . (5.83)

Nevertheless, whenever N(IS‘ = (0 for a consistent flux background, then the resulting
gauged supergravity admits an embedding into an N = 8 theory. As a result, the flux
background does not induce a tadpole for the C7 gauge potential, i.e., N6l = Ngl =0, and
an enhanced four-elements discrete Zg X Zg = {1, a1, ag, ajas} symmetry group shows
up when it comes to relate non-equivalent vacuum configurations.
This Zo X Zs discrete group is generated by the «j-transformation in (5.76) and an
extra parity transformation defined by
as U — —U ,
(5.84)
fii — (nmth
where now f; S™T™2U" denotes a generic term in the superpotential of (5.79). The
action of the ao-transformation can equivalently be viewed as taking the original super-

potential to a “fake” new one
Wia (S, T,U) = —Wia (S, T,0) . (5.85)

As a consequence, the scalar potential gets also modified as V' — V 4+ 3§V where dV takes

5V = 8(;@3 [3 GE@) N — N6] . (5.86)

the form

Therefore, having Ng = Ng‘ = 0 (equivalently an N = 8 flux background) ensures
0V = 0 and hence a complete realisation of the Zo x Zs discrete group on the vacua
distribution. The first relates a supersymmetric critical point to another supersymmetric

one, while the second brings one to a pair of fake supersymmetric critical points [241].
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The aim of this section is to completely map out the vacua structure of these N = 4
type IIA compactifications. In particular, we are computing the complete set of extrema
of the flux-induced scalar potential as well as the number of supersymmetries which they
preserve and their mass spectrum. In the appendix B.2, we have also studied the effect
of introducing O6/D6 sources breaking from half-maximal to minimal supersymmetry,

namely Ng- # 0, and their consequences from the moduli stabilisation perspective.

Full vacua analysis of the N/ =4 theory

Here we will present the complete vacua data of the N = 4 supergravity theory

introduced above. By this we mean to specify:

1. The complete set of vacua forming the landscape of the theory and the connections

among themselves.

2. The associated data for each of these solutions: vacuum energy, supersymmetries
preserved, mass spectrum and stability under fluctuations of all the scalar fields in
the N' =4 theory.

3. The gauge group G underlying the solutions.

As it was explained in the previous section, algebraic geometry techniques are found
to be powerful enough to find the entire set of extrema of the flux-induced scalar potential
but, unfortunately, they will not give us any information about whether, and if so how,
these extrema are linked to each other. To this respect, we will use the non-compact
part G of the duality group in (5.21) together with the discrete group generated by
the transformations in (5.76) and (5.84) as an organising principle to connect different
vacuum solutions. These connections will shed light upon the often confusing landscape
of N =4 flux vacua.

Our starting point is the ideal I in (5.23) consisting of the set of N'=4 QC in (5.80)
together with the six extremisation conditions of the scalar potential with respect to the
real and imaginary parts of the S, T and U fields evaluated at the origin of the moduli
space. After decomposing it into prime factors, as explained before, we are left with a
set of simpler pieces which can be solved analytically. The outcome of this process is a
splitting of the landscape of vacua into sixteen pieces of dim= 1 and an extra piece of

dim= 2. Let us go deeper into the features of these critical points.

The sixteen critical points of dim=1

The sixteen critical points of dim = 1 in the A/ = 4 theory are presented in table 5.1.
More concretely, we list the associated flux backgrounds after having brought these moduli

solutions to the origin of the moduli space, as it was explained in detail in the subsection
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ID ap ay as as bo bl (&) c1 = 51
3v10 V6 V10 5v6 V6 V10 V6
1(51‘52) S9 2 A 81?/\ —SQTA S1 6 A —81 82?/\ T}\ S1 82?)\ m)\
1610 162 16 /10 16+/10
2(51'32) S92 9 A 0 0 S1 9 A 0 15 A 0 15 A
5 4\/ﬁ>\ 4\/%)\ ‘4\/E)\ ‘4\/%>\ 4\/%)\ 4\/5)\ 4\/%)\ 4\/E)\
(s152) || 52 77p T I T I TR T 15 ST 5
1610 16v/2 162 162
4(51,52) QTfA 0 0 S1 9\f)\ 0 T\[/\ 0 T\f)\

Table 5.1: List of the sizteen critical points of the N = 4 theory generated by R-R (ap123) ,
NS-NS (bg,co) and metric (b1, c1,¢1) flur backgrounds in type IIA scenarios. They can
be organised into four groups each of which consists of four equivalent solutions labelled
by a pair (s1,s2) = {(+,+), (+,-), (=, +),(—,—)}. The quantity A is a free parameter
setting the AdS energy scale Vo o< —A2 at the solutions.

about the analysis of critical points. The vacuum energy at the solutions turns out to be

32 \2 8 \2
Vo [1(31,52)] = -\ s Vo [2(51,52)] =W [4(51,52)] == o7 Vo [3(51’82)] - 15
(5.87)

As we already discussed before, the number of supersymmetries preserved in these
solutions can be computed from the gravitini mass matrix Ailj in (5.33). After solving
the eigenvalues equation of (5.32), we find that all the solutions of the N = 4 theory
are non-supersymmetric except those ones labelled by 1, ) and 1_ ;) which turn out
to preserve N/ = 1 supersymmetry. Nevertheless, it is worth noticing here that they all
actually enjoy an embedding in an N = 8 theory due to the lack of flux-induced tadpoles

17

for the local sources’, i.e.,

Ny =N/=0. (5.88)

This observation was previously made for the A/ =1 type ITA supersymmetric solution
found in ref. [125]. Now we are extending the statement about the existence of an N = 8
lifting to the complete vacuum structure of the theory including both minimal supersym-
metric and non-supersymmetric solutions. This fact has two immediate implications, the

second actually been a direct consequence of the first:

i) The discrete Zy group generated by the ag-transformation in (5.84) is “accidentally”
realised as a symmetry of the flux-induced scalar potential V' (®). Then a complete

discrete symmetry group Zg X Zo = {1, a1, ag, ajas} appears in the landscape of

1"The condition Nel.,‘ = 0 is in fact implied by the N’ = 4 QC and two of the three axionic field equations
provided co a1 # 0. This is the case for the solutions 14, s,) and 3, s,) in table 5.1, whereas for the flux

background in the remaining cases it is straightforward.
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the N =4 theory connecting solutions through the chain
Ny = Ny =5 Ny = Ny =5 Ny (5.89)

where N = 1,2,3,4 stands for the four groups of solutions N, ,,) in table 5.1.
In fact, we have checked that combining these discrete transformations with the
continuous non-compact part G, . in (5.21) of the duality group, the vacua structure
of the theory turns out to be a net of extrema connected by elements of the enhanced
group

Grae = Gre. X T X Lo . (5.90)

As it is shown in figure 5.2, all the sixteen critical points of dim =1 in the N =4

theory are then connected to each other by an element of Gyge.
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Figure 5.2: Net of connections between the dim = 1 sizteen critical points of the N = 4

theory.

i7) Since the as-transformation in (5.84) is an accidental symmetry of the scalar po-
tential but not of the superpotential, then the existence of non-supersymmetric and
nevertheless stable solutions is guaranteed as long as there are supersymmetric ones.
The reason is that these non-supersymmetric solutions would be “fake” supersym-
metric in the sense that they do correspond to supersymmetric solutions of the

“fake” superpotential in (5.85). Consequently, all the results concerning stability
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of supersymmetric solutions still apply to these non-supersymmetric ones since the
scalar potential is left invariant. Supersymmetric and “fake” supersymmetric (non-

supersymmetric) solutions of the theory are then connected by

SUSY SUSY FAKE SUSY FAKE SUSY

I = len = 1oy = gy

)

We will see this explicitly by computing the full mass spectrum associated to these

solutions and checking that they coincide.

The first step to check stability involves computing the masses only for the SO(3)-
invariant fields, namely the SL(2)/SO(2) axiodilaton S and the two SO(2,2)/SO(2)?
moduli fields T" and U. Nonetheless, stability of a solution under fluctuations of these
2+4 = 6 real fields does not imply stability with respect to the rest of the N' = 4 scalars
which may render it unstable. The set of normalised masses of the SO(3)-invariant scalars
at the sixteen dim = 1 extrema of the N = 4 theory are summarised in table 5.2. As
we anticipated, they do not depend on the choice of a particular (s1,s2) solution within

a N(s s,) grOUp.

ID m? | m3 m§ m? mg mg BF
2| 4+v6 | 4—+6 | 47+ /159 | 47 — /159 5 2
1, s 0 | —< m~ = —— — stable
(s1,52) 3 3 3 9 9 3
4 2 64 20 4
2(s1,52) 0 5 5 2 15 3 m? = 5 — unstable
20 20 .
3(s1,52) 0 0 2 2 3 3 min
4 20 .
451 ,50) 0 0 3 2 6 3 min

Table 5.2: Eigenvalues of the SO(3)-truncated canonically normalised mass matriz at the
AdS, extrema of the scalar potential in the N' = 4 theory. For those being saddle points,
the last column shows their stability according to the BF bound in (5.36).

Up to this point, the given information about the mass spectrum and stability of
solutions is still incomplete. In order to determine whether these critical points are actually
stable under fluctuations of all the scalar fields in the N’ = 4 theory, we have to compute
the full mass spectrum. As already anticipated, we have made use of the mass formula
provided in ref. [221] to address the issue of stability. The computation of the complete
mass spectrum for the sixteen dim = 1 solutions of the N = 4 geometric type ITA

compactifications gives the following results:

= The normalised scalar field masses and their multiplicities for the four solutions
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L(s,,5,) take the values of

(47 £V159) (x1) (4+V6) (x1) — (x3) ,

O =
W =

1
E(89+5\/ij 606+30\/145) (x5) .0 (x10)
1 2
1—8(89—5\/Ei 606 — 30 V145 ) (x5) S

The unique tachyonic scalar then implies m? = —% so these AdS, solutions satisfy

the BF bound in (5.36) hence being totally stable. Notice that the dangerous tachy-
onic mode has a special mass value, corresponding to a massless supermultiplet and
being identical to that of a conformally coupled scalar field in AdSs [242]. In terms
of group theory, it corresponds to the discrete unitary irreducible representation for
AdS,, while all other masses with m? > —% comprise a continuous family of such

irreps.

= The normalised scalar field masses and their multiplicities for the four solutions

2(s,,s5) take the values of

1 2 64 20
— (T7T+£5V145) (x5) , — (31+£V145) (x5) , — (x1) , = (x1),
15 15 15 3
4 2 4
D03 L 2 L 000 2 (x1) - (x]).
In this case the most tachyonic mode gives rise to m? = —4/5 that is below the BF

bound in (5.36), so these AdS, solutions become unstable under fluctuations of this

mode.

s The normalised scalar field masses and their multiplicities for the four solutions
3(s1,s2) take the values of

%(191@) (x10) | ?(xm , %(x?)) . 2(x2) , 0(x11),

whereas those corresponding to the four solutions 4, ,,) are given by

?(xl) 6(x6) §(><5) D2 (x4) g(><6) 0 (x16) .

One observes that all the normalised masses are non-negative so these AdS, solutions

do actually correspond to stable extrema of the scalar potential.

Therefore, this shows that most of the AdS, moduli solutions of the N' = 4 theories coming
from geometric type ITA flux compactifications are non-supersymmetric and nevertheless

stable even when considering all the 2 + 36 = 38 scalar fields'®.

18Tt would be interesting to understand the (dis-)similarities with the non-supersymmetric vacua of
[243,244].
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A point to be highlighted is that, in this type IIA case, the SO(3) truncation turns
out to capture the interesting dynamics of the scalars, in the sense that the lightest mode
is always kept by the truncation. This is by no means guaranteed by the consistency
of the truncation. Indeed, there are A/ = 8 examples of consistent truncations where the
non-singlets lead to instabilities of critical points that are stable with respect to the singlet
sector [245]. The situation for the critical points here differs from this in two respects.
Firstly, the non-singlet masses always lie above the lightest mode in the singlet sector.
Moreover, the non-singlet masses are in fact always non-negative.

Another remarkable feature is that the supersymmetric solutions 1y ;) and 1_ 4,
are not the (stable) ones with highest potential energy. Indeed, the solutions 3, )
are non-supersymmetric and still stable with a higher vacuum energy, as can be read
from (5.87). This again differs from the situation in the prototypical N' = 8 supergravity
with SO(8) gauging, where the vacuum that preserves all supersymmetry has the highest
potential energy of all known critical points [246].

Finally we want to identify the gauge group(s) Gy underlying these solutions. The
antisymmetry of the brackets in (5.18), when restricted to the fluxes compatible with type
ITA geometric backgrounds, allows to write the magnetic generators in terms of the electric

ones

b b b )
xoo rotbhe) , o by x| z.=z.=0.

c1 e Cc1 C1
(5.91)
with pairs (a,i) = {(1,2),(3,4),(5,6)}. Notice that ¢; ¢ # 0 for all the solutions listed
in table 5.1. In terms of electric generators, the algebra go of Gy is expressed as a twelve-
dimensional algebra which is now suitable to define a consistent gauging of the theory.

The brackets involving isometry-isometry generators are given by
[Z+a7Z+b] = [Z-‘ra’Z-‘rj] = [Z+i7 Z+]] =0, (592>

and then span an abelian u(1)® subalgebra of go. Furthermore, the mixed non-vanishing

isometry-gauge brackets read

[Z+a,X+b] =C1Zyc [Z+i,X+b] =cZyct a1l [Z+i,X+j] =c1Zyc,
(5.93)
so the isometry generators actually determine an abelian ideal within gg. Accordingly to

the Levi’s decomposition theorem, the algebra gg can then be written as

90 = fgauge ® u(1)6 s (5.94)

where ggauge has to be read off from the gauge-gauge brackets after quotienting go by
the abelian ideal. They take the form of

(X1 X =a X e X", (XX =a Xy (XX =0, (5.95)
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so the gauge-gauge brackets are identified with ggauge = i50(3). As a result, the algebra
go turns out to be
go = i50(3) Du(1)® ~ s0(3) ®nily(2) , (5.96)

where nilg(2) denotes a nilpotent 9-dimensional ideal of order two (three steps) spanned

by the generators {X+i s Lta s ZH} and with lower central series
{(X4', Zya, Zyi} D {Z4a, 243} DO (5.97)
The main property to be highlighted is that there is an unique gauge group, i.e.,
Go =180(3) x U(1)%, (5.98)

underlying all the solutions of the ITA geometric theory. This was already noted for the
supersymmetric solution in ref. [125]. As a final remark, none of the generators in the
adjoint representation vanishes at these solutions, so the algebra gy in (5.96) is actually
embeddable within the so0(6,6) duality group.

The above gauge group has three compact and nine non-compact generators. The
latter are spontaneously broken at all critical points. The corresponding vector bosons in
such cases acquire a mass due to gauge symmetry breaking by absorbing a scalar degree
of freedom. In the scalar mass spectra listed above, there will always be nine scalar fields
that do not correspond to propagating degrees of freedom. Being pure gauge, these do
not appear in the scalar potential and hence have m? = 0.

In all critical points considered above, the number of scalar fields with m? = 0 exceeds
nine. This implies that there will always be a number of propagating degrees of freedom
whose value is not fixed by the quadratic terms in V. Of course there could be higher-
order terms that do give rise to moduli stabilisation, or could lead to a negative potential
energy. However, in contrast to the Minkowski case, such scalar fields do not represent
a potential instability due to the additional contribution from the space-time curvature.
Instead, in Anti-de Sitter one should be worried about fields whose quadratic mass term
is at the BF bound, and if possible verify if their higher-order terms give rise to stability
or rather to tachyons. Having no such mass values in our spectra, this issue plays no role

here.

The critical point solution of dim = 2

Besides the previous sixteen critical points, the landscape of the N = 4 type ITA
geometric theory still has a dim = 2 piece. In terms of the flux background, it is given
by19

00201261:0 s ao:CLl:O y b1:a2 s bo:—ag. (599)

19We would like to stress that the superpotential induced by gauge fluxes in type IIB enjoys an extra
compact SO(2)s duality symmetry which can be used to rewrite the solution in (5.99) in terms of only one

physical parameter.
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After three T-dualities along the n* directions, where a = 1, 3, 5, this type ITA background
is mapped to a type IIB one only involving certain gauge fluxes (see table 3.2). We
postpone the discussion of this solution to the next section where type IIB backgrounds

including gauge fluxes, O3-planes and D3-branes are being explored in full generality.

5.4. Vacua of (Non-)Geometric Type IIB Compactifications

In this final part we study other realisations of the SO(3)-truncation of half-maximal
supergravity in four dimensions. This time it will be in the context of isotropic type 1IB

compactifications on T%/(Zs x Zs) including generalised background fluxes.

GKP Flux Compactifications: Stability and Gaugings

Let us start with the well known type IIB string compactifications including a back-
ground for the gauge fluxes (Hs, F3) and eventually O3-planes and/or D3-branes sources

in order to cancel a flux-induced tadpole
/ (Hg/\Fg)/\C4 = N3 = Hs N\ F3 (5.100)
10d

for the R-R gauge potential C. These compactifications were presented in the seminal
GKP paper of ref. [120] (see also section 3.2) and deeply explored from the moduli stabil-
isation point of view in refs [122,124,231,247] among many others.

When compatible with an SO(3) truncation of half-maximal supergravity, these com-
pactifications correspond to having non-vanishing (ag, a1, ag, as) aswell as (bg, b1, ba, b3)
flux components in table B.1. The flux-induced superpotential for the resulting STU-

models then reads
Wekp =ao—3a1U +3a2U? —azU? + (bp —3b, U +3b,U? —b3U?) S, (5.101)

and the theory comes out with a non-scale structure [248]. It is worth noticing at this
point that in these IIB models with only gauge fluxes there are no QC from (5.67) to
fulfill.

At the origin of the moduli space, the potential energy arranges into a sum of square
terms hence being non-negative defined

1

Vo= (

(ag — bg)2 +3 (a1 + 52)2 + 3 (ag — 51)2 + (ag + bo)2 ) . (5.102)

Using the stabilisation of the imaginary part of the modulus T, it can be shown that there
is no solution to the extremum conditions without satisfying Vo = 0, i.e., any solution
will be a Minkowski extremum. Then the Hsz flux background is related to the Fj one
via20

bs=ayg , byo=-a1 , bi=as , by=—as, (5.103)

20The same comment made in footnote 19 applies here for the solution in (5.103).
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and the flux-induced tadpole in (5.100) simply reads
N3 =a2+3a+3a3+ad3. (5.104)

The x; and ko values entering the gravitini mass matrix Aij in (5.33), and then determ-

ining the amount of supersymmetry preserved at an extremum, are given by

(a0 + a2)® + (a1 + as)?
(5.105)

As a consequence, a generic GKP solution will be non-supersymmetric. However, let us

K1 = (ag — 3&2)2 + (a3 — 3&1)2 , Ko =

3 3
42 42

comment about two interesting limits which give rise to solutions that preserve certain

amount of supersymmetry:

= The first limit is that of taking a9 = 3 a2 and a3 = 3 ay. This limit resultsin k1 =0

2 2
and ko = M% so that the solutions preserve N’ = 1 supersymmetry.
= The second limit is that of taking ay = —as and a3 = —a;. This limit results in
3\/a%+a% .
ko =0 and Ky = — %0 that the solutions preserve N = 3 supersymmetry

[247].

Let us now present the mass spectrum of these A/ = 4 compactifications?!. In terms

of the quantities
M = (9 a? + a3) —|—6(a0a2+a1a3)+5(a0—|—a3)> ,

N:

@"_‘ 5"‘

(5 a3 +a3) — 2 (apaz + a1 az) + (af + a%)) ; (5.106)

1
QR = 6\/ (ap — 3 ag)? —|—(a3—3a1)2>((a0+a2)2+(a1+a3)2) ,
the moduli (masses)? as well as their multiplicities are given by

M+3Q (x1) , N+Q (x6) ((ao+a2)?+ (a1 +a3z)?) (x3) , 0(x21).

| =

Only the third of the above masses is not recovered when considering only the scalars of
the SO(3) truncation. Clearly though, these solutions can never be stable because of the
general presence of flat directions.
The last question we will address is to determine the gauging underlying this GKP
backgrounds. The brackets in (5.18) get now simplified to
X X = e gy, X X = P g,

) ) (5.107)
[X_ij_n] — Hmnp Z_p , [X_m,X+n] — Hmnp Z+p

2!The numerical values of the eigenvalues of the mass matrix were computed in ref. [249] for some de

Sitter GKP examples corresponding to non-isotropic moduli VEVs.
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Even when there are no QC for the fluxes to obey, the antisymmetry of the brackets in
(5.107) when substituting (5.103) is guaranteed iff

Zia=—2Z_; , (ap+az)Zyi=(a1+a3)Z_; , (ap+az)Z_q=(a1+a3)Z_;,
(5.108)
again with pairs (a,7) = {(1,2),(3,4),(5,6)}. As a result, the isometry Z,,, generators
span a central extension of a u(1)!? algebra specified by the X,™ generators in (5.107).
Consequently, Raqj[Zam| = 0 and the antisymmetry conditions in (5.108) are trivially
satisfied in this representation??. This is the representation of the gauging which has
to be embeddable into the s0(6,6) duality algebra, so the gauging is the abelian group

Go = U(1)*2.

Non-Geometric Backgrounds: The SO(3,3) x SO(3,3) Splitting

In this final section we move to study some gaugings which cannot be realised as
geometric type II string compactifications. Specifically, we will focus on those based on
the direct product splitting SO(3,3) x SO(3,3) discussed in refs [236-238] and further
interpreted as non-geometric flux compactifications in refs [172,197].

This splitting implies the factorisation of the gauge group in terms of G; X Go, where
furthermore G and G2 were chosen in ref. [237] to be electric and magnetic respectively.
This provides the simplest solution to the the second set of QC in (2.34) and moreover a
non-trivial gauging at angles which is necessary in order to guarantee moduli stabilisation
[250]. In ref. [237] some de Sitter solutions have been found by investigating the case in
which G and G5 are chosen to be some SO(p, ¢), with p4+¢q = 4. Later on non-semi-simple
gaugings of the form CSO(p, q,7) x CSO(p, q,r) have been investigated in ref. [238], but
no de Sitter solutions were found.

Let us go deeper into the vacua structure of these CSO(p, ¢,7) x CSO(p, q, ) gaugings.
In order to do so, we will use the parameterisation of the embedding of each CSO factor
inside SO(3,3) in terms of the two real symmetric matrices M~ and My as explained in

ref. [216]. In the case of the SO(3) truncation, these are given by

M, =diag(—afy , &1, é,¢6) , My=dag(-ay, &,8.d) , (5.109)
together with

M_ = diag (bg . dy, do, Jg) . M. = diag (b3 L dy, d, J;) : (5.110)
where the relation between the entries of the above matrices and the embedding tensor

components can be read off from tables B.1 and B.2. The flux-induced superpotential in
(B.2) then reduces to
Wso(3,3)2 = a0+b35U3—351TU—36Z25TU2 +
N (5.111)
+ afT3U3+ b, ST3 -3, T?°U% +3d,ST?U

22In other words, the adjoint representation is no longer faithful.



5.4 VAcUuA OF (NON-)GEOMETRIC TYPE IIB COMPACTIFICATIONS 139

The antisymmetry of the brackets in (5.18) now translates into
Zo=X'=Z ,=X""=0, (5.112)

and the resulting twelve-dimensional algebra gy is written as

(Zva: Zyp)l = & Zye—ap X1© ; (Z-i,Z-j) =dy Zp + by X F
[Zya, X" = & Zyc+7 X° ; [Z_i, X I =dy Z_p+dy X_* | (5.113)
(X% X = —ag Zye + 6 X6, (X X ) =bsZ p+dy X_F

The first set of QC in (2.34) gets also simplified and forces the product M, M, and
M_ M_ to be proportional to the identity matrix.

For the sake of simplicity we will consider the case of having only unprimed fluxes,
i.e. having a type IIB background including gauge (F3, H3) and non-geometric (Q, P)
fluxes. Such backgrounds, although being non-geometric, still admit a locally geometric
description and in accord with ref. [172], they can never give rise to semi-simple gaugings.

Their associated flux-induced superpotential takes the quite simple form of

Wiet geom 4y 4 by SUS 36 TU —3dy STU? . (5.114)

These backgrounds already satisfy all of the QC as well as the extremality conditions for
the axions at the origin of moduli space??. In addition, their corresponding flux-induced

tadpoles are given by
N3 = agbs , Ny =N;=N,=0, (5.115)

where N7, N; and N7 relate to the SL(2)-triplet of 7-branes in a type IIB S-duality
invariant realisation of the theory [35,251]. In fact, the second condition in (5.115) is
actually identified with A/ = 4 QC since these 7-branes would break from half-maximal
to minimal supergravity.

Restricting our search of extrema to the origin of the moduli space, we find five critical
points some of them with novel features compared to the “geometric” results obtained in
the previous sections. Apart from the GKP-like solution appearing when switching off the
non-geometric fluxes, i.e, ¢; = dy =0 , the set of extrema of the scalar potential and their
vacuum energy are summarised in table 5.3. Notice that solutions 3, and 3, are related to
each other by a simultaneous inversion of the S and U moduli fields, i.e., by an element
of the compact subgroup SO(2)? of the duality group. The critical points labelled 1 and
2 are invariant under this transformation. This is similar to the Z9 X Zs structure in the
geometric ITA case. However, in contrast to that situation, the other critical points in
table 5.3 cannot be related by non-compact duality transformations. Therefore these are

solutions to different theories.

23This fact points out that the origin of moduli space is an especially interesting point even though it is

not the most general solution since this flux background is not duality invariant.
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ID ag 51 bg d~2 ‘/0 BF
2
2
1 A A=A =X fﬂ m2 = —Z — stable
8 3
/\2
2 Al =X =] =X 3 unstable de Sitter
15)2 2
0 5a 30 [ oa| oa | 2B 2 2 220 table
8 15
2
3p ||l =A | A | BA| =3 —% m2=—i—§—>unstable

Table 5.3: Set of extrema of the scalar potential (at the origin of the moduli space) for
the SO(3,3) x SO(3,3) embeddable type IIB backgrounds admitting a locally geometric
description. We also present their stability according to the BEF bound in (5.36).

The computation of the gravitini mass matrix Ailj in (5.33) shows that the solution
1 in table 5.3 preserves N = 4 supersymmetry whereas all the others turn out to be

non-supersymmetric. The normalised mass spectra for these solutions are as follows:

= The normalised masses and their multiplicities for the solution 1 are given by
2
3 (x2) , 0(x24) , -3 (x12) . (5.116)
The twelve tachyonic modes imply m? = —2/3 and then satisfy the BF bound in
(5.36) ensuring the stability of this AdS, solution.

= The normalised masses and their multiplicities for the solution 2 are given by
6 (x10) , 4(x18) , —-2(x2) , 0(x8), (5.117)
so this de Sitter solution is automatically unstable since it contains two tachyons.

= The normalised masses and their multiplicities for the solutions 3, are given by

_%g(x@ ; —%(xQ) ; —%(xl) : %(23&@) (x1)
é(x@ ! %(Xl) ) %(x9) : 0 (x6) ,

so these AdS, solutions do not satisfy the BF bound in (5.36) for fourteen tachyonic

modes hence becoming unstable.

We would like to point out that in these non-geometric flux vacua the lightest mode
generically no longer belongs to the SO(3) truncation.
Concerning the gauge group underlying these locally geometric type IIB backgrounds,

it is directly identified with
Go =ISO(3) x ISO(3) , (5.118)
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when keeping only unprimed fluxes in the brackets of (5.113). The three different theories
correspond to inequivalent embeddings of this gauge group in the global symmetry group.
All critical points break the non-compact generators of this gauge group, and hence six of
the massless scalars in the mass spectra listed above correspond to non-physical scalars.
As a final remark, we want to highlight that table 5.3, even though not being ex-
haustive, contains interesting solutions such as an example of N/ = 4 supersymmetric AdS
vacuum and an example of dS solution obtained from a non-semi-simple gauging. The
latter is the first example with such a gauge group; all previously constructed dS solutions

are based on semi-simple groups [236, 237].






Chapter 6

Exceptional Flux Compactifications

In the previous chapter we have studied the landscape of geometric N' = 4 compacti-
fications and we saw that non-geometric fluxes seem to provide a crucial ingredient for dS
extrema. In section 3.3 we have seen that their existence was first conjectured in order for
the low energy effective theory to be duality covariant. This duality is correctly encoded
in the global symmetry of the underlying gauged supergravity in four dimensions [148].
In this sense, T-duality singles out the important role of half-maximal supergravities (see
realtions to DFT in chapter 4), whereas, in order to supplement it with non-perturbative
dualities to generate the full U-duality group, one has to consider maximal supergravity.

The combination of some recent developments makes it interesting to further investig-
ate the structure of maximal gauged supergravities in order to better understand which role
U-dualities play in the context of flux compactifications. The embedding of half-maximal
into maximal supergravity [199,200] allows one to study flux backgrounds that preserve
maximal supersymmetry. An interesting fact is that the completion of half-maximal su-
pergravity deformations to maximal is given by objects which behave as spinors under
T-duality.

Our goal in this work will be to elaborate on the results of ref. [222] and explicitly
show how these ITA geometric flux backgrounds and any other type II background can be
embedded in maximal supergravity. To this end we will therefore need to relate different
formulations of N' = 8 gauged supergravity. The embedding tensor formalism provides
an Erc7) covariant formulation of maximal gauged supergravity in D = 4 (see table 2.6).
However, in order to make contact with flux compactifications, we need a rewriting of this
theory in terms of irrep’s of the S- and T-duality groups, i.e. SL(2) x SO(6,6), following
the philosophy of ref. [239]. Finally, in order to study the physical properties of scalars,
such as equations of motions and the mass matrix, SU(8)is the correct group rearranging

all the 70 scalar physical degrees of freedom into an irrep. This can be summarised as

N =8 SUGRA Fluxes Mass spectra

Employing this mapping, we will derive the mass spectrum and the gauge group of such
“exceptional” cases of flux backgrounds without branes.
In this chapter we will first briefly review gauged N' = 8 supergravities in the so-

called SU(8) formulation. Secondly, we will see how to embed N = 4 backgronds into
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N = 8. This will turn out to be natural in what we will call the SL(2) x SO(6,6)
formulation. Finally, we will show how to connect these formulation in order to compute
all the physical quantities for N' = 4 backgrounds admitting an uplift to N' = 8, just like
in the case of the geometric type IIA vacua presented in table 5.1. Most of the results of
these chapter where obtained and first presented in refs [200,252,253]. Some additional

technical material relevant here is collected in appendix C.

6.1. Gauged N =8, D = 4 Supergravities

Maximal supergravity appears when reducing type II ten-dimensional supergravities
on a torus down to four dimensions. The embedding tensor formalism in maximal su-
pergravity [196] describes the gauging procedure, i.e. promoting to local a part of the
E7(7) global symmetry of the 4D theory. After applying a gauging, a non-Abelian gauge
symmetry is realised in a way compatible with still keeping AN/ = 8 supersymmetry in
four dimensions. Moreover, a non-trivial potential V' for the 70 (physical) scalar fields in
the lower-dimensional theory (a.k.a. moduli fields) is also generated, hence opening the
possibility for them to get stabilised, i.e. to acquire a mass, due to the gauging. The aim
of this chapter is to explore the interplay between gaugings and moduli stabilisation in

the context of maximal supergravity.

Embedding tensor and the E;;) formulation

A gauging is totally encoded inside the embedding tensor ©y?, where M = 1, ..., 56
and 4 =1,...,133 respectively denote indices in the fundamental 56 and adjoint 133
representations of E;(7). The tensor On? lives in the 56 ® 133 = 56 © 912 @ 6480
irrep’s of E(7) and specifies which subset of the E7(7) generators {ta=1,. 133} become gauge
symmetries after the gauging procedure and hence have an associated gauge boson Vjy in
four dimensions. As in standard gauge theories, the ordinary derivative is replaced by a

covariant one, V — V — g VM @Oy t4, and a non-Abelian gauge algebra
(X, Xn] = —Xnn® Xp with X' = O [taln” (6.1)

is spanned by the generators Xy Since Eq(7) C Sp(56,R), and even though E7 () does
not have any invariant metric, one can still use the Sp(56, R) invariant matrix Qun (skew-
symmetric) in order to raise and lower E7(7) fundamental indices. In what follows, we
adopt the SouthWest-NorthEast (SW-NE) convention, e.g. XM = Xy Q"™ together with
Qup ONF = 611

Maximal supersymmetry requires the tensor Xynp = XM(NP) = —XMNQ Qgp to live in
the 912 irrep of E;(7). This translates into the following set of LC

Xmnp) =0 ; Xpm' =0. (6.2)
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On the other hand, the tensor Xyp must also satisfy a set of QC coming from the
consistency of the gauge algebra in (6.1). These QC sit in the (133 ® 133), = 133 © 8645

irrep’s of Ey(7) and are given by
OF Xpyn Xspg = 0 . (6.3)

The above set of linear (6.2) and quadratic (6.3) constraints guarantee the consistency of
the maximal gauged supergravity in four dimensions [196].

Switching on a gauging has strong implications for the scalar sector of the four-
dimensional theory. It consists of 133 scalars out of which only 70 are physical degrees
of freedom — the remaining 63 can be removed from the theory after gauge fixing — and
parameterise an E;(7)/SU(8) coset element My = M. Because of the gauging, a
non-trivial scalar potential appears

Vo= 69722 Xuve Xgrs (MM MEEMES 7 MMAQNR OFS) (6.4)
which is invariant under the linear action of E;(7) transformations. This scalar potential
might contain a rich structure of critical points where to stabilise all the moduli fields in

the four-dimensional theory.

Fermionic Mass Terms and the SU(8) Formulation

The Lagrangian of maximal supergravity in four dimensions can be unambiguously
written in terms of SU(8) tensors, since SU(8) is one of the maximal subgroups of Ez(7).
More concretely, it is its maximal compact subgroup and is identified with the R-symmetry

group under which the eight gravitini of the theory get rotated amongst themselves.

Bosonic Field Content

Under its SU(8) maximal subgroup, we have the following branching for some relevant

E7(7) representations

Ezy D SU(8) FIELDS

56 — 28®28 vectors:  Vzz @ VIJ

133 — 63@70 scalars:  ¢77 (unphysical) ® ¢z 75, (physical)
912 — 3634203 36 ¢ 420 emb tens: AL @ ApTKE ®Az7 ® AL 75

related to the vectors, scalars and embedding tensor!

in the four-dimensional theory.
When expressed in terms of SU(8) fundamental indices Z = 1, ..., 8, the above fields have

the following symmetry properties according to the irrep’s they are associated to:

!Strictly speaking, the A7 and Az7** fermionic mass terms as well as their complex conjugates
correspond to the irrducible components of the T-tensor (see section 2.3), obtained by dreesing up the

embedding tensor with scalar vielbeins.
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i) Vz7 = Vizz) and VIJ = (Vz7)* for the complex vector fields.

i1) drF =0 and droir = bizgke) for the scalar fields which are further restricted by

the pseudo-reality condition

1 . %
d17KL = — €xrccmnpa ¢V with ¢MNPL = (punpo)t . (6.5)

24

It is worth noticing that the physical scalars ¢ 7 in the theory fit an irrep, namely
the 70 of SU(8). This will no longer be the case when using another formulation of

the theory, as we will see in the next section.

iii) AW = ATT) . A7TRE — AZTKRED and Ag9'Y = 0 and equivalently for their
complex conjugate counterparts Az7 = (AT)* and A% sxp = (A77FE)* .

In the SU(8) formulation, the Sp(56,R) invariant (skew-symmetric) matrix Qumy

takes the form

Ouiy = —i (6.6)

Fermionic Mass Terms and Scalar Potential

The AT7 and A% tensors play a central role in the SU(8) formulation of maximal
supergravity. They determine the fermionic mass terms for the gravitini wuz and the
dilatini xz7x in the four-dimensional Lagrangian [196] (where in this formula u,v are

understood as space-time indices)

e g7 Leermi = \f Azg E,LI glas 1/1,;74% AgTRE EMI Y xgree+ AN 5 e X emnthee.
(6.7)

where ATTKLMN — % L ITKPARILM AN ]'PQR. The number of supersymmetries pre-

served by an AdS (Vp < 0) or Minkowski (Vp = 0) solution of the theory is related to the

number of spinors satisfying the Killing equations

1
gArg e = |- Voer. (6.8)

The scalar potential in (6.4) can also be rewritten in terms of the fermionic mass terms

as
3 1
-2 _ Y 2 - 2
g2V = =LA+ o Al (6.9)

where | A2 = Azs AT and |As|> = Ar7*F AT 7xc. This potential will possess a

structure of critical points satisfying

ov

_— =0, (6.10)
ddz7KC (bz7KC)
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where (¢77icc) denotes the VEV for the 70 physical scalar fields. Provided (Vz7) = 0
for the vector fields, maximally symmetric solutions of the theory are obtained by solving

the equations of motion [254] of the physical scalars

1
Crgke + 34 TIKLMNPQ CMNPQ = 0, (6.11)

where Crrxr = .AM[IJK Agm + %AMN[IJ .AN;CL]M. At these solutions, the mass
matrix for the physical scalars [254,255] reads

— MNP
g7 (mass?) e, 0 = LS (S ARsTu ARSTY — § Ars ARS)
+ 6075 (ACRSIP A9 pps — L ARSIPA ARG py)  (6.12)
— ALV A9 gy

Defining the normalised mass as (mass2)norm = Vlo\ (massQ) , then the BF bound for

the stability of an AdS solution is again given by (5.36) for the lowest eigenvalue of
the normalised mass matrix at the AdS extremum with energy V5 < 0. We will make
extensive use of (6.12) and (5.36) in the last part of the chapter when discussing stability
of solutions in specific maximal supergravity models arising from flux compactifications of

type II strings.

Quadratic Constraints

The set of QC in (6.3) can also be expressed in terms of the A7 and A7/ tensors.

Using the branching relations

E7(7) D SU(S) (6.13)
133 — 63 @ 70, (6.14)
8645 — 63 @ 378 & 378 @ 945 & 945 @ 2352 & 3584 (6.15)

as an organising principle, one gets the following QC [196]

9ARSTMAR g1 — ALRST MMpsr — M | A> = 0,
BARSTMAR g1 — ALRST AMpst + 12 Az AMR — L 62 [ Ao — 021 [AL)* = 0O,

AT v A ppo) + Agv 6 A vpo) — Az AT apg)
+i5MNPQRSTZ/{ (AJIVRAVSTZ/{ _|_AIV 6§AVSTM —AIR.A]STM) = 0,
_%yz\/’ (ARSTM-ARSTJ _ AJRST-AMRST) + %5‘/}/1 (-ARSTNARSTI _ AIRSTANRST)

"!‘AIRSMANJRS—AJRSNAMIRS+4A(MIJRAN)R—4A(IMNR~AJ)R = 0,

—9A MNAP]JKR 95 AJRS\/\/AP] KIRS — 95[[ ARP]STARIC]ST

+ 5%%73 |A2‘2 + .ARMNP.ARIJIC = 0,
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living in the 63 (the first two), 70378 ® 3584, 945 ® 945 and 2352 irrep’s of SU(8),
respectively. The above set of QC in (6.1) automatically guarantees the consistency of the

maximal gauged supergravity.

The SO(8) gauging [256] as well as the CSO(p, q,r) with p 4+ ¢ + r = 8 contractions
thereof [216,257] are either simple gauge groups or straightforward contractions thereof.
For this reason it has been relatively easy to explore these from a pure supergravity view-
point, irrespective of their realisation in string theory. However, as the relation between
gauged supergravities and flux compactifications of string theory became better under-
stood [148], more complicated non-semisimple gauge groups other than the CSO gaugings
have gained interest both in maximal [258] and half-maximal [125,172,197,222] supergrav-
ity. The reason is that, as we will show later, the CSO gaugings turn out to correspond to
non-geometric flux backgrounds for which an origin in string theory remains unknown?,
whereas gaugings corresponding to flux backgrounds with a higher-dimensional origin are
in general not CSO. The latter are called geometric backgrounds and include fluxes as-
sociated to the NS-NS and R-R gauge fields present in the spectrum of the string [258]
together with a metric flux associated to a spin connection in the internal space. How-
ever, the SU(8) formulation of maximal supergravity is not the most intuitive when it
comes to describe gauged supergravities arising from flux compactifications of string the-
ory. Instead, an alternative formulation in terms of SL(2) x SO(6, 6) tensors becomes more

adequate as we discuss in the next section.

6.2. Embedding N =4 Inside N =38

Compactifications of string theory in the presence of background fluxes have become
a very active research line when it comes to address the problem of moduli stabilisa-
tion. Non-geometric fluxes and their further extension to generalised fluxes or dual fluzes
were originally introduced in order to recover invariance of four-dimensional supergrav-
ity under the action of duality transformations: more concretely, under non-perturbative
S-duality and target space T-duality. The combined action of S-duality and T-duality
relates “apparently” different four-dimensional backgrounds amongst themselves via an
SL(2) x SO(6,6) transformation. This group of transformations corresponds with the
global symmetry group of half-maximal N = 4 supergravity in four dimensions [100].
The relation between half-maximal supergravity and string compactifications with fluxes
has been explored in refs [146,172,222]. As a speculative remark — and up to quantum
requirements such as the discrete nature of the gaugings when understood as fluxes —
, by covering the different SL(2) x SO(6,6) orbits of half-maximal supergravities, one

might have access to intrinsically stringy effects involving winding modes and/or dyonic

*Nevertheless, some of them can still be obtained from M-theory reductions, as the SO(8) gauging that

appears after reducing eleven-dimensional supergravity on a S7 sphere.
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backgrounds, even though it is formulated as a supersymmetric field theory of point-like
particles.

Both S-duality and T-duality belong to a larger U-duality group, the E7) global
symmetry group of maximal supergravity in four dimensions. Consequently, in order to
go from half-maximal to maximal supergravity [200], one has to enlarge the field content
of the theory, i.e. vectors, scalars and embedding tensor components, to complete irrep’s
of E7(7). It is at this point where an alternative formulation of maximal supergravity in
terms of SL(2) x SO(6,6) tensors becomes mandatory in order to understand the relation

between flux compactifications of string theory and maximal supergravity.

Bosonic field content

Complementary to the SU(8) formulation of the previous section, maximal supergravity
can also be unambiguously expressed in terms of SL(2) x SO(6,6) tensors since that is a

maximal subgroup of E;(7) as well. Under SL(2) x SO(6,6), we now have the following

branching
Ez;y D SL(2) x SO(6,6) FIELDS
56 — (2,12)® (1,32) vectors: Vo @V,
133 — (1,66) @ (3,1) @ (2,32') scalars:  @uN D dag D Pap

912 — (2,220)® (2,12) ® (1,352') ® (3,32) emb ten: famnpe ® Earr D Frrp © Eapy

for the E7(7) representations associated to vectors, scalars and embedding tensor respect-
ively. We follow the conventions in ref. [200] for the indices: o = +, — is a fundamental
SL(2) index, M =1,...,12 is a fundamental SO(6,6) index and u (1) = 1,...,32 denotes
a left (right) Majorana-Weyl spinor transforming in the 32 (32") of SO(6,6). In order to

fit the irrep’s, the above set of fields come out with the following symmetry properties:

i) The real vectors Vyar and V), are unrestricted.

1) The scalars satisfy éyn = PNy and Qap = G(ap) whereas ¢qp remain unres-
tricted. However, in contrast to the SU(8) formulation, the 70 physical scalars no
longer fit an irrep of SL(2) x SO(6,6) . Instead, 38 of them parameterise an element
of the coset space S(IS((% X So?g(fé(g(m ,

E7(7)

Su(s) coset element. At the origin of the moduli space, i.e. ¢yn = ¢ag = dap =0,

whereas the remaining 32 extend it to an

we are left with a symmetric E7(7) scalar matrix of the form

Sap Oa1N ‘ 0

My =

. : (6.16)
origin 0 ‘ B,uu

where the symmetric and unitary matrix By, is the conjugation matrix introduced

in appendix C.2 to define a reality condition upon gamma matrices of SO(6,6) .
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It is worth mentioning here that the explicit form of B,, crucially depends on
the choice of the gamma matrices representation. For instance, if taking the real
representation presented in appendix C.2, then B, = 133. On the other hand,

if taking the complex representation that makes SU(4) x SU(4) covariance explicit

0 1 .
' ). Then, different
1 16 0

choices of gamma matrices representation do change the notion of what is called the

(see also the appendix C.2), one finds that B,, = <

origin of the moduli space according to its definition in (6.16), even though they are

related via a unitary U(32) transformation.

In order to avoid confusion, we will adopt the convention of B,, = 132 when
referring to the origin of the moduli space, hence being compatible with the natural
choice of

MmN = 156 , (6.17)

origin

as the origin of field space.

i7i) The different pieces of the embedding tensor fonmnp, anr, Fup and Eag, satisfy

farnp = fapunp] together with F* = Fupy, [vM]" = 0 and Zap, = Zapu -

In the SL(2) x SO(6,6) formulation, the Sp(56,R) skew-symmetric invariant matrix

Qnmy becomes block-diagonal and reads

QanpN ‘ 0 €af NMIMN ‘ 0
Oy = - , (6.18)
0 ‘ Qu 0 ‘ Cov
where €, is the Levi-Civita SL(2)-invariant tensor (normalised as ey = 1) and where

nvun and C,, are the metric and the charge conjugation matrix of SO(6,6), respectively.
We have summarised our conventions for spinorial representations, gamma matrices, etc.

of SO(6,6) in the appendix C.2.

Fluxes and The Embedding Tensor

The decomposition of the 56 of E;ry under SL(2) x SO(6,6) translates into the
index splitting M = aM & p. When expressed in terms of the different pieces of the
embedding tensor, the tensor Xynp entering the gauge brackets in (6.1) can then be split

into components involving an even number of fermionic indices

XaMBN’YP = T €3y faMNP— EBWUM[N gaP] — ea(ﬁgy)M np
1 NP 1 N
XaM;W = —ifaMNP [’Y ]’W_ZéaN [’YM ]MV ,
1 1 (6.19)
XHQMU - XW&M - g faMNP [VNP} wo ﬂ faNPQ [’YMNPQ]MV
1 1
+ g SaN [VMN] e é EaMr Cuy ,
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which turn out to be sourced by foarnp and &,ar, together with those involving an odd

number of them
1

qup = _§FMV [VN]HV [PYMN] vp ’
XuaMBN = —2eqp Finw [7)) MV — 2NMN Easu , (6.20)
XomusN = XarisNy = €ap WN)" Fro + Zapy [ymn]”, + Eapunun

which are sourced by Fu; and Z.8,. The set of components in (6.19) specifies how
half-maximal supergravity is embedded inside maximal [200], whereas the remaining com-
ponents in (6.20) represent the completion from half-maximal to maximal supergravity.
A derivation of the expression in (6.19) and (6.20) can be found in the appendix C.2.
The brackets of the gauge algebra in (6.1) involving the Xy = Xon @ X, generators

in maximal supergravity then takes the form

[(Xorr, Xon] = — Xamsn' Xop — Xomsn' X,
[XaMaXM] = - XoaMp’yP X’yP - XaMup Xp ) (621)
(X, X, = — X7 X,p - XufX, ,

where, if looking at the part only involving the X,as generators, namely
[(Xorrs Xpn] = — Xamsn" Xop (6.22)

we rediscover the gauge algebra of half-maximal supergravity [100] where the X, gener-
ators have been projected out of the theory.

Moving to explicit string constructions, the foanp and £,y embedding tensor pieces
have been related to different background fluxes, e.g. to gauge, geometric and non-
geometric fluxes, in compactifications of type II and Heterotic strings producing half-
maximal supergravities [125,146,172]. As we have seen, these fluxes restore the invariance
of the four-dimensional supergravity under T- and S-duality, i.e. under SL(2) x SO(6,6)
transformations. The Fj;; and Z,5, embedding tensor pieces are related to additional
background fluxes which restore the invariance of the theory under U-duality, i.e. under
E7(7) transformations [239]. Nevertheless, the identification between embedding tensor
components and fluxes strongly depends on the string theory under consideration. For
instance, a component of the embedding tensor corresponding to a metric flux w in a type
ITA construction might correspond to a non-geometric @ flux in a type IIB one and vice
versa (see tables B.1 and B.2 in appendix B.1). We will take this fact into account in the

last section when analysing specific type II flux models.

Quadratic Constraints

Plugging the expression for the components of the tensor Xynp in (6.19) and (6.20)

into the QC in (6.3) one finds a set of quadratic relations for the embedding tensor pieces



i)

i)

iv)

vi)

vit)
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famnp s &anrs Fup and Zgpg,. In doing so we use the Sp(56,R) invariant matrix
Oy in (6.18). As for the SU(8) formulation in the previous section, let us use the
E7¢7y D SL(2) x SO(6,6) branching relations
133 — (1,66) @ (3,1) @ (2,32'), (6.23)
8645 — (1,66) @ (1,2079) @ (3,66) @ (3,495) @ (3,1) @ (1,462') &
® (2,32') @ (2,352) & (2,1728') ¢ (4,32'), (6.24)

as an organising principle for the QC. After a straightforward but tedious computation,

one finds the following set of QC:

bamt €8N + 4€°CHM By Egsy =0, (6.25)
f(f fopun — 4Zagu Frs v =0, (6.26)
3 farMN fgpQ]R + 28 fa)NPQ] (6.27)

— 4B Flus iveol™” — €7 Eanu Egav unpl*” =0,

P (&.F fapmn + Eanr €an) (6.28)
— 4 Fyp NP — Fpy FPy [yun]™ + 2627 % Eapp Evyov (YN =0,

P (faMNR faro ™ = &5 farpap noiny — Eapnr fonipg + alp fﬁQ]MN) (6.29)
+4 Forg lywp)" P — Frp " Ding nvip v@l™ + 2Eapu B b e dg)* = 0.,

faMNP f,BMNP + 30 675 cH Ea’yu E,B5V =0 ) (630)

a 1 »
P fapnnp foQrs o EFT;; FLy lvmnpors)™ =0, (6.31)

associated to the irrep’s

i) (3,1) i) (3,66) iii) (3,495) iv) (1,66) (6.32)

v) (1,66) @ (1,2079) vi) (3,1) vii) (1,462') ,  (6.33)

together with three additional ones

UZZZ) f(aMNP Eﬁfy)l/ [’YMNP]V[L - 15§(on E’ﬁ’y)l/ [’YM}V“ =0, (634>

, . 1 P | i) =
ir)  —3&u FME 4 7 (2&31\4 M+ 2 famne V] “) B =0, (6.35)

T o =
) farmn® Fpl' + ZfaPQ[M Fyyp 797" — EfaPQR Fors [y "R (6.36)
1 . . o
+ 7 Sap Fiuy 1"+ € (fanene V1P = Eapr v ) Eaw

5 .
1 Sav F)* =0
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associated to
viii) (4,32) ir) (2,32) r) (2,32) @ (2,352) @ (2,1728) . (6.37)

Let us comment a bit more about the above set of QC. If we refer to the embedding
tensor pieces fonnp and Eunr as “bosonic” and to Fiy, and Z,p, as “fermionic”, then
the first seven conditions can be understood as (bos x bos) + (fermi x fermi) = 0 QC
whereas the last three are of the form (bos x fermi) = 0. As a check of consistency, the
first seven conditions reduce to those of the form (bos x bos) = 0 in ref. [200] by setting
Fuy = Zagu = 0, namely, by switching off fluxes associated to SO(6, 6)-fermi irrep’s of
the embedding tensor. In particular, in such a case, the first five conditions characterise a
consistent ' = 4 gauging [100] and the remaining two extra conditions select those N = 4
gaugings given by foanp and £,y which admit an uplift to the maximal theory [200]. In

this case, the last three conditions are trivially satisfied.

As mentioned before, looking for a higher-dimensional origin of dual fluxes is becoming
a very exciting line of research. As far as fluxes related to the f,a/nyp components of the
embedding tensor are concerned, only purely electric SO(6,6) gaugings have been at first
formally addressed by DFT [166-168]. However, the explicit twelve-dimensional twist
matrices producing such gaugings have only been built in some particular cases [157-159].
In chapter 4 based on ref. [195] the construction has been presented for D > 7. In
order to firstly extend to SL(2) x SO(6,6) gaugings including fluxes related to £,as and
secondly to E;(7) gaugings involving also fluxes related to the Fyy;, and Z,4, components
(such as R-R gauge fluxes amongst others), a generalisation to a 56-dimensional “twisted
megatorus” reduction has been proposed [159]. The restrictions upon the 56-dimensional
twist matrices on this megatorus have not been worked out yet, but, when expressed in
terms of fluxes, they should at least imply those in (6.25)-(6.31) and (6.34)-(6.36) whenever

the twist is compatible with maximal supersymmetry in four dimensions.

6.3. Connecting SU(8) and SL(2) x SO(6,6)

In order to relate the SL(2) x SO(6,6) and the SU(8) formulations of maximal
supergravity, it is mandatory to derive the expression of the Xwynp tensor entering the
brackets in (6.21) as a function of the fermionic mass terms in (6.7). This can be done in

a two-step procedure as follows:

1) By using the tensors A% and Az7*¢, we can build the so-called T-tensor [196,254].
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The components of this T-tensor take the form

TrgkcmN = o7 ECLMNRSTU 3 A sTU ;
M
Trycc™N = 3 5{& ANz g + 6 Agg
KL 15K 42 KL (6.38)
Ir7" My = —3 5[M A }N]ZJ - 5[1[/\4 Ang)
K
Ty, REMN - 5[[2 Ay, LMN] :

together with their complex conjugates. We can arrange them into a 7j ME tensor
by using the decomposition M = [ZJ]®[ZJ] = {77, 77} of the 56 of E(;) under
SU(8).

2) The constant Xywp tensor in the SU(8) formulation, let us denote it )?MNIP to
avoid confusion with that in the SL(2) x SO(6,6) formulation, can then be obtained

by removing the dependence of the Tynp tensor on the scalar fields (see footnote 1)

Xomp = 2V, 2 VBV, Tggs (6.39)

where 17M@ is the Er(7)/SU(8) vielbein in the SU(8) formulation [196]. After
removing the scalar dependence, the )?MNP and Xynp constant tensors in the
SU(8) and SL(2) x SO(6,6) formulations are related via a constant change of basis

XMNI[D = f}MQ ]}NR f)]P:S XQRS . (640)

Composing (6.39) and (6.40), the resulting vielbein? VMN = fJMP I?PN directly con-

nects the tensors Xynp and Tyne

Xuine = 2 Vo s V2 V52 Tiges - (6.41)

Schematically, the connection between the two formulations of maximal supergravity

works in the following way

(AT, A7TRE) =  Twne = XMNP (6.42)
fermirnasses (638) (6.41) flux background '

By inverting the above chain* we are able to relate a flux background given in terms of
famnp, §am, Furp and 2., to certain fermionic mass terms ALT and Az7*F | This

amounts to know the relations
AT = ALT (faMNPa Eart s Frp s Eapu s VMg)

JKL JKL = M (6:43)
Az = Az (faMNPa SaMt s Fnjis Zapu s V N) ;

3For more details on the vielbein VMN, see appendix C.4.
4The inversion of the relations in (6.38) gives AT = Q%TIKJE;CL and Az7%E = 2T MIKE,

showing that there is some redundancy in the T-tensor components.
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where VMN = (Vﬁl)NM is the inverse vielbein. Having the relations (6.43), we can make
use of (6.9), (6.11) and (6.12) in order to compute the scalar potential, the E.O.M’s and

the masses of the 70 physical scalars for a specific flux background.

The Fyyu = Zap, =0 Case

Let us derive the relations (6.43) between fermionic mass terms and embedding tensor
components when Fy;, = Zq5, = 0. On the string theory side, this means that fluxes

related to fermionic components of the embedding tensor are set to zero, so that
ALT = ALT (faMNPa §al ; VMN)

(6.44)
ApTHE = APTRE ((fanane s ant s WYy )

Before presenting the explicit form of the relations in (6.44), we want to point out an
issue that appears during the computation, the way to overcome it and the corresponding

price to pay:

i) In the SL(2) x SO(6,6) formulation of maximal supergravity, the scalar fields split
into “bosonic” {¢as, ¢mn} and “fermionic” ¢, ones. While the former enter
the vielbein VY in a simple way, the latter do it in a very complicated way. In
the derivation of the relations (6.44), we will set ¢, = 0 which means that all
the “fermionic” scalars are fixed to their values at the origin of the moduli space.
Therefore, the relation between fluxes and fermionic mass terms that we present

here is only valid in the submanifold of the moduli space where ¢,; = 0.

i1) Being tight to the submanifold with ¢, = 0 is perfectly consistent with embedding
N =4 flux compactifications (and truncations thereof) inside N' = 8 supergravity,
since “fermionic” scalars are projected out (set to zero) when truncating from max-
imal to half-maximal supergravity in four dimension [200]. A special point in this
submanifold is the origin of the moduli space defined in (6.16), where both “bosonic”

and “fermionic” scalars are set to zero.

i74) One of the main consequences of taking Fir;, = Zqg, = 0 aswell as ¢y, = 0 is that
the method introduced in ref. [222] (and further exploited in ref. [257]) for charting
critical points of the scalar potential becomes more subtle. This method relies on
the fact that the manifold spanned by the scalars, i.e. E;(7y/SU(8) in the case of
maximal supergravity, is homogeneous so any critical point can be brought back
to the origin of the moduli space by applying an Er7) transformation. However,
neither Firp, = Zapy = 0 nor ¢ = 0 are U-duality covariant conditions: Eq(r
transformations will mix “fermionic” and “bosonic” embedding tensor components
and scalars, hence rendering the relations in (6.44) no longer valid. We will be back
to this point in the last section when discussing specific flux backgrounds yielding

maximal supergravities.
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Taking Fir;, = Eagu = 0 together with ¢, = 0 has strong implications for the map-
ping between fluxes and fermionic mass terms. By virtue of the decompositions (C.33) and
(C.34), only those components (as well as their c.c.) of the form {Van" , Varr' , Vl.jk[}
inside the vielbein VMN are non-vanishing. They are expressed in terms of an SL(2)
complexified vielbein V, and an SO(6,6) vielbein Vj; = {VMU,VM%}} where i =1,...,4
and ¢ = 1,...,4 respectively denote SU(4)time-like and SU(4)space-like fundamental indices
(see appendix C.4).

Considering this reduced set of vielbein components, we can build the explicit mapping
between fermionic mass terms and fluxes by following the prescription in (6.42). It will

be useful to define the tensors

Aij = B (V) VM YNk YPIl fo0np
AT = @By, VM YNRYPIl g g 8 0By, YMidg,,, (6.45)
i = P VY, VM VNG VEIR fonnp — Lol Py, VM5 €am

which reproduce the fermionic mass terms in N = 4 supergravity [100] (see expressions
given in (5.27), where the SO(6)space-like indices have been complexified by means of the

space-like and SD "t Hooft symbols [G4]” given in (C.22)), together with their counterparts

Ailj — B V,, VM]%IA VN%]; VPji fﬂMNP
AY = @B W) VM VNEVPIL fo e — 3B (V) VM €5y (6.46)
A, iﬁj = P (V) VM VN VPR o np + 1 67 8 (Va)* VM €

which complete the AN/ = 8 theory. In terms of these, the relation between fluxes and

fermionic mass terms is given by

gAY = 335 (6.47)
for the components inside AZ7 and
g AT = _3\1/§Ejklm Ag i : gAgﬁ“[ _ %\/ﬁeﬁz‘m . o
g AdE zfﬁekﬁi Ay L g AM = _2i/§€klij Ay :

for those inside A77**. Further components involving an odd number of ¢ indices, e.g.
Aii or Aijk[, are sourced by fermionic fields and fluxes, thus vanishing in our setup.

In the next section we present a series of consistent truncations of maximal supergravity
yielding simpler theories with a smaller set of fields and embedding tensor components.
Later on, we will investigate the lifting of (solutions of) these truncations to maximal
supergravity making use of the explicit correspondence between flux backgrounds and

fermionic mass terms derived here.
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A Web of Group-theoretical Truncations

Starting from gauged maximal supergravity in four dimensions, we present a net of
group-theoretical truncations (see figure 6.1) which connects various supergravity theories
preserving different amounts of supersymmetry with different field contents and sets of de-
formation parameters (embedding tensor components). By group-theoretical truncation,
we mean the following procedure: a certain subgroup H of the global symmetry group G
of the theory under consideration is chosen, the branching of G irrep’s in which fields and
deformations live are computed and only the fields and deformations which are singlets

with respect to H are kept.

N 509 w=2 (5o, o ¥ =2 (So),* st e
vectors 56 vectors (4,1) vectors (4,1)
s 138 | e mne1y | s Gunens
P wbin  @Ve@He@ | |eben  @Do@8e@1)
1 BN 3
5,6 SL(2 SL(2
V=1 (50), " mwesom | | X" AL (508), peve 1D (som),
vectors (2,12) vectors — vectors —
s BDOLES) | | s G1DEMADSMLY | | el @@y
b @ize@zo || bten (2228244 | | wben  @os@4
4 5 —6-

Figure 6.1: Starting from gauged mazximal supergravity (box —1— in the above diagram),
one can move step by step downwards or towards the right by performing group-theoretical
truncations which are described below in detail. The labels S, T and U are introduced in

order to keep track of the different group factors along the truncations.

» Step from —1- to —2—: a truncation with respect to an H = SO(3) subgroup of
the G = Eq(7) global symmetry of maximal supergravity is performed by making

use of the following chain of maximal subgroups

E7(7) D SL(2)p x F4(4) D SL(2)p x G2(2) x SO(3) . (6.49)

By looking at the decomposition of the fundamental representation of the SU(8)



158 EXCEPTIONAL FLUX COMPACTIFICATIONS

R-symmetry group in —1- under the SO(3) diagonal subgroup®

SU(8) D SU(4) x SU4) D SU(3) x SU(3) D SO(3) x SO(3) D SO(3)diag »
(6.50)
one finds 8 =3® 3 ® 1@ 1, hence containing two singlets. This implies that the

theory preserves N/ = 2 supersymmetry with

Mgk = (S(I;((Q;))T and Maqk = SG(;EZ)) , (6.51)
being the special Kdhler (SK) and the quaternionic Kahler (QK) manifolds as-
sociated to one vector multiplet and two hypermultiplets respectively. From the
diagram in figure 6.1 one reads that the vector fields in maximal supergravity,
transforming in the 56 of E;(7), are branched into the sum of several irrep’s of
SL(2)1 x Gg(2) x SO(3), of which, though, only the ones transforming in the (4,1)
of SL(2)7 x Ggg) are SO(3) singlets hence surviving the truncation. The resulting
theory then comprises four vectors out of which only two (the graviphoton plus an
extra vector coming from the vector multiplet) are linearly independent due to the
Sp(4,R) electric-magnetic duality. In addition, the theory contains 2 + 8 physical
scalars spanning Mgk and Mqg respectively, together with 72 deformation para-

meters associated to the embedding tensor components surviving the truncation.

Due to the presence of vectors, this theory might have interesting applications in
holographic superconductivity as well as in Cosmology as far as the existence of dS
solutions via D-terms uplifting is concerned. We hope to come back to these two

issues in the near future.

s Step from —2— to —3—: the truncation is now with respect to an H = Zs discrete
subgroup of the G = SL(2)7 x Gy(2) global symmetry of the previous N =2 theory

via the chain
SL(2)p x Gg(g) D SL(2)p x SU(2,1) D SL(2)r x SU(2) x U(1)y - (6.52)

More concretely we mod-out the different fields in the theory by a Zs element of
the form '3 4 where ¢ mod(3) denotes the charge of the fields with respect to the
U(1)y factor in (6.52). The field content inside the box —3- follows from the Gyy)
irrep decompositions

GQ(Q) > SU(2, 1) > SU(2) X U(].)U

1 — 1 1(0)

%
7 - 19363 — Loy D (1(—2) @ 201)) @ (L(2) ©2(—1))
%

14 — 8©3®3 (L) D 2(0) D 2(0) ©3(0)) ® (L(—2) ©2(1)) ® (112 ©2(_1))

®The diagonal subgroup SO(3)diag in the chain (6.50) is obtained by identifying the two SO(3) factors,

namely, the fundamental representation of the first with the fundamental of the second.
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where the subindex in n(,) refers to the U(1)y charge ¢ of the SU(2) irrep n.
The truncated theory has an SL(2)7r x SU(2,1) global symmetry and still keeps
N = 2 supersymmetry. This fact can be seen by obtaining the theory directly from
an SU(3) truncation of maximal supergravity without any intermediate step, as we

see next.

= Step from —1— to —3—: truncating maximal supergravity with respect to a compact

H = SU(3) subgroup of its G' = Ey(7) global symmetry via the chain
E7(7) D SL(2)r x F4(4) D SL(2)r x SU(2,1) x SU(3) , (6.53)

gives rise to the theory inside the box —3— of figure 6.1. The truncation preserves
N = 2 supersymmetry as results from the decomposition 8 =3 3 &1 ¢ 1 of the
fundamental representation of the SU(8) R-symmetry group of the maximal theory

under the SU(3) diagonal subgroup®
SU(8) D SU(4) x SU(4) D SU(3) x SU(3) D SU(3)diag - (6.54)

The N = 2 truncated theory involves the special Kahler and the quaternionic Kahler

manifolds

([ SL(2) B
Mgk = (SO(2)>T and Mqak =

SU(2,1)

SU@2) x Uy (6:55)

associated to one vector multiplet and one hypermultiplet respectively. This theory
can therefore be seen as a truncation of that in box —2— where one of the hypermul-
tiplets is projected out after modding out by the Zs discrete subgroup previously
introduced. The same truncation was explored in ref. [245] and further investigated

in refs [259,260] as gravity dual of non-relativistic field theories.

= Step from —1— to —4—: this is the truncation connecting maximal supergravity
and half-maximal supergravity coupled to six vector multiplets. It can be seen as a
truncation with respect to an H = Zy discrete subgroup of the G' = Ey(7) global
symmetry of the maximal theory. The resulting theory keeps N’ = 4 supersymmetry
due to the branching of the R-symmetry group of the maximal theory

SU(8) S SU(4) x SU(4) ~ SO(6) x SO(6) , (6.56)

where one of the SU(4) factors, let us say the first, is parity even under the Zy and
the other is parity odd. The fundamental representation of the R-symmetry group
of maximal supergravity then decomposes as 8 = (4,1)®(1,4) = 4even P40oqq hence

keeping only half of the supersymmetries, namely, those related to 4even . The action

5This time the diagonal subgroup SU(3)aiag in the chain (6.54) is obtained by anti-identifying the two

SU(3) factors, namely, the fundamental representation of the first with the anti-fundamental of the second.



160

EXCEPTIONAL FLUX COMPACTIFICATIONS

of the Zy on the fundamental representation of E7(7) becomes more transparent by

looking at the branching
E7(7) D SL(2)s x SO(6,6)
56 — (2,12)a(1,32)

Under the Zy, the different E;(7) irrep’s are modded-out according to the SO(6, 6)
irrep’s appearing in their branchings. In particular, SO(6,6) bosonic irrep’s, e.g.
the 1, 12, 66, etc., are parity even and survive the truncation. In contrast, SO(6, 6)
fermionic irrep’s involving an odd number of Majorana-Weyl indices, e.g. the 32 and
32/, are parity odd and are projected out whereas those involving an even number
of them are parity even hence surviving the truncation. As a result, the vectors V, ,
the scalars ¢, and the embedding tensor pieces F)s; and E,g, in the bosonic field
content of maximal supergravity are truncated away when going to half-maximal.
The remaining fields then describe an N = 4 supergravity coupled to six vector
multiplets with an associated

SL(2) SO(6,6)

Mo = (5003, * 5006 < 505 (%50

coset space spanned by the 2 + 36 physical scalars in the theory belonging to the
gravity multiplet and the six vector multiplets respectively. Further details about

this truncation can be found in ref. [200].

Step from —4— to —5—: this step corresponds to a truncation with respect to an
H = SO(3) subgroup of the G = SL(2)sxSO(6,6) global symmetry of half-maximal

supergravity coupled to six vector multiplets following the chain

SL(2)sxSO(6,6) D SL(2)gxS0O(2,2)xSO(3) ~ H SL(2)g x SO(3) . (6.58)
O=5,T,U

The truncation (see the last part of section 5.2) breaks half-maximal to minimal

N = 1 supergravity due to the decomposition 4 = 1 & 3 of the fundamental

representation of the SU(4) R-symmetry group in N = 4 supergravity under the
SO(3) subgroup

SU(4) D SU@3) D SO(3) . (6.59)

The resulting theory does not contain vectors since there are no SO(3)-singlets in the

decomposition 12 = (4, 3) of the fundamental of SO(6,6) under SO(2,2) x SO(3).
The physical scalar fields span the coset space

B SL(2)
Mscalar - (I’:];JY;’U <SO(2)>¢, 5 (660)

involving three SL(2)/SO(2) factors each of which can be parameterised by a com-
plex scalar ® = (S,T,U). In addition, the embedding tensor of the theory contains



6.3 CONNECTING SU(8) AND SL(2) x SO(6,6) 161

40 independent components fitting two irrep’s of the SL(2)g x SL(2)r x SL(2)y
global symmetry group, as shown inside box —5— in figure 6.1. We will come back to

this truncation in the next section when studying type II string models.

This N' = 1 supergravity theory has been extensively investigated because of its
direct connection to string theory via type II orientifold compactifications with
fluxes [121, 123,145,218, 219, 230, 231]. The resulting supergravity models are re-
ferred to as STU-models and different background fluxes in the string theory side
correspond with different embedding tensor configurations in the supergravity side.
However, not all the embedding tensor configurations in the supergravity side have
a higher-dimensional interpretation since most of them correspond to non-geometric
flux backgrounds for which an origin in string theory, if possible, remains to be

found.

It is worth noticing here that this theory can be lifted to that in box —2— by com-
pleting it with the fermionic irrep’s removed by the Zs truncation taking from the
box —1- to the box —4— in figure 6.1.

s Step from —5— to —6—: this truncation is with respect to an H = Zg3 discrete
subgroup of the G = SL(2)g x SL(2)r x SL(2)y global symmetry in —5— via the

chain

SL(2)s x SL(2)7 x SL(2)y D SL(2)s x SL(2)7 x U(1)y . (6.61)

As happened when truncating from —2— to —3— before, we mod-out again the different
fields in the theory by a Zs element of the form ei%ﬂq, with ¢ mod(3) being this
time the charge of the fields with respect to the U(1)y factor in (6.61). Now, the

relevant branchings in order to derive the field content inside the box —6— are
SL(2)y > UQ)y
1 — 1
2 = 1y @& 1)
3 — 19 @1 &1y
—

4 1(0) D 1(_1) D 1(1) D 1(0)

where, as before, the subindex in 1, refers to the U(1)y charge ¢ of the state.
The truncated theory still has A/ = 1 supersymmetry since the gravitino in the

parent theory was already a singlet with respect to both U(1)r and U(1)y .

The scalars in the truncated theory span the scalar manifold

B SL(2)
Mscalar— H (SO(2)>¢ . (662)

®=S,T
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It can be parameterised by two complex scalars S and T' associated to the SL(2)/SO(2)
factors. As summarised inside the box —6— in figure 6.1, the embedding tensor con-
sists of two pieces sitting in the same irrep of the global symmetry group of the

theory.

In the next section we concentrate back on the A/ = 1 theory inside box —5— which
can be seen as a truncation of the A/ = 4 theory inside box —4— . We will investigate
the lifting of some vacuum solutions found in chapter 5 to N = 8 supergravity (box
—1-) making use of the relations (6.44) between fermionic masses and flux backgrounds
when Fir;, = Eqpu = 0, i.e. when spinorial fluxes do vanish. It would be interesting to
explore the phenomenology of fluxes related to embedding tensor components fitting these
fermionic irrep’s and still having a higher-dimensional origin in string theory as gauge

fluxes or metric fluxes.

6.4. Exceptional Flux Backgrounds

When compactifying type II ten-dimensional supergravities down to four dimensions,
background fluxes threading the internal space can be switched on during the compac-
tification procedure giving rise to gauged maximal supergravity models. As introduced
in section 6.2, flux backgrounds on the string side correspond to deformation parameters
related to the fonnp, Sanrs Fup and Egg, pieces of the embedding tensor on the

supergravity side. For the sake of simplicity, we will restrict our study to the case
Fypy = Zagu = 0, (6.63)

that is, to string backgrounds not including fluxes associated to SO(6,6) fermionic irrep’s
of the embedding tensor. However, even though the remaining foypvp and £.ps pieces
reproduce those of half-maximal supergravity, the set of QC they are restricted by will be
that of maximal supergravity derived in section 6.2. Setting to zero spinorial fluxes as in
(6.63) does not amount to modding out maximal supergravity by a Zy symmetry. While
the former does not affect other fields in the theory (as scalars and vectors), the latter
projects out some of them in order to truncate from maximal to half-maximal supergravity.
On the string theory side, modding out by this Zs symmetry is commonly referred to as

applying an orientifold projection.

String Theory Embedding vs Moduli Stabilisation

Thus far, we have discussed in detail the correspondence between maximal gauged
supergravities and type II flux compactifications. However, one might also be interested
in the interplay between gaugings, fluxes and moduli stabilisation: in short, fluxes were
introduced in order to achieve moduli stabilisation. Sketchily, the picture in this respect

seems to be the following
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semisimple gaugings intermediate gaugings nilpotent gaugings
moduli stabilisation v/ & moduli stabilisation ? “ moduli stabilisation X
string embedding X string embedding ? string embedding v/

Semisimple gaugings are likely to produce critical points and moduli stabilisation [246,
257,261,262], but we will show that their embedding as type II flux compactifications
involves highly non-geometric backgrounds. On the other hand, nilpotent gaugings can be
obtained from type II compactifications including gauge fluxes [258], but they seem not
to be enough to get moduli stabilisation. Intermediate gaugings containing a semisimple
part and an Abelian part have recently been found in ref. [257], although their embedding
into string theory/M-theory has not been explored yet.

Here we will present a novel intermediate gauging consisting of a semisimple and a
nilpotent part which allows for moduli stabilisation and can be embedded into string

theory as a type IIA flux compactification including gauge and metric fluxes.

Setting up the flux models

Our starting point is the N = 1 supergravity theory inside box —5— in figure 6.1.
As explained at the end of section 6.3, this theory can be obtained by truncating the
N = 4 supergravity in box —4— with respect to an SO(3) subgroup which, in turn, can
be obtained by a Zs truncation of N/ = 8 supergravity in box —1-. As summarised
in appendix B.1, all the deformation parameters of this theory belong to the fiynp
piece of the embedding tensor which comes out with forty independent components [222].
These can be arranged into a tensor Aqapc = Aqapc), where o = +,— denotes an
SL(2)g electric-magnetic index and A =1, ...,4 denotes an SO(2,2) ~ SL(2)r x SL(2)y
fundamental index of the global symmetry group. The theory comprises three complex

scalars S, T and U parameterising the complex Kéahler manifold

and no vector fields since they are projected out in the truncation. This supergravity
theory can be obtained from type II orientifolds of Zo x Zs orbifold compactifications in
the presence of generalised flux backgrounds, and the scalar potential can be derived from
the N =1 flux-induced superpotential in (B.2).

Now we want to lift this A/ = 1 theory firstly to N' = 4 by removing the SO(3)
truncation and secondly to A/ = 8 by also removing the Zs orientifold projection. This
amounts to re-introduce the 28 physical vectors in maximal supergravity and to com-
plete the number of scalars from 6 to 70 without changing the set of embedding tensor
components, in other words, without modifying the flux backgrounds. Nevertheless, in

order for a flux background to be liftable to maximal supergravity, the set of QC found in
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Zz-truncation

SO(3)-truncation

N=1

Figure 6.2: Diagram of the two-step lifting of N =1 flux backgrounds firstly to N = 4
by removing the SO(3) truncation and secondly to N' =8 by removing the Zy orientifold
projection. As depicted in the figure, only a subset of N = 4 theories can be truncated
to N =1 theories via an SO(3) truncation. On the other hand, only a subset of N =4
theories can be obtained from N = 8 supergravity via a Zs orientifold projection. The
relevant fact is that the intersection between these two subsets of N' = 4 theories happens
not to be empty and, furthermore, contains some theories for which a realisation in terms

of type IIA string theory is known.

section 6.2 must be imposed. These guarantees the absence of supersymmetry-breaking
branes and all their U-dual local sources [263,264].

In the rest of the section we will concentrate on two specific type II fluxes models

which are relevant from a string theory point of view:

» Type IIB non-geometric flux backgrounds with an SO(3,3) x SO(3,3) splitting
in A= 4 supergravity and lifting to SO(8), SO(4,4), SO(3,5) and CSO(2,0,6)
gaugings in N = 8 supergravity.

» Type ITA geometric flux backgrounds lifting to ISO(3) x U(1)% gaugings in N = 4
supergravity and further lifting to SO(4) x Nilyy gaugings in N/ = 8 supergravity.

We will reduce our search of critical points to the origin of the moduli space and
discuss the issues of stability and supersymmetry at those solutions. However, due to the
restriction (6.63), our classification of critical points will no longer be exhaustive since
spinorial fluxes might produce new solutions we do not have access to by only looking at
the origin of the moduli space [222,257].
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CSO(p, q,r) gaugings from type IIB with non-geometric fluxes

Let us concentrate on a set of type IIB flux backgrounds for which one has the direct
product splitting SL(2)g x SO(6,6) D SO(3,3)+ x SO(3,3)_, where the labels + and —
stand for SL(2)g electric and magnetic pieces, respectively. These backgrounds can be
obtained from type IIB flux compactifications including the following set of generalised
fluxes: R-R and NS-NS gauge fluxes (F3, Hs), non-geometric fluxes (@, P) and their
primed counterparts which have been less studied in the literature.

The above set of fluxes gives rise to maximal gauged supergravities based on CSO(p, g, r)
gauge groups with p+ ¢+ r = 8. By applying the Z, orientifold projection truncating
from maximal to half-maximal supergravity, the CSO(p, q,r) gauge groups get broken to

the direct product of two smaller CSO4 groups as

N =38 N =4
CSO(]?:qu) — CSO+(p+7Q+7T+) X CSO—(p—7q—7T—) )

(6.65)

with pt + g+ + 7+ = 4. As explained in ref. [216], each of the CSO4 factors in the r.h.s
of (6.65) can be parameterised in terms of two real symmetric 4 x 4 matrices M1 and
My which determine their embedding into an SO(3,3)1 group, respectively. In terms of

generalised flux components, these matrices read

—a) 0 - = 0
M+:< % . ) and M+:< oo . ) (6.66)
0 c1 X U3 (F,Q) 0 cp X 13 (Fs,0Q)

together with

¥, 0 . b 0
M_ = ( 3 ) and M_ = < . ) (6.67)
0 d2><113 (Hé,P) 0 d2><113 (Hs,P')

where the concrete identification between flux entries in My and My and embedding
tensor components foy/nvp can be read off from tables B.1 and B.2 in appendix B.1. By

substituting into the set of QC derived in section 6.2, one finds three families of solutions:

i) Flux matrices corresponding to a (@, F3)-flux background

0 0 . A2 0 .
M, = .Y A and M_=M_=0
0 )\1><]13 0 0><]13

(6.68)

i7) Flux matrices corresponding to a (P, H3)-flux background

0 0 . A2 0 .
M_ = L M= 7 and M, =M, =0
0 )\1><]13 0 0><]13

(6.69)
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i17) Flux matrices corresponding to a (Fj, @, Hs, P’)-flux background

M, = unrestricted ,  M_ = unrestricted and M, =M_=0 (6.70)

together with three additional ones obtained by swapping My <+ My . This amounts to
interchange primed and unprimed fluxes, i.e. to apply six T-dualities along the internal

space directions, so the resulting theories are physically equivalent.

1D + My and %J\TL N =8 gauging | N =4 gauging | 5 Vp Mass spectrum
1 ]\;Lr:(l,l,l,l) —§ (70><) 7%
M= (1,1,1,1) )
SO(8) SO(4)2
M, =(5,1,1,1 5
9 L (5,1,1,1) - 2,(27x) =4, (35x) =2, (Tx)0
M- =(1,1,1,1)
g | Me=(LLY S0(5,3) SO(4) x SO(1,3) g —2,(5%)4,(30x)2, (14x)3, (5x) — 2, (15%)0
N =(1,-3,-3,-3)
g | My=0,-1,-1,-1) SO(1,3) x SO(3,1)
Mo =(-1,1,1,1) .
SO(4, 4) 5 2x) =2, (36x)2, (16x)1, (16x)0
5 | My=(0111) S0(4,0) x SO(0, 4)
M= (-1,-1,-1,-1)
6 My = (1,0,0,0) CS0(2,0,6) CS0(1,0,3)2 0 (20) 2 @2x) 2 | (48%)0
M- = (1,0,0,0)

Table 6.1: Set of critical points of the scalar potential for generalised type IIB flux back-
grounds compatible with an SL(2)s x SO(6,6) D SO(3,3)+ x SO(3,3)_ splitting. The
first two correspond to AdS solutions, the next three to dS solutions and the last one is a
Minkowski solution. By looking for solutions of the Killing equations (6.8), we find that
all the solutions break all the supersymmetries except the first one which preserves N = 8

supersymmetry.

JKL in maximal

The next step is to build the fermionic mass terms AZ7 and Az
supergravity as a function of the matrices My and M. by using the relations (6.44).
Plugging them into the set of E.O.M’s for the scalars (6.11), it turns out that gaugings
belonging to the first and the second family of solutions to the QC do not generate critical
points at the origin of the moduli space. This is related to the fact that they are purely
electric and magnetic gaugings in half-maximal supergravity, so moduli stabilisation is
not possible [250]. In contrast, six inequivalent patterns’ of flux matrices belonging to
the third family of solutions, i.e. M, ,M_ # 0 and My = M_ = 0, are compatible
with moduli stabilisation at the origin of the moduli space (6.17). They correspond to

dyonic gaugings in half-maximal supergravity even though their parent CSO gaugings in

"Additional solutions apart from those shown in table 6.1 can be obtained by exchanging the flux
matrices My < M_ . However, they go back to those in the table via the composition of an S-duality and

three T-duality transformations, hence being physically equivalent.
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the maximal theory turn out to be purely electric. These are determined by the signature

of the block-diagonal flux matrix

Melectric = (671)

We have computed the value of the energy® Vj, the normalised mass spectrum (for those
solutions with Vj # 0) and the amount of residual supersymmetry at the solutions to-
gether with the corresponding gauge group in maximal and half-maximal supergravity
according to the chain (6.65). The results are summarised in table 6.1, matching perfectly
those in ref. [257].

Type ITA with gauge and metric fluxes

Now we investigate specific flux backgrounds having a higher-dimensional interpreta-
tion in terms of type IIA string compactifications including geometric fluxes: these are
R-R Fppoa6 and NS-NS Hj3 gauge fluxes together with a metric flux w associated to the
spin connection of the internal space.

By using again the fluxes/embedding tensor correspondence of table B.1 and the re-
lations (6.44), we can build the fermionic mass terms AZY and A77%* in maximal
supergravity associated to these type ITA backgrounds. Imposing the set of N' =8 QC
(6.1) and the E.O.M’s for the scalar fields (6.11), we obtain exactly the same sixteen AdS
critical points at the origin of the moduli space (6.17) which we collected in table 5.1.
As anticipated in ref. [252], they can be seen as the uplifting to maximal supergravity of
half-maximal supergravity solutions compatible with the total absence of sources®.

With the fermionic mass terms AZ7 and Az7%% at our disposal, we can now compute
the different values of the cosmological constant (6.9) at the above set type ITA solutions.

These are given by

322 82
Vo [1(51752)} ==X, W [2(51752)} =V [4(51,82)] - or Vo [3(51782)} T
(6.72)

In addition, we can also obtain the complete mass spectrum for the 70 physical scalars by
using the mass formula (6.12) and check stability as well as the amount of supersymmetry
preserved. The mass spectrum at the critical points in table 5.1 turns out to be the

following:

= At the solution 14, ,,), the normalised scalar field masses and their multiplicities

$We are setting g = 1 in analogy to ref. [222].
9The presence of sources as O6-planes and D6-branes in these type ITA scenarios modifies the set of

N =8 QC.
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are given by

(47 £ V159) (x1) , (4+£v6) (x1) : n (x3)

O =
W | =

1
1—8(89+5\/145i\/606+30\/145) (x5) .0 (x10)

1

2
18(89—5\/145i 606—30#145) (x5) L3

for the 38 scalars surviving the truncation from maximal to half-maximal super-

gravity, together with

1 13 2

S(AEVE) (3 . 6(x3) T (x5, -3 (xD) L, 0(x17),
for the additional 32 scalars in the maximal theory. There are two tachyons in the
spectrum both with the same normalised mass m? = —%, so this AdS solution is

completely stable since it satisfies the BF bound in (5.36).

» At the solution 2(,, ,,), the values of the normalised scalar masses and their multi-

plicities read

1 2 64 20

s (77 £5V145) (x5) s (31 £ V145) (x5) T (x1) 3 (x1),
46 2 4
G (x3) , 2(x1) , 0(x10) = (x1) —x (x1),

for the scalars surviving the truncation to half-maximal supergravity, and also
4
6(><3) ) 4(><5) ) 2(><3) ) _g (Xl) ) O(X20) )

for the scalars been projected out by the Zs orientifold projection. There are three
tachyons in the spectrum, two of them with m? = —4/5. This value is below the
BF bound in (5.36), rendering this AdS solution unstable.

= At the solution 3(

take the values of

s1,52) » the normalised scalar field masses and their multiplicities

5(191@) (x10) ?(m) , L;(x?)) . 2(x2) , 0(x11),

for those scalars still present in half-maximal supergravity, and
2(x6) , 6(xb) , 8(x3) , 0(x18),

for those ones completing to maximal supergravity. It is worth noticing that all the
masses are non-negative at this critical point, hence corresponding to an AdS stable

extremum of the theory.
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= At the solution 4 the set of normalised scalar masses and their multiplicities

$1,82) 7

are

20

3 (x1) , 6(x6) ,

(x5) , 2(x4) |, (x6) , 0(x16) .

Wl oo
Lo W~

again for the 38 scalars present in half-maximal supergravity, as well as

8 4 4

g (X5) ) 6<X3) ) _g (Xl) ) 2(X3) ) g (X3) ) 0(X17) .
for the 32 extra ones in the maximal theory. Amongst the latter, there is a tachyon
with a normalised mass m? = —4/3 lying below the BF bound (5.36). Therefore,

this solution, while stable with respect to the scalars in half-maximal supergravity,

becomes unstable when lifted to the maximal theory.

In order to determine the amount of residual supersymmetry preserved by the above
set of critical points, we have to look for solutions to the Killing equations (6.8). The final
outcome is that supersymmetry becomes completely broken in all the solutions except in
1(s,,55) Which preserves N =1 supersymmetry. Let us go deeper into the way in which
minimal supersymmetry is preserved by the 1(,, ,,) solution. Recalling the decomposition
of the SU(8) R-symmetry group of maximal supergravity first under the Zs orientifold
projection truncating to half-maximal supergravity and then under the SO(3) truncation

yielding minimal supergravity

Lo

SU(8) D) SU(4)even X SU(4)0dd D) 80(3)even X SO(3)0dd
8 — (47 1)even @ (17 4)odd — (17 1)even @ (37 1)even @ (17 1)odd ® (1, 3)odd

one observes that there are two invariant (covariantly constant) spinors associated to
the (1,1)even and (1,1)oqq irrep’s respectively. This implies that there are two possible

N =1 residual supersymmetry that can be preserved by the i configurations. How-

$1,52)
ever, since the SU(4) R-symmetry group of half-maximal supergravity is identified with
SU(4)even and not with SU(4)qq , only those configurations preserving the A/ = 1 super-
symmetry associated to the (1,1)even irrep (1(4 ;) and 1_ 1)) can still be truncated to
half-maximal supergravity as N' = 1 supersymmetric solutions. In contrast, solutions pre-
serving the V' = 1 supersymmetry associated to the (1,1)oaq irrep (1 _y and 14 _y)
appear as non-supersymmetric solutions when truncated to half-maximal supergravity.
Nevertheless, they are fake supersymmetric in the sense that they are supersymmetric
with respect to the “wrong” R-symmetry group, hence inheriting all the stability proper-
ties associated to supersymmetric solutions.

At this point, the nature of the two Zy factors labelled by (s1, s2) becomes clear. The
first one, as already pointed out in ref. [222], is a symmetry of the N = 4 theory and
hence it does not really label different solutions, whereas, at this level, the second Zs seems

to appear as an accidental symmetry forcing the value of the energy and the mass spectra
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of inequivalent critical points to be identical. When lifting these solutions to maximal
supergravity, the second Zs becomes a symmetry as well: it corresponds precisely to the
SU(8) element interchanging SU(4)time-like With SU(4)space-like » thus relating equivalent
solutions. As a consequence, the number of inequivalent critical points reduces to four
and they can be seen as different solutions of the same maximal gauged supergravity.
Let us now identify the gauge group underlying these type IIA geometric backgrounds
in a maximal gauged supergravity context. Since we set Fyr;, = Eqg, = 0, the Xyp
components in (6.20) do vanish. Then, the brackets (6.1) of the gauge group Gy take the

simpler form

[Xors, Xpn] = — Xamsn"" Xop
[XaMaxu] = - XaMup Xp ) (673)
[X,uy XV] = - X/u/’yP X’yP

The 12-dimensional subgroup Gpes C Go spanned by the linearly independent!® X,/

bosonic generators in (6.75) turns out to be
Ghos = ISO(3) x U(1)8 . (6.74)

This is the gauge group of the half-maximal theory in which fermionic generators X,
are projected out by the Zy orientifold projection [222]. The 16 linearly independent
fermionic generators extend Ghos in (6.74) to the complete 28-dimensional gauge group

G of maximal supergravity which is identified with

for these type ITA geometric flux backgrounds. To be more concrete about the structure
of the gauge group, let us split the 28 linearly independent generators into 6 generators
{Ti(o) , Ta(o)} spanning the semisimple SO(4) ~ SU(2); x SU(2), part in (6.75) and 22
generators

{Tz(l) ’ Tél) , ,1—;(2) 7 TCSQ) ’ ,I’iav T} (676)
associated to the nilpotent ideal Nil(gy. The index structure of the generators, where
1,6 = 1,2,3, reflects their transformation properties with respect to the semisimple part
of the gauge group. In the appropriate basis, we can write the non-vanishing gauge brackets

as

1T, TP = ¢, TV (p=0,1,2) and (T, Tjo] = €iju Tha » (6.77)

7 J 7

which involve the semisimple generators TZ-(O), together with

1 a (2

itV 1P =57, (T, TV = T, and [TV, Tio =05 T3, (6.78)

100nly 12 out the 24 bosonic generators X are linearly independent hence entering the gauging.
Adopting the same choice that in ref. [222], we decide to write the magnetic generators as a function of

the electric ones, i.e. X_n(Xyar).
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involving generators in the nilpotent part. When non-equivalent, the above set of brackets
must be supplemented with additional ones obtained by exchanging Ti(p ) & Tép ) , €ijk &
€abe and d;j > dqp . By inspection of the above brackets, one finds that the Nil,y) piece
is a nilpotent 22-dimensional ideal of order three (four steps) with lower central series

{T'(l) O 7@ 70 T, T} 5 {T(z) 7O T, T} 5 {T@) 7@ T} 5 {T} > {0} .

K3 a 7 K3 a

As an aside remark, we have taken the real realisation of gamma matrices (see ap-
pendix C.2) when building the structure constants of the gauge algebra in (6.73). Oth-
erwise, if taking the SU(4) x SU(4) covariant realisation, the structure constants turn
out to be complex an so the gauge generators in the adjoint representation. Thus, one
still would have to impose a reality condition upon vectors when it comes to identify the
gaugings.

Because of all the aforementioned, we conclude that the gauge group in (6.75) gives
rise to N =1 supersymmetric and non-supersymmetric AdS stable solutions of maximal
supergravity at the origin of the moduli space which can be embedded in string theory as

type IIA flux compactifications in the presence of geometric fluxes.






Conclusions and Outlook

In this thesis we have analysed many aspects of flux compactifications in string theory
preserving maximal and half-maximal supersymmetry. To this aim, we have exploited
gauged supergravities, not only as lower-dimensional effective descriptions but also as a
guideline to understand the role of string dualities in flux compactifications. The main
reason for expecting such a relation is that supergravities in any dimension enjoy global
symmetries which happen to exactly match the duality groups coming from their corres-
ponding stringy origin (see tables 1.2 and 2.6 — 2.7).

We have seen how gauged supergravities effectively describe compactifications of string
theory preserving some supersymmetry in the presence of fluxes. Unfortunately, though,
as we pointed out in figure 3.3, lower-dimensional supergravities allow for a wider set
of deformations (i.e. gaugings), some of which have no known higher-dimensional origin
and therefore they are called non-geometric fluxes. From the viewpoint of the effective
description, one realises that non-geometric fluxes are a very helpful (if not necessary!)
ingredient for achieving moduli stabilisation. However, the open problem remains precisely
that of providing a higher-dimensional origin for them.

We have used the so-called embedding tensor formalism in order to accomodate all
the consistent deformations of half-maximal and maximal supergravities into irrep’s of
the aforementioned duality groups which appear in the compactified theories as actual
symmetries. This implies as a straightforward consequence that embedding tensor con-
figurations which are related to each other by a duality transformation describe the same
physics. Thus, in order to understand whether or not non-geometric fluxes really bring
new physics into the game, one realises the importance of classifying duality orbits of
gaugings. Only in the case of new orbits with no geometric representative, one should
actually worry about providing a higher-dimensional description thereof. This has been
discussed in chapter 4, where we have performed the orbit classification mentioned above
starting from the highest dimensions (D =9, 8, 7) in both the maximal and half-maximal
case. We found that all the considered maximal supergravities only admit theories which

are geometric up to U-duality transformations. On the contrary, in the half-maximal case
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we found a number of non-geometric orbits of theories. Still, we were able to provide an
uplift to Double Field Theory (DFT) for all of them by means of a twisted doubled torus
reduction.

DFT is a recently proposed construction which implements O(10, 10) invariance at the
level of a field thoery living in 10410 dimensions. Its gauge invariance in the original back-
ground independent formulation was only proven by imposing an additional constraint on
the dependence of the fields. Such a constraint is generally referred to as the strong con-
straint and, whenever satisfied, it implies the possibility of rotating away any dependence
on doubled coordinates. Because of its general features, DFT seems to be a very natural
framework for addressing the issue of uplifting non-geometric fluxes. An important point
concerning our results is that such a successful uplift was found to require a more recent
formulation of DFT in which the strong constraint turns out not to be strictly required by
gauge invariance and hence can be relaxed. In reductions of DFT, in particular one could
imagine of relaxing the strong constraint by allowing higher-dimensional fields to have
a more general coordinate dependence along the internal directions and only requiring a
single field theory description in the large dimensions, i.e. after reduction.

The interesting further steps in this research line would be to try to generalise the above
results to lower dimensions (D < 7). Unfortunately though, the duality groups become
larger and larger; hence the problem of classifying duality orbits of gaugings ceases to be
computationally accessible. The main interesting facts that one would like to confirm in

full generality or disprove by finding a counterexample are the following;:

= do U-duality orbits of gaugings in maximal supergravities always admit a geometric

representative?
» if not, does the above statement become true once the field equations are imposed?

= do all T-duality orbits of gaugings in half-maximal supergravities allow for a DFT
uplift?

Concentrating now on D = 4, the embedding tensor formalism has helped us in a
somehow related but different type of analysis, that is building the dictionary between
embedding tensor deformations in A/ = D = 4 and geometric fluxes in orientifold com-
pactifications of type II string theories. The conclusion in this context is that none of
the semisimple gaugings giving rise to dS solutions in N' = 4 supergravity is accessible
by geometric flux compactifications (see chapter 5). Subsequently, we completed the dic-
tionary of type II generalised fluxes corresponding with the full set of emebedding tensor
deformations. Finally, we moved to the analysis of critical points. In order to reduce
the computational complexity of the problem, we restricted to an interesting truncation
admitting an N' = 1 description (STU-model). This truncation is very relevant in flux
compactifications because it contains effective theories describing type IIA compactifica-

tions with O6/D6. We were able to analyse the full set of vacua of geometric type ITA
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compactifications. What we found was a number of AdS critical points, for which we could
also compute the full mass spectrum for all the scalar fields. The most peculiar fact about
these solutions is that they all required the absence of local sources, which suggested the

possibility of uplifting such a solution to maximal supergravity.

Following this natural idea, we decided to exploit these solutions in order to understand
how to embed flux compactifications into A/ = 8 gauged supergravities in the case in which
no branes are required in the construction. This has been discussed in chapter 6, where,
as an intermediate step we worked out the truncation taking N' = 8 to A/ = 4 in four
dimensions. Subsequently, given an N = 4 background related in a known way to fluxes
(see previous chapter), we show which extra constraints the fluxes have to satisfy in order
for it to admit an uplift to A/ = 8. In the case of the geometric type IIA setup introduced
above, we showed that these extra constraints can be interpreted as the absence of local
sources. Surprisingly, the uplifted AdS solutions turn out to be critical points of a unique
theory within N' = 8 with a non-semisimple gauging. Finally, by making use of the mass
formula for the scalars given in the standard formulation of maximal supergravity, we were
able to explicitely compute the full mass spectrum of the AdS critical points that we had
just uplifted. We found the interesting presence of a non-supersymmetric and nevertheless
fully stable vacuum. This represents a further example to be considered when discussing

the issue of stability without supersymmetry in extended supergravities.

We would like to stress once more that the analysis done in chapter 5 in the context of
geometric type ITA compactifications preserving half~-maximal supersymmetry is exhaust-
ive since it was performed by searching critical points only in the origin of moduli space
but keeping all the embedding tensor components which are related among themselves by
non-compact duality transformations. We have then shown that the critical points that
we found can all be regarded as solutions of the maximal theory. However, they do not
constitute a complete set of vacua of the maximal theory in that the set of included em-
bedding tensor components is not as well closed with respect to more general non-compact
U-dualities. This means that, in order to exhaustively study the full landscape of vacua
of geometric type II compactifications without branes, one should also include geometric
fluxes which are odd under the orientifold involution defining the truncation from maximal

to half-maximal theory.

As we just argued, the analysis of the full set of critical points of geometric type II
compactifications would require the inclusion of flux components which are odd under the
orientifold projection, like e.g. metric flux in type IIB with O3-planes. These odd fluxes
sit in spinorial irrep’s of SO(6,6) and so far very few things are known about backgrounds
including them. Therefore it would be extremely interesting to perform an exhaustive
analysis able to scan the landscape of vacua of geometric type II compactifications in the
absence of branes. The possibility of finding new interesting critical points makes it a

very promising research line. Moreover, analysing these backgrounds might shed a light
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on the role of U-duality in string compactifications. Such a duality, which is indeed only
a symmetry at the level of the effective supergravity description, could still constitute an
organising principle at a more fundamental level. We hope to come back to these points

in a future project.



Appendix A

Gaugings of D =7, 8 Supergravities

A.1. Different solvable and nilpotent gaugings

In section 4.4 we have studied the T-duality orbits of gaugings in half-maximal D = 7
supergravity and for each of them, we identified the gauge algebra and presented the
results in table 4.6. Since there is no exhaustive classification of non-semisimple algebras
of dimension 6, we would like to explicitly give the form of the algebras appearing in
table 4.6.

Solvable algebras
The CSO(2,0,2) and CSO(1,1,2) algebras

The details about these algebras can be found in ref. [238]; we summarise here some
relevant facts.
The six generators are labelled as {to, t;, si, z}i=1,2, where g generates SO(2) (SO(1, 1)),

under which {¢;} and {s;} transform as doublets
[to, ti] = ety , [to, si] = el 55 (A1)

where the Levi-Civita symbol €;/ has one index lowered with the metric 7;; = diag(+1,1)

depending on the two different signatures. z is a central charge appearing in the following

commutators
[ti, Sj] = (5ijz . (AQ)
The Cartan-Killing metric is diag(F1,0,---,0), where the F is again related to the two
———
6 times

different signatures.

The f; and fy algebras

These are of the form Solvy x U(1)2. The 4 generators of Solv4 are labeled by {tg, t;, z}i=1,2,
where to generates SO(2) (SO(1,1)), under which {¢;} transform as a doublet

[to, ti] = e t; , (A.3)
[ti, tj] = qj z . (A4)

The Cartan-Killing metric is diag(+1,0,---,0).
———

6 times
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The h; and hs algebras

The 6 generators are {to, i, S;, z}i=1,2 and they satisfy the following commutation

relations
[to, til = €7 t; , [to.si] = e’ls; +ti
(A5)
[ti, sj] = 0ijz , [si,85)] = €2

The Cartan-Killing metric is diag(+1,0,---,0).
~——

6 times

The gy algebra

The 6 generators are {to, t7, 2}7=1 ... 4, Where to transforms cyclically the {¢;} amongst

themselves such that

H[[U, to), to], to} to} =tr, (A.6)

and

[t1, ts] = [to, ta] = 2. (A7)

Note that this algebra is solvable and not nilpotent even though its Cartan-Killing metric

is completely zero.

Nilpotent algebras
The CSO(1,0,3) algebra

The details about this algebra can be again found in ref. [238]; briefly summarizing,
the 6 generators are given by {t,,, 2" }m=123 and they satisfy the following commutation

relations

[tms th] = €mmp 27, (A.8)

with all the other brackets being vanishing. The order of nilpotency of this algebra is 2.
The [ algebra
The 6 generators {t1,--- , tg} satisfy the following commutation relations
[t1,te] = ts , [t1,ta] =5 , [to, ta] =t . (A.9)
The corresponding central series reads

{t1, ta, ts, ta, t5, t6} D {ta, ts,te} D {ts,t6} D {0}, (A.10)

from which we can immediately conclude that its nilpotency order is 3.
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A.2. SO(2,2) and SO(3,3) 't Hooft symbols

In section 4.2 we discuss the origin of a given flux configuration from DFT backgrounds
specified by twist matrices U. The deformations of half-maximal supergravity in D = 10—d
which can be interpreted as the gauging of a subgroup of the T-duality group O(d,d) can
be described by a 3-form of O(d,d) fapc which represents a certain (non-)geometric flux
configuration.

In D =8 and D = 7, the T-duality group happens to be isomorphic to SL(2) x SL(2)
and SL(4) respectively. As a consequence, in order to explicitly relate flux configurations
and embedding tensor orbits, we need to construct the mapping between T-duality irrep’s
and irrep’s of SL(2) x SL(2) and SL(4) respectively.

From the (2,2) of SL(2) x SL(2) to the 4 of SO(2,2)

The ’t Hooft symbols [G A]O‘i are invariant tensors which map the fundamental repres-
entation of SO(2,2) (here denoted by A), into the (2,2) of SL(2) x SL(2)

v = [Ga]™ 0P, (A.11)

where v denotes a vector of SO(2,2) and the indices a and i are raised and lowered by

means of €, and €;; respectively. [G 4] and [G4] o; satisfy the following identities
[Galy [GB™ = nas (A.12)
(G [GA]) = B e, (A.13)

where n4p is the SO(2,2) metric.
After choosing light-cone coordinates for SO(2,2), our choice for the tensors [G4]*" is

the following

[G1]™ = [0 0] : [Go]™ = [0 1] : (A.14)

0 1 0 0
at Lo ot 0 0
G1) —[0 )| Ga) —[_1 0]. (A.15)

By making use of the mapping (A.11), we can rewrite the structure constants (Xa;) 5]»7]“
as a 3-form of SO(2,2) as follows:

faso = (Xai)s; " [Gal™ [GB]7 [Gely - (A.16)

From the 6 of SL(4) to the 6 of SO(3,3)

The 't Hooft symbols [G4]™" are invariant tensors which map the fundamental rep-

resentation of SO(3,3), i.e. the 6 into the anti-symmetric two-form of SL(4)

V= [Ga]™ (A.17)
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where v denotes a vector of SO(3,3). The two-form irrep of SL(4) is real due to the role

of the Levi-Civita tensor relating v to vy

1
Vmn = 5 Emnpg Pl (A.18)
The 't Hooft symbols with lower SL(4) indices [G 4],,,, carry out the inverse mapping of
the one given in (A.17). The tensors [Ga]™" and [Gal,,, = 3 €mnpq [Ga]?? satisfy the

following identities

(G Al [GB]™ = 2048 , (A.19)
(Gl (GBI +(GBl,, [GAl™" = —dp, 148 (A.20)
[Galyp [GBIP [Gel,, (G [GEly [GFI™ = 61y eaBopEr (A.21)

where nap and espcppr are the SO(3,3) metric and Levi-Civita tensor respectively.

After choosing light-cone coordinates for SO(3,3) vectors, our choice of the 't Hooft

symbols is
[0 -1 0 0] [0 0 -1 0]
1 00 00 0 0
G = , Go]™ = , A.22
(] 0 00 G2 10 0 0 (4.22)
0 0 0 | 00 0 0]
[0 0 0 —1 ] (00 0 0 |
000 O 000 O
Gmn: , Gimn_ , A.23
[G3] 00 0 0 [G1] 00 0 -1 (A.23)
100 0 001 0 |
000 0 ] [0 0 0 0]
000 —1 0 0 10
G5 = , Ga]™ = . A.24
[G5] 00 0 0 [G5] 0 10 0 (A.24)
010 0 0 0 0 0]

Thus, we can rewrite the structure constants in the 6, (X, )y, arising from (4.69)
as a 3-form of SO(3, 3) as follows:

fase = Xon)pa" [GA™ [GBP [Gel,., - (A.25)



Appendix B

Gaugings and Superpotentials from Fluxes

B.1. Type II fluxes and the embedding tensor f.,ynp

In this appendix, we summarise the identification between embedding tensor compon-
ents foymnp in the 220 (alternatively Ay,apc as explained in section 5.2) and type 11
flux backgrounds for the AN/ = 1 supergravity theory.

nt "’ n°

Figure B.1: T = T? x T§ x T§ torus factorisation and the coordinate basis.

In the following we will use early Latin indices a, b, ¢ for horizontal “—" x-like directions
(n*,n3,1°) and late Latin indices i, j, k for vertical “|” y-like directions (52, n*,1°) in the 2-
tori 17 with I = 1,2,3. This splitting of coordinates is in one-to-one correspondence with
the SO(6,6) index splitting of the embedding tensor components given in (5.66), where
A = (1,2,3,4) = (a,i,a,i) refers to an SO(2,2) fundamental index and e;;x denotes
the usual totally antisymmetric tensor. The conventions adopted here are chosen such
in a way that they match those ones introduced in section 3.2 in the context of N = 1
supergravity models coming from fluxes.

This identification' was originally proposed in ref. [172] and further developed in ref. [222].
We include it here for the sake of completeness.
Irrespective of their ITA or IIB string theory interpretation, the above set of fluxes

generates the following A/ = 1 flux-induced superpotential

W = (Pr+PyS)+3T (Pg+ PpS)+3T*(Py + Ppr S) + T° (Ppr + P S),  (B.2)

!Notice that refs [172,222] use light-cone coordinates for SO(6,6) fundamental indices. In this

0 1
basis, the metric takes the form nun = ( 1 06 ) which is related to the Lorentzian metric
6
diag(—1,---,—1,41,--- ,+1) through an SO(12) rotation of the form
6 6

1 —1s 15
U:ﬂ( . 16). (B.1)
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couplings SO(6,6) S0(2,2) type 1IB type ITA fluxes
1 —fyane —Ay333 Fiji, Fuivjek aop
U favk At 334 Fije Fuiv a
U? —fiaji —Ats1 Fipe Foi as
U? Ik Ataaa Fape Fy az
S —f_abe —A_333 Hyjp, Hyjp, —bo
SU f_avk A 334 Hije wg; -
SU? —f_a5m —A_344 Hiye QY —by
suU? [k A a4 Hape Rabe —bs
T fiabn Atass Qab H o
TU f+a§k = fyik » Jrabe | Av2sa o Ayass Zj = ff ) QZC Wia = ng- ; Whe €, G
TU? Foie = Fraje » Foge | Avisa s Agoua | Q2 = o Zj Qs = i ZJ ¢y, G
TU? I4ie A1y J R¢ 3
ST " A_33 Py —do
STU || fogie =Tk » foabe | A23a , A-1zs Py =pp, P ~dy , —d;
STU? || fge=faje  fije | Acisa, Ao | PP =PY | PJ —dy , —d>
STU? [ e A 1ag pY —d3

Table B.1: Mapping between unprimed fluxes, embedding tensor components and couplings
in the flur-induced superpotential. We have made the index splitting M = {a,i,a,i} for
SO(6,6) light-cone coordinates.

involving the three complex moduli S, T" and U surviving the SO(3) truncation introduced
in section 5.2. However, just by a simple inspection of tables B.1 and B.2, it is clearly
more convenient to adopt the terminology of the type IIB string theory when it comes to
associate embedding tensor components to fluxes. In this picture, the superpotential in
(B.2) contains flux-induced polynomials depending on both electric and magnetic pairs —

schematically (e, m) — of gauge (F3, H3) fluxes and non-geometric (@, P) fluxes,

PF:a0—36L1U+3CL2U2—CL3U3 s PH:b0—3b1U+3sz2—bgU3 ,
Po=coy+CrU—CoU? —c3U3 , Pp=dy+D1U—-DyU?—-d3U?
(B.3)
as well as those induced by their less known primed counterparts (Fj, H;) and (Q', P’)
fluxes,
Ppr=ay+3abU+3a U +afl U3 | Py =b+30LU+3bU2+b,U3 |
Py =—cdy+CLU+ClU* —cyU® |  Pp=—dy+DyU+ D,U?—dyU3

(B.4)
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couplings SO(6,6) SO(2,2) type 11B type ITA fluxes
T3 U3 — ftabe —Ann Frik ag
U ftabk A2 F'ie al
T3 U — frajk —Aj122 Frite al
T’ f+ijk Ayor Frote A
ST3U3 —f—abe —A 11 H'"k —bg
ST3 U2 F—abk A1 H'e —b
ST*U —f-ajk —A_129 H'™* —bly
ST3 J—ijk A 220 H'™ —b
72U Tabh At Q' <
T2U? Traji = Fyivk » Jrabe | Ayr24 5 Agais Q/l;j =Q7%, . Q1 A
U Frive = fraje » Foih | Asizs » Agons | Q5 = Q% Q5 cy s G
T? frije Ayo3 o7 cs
ST2U3 f—abi A11s P, —dj
ST>U? || fwiw=fwk » foave | Acr2a , Ang | P'h; =P, Pl —dy , —d,
ST2U || foive = f-aje + foiji | Ac12s , Mooy | Py, =P, , P'Y; ~dy , —d}
ST? f-ije A_903 P —d

Table B.2: Mapping between primed fluzes, embedding tensor components and couplings
in the flur-induced superpotential. We have made the index splitting M = {a,i,a,i} for
S0(6,6) light-cone coordinates.

For the sake of clarity, we have introduced the flux combinations C; = 2¢; — ¢;, D; =
2d; —d;, C!=2¢; — & and D, =2d, — d, entering the superpotential (B.2), and hence
also the scalar potential.

As we already saw in chapter 3, these so-called primed fluxes have been conjectured
in ref. [145] to be needed in order to have a fully U-duality invariant flux background, but
there is no further understanding of their physical role and of the types of sources coupling
to them at the present stage. Still, those give a hint to understand the relation between
doubled geometry and non-geometry as anticipated in the introduction. In the heterotic
duality frame those two exactly coincide, in the sense that all the fluxes introduced by
using doubled geometry happen to be interpretable as non-geometric fluxes. However,
in such a duality frame it is impossible to introduce their magnetic dual counterparts.
After performing an S-duality to go to type I (equivalent to type IIB with O9-planes)
and subsequently a 6-tuple T-duality, we are in IIB with O3-planes. In such a duality
frame, non-geometry and doubled geometry happen to give rise to two complementary

generalised sets of fluxes (see figure 3.4), the second one consisting with these primed
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fluxes. Moreover, this particular frame is S-duality invariant and therefore such a flux
background can be completed to a fully S-duality invariant one. This construction in the
isotropic case allows us to at least formally? describe all the embedding tensor components
included in the SO(3) truncation.

B.2. Full /=1 flux vacua of geometric type ITA

The techniques developed to analyse the vacua of the N' = 4 theory turn out to be
powerful enough to also work out the complete set of solutions of type IIA geometric
backgrounds compatible with minimal supersymmetry. As we saw in section 5.2, the
SO(3) truncation admits an N = 1 superpotential formulation. In this context it becomes
natural to relax the QC in (5.82) which can be understood as the lack of D6-branes
orthogonal to the O6-planes. Namely,

Ni = —azco—az(2¢1 — &) #0 . (B.5)

After this, the theory no longer enjoys N’ = 4 supersymmetry but it still admits an /' =1
description®. In this section we will explore its vacuum structure.
We will distinguish between two types of IIA geometric flux backgrounds, namely,

those having only gauge fluxes and those with both gauge and metric fluxes.
Backgrounds only with gauge fluxes
Let us start by fixing the components of the metric w flux to zero, namely,
blzclzélzo. (BG)

Putting together the first and the second QC in (5.80) and the extremality conditions,
and using again the GTZ algebraic method of prime decomposition (details explained in

section 5.1), we obtain a solution space consisting of two pieces:

i) The first piece has dimension 2 and it is directly identified with the solution in (5.99)
of the N/ =4 theory.

1) The second piece consists of eight critical points of dimension 1, all of them implying

a non-vanishing tadpole for both
Nt = —agco #0 and N = —agby #0, (B.7)

so they cannot be embedded into the previous N' = 4 theory. These moduli solutions

are stable AdS, vacua which are summarised in table B.3. Finally, these solutions of

2Primed fluxes do not have any well-defined string theory description, not even a local one, since they

stem from some strongly coupled limit of the IIB theory.
3Nevertheless, any solution of the A" = 1 theory compatible with the absence of such sources can be

embedded into the A = 4 theory.
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1D ao al as as b() b1 (&) Ccl1 = El Vo BF
3\ 5\ 3N 5 2
3\ 5\ 3\ 5 2
2 0 - 0 > -\ 0 A 0 37 me = -3 — stable
)\2
3001] v6x | 0 5\ —4X 0| A 0 T min
)\2
4 0| =v6r| 0 5\ —4x |0 A 0 -7 min
)\2
Bs, 0 S1 A A —251 A S1A 0] —s1A 0 T min
14 11 11X2
65, | O | 51 ? —% —S1 T)\ s1 ?/\ 0| —s1A 0 —4—2 m2 = —0.14251 — stable

Table B.3: The set of stable AdS, extrema of dimension 1 in the N = 1 type IIA theory

only with gauge fluzes.

the N' = 1 theory are non-supersymmetric except that labelled with 1 in table B.3
which turns out to preserve N' = 1 supersymmetry. The scalar potential induced
by the fluxes of solutions 2 and 4 is respectively related to that one induced by the
fluxes of 1 and 3 in table B.3 by the transformation

as V(S’Ta U) = —1 V(Y’S’ZTa _ZUa —az, fl) ) (BS)

where f; refers to all the fluxes left invariant. Such a transformation can also be
viewed at the level of the superpotential as W (S,T,U) — i W(S,T,U). Unlike those
in the previous section, this transformation modifies the Kéahler potential and, as a
consequence, the mass spectrum for the solutions 1 and 2 (also 3 and 4) is different
even when they share the lightest mass. They correspond to completely different

solutions a they look quite similar each other.

Backgrounds with both gauge and metric fluxes

Let us now allow for backgrounds with non-vanishing metric fluxes. Putting again

together the first and second QC in (5.80) and the extremum conditions, and running

the GTZ method of prime decomposition, we obtain two prime factors of dimension 2

compatible with real fluxes:

i)

The first piece represents a branch of non-supersymmetric solutions which cannot
be embedded into the N' = 4 theory (all the solutions come out with Nz # 0).
This piece implies ag = a3 = 0. Without loss of generality, we can set the global

scale of V' by fixing ¢; = 1 in order to exhaustively explore the structure of extrema
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by varying the quantity 0 = |cg|. It is found to contain an unstable Minkowski
solution [240] at the critical value J, ~ 2.69 as well as unstable dS ones if going
beyond this critical value (the region with é > . presents an asymptotic behaviour).
This is depicted in figure B.2.

15 —— 4
]
1t 1 2+ H
£
05 i
0 c
D ™
S g E B.F. bound
c 21 .
05} ]
IN 2l |
at J
/
§ M
_15 1 1 1 1 1 1 1 1 1 1 1 _6 1 1 1 1 13 A 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5 55 6 0 05 1 15 2 25 3 35 4 45 5 55 6
1 1

Figure B.2: Left: Plot of the potential energy at the extrema, Vo, as a function of the
scanning parameter §: the point A corresponds to two degenerate and unstable AdSy solu-
tions; points B and C' correspond to singular points; point D associated to 0. ~ 2.69 1is
an unstable Minkowski solution. Right: Plot of the lowest normalised mass in (5.35) as a
function of the scanning parameter 6. After reaching the dS region, the system undergoes

an asymptotic behaviour where m? — —% as long as § — oo.

NE B.F. bound

-1.5

2 . . . . . . . . . . .
6 0 05 1 15 2 25 3 35 4 45 5 55 €

Figure B.3: Left: Plot of the potential energy at the extrema, Vo, as a function of the
scanning parameter 8. Right: Plot of the lowest normalised mass as a function of the
scanning parameter 0. As long as § — oo, the system undergoes a four-fold asymptotic

2

behaviour with m* always above the BF bound.

i1) The second piece can be also explored in terms of the quantity § = |¢g| after fixing
again the global scale of V' by the choice é = 1. It only contains AdS, solutions

which are mostly non-supersymmetric? and cannot be embedded into the A" = 4

“The N = 4 QC (after relaxing (B.5)) together with the vanishing of the F-terms imply ao = 2517
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theory because of N6L # 0. Nevertheless, some special AdS, solutions with N6L =0
do appear at the special values 6 = 0, § = 1//15 and § = 1/4/3, hence being
embeddable into the A/ =4 theory. This is depicted in figure B.3.

ar = %co7 az = —éél, as = %co, bp = —co, b1 = %51 and ¢; = ¢;1. As a result, for a given value of
(co, @), one extremum is always supersymmetric whereas the others (solving OV = 0) are not. At the
supersymmetric extremum Ng = N6‘| holds and m? = —%. Furthermore, this supersymmetric extremum

can be embedded into the N'=4 theory (even N = 8) when 2= \/% since Ng = Ny =0.






Appendix C

Different Formulations of A/ = 8

C.1. Summary of indices

All through the text in chapter 6 we extensively make use of indices of different groups.

Here we give a list of the notations retained here (conventions based on ref. [253])

, B, adjoint of E7(7)
, N, fundamental of E77y (global)
fundamental of Er(7) (local)

fundamental of SU(8)
fundamental of SL(2)
fundamental of SO(6,6)
M-W spinor of SO(6,6) (L) (C.1)
M-W spinor of SO(6,6) (R)

fundamental of SO(2,2)

>Nz z .

W T X

fundamental of SO(6)time-like

3

@Sbt-tui@N\ZZh
=

fundamental of SU(4

(

(
fundamental of SO(6)space-like

(
fundamental of SU(4)space-like -

)
)
)time-like
)

~
So Sl o

=0

C.2. Majorana-Weyl spinors of SO(6,6)

Our starting point is a Majorana spinor in 6 + 6 dimensions carrying 26 = 64 real
degrees of freedom. For Majorana spinors there exists a real representation of the I'-

matrices {I'as} pr=1.... .12 such that they satisfy
{FM>FN} =2nunN Leg, (C.Q)

where nynv = ™Y is the SO(6,6) invariant metric. We adopt a set of conventions
in which Majorana spinors are naturally objects of the form x* and hence I'-matrices
carry indices [I'a/]% . In addition to the I'matrices, we introduce two antisymmetric
matrices, Cy and C®, which turn out to represent the components of the transposed
charge conjugation matrix C and its inverse respectively. We will use these objects in

order to raise and lower spinorial indices according to the so-called SouthWest-NorthEast
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(SW-NE) conventions [36]. This translates into the following rules
X=x0C" . xa=Cax’, (C.3)
and the consistency of the two rules implies
C®Cyp=0% and  CpC*=6,°. (C.4)

The charge conjugation matrix mentioned above relates I'-matrices to their transpose in

the following way

(Ta)" =—-CTyuCt, (C.5)
whereas one can also define a conjugation matrix B = —A~7 C, such that
B*B =1g and I, =—-BTy B! with A=T7.T¢. (C.6)

Majorana spinors live in the 64 of SO(6,6) which is not an irrep and can be de-
composed in terms of left- and right-handed Majorana-Weyl (M-W) spinors. These are
related to the 32 and 32’ irrep’s, respectively. In a basis in which I'y3 =T'; ---T'15 takes

the form I';3 = diag(+132, —132) , one can introduce the so-called 2-component formalism

such that
a X"
X = ( ) ) (C.7)
Xp

where the indices p and i respectively denote left- and right-handed M-W spinors. Ac-

cordingly to this decomposition, the I'-matrices split into 32 x 32 blocks as follows

T, = ( [ 0 bal™ ) , (C.8)

’_yM];'U/ 0

and the charge conjugation and conjugation matrices become

Cw O B, 0
Cao=| " and By = " U (C.9)
0o cw 0 B#

In terms of these 32x32 gamma matrices, the relations (C.2) and (C.5) can be respectively

written as

™ [Fny), = nua 3 and Tt = 1), = Coo [yaa] ™ Ci - (C.10)
p i i

Antisymmetrised products of two gamma matrices can be defined both for left- and

right-handed M-W representations as

el = v (il ow and un) = Bidli ), (C11)
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and further extended to antisymmetrised products of an even number of gamma matrices.
However, only those up to degree six are linearly independent since higher-degree ones
(from 7 to 12) are related to them by Hodge duality'. After defining all the products
of gamma matrices, one can make use of C,, , C* and their inverse transpose in order
to rise and lower indices. As a result, antisymmetrised products of two and siz gamma

matrices are symmetric, whereas the ones with four are antisymmetric.

SU(4) x SU(4) covariant formulation of M-W spinors

Decomposing the vector and the left- and right-handed M-W spinor irrep’s of SO(6, 6)

under its maximal compact subgroup
SU(4)time—like X SU(4)space—like ~ 80(6)time—like X SO(G)space—like C 80(67 6) ’ (012)

yields the following branching relations

index  SO(6,6) D> SU(4) x SU(4)

M 12— (6,1)®(1,6)
i (C.13)

i 32 - (44044

i 32 - (44044

At the level of indices, this translates into the splittings M = m&a, with m,a =1, ...,6,
together with p = {” D ij} and v = {ij @ij} with i,% =1,...,4. The fundamental
SO(6) indices m and a respectively correspond to the time-like and space-like parts of

the block-diagonal na;n = 0™~ metric of SO(6,6) in Lorentzian coordinates

NMN = (C.14)

When written in terms of SU(4) ~ SO(6) invariant tensors, the antisymmetric charge
conjugation matrices in (C.9) take the block off-diagonal form
0 | =—istel o 0 ‘cik i 601

’ gk sksi
0 Ci ;=1 5 (52

Cpv =

Cli g =i 6107
(C.15)
whereas the gamma matrices in (C.8) split into a set of time-like matrices with a block-

diagonal structure

['Ym]ijk[ = [Gm]ik(slj ‘ 0

[Ym]" = , (C.16)

o Jbuly =Gl

The limit case of the antisymmetrised product of six gamma matrices turns out to be anti-selfdual

(ASD) when involving undotted indices and self-dual (SD) when involving dotted indices.
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Wm]ijk[ = [Gm]ikélj 0
ST , C.17
il AT — (©a7)
0 fiml' S = [Gonlho]
and a set of space-like ones
, 0 a]”.| = [Ga)'s}
) = . , (C.18)
[val ;' = [Gal 0% 0
- 0 [Fa] ' = —[Ga)' 8 o)
Ya oy = ) ‘ s C.19
['Va]ljkl“ = _[Ga]ji(sllc 0

with a block off-diagonal structure. The invariant tensors G, = [G)]Y and G, = [Ga]ﬁ
are defined with upper indices and correspond to the gamma matrices for each of the
SO(6) ~ SU(4) factors in (C.12). Often they are also called 't Hooft symbols and we take
them to satisfy the (anti-)self-duality conditions?

1 1
(Glij = —= €ijrr [Gm)™ and [Gal;:

ki

where [Gylij = ([Gm]¥)* and [Gal;; = ([Ga]ﬁ)*. All along the present work, we have

used the following explicit realisation of anti-self-dual G,, ’t Hooft symbols

0 1 0 0 0 0 1 0 0o 0 0 1
1.0 0 0 o 0 0 1 0 0 -1 0
G| = Gl = Gyl =
[G1] 0 0 0 -1 |° (G 1 0 0 0] (G5 o 1 0 0"
0 0 1 0 0 -1 0 0 10 0 0
0 i 0 0 0 0 i 0 0 0 0 i
i 0 0 0 0 0 0 —i 0 0 i 0
Gol=1| " G4 = G| =
(G2 o 0 o0 |’ [G4] i 00 o |~ [Go] i 0 o0 |
0 0 —i 0 0 i 0 0 i 0 0 0
(C.21)
together with the self-dual G ones
0 1 0 0 0 0 1 0 o 0 0 1
1.0 0 0 0 0 0 -1 0O 0 1 0
[Gl] - 0 0 0 1 ) [G3] - 1.0 0 0 ) [G5] - 0 1 0 0 )
0 0 -1 0 0 1 0 1 0 0 0
0 i 0 0 0 0 i 0 0 0 0 i
i 0 0 0 0O 0 0 i 0 0 —i 0
Gol=1| " G4 = G| =
(G2 0 0 0 —i |’ [G4] i 0 o0 0| (Gl i 0 0
0 0 i 0 0 —i 0 0 i 0 0 0
(C.22)

Notice that they are complex matrices and then will lead to a complex representation of
gamma matrices in (C.16)-(C.19). This is related to the fact that SO(6) does not admit

2The non-vanishing parts of the scalar vielbeins Vi and Vy¥ in (6.45) and (6.46) reduce to 3[Gnm]”
and %[G’a]ij when evaluated at the origin of the moduli space, so them both must square to the identity

in order to satisfy VVT =1 at the origin.
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M-W spinors (it is SO(3,3) which does), so a real representation of SO(6,6) gamma
matrices is no longer possible when moving to an SU(4) x SU(4) covariant formulation.

When arranged into 64 x 64 matrices according to the splittings (C.8) and (C.9), one
verifies that the defining relations (C.2) and (C.5) hold and also that I'13 = diag(+132, —132) .
Finally, the conjugation matrices (C.9) entering the definition of the scalar matrix in (6.16)
take the form

, (C.23)

producing a non-standard definition of the origin of the moduli space, as discussed in

detail in the main text.

Real formulation of M-W spinors

In addition to the SU(4) x SU(4) covariant formulation of M-W spinors described
above, we can adopt another realisation such that: ) it is a real realisation of M-W
spinors %) it is compatible with the standard choice of (6.17) as the origin of the moduli
space.

We build our real 64 x 64 I'-matrices in a Majorana representation out of the 2 x 2

Pauli matrices 0123 in the following way

I'N = 100101010 1@ 1, I'v = o1 1,®1ls®1,01,® 1y
I = i3l @1 @1, I's = 03001 ®1L,01,01,®1,
I's = 10300300301, 01;® 19 gy = 03003001 ®@13012® 19
[y = i3R003R03R0m1,01;, Ty = 030030000 01,01,
I's = 103003003 R03R09 X 1o I'ni = 03®03®03R03®01 Q12
I'e = 103003R03Q 0303 09 T'o = 03003003R®03R®03R 07
(C.24)

where we decide to use a set of Pauli matrices satisfying [0, 0] = 21 €;;, 01 . This corres-

ponds to the choice

a-(0y) e (0))  ee(y ) e

Building the 64 x 64 charge conjugation matrix as

C = —i09Q01R®R0aR®R01 R0y 07, (026)

one can easily check that (C.24) and (C.26) automatically satisfy the conditions in (C.2)
and (C.5) with the np/n metric given in (C.14). By applying an SO(64) rotation taking
'3 = diag(+132, —132), we go to a real M-W basis according to the splittings (C.8) and
(C.9). In this basis, the conjugation matrix in (6.16) happens to be By, = —B"” = 13,
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hence being compatible with the standard choice for the origin of the moduli space in
(6.17). We will use this real representation of M-W spinors when it comes to identify

gaugings associated to critical points at the origin of the moduli space.

C.3. Xynp in the SL(2) x SO(6,6) formulation

In this appendix we derive the explicit form of the components of the Xynp tensor
given in (6.19) and (6.20). Let us first start by giving the explicit form of the Er(
symmetric generators [ta]mn in the fundamental representation following the conventions
in ref. [200]. By virtue of the index splittings M =aM & p and 4 = aMBN @ yu
associated to the branching of the 56 and 133 irrep’s of E;;y under SL(2) x SO(6,6),
they are given by

[tarisn], psg = €ap €y [tMN]pg +NMMN NPQ [tasls
1
[tarisn],, = a8 1N , (C.27)
tailpny = [anlupy = €ap [IN]p = €ap [1N]s :

where [t,s]"’ = 5((3752) and [tyn]F9 = ]}\ZQJ)\, are the generators of SL(2) and SO(6,6),
respectively.

On the other hand, we need the ©-components of the embedding tensor ©y? in order
to compute Xpynp. These can be split into those components involving an even number

of fermionic indices

1 1 1
OVt = D) A fars™F — 9 e’ 51[\1/\[7 gap} * 12 6&6 {/)M (A
(C.28)
. 1 v 1 v
. = 5 e? fanwp WMV - 8 o [7Y], ’

which were already derived in ref. [200], together with a set of additional ones involving
an odd number of fermionic indices. The most general ansatz for the latter according to

the symmetry is given by

O™ = 108 Fat + ho €97 Eqn [yar]h )
(C.29)

v

@#CVMBN = hs B F[MU [,}/N]]‘u + hy Eaﬁ,u 77MN

where h;—1234 are constant coefficients to be fixed as follows: i) Following the definition
in (6.1) and using the form of the Qyy matrix in (6.18), we can build the Xpynp tensor
as Xymp = Om™ [tﬂ]NR Qprp . i) By requiring the Xyp tensor to live in the 912 irrep
of E7(7) we still have to impose the LC in (6.2). This imposes the relations h3 = hy and
hy = —% he on the coefficients. iii) Finally we set the remaining free parameters to the

values h; = —1 and hg = 1, what fixes the relative normalisation between Fjs; and
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Eagu - The final expression is then given by

Ot = =68 Far™ + P Sy [yaa]" !
(C.30)
. 1 _
@NQMIQN _ _eaﬁ F[My [,YN}]IuV _ 6 :aﬁﬂ nMN ,

and after some algebra, the set of independent components of the Xyp tensor are those
given in (6.19) and (6.20).

C.4. The vielbein in the origin of the moduli space

As stated in section 6.3, the vielbein VMN is the fundamental object connecting the
SU(8) and SL(2) x SO(6,6) formulations of maximal supergravity. Recalling the relation
(6.41)

Xune = 2 Vo s V2 V2 Tiges | (C.31)

one concludes that the vielbein VMQ has the row index M in the SL(2) x SO(6,6) basis
and the column index Q in the SU(8) one. In order to determine the form of VM@ we
must go to a common basis where to simultaneously describe SL(2) x SO(6,6) and SU(8)

indices. This common basis turns out to be
SO(2) x SO(6)time X SO(6)space ~ U(1) x SU(4)time X SU(4)space » (C.32)

since it is the only maximal subgroup being shared by them both. Furthermore, it coincides
with their maximal compact subgroup. All our conventions related to the SU(4) x SU(4)
covariant formulation of SO(6,6) spinors, gamma matrices, etc. are summarised in ap-
pendix C.2.

In what follows we will make an extensive use of two different decompositions of an

E7(7) fundamental index:
i) the decomposition with respect to SL(2) x SO(6,6)
Ezp D SL(2) x SO(6,6) D SL(2) x SO(6)time X SO(6)space
56 — (2,12)@(1,32) — (2,6,1)@(2,1,6)® (1,4,4) & (1,4,4)
M = aM & p = am@aa@ij’@g§
(C.33)
i1) the decomposition with respect to SU(8)
Er D SU(8) ) U(1) x SU(4)time X SU(4)space
56 — 28®28 — (6,1) 5 ®(1,6)5®(4,4)g @ cc (C.34)

M = [ZJ] ®cc = ij] © [ij] ® ij ® cc.
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where (4) in (C.34) denotes the U(1) charge of the SU(4) x SU(4) irrep’s. By comparing
the decompositions in (C.33) and (C.34), the non-vanishing components of the vielbein®

will correspond to

Q
VM* = {VQM[IJ] s VaM[IJ] ) VM[ZJ] ) v [ZJ]} (C 35)
= {Vam[ij] ) Vam[ij] ’ VO&G[U] ) Vaa[z]] ’ Vz H Vljki} ’

where o = +, — is an SL(2) index raised and lowered by €, and where [ij], [ij] and
ij are pairs of fundamental SU(4) indices with 4,7 = 1,...,4. The fundamental SO(6)
indices m and a correspond to the time-like and space-like parts of the diagonal metric
nun = (—1,...,—1,1,...,1) of SO(6,6) in Lorentzian coordinates.
——
6 times 6 times
If setting all the scalar fields to zero, i.e. moving to the origin of the moduli space,
the set of vielbein components in (C.35) must reduce to the product of a constant SL(2)

complexified vielbein Ly = Vaorigin = (7, 1) satisfying
L, LE = (5(]5 +1 €af > (C.36)

with a set of SO(6) ~ SU(4) invariant tensors. These are the 't Hooft symbols V,,," |origin =

% (Gn]¥ Vaii |origin = % [Ga]ij (see appendix C.2) and the Kronecker deltas 55 and 53 .

The non-vanishing components of the vielbein Vi are given by

—q g i (1+19)

ij * ij I . LK ksl
Vam 2\/> ) [G ] 9 Vamzy 2\/5 LOA [Gm]lj Y V’Lj 2 6@ (5] b
S 1 i i)
Vaa J = 2\/§ La [Ga] J ) Vaa;ﬁ 2[ ( ) [G ]Aj ) V jk[ - 2 51€ 6i ?
(C.37)
whereas those of the inverse vielbein Wy read
am LeGm amij _ —1 LoV [Gm)id ij o (1 — Z) 5 53
v ij — 2\7 [ ] j , Vv = ﬁ( ) [ ] , vV kl = T k9%
aa,, —i ayk [(al,. aai] _ a [yaliy ‘A‘klA (1 +Z) ksl
Vot = S (G Y 2fL G v, okl
(C.38)

and completely specify the relations (6.43). One can check that the vielbein VN satisfies

the normalisation conditions [196]

VWi Wzg —Vuzs W = iQun
MV Ve = i6EL (C.39)
OB = 0

3 As discussed in section 6.3, we are setting all the “fermionic” scalars to the origin of the moduli space.
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