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Introduction

The aim of this thesis is to study gauged supergravities as effective descriptions for

addressing the problem of moduli stabilisation in compactifications of string theory. The

various formulations of string theory all point towards a unique theory (M-theory) which

is generally thought to be a consistent proposal for a description of quantum gravity. Such

a consistent theory of quantum gravity is something that theoretical physicists have been

searching for for a long time. The reason behind all these difficulties is to be found in

the intrinsic complications stemming from the attempt of combining together Quantum

Field Theory (QFT) and General Relativity (GR) into a unique theory. QFT and GR are

the bearing pillars of high-energy physics and we will try now to give a brief historical

overview of them both.

QFT originates from the idea of merging together the physics of the very small

(Quantum Mechanics) with Einstein’s theory of Special Relativity describing objects trav-

elling in proximity of the speed of light. In such a framework, elementary particles (like

electrons, photons, etc.) are interpreted as quanta of a propagating field which can be

created and destroyed by means of interactions. The biggest triumph of QFT is often

considered to be the prediction of very accurate experimental measurements such as the

so-called (g − 2)e, i.e. the gyromagnetic factor of the electron in the context of Quantum

Electrodyanmics.

Following this line in QFT, non-Abelian gauge theories have been used to describe the

three fundamental interactions of nature (excluding gravity). These are the electromag-

netic force, the weak nuclear force and the strong nuclear force. The idea of gauge theories

is that of using symmetries as an organising principle in physics. In particular, a gauge

symmetry is a local symmetry of a system and through the process of promoting a global

symmetry to a local one, the description of interactions emerges in a natural way.

The best experimentally tested theory that describes the three fundamental interac-

tions and includes all the elementary particles that we have observed so far, is called the

Standard Model (SM) and it consists of a QFT with gauge group SU(3) × SU(2) × U(1),

the first factor describing strong interactions and the other two the electroweak ones. Be-
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sides this internal symmetry, the SM also exhibits the Poincaré group (translations and

Lorentz transformations) as spacetime symmetry required by Special Relativity. This very

elegant construction of the SM crucially relies on the so-called Higgs mechanism in order

to give mass to all the elementary particles in a gauge-invariant way, that is, respecting

the gauge symmetry of the theory.

However, this mechanism should be driven by a scalar particle (the Higgs boson) that

had not been detected by any particle accelerator before LHC (Large Hadron Collider),

the new machine that is collecting data at present at CERN. Still, up to the electroweak

scale (Λew ∼ 250 GeV), the SM seemed to be perfectly working according to all previous

experiments. Detecting the Higgs boson was the first goal of the LHC and the analysis of

2012 has already shown the presence of a signal compatible with the Higgs at mH ∼ 126

GeV. During its second period of activity, LHC will register collisions involving centre-of-

mass energies up to
√
s = 14 TeV.

So far, the SM offers a valuable framework for describing three out of four fundamental

interactions in nature, but still misses out gravity. This is the object of study of the other

building block of theoretical high-energy physics which is GR. This theory was proposed

by Einstein in 1914 in order to classically describe gravity as a geometric effect. The main

idea is that any source of energy (matter, etc.) curves the spacetime around it so that

all the objects move along geodesics in a curved geometry as an effect of gravitational

interaction, whether or not they have a mass. This feature makes gravity the dominant

force at cosmological scales, where all the other interactions cease to be relevant.

GR has been widely tested at the experimental level and amongst its greatest successes

we can mention e.g. the prediction for the anomalous precession of Mercury’s perihelion,

or the explanation of the phenomenon of gravitational lensing, i.e. the deflection of light

beams in the vicinity of strong gravitational fields like those ones produced by galaxy

clusters. From the formal perspective, the possibility of describing the same physics in any

arbitrary reference frame can be viewed as the invariance under local reparametrisations

and Lorentz transformations. This allows one to regard GR as a gauge theory where

the symmetries that have been made local are then coordinate translations and Lorentz

transformations.

Unfortunately, though, unlike the SM, GR happens to be a non-renormalisable theory,

i.e. it is very sensitive to physics at higher energy scales. This completely spoils the

predictive power of the theory beyond a certain scale. Thus, GR should be treated as an

effective description which still needs a UV completion at high energies. Precisely because

of its power-counting non-renormalisability, GR predicts the existence of spacetime sin-

gularities (black holes), which represent regions in spacetime where the curvature reaches

infinity. Whenever one finds infinities in classical computations, the inevitable conclusion

is that such a description should be abandoned in favour of the quantum theory. So, at the

end, one can estimate that the typical scale at which quantum gravity is needed in order
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to understand physics is MPl ∼ 1019 GeV, which is normally referred to as the Planck

scale.

Searching for a theory of quantum gravity implies, as we said, the combination of QFT

and GR. On the other hand, this would provide a unification of all the four fundamental

interactions in nature. Since we are now used to describing interactions by means of

symmetries, this in some sense has as a first consequence the necessity of finding more

fundamental symmetries which combine internal and spacetime symmetries in an elegant

and simple universal formulation. Indeed, all the efforts of theoretical physicists since the

last century have been focused on this aim.

Following the goal of unification, physicists started looking for gauge groups containing

both the internal symmetries of the SM and the Poincaré group in a non-trivial way. By

’non-trivial’ here we mean that the two parts should not commute in order to go beyond

the direct product structure. This means that there should exist new conserved charges

which do not commute with the Poincaré group, hence non-scalar charges.

This attempt resulted in 1967 in a very important statement known in the scientific

literature as the Coleman-Mandula Theorem [1]. This theorem states that it is impossible

to construct a field theory in D > 2 including tensorial conserved charges other than the

Poincaré generators (4-momentum and angular momentum). The proof involves several

technical assumptions which we do not discuss here.

As a way out in order to circumvent the result by Coleman and Mandula, people

thought of the possibility of having spinorial conserved charges. Spinors are objects

transforming in representations of the universal covering of rotation groups. As a con-

sequence, this possibility led to a deeply novel sort of symmetries, which mix bosons and

fermions. Such a symmetry is commonly referred to as supersymmetry and its associated

conserved charges are then called supercharges. The inclusion of supercharges in the al-

gebra describing the symmetries of a given theory generalises the concept of Lie algebra

to superalgebras.

Later on, supersymmetry was used in particle physics (see ref. [2] to read more about

this) to build supersymmetric extensions of the SM, like e.g. the MSSM (Minimally

Supersymmetric Standard Model). Such a model assumes the existence of supersymmetric

partners for all the SM particles, whose masses could have been made higher (and hence

not observable so far) by a soft supersymmetry breaking mechanism. The benefit of the

MSSM is mainly that of solving the hierarchy problem of the SM by removing quadratic

divergences in favour of logarithmic ones. This improved UV behaviour occurs thanks to

supersymmetry and it reduces a lot the fine-tuning that one needs to introduce in order

to overcome the aforementioned hierarchy.

From a phenomenological perspective, supersymmetry has several consequences that

one might presently be able to test at LHC. Firstly, the MSSM would favour, at least in

its maximally constrained version, a lighter Higgs boson (mH . 120 GeV). The current
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peak which would be compatible with the Higgs at 126 GeV would require a version of

the MSSM with a less constrained parameter space. Secondly, for what is concerning

flavour physics, supersymmetry is expected to significantly affect certain cross-sections

at the TeV scale that we should be able to observe at LHC. This would happen via the

appearence of powers of tanβ in the expressions of the corresponding loop-induced MSSM

cross-sections [3].

Still during the 1960’s and in a completely independent line of investigation, physicists

started to study the possibility of constructing a theory at high energy scales by making

the assumption that the fundamental objects are tiny vibrating strings. The general idea

was that the vibrational modes of the string should correspond with observable particle

states. In this way bosonic string theory was first conceived as a way of describing strong

interactions. Nevertheless, around 1973/’74, an alternative theory for strong interactions

was developed, which goes under the name of Quantum Chromodynamics (QCD) and

it became immediately clear that string theory was not the correct candidate for the

description of strong interactions.

Subsequently, supersymmetry was employed to give birth to superstring theory and ob-

tain a completely tachyon-free theory describing the dynamics of strings. Only then string

theory started to be considered as a possible candidate for describing quantum gravity,

since it was found to contain the graviton (i.e. the quantum of the gravitational field) in

the spectrum and to reproduce ten-dimensional supergravities (supersymmetric versions

of GR) in the low-energy limit. Furthermore it does not suffer from non-renormalisability

like GR and supergravity. Moreover, people began to realise that it allows for gauge groups

which are in principle big enough for containing the SM interactions as well. Following

this line, one is naturally led to the hypothesis that string theory might be the unified

theory that we are looking for.

Later, in the mid 1990’s people started discovering the most peculiar and interesting

feature of string theory, that is the presence of dualities. These are essentially relations

between different theories in different regimes which allow one to view them as different

limits of the same theory. It was indeed realised that the five different formulations of

string theory known and perturbatively investigated up to that moment were in fact related

to one another by taking different limits of a unique theory (M-theory), which we already

mentioned at the very beginning of this introduction.

Another issue that string theory brings into the game is that of extra dimensions.

In fact, a consistent quantisation of the superstring requires the target-space to be ten-

dimensional. The extra challenge for string theorists became then that of finding some

mechanisms providing compactifications of string theory down to four dimensions in order

to make contact with the evidences of our low-energy observations. Historically, the first

compactifications which were studied were on particular Ricci-flat six-dimensional internal

manifolds called Calabi-Yau manifolds. These have the nice feature of preserving some
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supersymmetry and of giving rise to Minkowski vacua in four dimensions.

However, in the last fifteen years another fact came out of some cosmological obser-

vations: our universe contains dark energy. This source of energy/matter in the universe

satisfies an anomalous equation of state with respect to ordinary matter or radiation and it

corresponds to the vacuum energy present in our universe. Dark energy can be accomod-

ated inside GR by including an extra term to the Einstein equations which is often called

cosmological constant and normally denoted by Λ. Combined measurements coming from

supernovae [4, 5], the Cosmic Microwave Background (CMB) radiation [6, 7] and the Ba-

ryonic Acoustic Oscillations (BAO) [8,9] concluded that we live in a universe with positive

and small cosmological constant and gave rise to what we call nowadays the concordance

model of cosmology. The energy/matter content giving the best fit is depicted in figure 1.

Figure 1: The concordance model of cosmology predicts that our universe has a cosmological

constant Λ > 0. In a recent phase of the history of the universe the vacuum energy took

over and became the dominant energy content.

The cosmological constant drives an accelarated expansion of the universe which is de-

scribed by de Sitter spacetime. This suggests that, after dark energy started to dominate,

our universe started approaching a de Sitter vacuum rather than a Minkowski one. This

implies that the suitable string compactifications for phenomenological purposes should

give rise to de Sitter vacua. One can show that plain Calabi-Yau compactifications present

the unfortunate feature of producing a large amount of massless scalar fields (a.k.a. mod-

uli). Hence, in order to reproduce de Sitter vacua, one should go beyond these well-known

compactifications.

An extra motivation for considering accelerated expanding universes in string theory

is that of embedding inflationary models within string theory. Inflation describes a phase

of accelerated expansion of the universe right after the big bang. This was proposed to

explain an almost perfect homogeneity and isotropy relating regions in the sky which had

never been in causal contact with each other throughout the history. Inflationary models

are described by a quasi-de Sitter phase driven by a scalar field called the inflaton.

The above issues provide two challenges for string theory compactifications related
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to de Sitter. The first one is finding de Sitter vacua in order to describe the late-time

accelerating phase we are approaching now. The second one is embedding inflation in

string theory by providing examples of compactifications in which quasi-de Sitter phases

are possible with a very flat potential for the inflaton. These approaches in string theory

result in what is often called string cosmology and they have been extensively followed in

several directions in the last decade.

Concentrating for a moment on inflation, it is a particularly striking fact that string

theory suggests some preferred classes of inflationary models, in which, for instance, no

detectable tensor modes are present in the spectrum of cosmological perturbations of the

early universe. This information, which is encoded in the CMB, can still be detected now,

and is the result of frozen quantum fluctuations grown to observable size in the present

universe. Precision measurements on the CMB carried out in the last decade by WMAP

[10–12] already provided very precious data, although the existence of tensor perturbations

still remains an open question. There is a possibility that the PLANCK satellite, which

is currently collecting data, might tell us more about this. Such an experimental input

would be a valuable opportunity for constraining models of inflation, among which there

are stringy inflationary proposals.

Coming now back to the search for de Sitter vacua in string theory, right after the

experimental detection of the cosmological constant, the existence of a huge ’zoo’ of vacua

[13,14] (about 10500 !!) was conjectured on the basis of statistical analysis. This enormous

amount of different string vacua is often referred to as the landscape. However, there

has been more recently a lot of debate on this after the many failed attempts of finding

classical (i.e. at tree level) de Sitter solutions from string theory compactifications.

Going beyond the search for classical solutions in string theory, people have considered

the possibility of stabilising the moduli in an anti-de Sitter vacuum by means of quantum

non-perturbative effects [15] and subsequently providing an uplifting to de Sitter by means

of several mechanisms. In ref. [15] such an uplifting was provided by additional extended

sources breaking supersymmetry explicitely. Nevertheless, this mechanism completely

ignores the backreaction of such sources and some recent analyses indicate that it might

cause the arising of a singularity [16,17] and possibly related instabilities [18]. In ref. [19]

the possibility of D-term uplifting was considered. However, later in refs [20, 21] the

inconsistency of this construction was pointed out due to the violation of gauge invariance

occurring in a supergravity model with D-terms and yet vanishing F-terms. In ref. [22] a

valid proposal is given to overcome this inconsistency. The third possible type of uplifting

mechanism is F-term uplifting, which was worked out e.g. in ref. [23].

A parallel but somehow related research line has regarded supergravity models as lower-

dimensional effective descriptions coming from flux compactifications. In this context a lot

of work has been done in the case of flux backgrounds preserving minimal supersymmetry

in four dimensions. Some work has been done also in the context of compactifications
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preserving larger amount of supersymmetry. A very welcome ingredient (or even crucial

in the case of (half-)maximal supergravities) for obtaining de Sitter solutions turns out

to be given by non-geometric fluxes. These objects appear as deformation parameters in

the lower-dimensional effective description even though they do not have a clear higher-

dimensional interpretation. Their appearence was first conjectured in ref. [24] based on

duality covariance arguments.

The aim of this thesis will be to follow this last research line, that is, to study gauged

supergravities as effective descriptions arising from string compactifications. The final goal

is to first formulate the complete dictionary between fluxes and deformation parameters of

lower-dimensional supergravities. Subsequently, one can think of studying the landscape

of vacua of particular classes of string compactifications through their effective gauged

supergravity description. Finally, one could use the framework of gauged supergravities

in order to understand the role of string dualities, since at that level they are realised

as symmetries. The hope is that this could shed a light on the still unclear origin of

non-geometric fluxes.

The thesis is organised as follows. In chapter 1 the various string theories and string

dualities are reviewed. In chapter 2 supersymmetry is discussed and supergravities (low

energy limits of string theory) and their deformations are introduced. In chapter 3 an

overview of string compactifications is provided as mechanisms for generating a potential

for moduli fields and subsequently some duality covariant proposals for describing non-

geometric fluxes are introduced. In chapter 4 we discuss the orbit classification of gaugings

of maximal and half-maximal supergravities in dimension seven and higher; subsequently

we provide a Double Field Theory uplift for each orbit of theories. In chapter 5 we firstly

introduce the dictionary between half-maximal gauged supergravities in four dimensions

and orientifold reductions of type string theories with fluxes. Secondly, we study the

landscape of vacua of geometric type IIA and IIB compactifications and furthermore give

some example of locally geometric backgrounds in type IIB. In chapter 6 we show how

to embed type II flux backgrounds without supersymmetry-breaking local sources inside

maximal gauged supergravity in four dimensions and examine the full mass spectrum

of a class of type IIA solutions. Finally, some additional material can be found in the

appendices.





Chapter 1

String Theory and Dualities

In this chapter we will discuss some generalities about string theory as the main can-

didate for a description of quantum gravity. We will start from the simpler example of

the bosonic string to move further to the discussion of the different formulations of string

theory and dualities as a way of relating them together. Later on, we will briefly deal with

the case of the superstring and argue that supergravities in ten dimensions can be ob-

tained as low energy effective descriptions thereof. Finally, we will introduce the concept

of branes and extended objects in string theory.

1.1. The Bosonic String

The original idea is that of writing an action for a 1-dimensional object (string)

propagating in a D-dimensional background described by the coordinates {Xµ}, with

µ = 0, . . . , (D−1). During its motion, the string describes a surface (a (1+1)-dimensional

submanifold described by the coordinates (τ, σ) ≡ σα, with α = 0, 1) embedded in the

background spacetime which is often called world-sheet. From this perspective, the motion

of the string is described by the dynamics of D scalar fields {Xµ(τ, σ)} which parametrise

the worldsheet. The free action describing the aforementioned system reads

S = −T
2

∫
dτ dσ

√
hhαβ gµν(X) ∂αX

µ ∂βX
ν , (1.1)

where hαβ is the world-sheet metric, h ≡ | det(hαβ)|, gµν is the background metric and T

is the tension of the string (i.e. mass / volume unit).

The world-sheet metric hαβ contains in principle only 1 on-shell degree of freedom

after gauge fixing (by making use of the diffeomorphism invariance of (1.1)). The peculiar

fact about the above action is that it has another extra symmetry with respect to Weyl

rescalings of the form

hαβ 7−→ Λhαβ , (1.2)

where Λ is an arbitratry function of the world-sheet coordinates (τ, σ). Moreover, the

theory described by (1.1) is renormalisable by power-counting.

We shall start studying the free propagation of a string in a Minkowski background,

i.e.

gµν = diag(−1, +1, . . . ,+1︸ ︷︷ ︸
(D−1)

) . (1.3)
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The action (1.1) has the following world-sheet symmetries{
δξX

µ = ξα ∂αX
µ ,

δξhαβ = ξγ ∂γhαβ − 2 ∂(αξβ) ,
(diffeomorphisms){

δΛX
µ = 0 ,

δΛhαβ = Λhαβ ,
(Weyl rescalings)

(1.4)

together with the following global (target space) Poincaré symmetry{
δXµ = aµν X

ν + bµ ,

δhαβ = 0 ,
(1.5)

with aµν ≡ ηµρ a
ρ
ν antisymmetric. By making use of two diffeomorphisms ξα and a Weyl

rescaling Λ, one can always gauge away all the degrees of freedom of the world-sheet metric

such that

hαβ = ηαβ = diag(−1, +1) . (1.6)

To be more precise, under local Weyl rescalings, the action (1.1) transforms as

δΛS =
1

2

∫
d2σ
√
hhαβ Tαβ Λ(σ) , (1.7)

where Tαβ ≡ − 2
T

1√
h

δS
δhαβ

is the stress-energy tensor associated with the scalar fields {Xµ}.
This implies that, in order for the action to be invariant under local Weyl rescalings, we

actually need to impose the following constraint

hαβ Tαβ = 0 . (1.8)

Moreover, the gauge choice (1.6) is only compatible with the equations of motion for hαβ

once the condition

Tαβ
!

= 0 (1.9)

is satisfied.

Once the gauge choice (1.6) is made and the constraint (1.9) is imposed, one can derive

the following equations of motion

2Xµ =
(
∂2
τ − ∂2

σ

)
Xµ = 0 . (1.10)

These equations of motion have as a consequence that the stress-energy tensor Tαβ is

conserved. If we now look carefully at the variation of the action with respect to Xµ, we

will see that it contains the following boudary terms

−T
∫
dτ [∂σX

µ δXµ |σ=π − ∂σX
µ δXµ |σ=0] , (1.11)

which can be set to zero by means of suitable boundary conditions (b.c.). The physical in-

terpretations of these is requirement that no energy-momentum flow occurs at the extrema

of the string. The possible b.c. are
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∂σX
µ|σ=0, π = 0 , (Neumann b.c. for opens strings)

δXµ|σ=0, π = 0 , (Dirichlet b.c. for opens strings)

Xµ(τ, σ) = Xµ(τ, σ + π) . (periodic b.c. for closed strings)

The general solution to the equations of motion (1.10) is easily written in light-cone

world-sheet coordintes σ± ≡ τ ± σ:

Xµ(σ) = Xµ
R(σ+) + Xµ

L(σ−) , (1.12)

where the subscripts ’R’ and ’L’ stand for (right-)left-moving.

Let us now concentrate on the case of closed strings, for which one has to impose

periodic b.c.; (the R and L part of) the solution generally given in (1.12) can be then

expanded in Fourier modes as follows

Xµ
R = 1

2 x
µ + `2s

2 p
µ (τ − σ) + i`s

2

∑
n6=0

1
n α

µ
n e−2in (τ−σ) ,

Xµ
L = 1

2 x
µ + `2s

2 p
µ (τ + σ) + i`s

2

∑
n6=0

1
n α̃

µ
n e−2in (τ+σ) ,

(1.13)

where `s is the fundamental string length and αµn and α̃µn are the Fourier components of

the right-(left-)movers respectively. The reality condition of the solution (1.12) implies

xµ, pµ ∈ R , αµn =
(
αµ−n

)∗
and α̃µn =

(
α̃µ−n

)∗
. (1.14)

The physical interpretation of the constants xµ and pµ in the expressions (1.13) for Xµ
R

and Xµ
L is that of postion and momentum of the centre of mass of the string.

By requiring that the coordinates Xµ and the corresponding momenta satisfy canonical

Poisson Brackets (PB) at equal times, one finds that the Fourier modes α and α̃ have to

satisfy the following PB1

[αµm, ανn]PB = imηµν δm+n,0 ,

[α̃µm, α̃νn]PB = −imηµν δm+n,0 ,

[αµm, α̃νn]PB = 0 ,

(1.15)

with the convention that αµ0 = α̃µ0 = `s
2 p

µ. After introducing the Fourier components of

the stress-energy tensor Tαβ

Lm = 1
2

∑
n∈Z

αm−n · αn and L̃m = 1
2

∑
n∈Z

α̃m−n · α̃n , (1.16)

one finds that their PB describe a Virasoro algebra

[Lm, Ln]PB = i (m− n)Lm+n , (1.17)

and the same holds for L̃’s, whereas [L, L̃]PB = 0 .

1Please note that these PB are independent of the string tension and length after choosing T = 1
π `2s
≡

1
2πα′ .
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Aspects of the Quantum Theory

Bosonic string theory can be quantised following different approaches yet giving rise

to the same final result. The possible different approaches historically studied are the

following

Old Covariant Method: inspired by the quantisation procedure à la Gupta-

Bleuler followed in electrodynamics,

Modern Covariant Method: type of BRST quantaisation based on the introduc-

tion of Faddeev-Popov ghosts,

Light-cone Gauge Quantisation: solving explicitely the constraints on Tαβ by

breaking covariance from the start.

By following the preferred quantisation procedure, one will promote the PB previousely

introduced to commutators between operators. This leads to a central extension of the

Virasoro algebra at a quantum level coming from the normal ordering prescription.

One discovers that α and α̃ suitably normalised behave as creators and annihilators.

Hence, by making use of them, one can uniquely construct the space of physical states.

Following, e.g. the old covariant method, the general presence of ghosts (i.e. negative

squared norm states) arises from the Minkowskian signature of the metric. The spectrum

of physical states only turns out to be free of ghosts for D = 26. If one follows different

quantisation procedures, this conclusion remains valid.

If we focus on the case of closed bosonic strings, we find out that there is a vacuum

state |0〉 corresponding to a tachyonic scalar, whose mass is given by M2 = −4/α′. The

first excited states, instead, constitute the massless spectrum and include the following

objects

|Ωij〉 = αi−1 α
j
−1 |0〉 , (1.18)

where the operators of the type αi−1 denote transverse creation operators. Such an object

lives then in the following representation of the little group SO(24)

24 ⊗ 24︸ ︷︷ ︸
⊗

= 1 ⊕ 276︸ ︷︷ ︸ ⊕ 299︸ ︷︷ ︸ . (1.19)

The above irrep’s describe the following massless fields

the metric gµν ,

a two-form bµν ,

a scalar φ, often called the dilaton.

This field content is often referred to as the common sector of all string theories.



1.2 Superstring Theory 17

1.2. Superstring Theory

In the previous section we have seen that bosonic string theory still suffers from the

presence of a tachyon even in the closed string sector, which clearly would make our theory

not unitary. Besides, there is no room for fermions in the spectrum of the bosonic string.

In order to try to improve these unwanted features, we will supplement the action (1.1)

with extra fermionic world-sheet degrees of freedom called ψµ. For some further reading

on the topic, we suggest to take a look at refs [25,26].

Let us consider the action

S1 = − 1

2πα′

∫
d2σ
√
h
(
hαβ ∂αX

µ ∂βXµ − i ψ
µ
ρα ∂αψµ

)
, (1.20)

where ρα is a 2-dimensional realisation of gamma matrices (see section 2.1 for the formal

aspects of spinors and supersymmetry):

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i

i 0

)
with

{
ρα, ρβ

}
= −2ηαβ .

By adding these two extra terms in the action

S2 = − 1

πα′

∫
d2σ
√
h

(
χα ρ

β ρα ψµ ∂βXµ +
1

4
(ψ

µ
ψµ) (χα ρ

β ρα χβ)

)
, (1.21)

one finds that the full action S = S1 + S2, apart from having a symmetry under Weyl

rescalings that generalises the form presented in the purely bosonic case, has a completely

novel type of symmetry
δεX

µ = ε ψµ ,

δεψ
µ = −i ρα ε

(
∂αX

µ − ψ
µ
χα

)
,

δεhαβ = −2i ε ρα χβ ,

δεχα = ∂αε ,

(1.22)

where ε is an arbitrary Majorana spinor (see again section 2.1) in 2 dimensions. This

symmetry relates bosonic fields (Xµ and hαβ) to fermionic ones (ψµ and χα) and is nor-

mally called supersymmetry. Particular realisations of supersymmetry in field theory will

be presented in the next chapter.

Finally, there is an extra local symmetry transforming only the fermions χα (and

leaving all the other fields invariant) in the following way

δχα = i ρα η , (1.23)

where η is again a Majorana spinor. Just as in the bosonic case, one can gauge away

all the degrees of freedom inside the world-sheet metric by using local diffeomorphisms

and Weyl rescalings and perform the gauge choice in (1.6). Moreover, we can now make

use of the two supersymmetries generated by ε and the two extra fermionic symmetries
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generated by η in order to gauge away χα. Summarising, once we use all the symmetries

at our disposal, we can always perform the following gauge choice

hαβ = ηαβ , χα = 0 . (1.24)

At this point, we can vary the total action to get the following equations of motion for

Xµ and ψµ

2Xµ = 0︸ ︷︷ ︸
Wave eqn

and ρα ∂αψ
µ = 0︸ ︷︷ ︸

Dirac eqn

,
(1.25)

which have to be supplemented with the constraints that guarantee the consistency of

the gauge choice performed in (1.24). These translate into the vanishing of the currents

associated with the symmetries we made use of, i.e. the stress-energy tensor Tαβ and a

supercurrent Jα

Jα =
1

2
ρβ ρα ψ

µ ∂βXµ
!

= 0 ,

Tαβ = ∂αX
µ ∂βXµ +

i

2
ψ
µ
ρ(α ∂β)ψµ

!
= 0 .

(1.26)

Similarly to the bosonic case, one can solve the equations of motion (1.25) by intro-

ducing the same right- and left-movers for Xµ and doing something analogous for ψµ in

light-cone coordinates

ψµ(σ) = ψµR(σ+) + ψµL(σ−) . (1.27)

After choosing by convention ψR(τ, 0) = +ψL(τ, 0), we have two inequivalent possilities

for fixing the b.c. at σ = π:

• ψR(τ, π) = +ψL(τ, π) , (Ramond (R) b.c.)

• ψR(τ, π) = −ψL(τ, π) . (Neveu-Schwarz (NS) b.c.)
(1.28)

From the above b.c., e.g. in the case of closed strings, we get the following mode expansions
ψL = 1√

2

∑
n∈Z

dµn e−in (τ−σ) ,

ψR = 1√
2

∑
n∈Z

d̃µn e−in (τ+σ) ,
(R)


ψL = 1√

2

∑
r∈(Z+ 1

2)
bµr e−ir (τ−σ) ,

ψR = 1√
2

∑
r∈(Z+ 1

2)
b̃µr e−ir (τ+σ) .

(NS)

(1.29)

When quantising the theory, one can follow the same approaches briefly described at

the end of section 1.1. The starting point is again introducing canonical commutation

relations (coming from classical PB) for Xµ and canonical anti-commutation relations for

ψµ. This operation results in creation and annihilation operators: (α, α̃) type for the

bosons, (b, b̃) type for fermions with NS b.c. and finally (d, d̃) type for fermions with R

b.c.
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Quadratic cobinations of creators and annihilators give now rise to the new Fourier

components of Tαβ and Jα and generate a graded extension (see def. of superalgebras in

section 2.1) of the Virasoro algebra given in (1.17), with central extensions again related

with the process of quantisation. In the case of the superstring, the consistency of the

quantum theory requires the critical dimension to be D = 10. However, the resulting

quantum theory still contains a tachyon in the NS sector just like in the bosonic case.

Supersymmetry requires the total number of physical degrees of freedom associated to

bosons and fermions to be equal (see the theorem stated in section 2.1). This is achieved

by the so-called Gliozzi-Scherk-Olive (GSO) projection [27], which defines a notions of

fermionic parity and eliminates all the states in the spectrum being parity odd. The GSO

projection leaves one with a massless sector consisting of an NS vector and a R spinor,

that is, in terms of irrep’s2 of the little group SO(8)

8V ⊕ 8C ←→ Aµ ⊕ λ , (1.30)

which exactly defines the field content of an N = 1 vector multiplet (see table 2.3).

The different choices for what is regarding the GSO projection give rise to inequivalent

string theories, which we summarise in this paragraph

Type II String Theories: ψR and ψL are treated independently when it comes to

perform the GSO projection. This gives rise to two inequivalent choices, depending

on whether it selects opposite or equal signs (called type IIA and IIB, respectively):

IIA: (8V ⊕ 8C) ⊗ (8V ⊕ 8S) =


(
(1 ⊕ 28 ⊕ 35V)NS-NS ⊕ (8V ⊕ 56V)R-R

)
B

⊕
(
(8S ⊕ 56S)NS-R ⊕ (8C ⊕ 56C)R-NS

)
F

 ,

IIB: (8V ⊕ 8C) ⊗ (8V ⊕ 8C) =


(
(1 ⊕ 28 ⊕ 35V)NS-NS ⊕ (1 ⊕ 28 ⊕ 35C)R-R

)
B

⊕
(
(8S ⊕ 56S)NS-R ⊕ (8S ⊕ 56S)R-NS

)
F

 ,

which gives exactly the field content of type IIA and IIB supergravities in D = 10,

as we will see in (2.18).

Type I String Theory: it consists of open and closed strings; it is N = 1 super-

symmetric and the universal field content (i.e. NS-NS and NS-R) is supplemented

by 496 vector multiplets which describe an SO(32) gauge theory. Such a theory can

be as well obtained by modding out type IIB string theory with respect to a Z2

parity flipping the sign of the world-sheet coordinates.

Heterotic String Theories: constructed by combining the bosonic left-moving

sector with the fermionic right-moving one. The bosonic sector then has to be

compactified from D = 26 down to D = 10, giving rise to internal gauge symmetries.

2All throughout the text 8V, 8S and 8C denote the triality of SO(8) irrep’s of dimension 8, i.e. the

vector and the spinors of the two chiralities.
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Anomaly cancellation forces the only two consistent possibilities to be SO(32) and

E8×E8.

The common sector of both type I and heterotic string theories exactly matches the field

content of N = 1 supergravity in D = 10. This common sector is then coupled to 496

vector multiplets which describe a gauge theory with gauge group SO(32) or E8×E8.

Summarising, we have seen that the low-energy spectrum of all the five consistent

string theories recovers the field content of the possible supergravities in ten dimensions.

Moreover, these degrees of freedom also turn out to be described by a low energy effective

action which is that of ten-dimensional supergravities (coupled to vector multiplets in the

case of N = 1).

1.3. Beyond Ordinary Field Theory: Dualities

In the previous section we have seen that five different string theories in ten dimensions

can be constructed perturbatively. We would like to stress that string theory contains two

deeply different types of perturabtive expansions: the first one is in terms of the string

coupling gs which is equal to eφ for backgrounds with constant dilaton and it plays the

role of ~ in loop expansions; this is a quantum theory defined on the spacetime. gs

corrections take us away from the supergravity limit but simply by completing it with

quantum corrections. Moreover, there is a second and dramatically different expansion

defined on the world-sheet which is carried out with respect to α′. α′ corrections take us

away from the field theory description and hence they have a purely stringy nature and

do not have any analogue in QFT.

However, in general perturbation theory is insufficient to completely understand the

physics described by a given quantum theory. In QFT, for instance, one often needs

the so-called path-integral formulation of the theory in order to capture possible non-

perturbative effects. Unfortunately, no analogue of the path-integral formulation is known

in string theory. Still, there is one interesting feature of string theories that can be seen

as an opportunity to understand some physical features thereof. One is able to prove that

the five string theories are related amongst them via dualities. Duality relates equivalent

descriptions of a theory in which perturbation theory is done around different points,

that is, dual descriptions are different ways of taking the limit i.e. ~ → 0. The general

advantage of dual descriptions is that, whenever a description enters the strong coupling

regime and hence pertution theory is not to be trusted anymore, its dual description

will conversely be in the semi-classical limit. To read more about dualities and non-

perturbative aspects of string theory, we recommend refs [28,29].

The situation depicted in figure 1.1 precisely shows how all the different string theories

simply are different perturabtive expansions of the so-called M-theory, which is often

regarded as the best candidate to a unified description of gravity and gauge theories. This
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theory has the peculiarity of not having a coupling like gs anymore and its low-energy

limit is given by eleven-dimensional supergravity (see section 2.2).

Figure 1.1: The different string theories in ten dimensions as different perturbative limits

of an eleven-dimensional theory called M-theory.

As an example, let us now examine in detail the explicit nature of the dualities relating

some string theories in figure 1.1. We will start observing that type IIA and type IIB string

theories are related by what we call T-duality. This duality has perturbative nature, i.e.

it can be proven order by order in (gs) perturbation theory. Its origin in this case is the

fact that the two aforementioned string theories become the same theory in D = 9 when

reducing them on a circle S1. The dictionary between the IIA and IIB side of the duality

is constructed by

RA =
α′

RB
, (1.31)

where RA,B are the radii of the circle S1 in the two compactifications. The (1.31) implies

that T-duality interchanges the role of momentum and winding modes in the spectrum.

From the world-sheet perspective, the above T-duality acts as X9
R 7−→ −X9

R ,

ψ9 7−→ −ψ9 ,
(1.32)

where the direction labelled here by ’9’ is the compact one. The action of T-duality on

the massless NS-NS sector fields gµν , bµν and φ is known in the literature as the Buscher

rules [30]. This duality manifests itself at the level of the nine-dimensional theory as an

SO(1, 1;Z) symmetry. As we will see later in table 1.2, this gets generalised to SO(d, d;Z)

when reducing type II (A or B it does not matter!) on a torus T d.

As a further example, we want to illustrate the deeply different nature of S-duality,

which is yet non-perturbative and hence intrinsically difficult to prove. In constrast with

the previous case of T-duality, where the theories can be compared order by order in gs and
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different contributions from different orders never mix, here such a mixing will occur. This

makes it meaningless to compare the spectra state by state on the two sides of the duality.

Indeed, such non-perturbative dualities are normally conjectured and subsequently tested.

The instruments at our disposal in order to test S-duality are those objects which are

protected by supersymmetry like

the spectrum of BPS (i.e. partially supersymmetric) states (see non-renormalisation

theorems which protect supersymmetric objects from quantum corrections),

the low-energy effective Lagrangian (constrained by supersymmetry to match the

supergravity action).

S-duality turns out to transform type IIB string theory into itself, the bosonic massless

sector transforming as described in table 1.1. One can actually show that such S-duality

sector IIB fields S-duals

NS-NS

gµν gµν

bµν C
(2)
µν

φ −φ

R-R

C(0) C(0)

C
(2)
µν −bµν

C
(4)
µνρσ C

(4)
µνρσ

Table 1.1: The transformation law of the massless IIB fields under S-duality. For back-

grounds with constant dilaton, such a duality takes gs 7→ 1
gs

, thus interchanging in the

spectrum the role of perturbative objects and solitons.

can be completed to form a larger discrete group of non-pertirbative dualities given by

SL(2,Z), of which S-duality represents the element

(
0 −1

1 0

)
. This duality generalises

the concept of electromagnetic duality for Maxwell theories [31].

The full net of dualities relating the different five string theories is presented in fig-

ure 1.2.

In type II theories, one can think of combining perturbative and non-perturbative

dualities by applying a chain of S- and T-dualities. In such a way, one realises that

they contain an enhanced duality group called consisting of more general dualities usually

called U-dualities. When reducing M-theory on a torus Tn, such a duality manifests itself

as an En(n)(Z) symmetry [32]. The duality groups of the compactified type II theories are

summarised in table 1.2.
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M-theory11d

10d

9d

IIBIIA I Het SO(32) Het E8×E8

S1 S1

T T T T

SS

16 D9 /Ω

S1 S1

Figure 1.2: The net of all the dualities connecting the five string theories in ten dimen-

sions and their links with M-theory. Please note that type II theories (on the left of the

diagram) have 32 supercharges, whereas, after modding out by the discrete symmetry Ω,

supersymmetry is broken such in a way that the other theories on the right (type I and

heterotic) only retain 16 supercharges.

D T-duality U-duality

9 O(1, 1;Z) SL(2,Z)

8 SL(2,Z)×SL(2,Z) SL(2,Z)×SL(3,Z)

7 SL(4,Z) SL(5,Z)

6 O(4, 4;Z) O(5, 5;Z)

5 O(5, 5;Z) E6(6)(Z)

4 O(6, 6;Z) E7(7)(Z)

Table 1.2: The various T-(U-)duality groups emerging as symmetries of type II (M-)

theories on a T 10−D (T 11−D). Please note that the corresponding supergravity theories

enjoy the full continuous symmetries, as we will see in the next chapter. Quantum effects

in string theory break the duality groups to the discrete subgroups shown here.

1.4. Branes and Sources

In the previous section we have seen that dualities are a very peculiar feature of string

theory and that they generally relate descriptions in weakly and strongly coupled regime

to each other. We also saw that non-perturbative dualities are very difficult to test and

that analysing the spectrum of BPS states can be an important instrument in this sense.

In the spectrum of the various string theories, not only can we find states representing

excitations of the so-called fundamental string itself, but by making use of dualities, also

extended objects called branes appear as solitonic states in the spectrum. These extended
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objects have a world-volume action which is very similar to the world-sheet action of a

string. Upon imposing certain b.c., the aforementioned branes can define backgrounds in

string theory which preserve partial amounts of supersymmetry (BPS branes).

For example, Dp-branes are extended objects whose world-volume is (p+1)-dimensional

and Neumann b.c. are fixed on it, whereas in all the transverse directions, Dirichlet b.c.

are chosen. Dp-branes can be charged electrically under the R-R gauge potential C(p+1)

or magnetically under C(7−p). Identically one could imagine to have branes which are

electrically (magnetically) charged under NS-NS gauge potentials. In this case, though,

we only have the b-field at our disposal, thus resulting in the fundamental string (which we

denote by NS1) and the NS5-brane. The tension (i.e. mass per volume unit) of the various

objects named above is in general a function of the couplings gs and `s in string theory

and solitonic objects have a tension which scales as negative powers of the couplings such

that it becomes very high in the weakly coupled regime. This information is collected in

table 1.3.

The extended objects introduced above all have positive tension. Furthermore, one

can introduce orientifold planes (Op), which are objects with negative tension located

at the fixed points of some discrete involution. The main difference with respect to e.g.

D-branes is that O-planes are strictly speaking no dynamical objects, in the sense that, as

we just saw, their position in the target space is not dynamically determined. Besides, on

D-branes one can construct a gauge theory upon the introduction of extra matter content.

Other extended objects in string theory are the so-called KK monopoles (after Kaluza-

Klein). These objects are highly non-perturbative and they are charged under mixed

symmetry fields like the dual graviton. In D = 10, they are sometimes referred to as

KK5-branes even though, strictly speaking they are only pre-branes, in the sense that

they become branes upon T-dualisation. The conjecture is that, since the KK monopole

is T-dual to an NS5-brane, its tension should still scale as g−2
s . We suggest refs [33,34] to

find more about dualities in string backgrounds containing branes and orientifold planes.

Branes Tension

NS1 `−2
s

NS5 g−2
s `−6

s

Dp g−1
s `

−(p+1)
s

Table 1.3: The tension (mass per volume unit) of several extended objects in string theory

as a function of gs and `s.

Let us go back to type IIB string theory in order to see which branes can be coupled

to the massless fields of the theory. In the NS-NS sector, the only gauge potential is the

Kalb-Ramond 2-form b and hence we can have fundamental strings NS1 and NS5-branes,



1.4 Branes and Sources 25

which are respectively electrically and magnetically charged under b. In the R-R sector,

instead, we have C(0), C(2) and C(4); with respect to these fields D(−1), D1 and D3 are

electrically charged, whereas D7, D5 and again D3 are magnetically charged. Please note

that the D(−1) has the peculiarity of being localised both in space and time, thus it

is a particular type of instanton. In table 1.4 we summarise how S-duality acts on the

BPS objects of the IIB spectrum. As we said previously, these provide a very import

opportunity for testing S-duality.

IIB IIB′

(gs, `s)
(
g−1
s , `s g

1/2
s

)
NS1 D1

NS5 D5

D1 NS1

D3 D3

D5 NS5

D7 D̃7

Table 1.4: The action of S-duality on type IIB branes. By acting with the full SL(2,Z), we

can show that D3-branes are singlets, whereas (NS1, D1) and (NS5, D5) are doublets and

hence we could obtain the dyonic (p, q)-string or 5-brane. D7-branes belong to a triplet of

7-branes labelled by the integers (p, q, r). However, acting with SL(2,Z) on the D7, one

only has access to a 2-dimensional conjugacy class spanned by D7 and D̃7 [35].





Chapter 2

Gauged Supergravities

As we concluded in the previous chapter, supergravity theories in ten and eleven di-

mensions give a low-energy effective description of string theory and M-theory respectively.

Upon toroidal reduction, these supergravities are related to supergravities in D < 10. In

this chapter we will briefly review how supergravities in various dimensions can be obtained

by supersymmetrising a gravity theory. We will refer to them as ungauged supergravities.

Furthermore we will show how to introduce deformations in supergravities to give rise

to gauged supergravity theories. In order to arrive there, we will need to first discuss

supersymmetry and its relation to gravity.

2.1. Supersymmetry

As already sketched in the introduction, supersymmetry is the result of the search for

a fundamental symmetry unifying spacetime and internal symmetries in a non-trivial way.

This is realised by certain spinorial conserved charges Q called supercharges. These are

such that

bosons
Q−→ fermions ,

and they square to bosonic transformations, such as translations, Lorentz transformations,

etc.

Spinors in 1 + (D − 1) dimensions are the building blocks of fermionic representa-

tions of SO(1, D − 1). These are precisely the objects that one needs in order to discuss

supersymmetry in given spacetime dimensions and signatures. In the so-called Dirac

representation, the Lorentz generators are given by 1
4 γµν ≡ 1

8 [γµ, γν ], where the Dirac

matrices {γµ}µ=0,...,D−1 satisfy the Clifford algebra

{γµ, γν} = 2 ηµν , (2.1)

where ηµν = diag(−1,+1, · · · ,+1︸ ︷︷ ︸
D−1

) is the Minkowski metric. Such a representation has real

dimension equal to 2〚D/2〛+1, where 〚x〛 denotes the integer part of x. However, depending

on different spacetime dimensions and signatures, the components of a Dirac spinor might

not all transform amongst themselves, yet they might contain different irreducible pieces,

which are obtained by imposing some Lorentz-invariant constraint on a Dirac spinor. For

instance, in any even dimension, one can have chiral spinors. These are obtained by
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imposing a chirality condition on a given Dirac spinor χ

γ∗ χ ≡
[

(−i)D/2+1

D!
εµ1···µD γµ1 · · · γµD

]
χ = ±χ , (2.2)

where εµ1···µD represents the Levi-Civita symbol in D dimensions and the + and the −
refer to right- and left-handed spinors respectively. Chiral spinors have therefore only

2〚D/2〛 independent real components.

Another possible projection is a reality condition giving rise to Majorana spinors.

These irreducible spinors are objects satisfying the following constraint

χT C = χ† γ0 , (2.3)

which reduces indeed to a reality condition for the components of χ whenever the charge-

conjugation matrix C is chosen to be equal to γ0. In any other case, (2.3) plays only the

formal role of a reality condition without being it in a strict sense.

In general, whenever one decomposes a Dirac spinor χ in terms of its chiral components,

these will violate the Majorana condition (2.3). Nevertheless, there are some special

cases in which the conditions (2.2) and (2.3) can be satisfied simultaneously by some

irreducible spinors having only 2〚D/2〛−1 real independent components. These spinors are

called Majorana-Weyl (MW) spinors.

The complete details about spinors in various spacetime dimensions and signatures

have been worked out in large detail in ref. [36]. For the sake of simplicity, we refrain from

the full discussion and summarise some relevant information in table 2.1.

D (mod 8) Spinor irrep’s Real components

1, 3 M 2(D−1)/2

2 MW 2D/2−1

4, 8 M 2D/2

5, 7 D 2(D+1)/2

6 W 2D/2

Table 2.1: The different irreducible spinors in various dimensions, but always with one

single time direction. D stands for ’Dirac’, M stands for ’Majorana’, W for ’Weyl’ and

MW for ’Majorana-Weyl’ spinors.

In a theory, the amount of supercharges has to be a multiple N of the number of real

components of an irreducible spinor in D dimensions1. The supercharges are then objects

of the form Qiα, where i = 1, . . . ,N and α is an irreducible spinor index.

1This is required by Lorentz invariance, since the components of an irreducible spinor all transform into

each other under an SO(1, D − 1) transformation.
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Each supercharge relates two fields whose helicity differs by 1
2 , thus filling the so-called

supermultiplets (representations of supersymmetry) with fields of increasing helicity. Be-

cause of this, there is an upper bound [37] on the maximal number of supercharges that a

theory can have if we do not want our supermultiplets to contain fields with spin higher

than two. This requirement is related to the difficulties encountered in constructing an

interacting Lagrangian for higher-spin particles even at a classical level2. In particular,

in theories with global supersymmetry, one cannot have more than 16 supercharges in

the game in order to avoid gravitational degrees of freedom which would require gauged

supersymmetry. In theories with local supersymmetry (supergravities), one is allowed to

include up to spin 2 degrees of freedom. This enhances the maximal amount of super-

charges to 32. We will refer to these theories as maximal supergravities. We would like

to stress that this general analysis can be done by discarding the possibility of including

higher-spin fields in the theory. However, the study of the dynamics of higher-spin fields

has been studied over the years in the literature [38–41] and it has recently received new

attention [42–46].

Summarising, the introduction of supersymmetry provides a unification of spacetime

and internal symmetries by promoting ordinary Lie algebras to superalgebras [47], objects

in which the supercharges Qiα appear as fermionic generators. A superalgebra S is defined

as follows:

S is a graded vector space, i.e. it admits a map

gr : S −→ Z2 , (2.4)

which decomposes S into S(0) ⊕ S(1) such that

gr(B) = 0 mod 2 , ∀B ∈ S(0) ,

gr(F ) = 1 mod 2 , ∀F ∈ S(1) ,
(2.5)

which define bosonic (B) and fermionic (F ) generators respectively,

there exists a bilinear and supercommutative internal composition law { , ]

{A, B] = (−1)1+gr(A)gr(B) {B, A] , (2.6)

such that

• { , ] is additive with respect to gr,

gr({A, B]) = gr(A) + gr(B) , (2.7)

• the super-Jacobi identities are satisfied for any A, B, C ∈ S,

(−1)1+gr(A)gr(C)
{
{A, B], C

]
+ (cyclic perm.) = 0 . (2.8)

2This statement refers to the assumption of higher-spin fields in a Minkowski background.
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A classification of superalgebras can be found in ref. [48]; among the physically relevant

superalgebras we find e.g. the orthosymplectic superalgebra Osp(4|N ) [49], which has

as bosonic Lie algebra SO(3, 2)× SO(N ) and corresponds to the AdS superalgebra. An-

other important superalgebra is the superconfromal one SU(2, 2|N ), having as Lie algebra

SO(4, 2)×SU(N )×U(1).

Basically, a superalgebra defines an extension of an ordinary Lie algebra generated by a

set of bosonic generators by the addition of a set of fermionic generators, for which the com-

mutation relations with the bosonic symmetries and the anti-commutation relations among

themselves are specified. Together with this ’fermionic’ extension, a superalgebra includes

a new bosonic symmetry called R-symmetry, which is defined as the largest subgroup of

the automorphism group of the supersymmetry algebra that commutes with Lorentz trans-

formations. Therefore, R-symmetry transforms the internal index i = 1, . . . ,N carried by

the supercharges. For more details about the origin of supersymmetry and superalgebras

we refer to [50].

The Different Supermultiplets

In any supersymmetric theory, all the fields must be arranged into supermultiplets,

which are representations of supersymmetry grouping together all the different degrees of

freedom that are related to each other by supersymmetry (i.e. superpartners). A possible

approach to construct different supermultiplets is that of using the superfield formal-

ism. Superfields are objects defined on the so-called superspace, which is an extension

of ordinary spacetime obtained by supplementing it with a number of Grassmann (i.e.

anticommuting) coordinates depending on the value of N . However, we are not going to

discuss this approach here in detail. The most common supermultiplets encountered in

supergravity are

Gravity multiplets: It is the minimal multiplet containing the graviton. It con-

tains all the fields that represent the supersymmetry algebra on-shell. The explicit

field content of these multiplets is given in table 2.2 for D = 4.

Vector multiplets: These multiplets contain only states with spin up to 1 and

they exist only for N ≤ 4. As it happens in type I string theory, the gauge fields of

these multiplets can gauge an extra Yang-Mills-like group which is not part of the

superalgebra. The explicit field content of these multiplets is given in table 2.3 for

D = 4.

Chiral multiplets: These are multiplets which only contain states with spin 0

and 1/2. In four dimensions, they only exist in N = 1 theories. Supersymmetry

requires the scalars to span a Kähler-Hodge manifold, as we will see in more detail in

section 2.4. The field content of chiral multiplets in D = 4 is presented in table 2.4

together with that one of hypermultiplets.
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field s N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 8

gµν 2 1 1 1 1 1 1 1

ψµ
3
2 1 2 3 4 5 6 8

Aµ 1 1 3 6 10 16 28

λ 1
2 1 4 11 26 56

φ 0 2 10 30 70

Table 2.2: The field content of the gravity multiplets in D = 4 for the various supergravity

theories with different values of N . The number of on-shell degrees of freedom are to be

multiplied by 2 for every state with s > 0. Please note that the N = 7 analysis gives the

same field content as in the N = 8 case. Adapted from ref. [51].

field s N = 1 N = 2 N = 4

Aµ 1 1 1 1

λ 1
2 1 2 4

φ 0 2 6

Table 2.3: The field content of the vector multiplets in D = 4 for the various supergravity

theories with different values of N . The number of on-shell degrees of freedom are to be

multiplied by 2 for every state with s > 0. Please note that the N = 3 analysis gives the

same field content as in the N = 4 case. Adapted from ref. [51].

Hypermultiplets: They are the analog of chiral multiplets for N = 2 theories and

they also only contain states with spin 0 and 1/2. N = 2 supersymmetry restricts

the scalar to span a so-called Quaternionic Kähler (QK) manifold.

field s N = 1 N = 2

λ 1
2 1 2

φ 0 2 4

Table 2.4: The field content of chiral (N = 1) and hypermultiplets (N = 2) in D = 4.

The number of on-shell degrees of freedom are to be multiplied by 2 for every state with

s > 0. Adapted from ref. [51].

Tensor multiplets: These multiplets include the presence of antisymmetric tensors

Tµν . However, in dimensions four and five, such tensors can be dualised to scalars
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and vectors respectively3. In D = 6, instead they can have (anti-)selfduality prop-

erties and hence tensor multiplets have a completely new physical content. Tensor

multiplets can appear in D = 6 N = (2, 0) supergravity (iib) (see table 2.5).

Generically, supersymmetry is realised on-shell (i.e. only when the equations of motion

are satisfied), in the sense that the supersymmetry algebra closes only up to terms which

are zero when evaluated at a solution of the equations of motion. In order to construct

an off-shell realisation of supersymmetry, one typically needs to introduce a bunch of

auxiliary fields whose variation under supersymmetry transformations precisely cancels

the contributions coming from other fields which prevent the superalgebra from closing

off-shell. These auxiliary fields are, however, non-dynamical since there is no kinetic

term associated to them in the Lagrangian. Besides, they are very difficult to interpret

physically since their dimensionality is larger than (D − 1)/2.

Once the field content of a supersymmetric theory is determined, the following theorem

always turns out to hold:

The number of fermionic degrees of freedom always matches the number of bosonic ones

in any realisation of supersymmetry whenever the right-hand side of the anticommutation

relation between two supersymmetries is an invertible operator.

This relation between bosonic and fermionic degrees of freedom is exactly what makes

a supersymmetric theory much more constrained on the one hand, but, on the other hand,

much better-behaved in the UV, since there are certain physical quantities computable

from the theory which are protected by supersymmetry.

2.2. Ungauged Supergravities

A relativistic gravity theory in 1 + 3 dimensions such as Einstein’s general relativity

(GR) describes all the objects as sources of the energy-momentum tensor curving spacetime

around them, thus rendering gravity a geometric effect. However, one can always describe

spacetime by means of a so-called locally inertial frame, in which spacetime looks locally

flat and it is only when moving away from a given point that one can see the spacetime

curvature as an effect of gravitational interaction. This locally inertial frame corresponds

to the choice of a certain tetrad (i.e. vierbien) eµ
a which can be arbitrarily rotated at

every point and is subject to local diffeomorphisms.

This manifestly shows that GR is invariant under local Lorentz transformations and

translations; these objects generate the Poincaré algebra iso(1, 3)

[Mµν ,M
ρσ] = −2 δ

[ρ
[µMν]

σ] , [Pµ,Mνρ] = ηµ[ν Pρ] , [Pµ, Pν ] = 0 , (2.9)

3We would like to stress that, inD = 5, the presence of 2-forms still causes important physical differences

in the gauged theory (see the line referring to D = 5 in table 2.7).
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where Mµν = M[µν] represent the SO(1, 3) Lorentz generators, Pµ denote spacetime trans-

lations and all the spacetime indices can be raised and lowered by using the metric η.

GR can be obtained in a very elegant way by gauging the Poincaré algebra [52,53] given

above, where the vierbein eµ
a and the spin connection ωµ

ab are regarded as independent

gauge fields. This construction is called first order formalism [54] and in general it gives

rise to a description of gravity with torsion. This formalism turns out to play an important

role in supergravity, in that the fermionic fields induce a torsion as a consequence of the

equations of motion.

Supergravities in various dimensions are supersymmetric extensions of GR. Their local

symmetries are certain superalgebras extending the bosonic spacetime symmetries, e.g. the

super-Poincaré algebra, which reads

[Mµν , M
ρσ] = −2 δ

[ρ
[µMν]

σ] , [Pµ, Mνρ] = ηµ[ν Pρ] , [Pµ, Pν ] = 0 ,[
Mµν , Q

i
α

]
= −1

4 (γµν)α
β Qiβ ,

[
Pµ, Q

i
α

]
= 0 ,

{
Qiα, Q

j
β

}
=
(
γµ C−1

)
αβ

Pµ δ
ij ,

(2.10)

where i, j = 1, . . . N run over the number of supersymmetries. Since Majorana spinors

in 1 + 3 dimensions have 4 independent real components, the maximal theory corresponds

to N = 8. In the rest of the thesis, we shall refer to the case N = 1 in four dimensions

as minimal supersymmetry, whereas any other case with N > 1 will be called extended

supersymmetry.

Other superalgebras called superconformal are obtained by performing the same super-

symmetric extension of SO(2, d) algebras, which describe the symmetries of a conformal

field theory (CFT) in d dimensions. Superconformal algebras have been used in the past in

order to construct supergravity theories in different dimensions and with different amounts

of supersymmetry. See for instance refs [55,56] for the construction of minimal supergrav-

ity in four dimensions and refs [57,58] for the case of extended supergravities. Furthermore,

the reader can find the topic presented in a more pedagogical approach in ref. [59]. We

would like to stress that so far superconformal algebras have been used merely as a tool

for constructing supergravities and, even though there are some indications that they

might play a more fundamental role (e.g. in the context of supersymmetric charged black

holes [60]), their relevance in supergravity still remains unclear.

The Different Supergravity Theories

In section 2.1 we showed the different irreducible spinors in various dimensions and we

also presented a bound on the total number of supercharges that a supergravity theory

can have. If we combine these two pieces of information, we are able to see which are

the values of N which are possible for different values of D. Given N > 1, according

to whether chirality is defined in D dimensions, one might have different possibilities

in the choice for the chirality of the different supersymmetry generators (see e.g. the
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case of N = 2 supergravities in D = 10 → IIA and IIB). This gives rise to the ’zoo’ of

all possible supergravity theories in various dimensions. The different supergravities for

different values of D are summarised in table 2.5.

Theories with 32 supercharges are often called maximal supergravities, whereas those

ones with 16 are called half-maximal supergravities. N = 1 theories in any D are of-

ten referred to as minimal supergravities, but the corresponding number of supercharges

increases with D, up to D = 11 where the minimal and the maximal theory coincide.

More details about the possible supergravities in different dimensions can be found in

refs [61–65].

D Supergravities (N ) N◦ of supercharges

11 1 32

10 (1, 0) ≡ I , (1, 1) ≡ IIA , (2, 0) ≡ IIB 16, 32, 32

9, 8, 7 1, 2 16, 32

6
(1, 0) ≡ i , (1, 1) ≡ iia , (2, 0) ≡ iib

(2, 1) , (3, 0)∗ , (2, 2) , (3, 1)∗ , (4, 0)∗
8, 16, 16

24, 24∗, 32, 32∗, 32∗

5 1, 2, 3, 4 8, 16, 24, 32

4 1, 2, 3, 4, 5, 6, 8 4, 8, 12, 16, 20, 24, 32

Table 2.5: The possible supergravities in different dimensions labelled by the number N
of supersymmetries. Theories with 16 or more supercharges can have different gaugings.

Theories with up to 16 supercharges can be coupled to matter multiplets (vector, tensor or

hypermultiplets, depending on the case). Please note that the theories in D = 6 marked

with a ∗ [66, 67] cannot be constructed in terms of a metric tensor but, instead, in terms

of a more complicated irrep of the Poincaré group. So, strictly speaking, they are not

supergravity theories.

In section 1, we have mentioned that supergravity theories emerge as low energy effect-

ive descriptions of string and M-theory. Given this as a starting point, the most natural

question that one can ask after looking at table 2.5 is whether all the aforementioned

supergravities have their origin from string theory. This issue goes under the name of

universality of supergravities and it has been discussed from different perspectives in the

literature.

Starting from D = 11, we see that there a unique supergravity theory and it corres-

ponds exactly with the low energy limit of M-theory. In D = 10, there are two inequivalent

maximal supergravities, i.e. type IIA and type IIB which are in perfect agreement with

the corresponding superstring theories discussed in section 1.2. As for N = 1, there is

a unique possibility, even though we have not yet specified the possible 496-dimensional

gauge groups. Recently [68] it has been proven that the only consistent (i.e. anomaly
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free) gaugings at a quantum level are E8×E8 and SO(32), which exactly match the two

possible heterotic string theories.

Unfortunately, we are still unable to complete the picture: the more we go down with D

and N , the more possibilities open up and it is not obvious how to generate all the lower-N
supergravities from some dimensional reduction of string theory. There are some cases in

which this uplift still remains an open problem. For example, the N = (1, 0) supergravity

in D = 6 with gauge group E6×E7×U(1)R, for which still no link with string theory is

known. However, still in D = 6, there have been interesting recent developments in the

context of universality [69].

One of the main goals of the present work is address the problem of universality in the

context of gauged half-maximal and maximal supergravities in various dimensions. This

issue will be analysed mainly in section 4, even though other chapters contain sections

which are not completely unrelated to it.

The Scalar Cosets G0/H in Extended Supergravities

For the main purpose of this work, let us concentrate on half-maximal and maximal

supergravities. The fields of these supergravity theories transform in certain irrep’s of

the global symmetry group G0. In particular, the scalars span the adjoint representation

of G0; however, all the scalar modes corresponding to compact G0 generators are not

physical, in the sense that they can always be rotated away. As a result, the physical

degrees of freedom span a coset G0/H, where H is the maximal compact subgroup of G0.

Therefore, the scalars can be represented by a vielbein V which transforms under global

G0 transformations from the left and local H transformations from the right

V −→ LV h(x) , (2.11)

where L ∈ G0 and h(x) ∈ H. The role of the vielbein V is going to be crucial both in the

ungauged and in the gauged theory in order to construct couplings between p-form gauge

fields and fermions. This is due to the fact that fermions only transform with respect to

H but not with respect to G0 and hence one needs the scalar coset representative V to

mediate all the interactions between fermions and bosons by converting local H indices

into global G0 ones and vice versa.

The total number of physical scalars is then equal to the dimension of the coset space

G0/H. In every D, these numbers are presented in table 2.6 and 2.7 of section 2.3. These

scalars are divided into dilatons and axions. The number of dilatons can be easily derived

from the eleven-dimensional origin; after a reduction 11 → D = 11− d, one has a dilaton

for any reduced dimension, thus d in total. This exactly corresponds to the number of

Cartan generators inside G0 (the rank of g0). All the other scalars are axions and their

number turns out to be equal to the number of positive roots of G0.
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As the above analysis shows, the global symmetry group G0 is generally bigger than

simply SL(d), which is what the eleven-dimensional origin of maximal supergravities would

suggest. This is the reason why historically G0 was called ’hidden symmetry’ [70,71]. Nev-

ertheless, quite recently a new formalism has been developed which allows us to understand

this hidden symmetry from Kac-Moody algebras. When compactifying eleven-dimensional

supergravity on a T 11, one finds a duality symmetry described by the infinite-dimensional

algebra E11 = E+++
8 . A non-linear realisation of E11 was conjectured in ref. [72] to de-

scribe an extension of eleven-dimensional supergravity. Subsequently, in ref. [73], non-

linear realisations of E11 were also shown to give rise to extensions of type IIA and type

IIB supergravity. In general, the duality group of maximal supergravity in D dimensions

comes from the decomposition of E11 [74] into AD−1 × GD

GD︸ ︷︷ ︸
duality group

× AD−1︸ ︷︷ ︸
gravity line

, (2.12)

where AD−1 = SL(D) represents the diffeomorphism group in D dimensions (i.e. space-

time symmetry) and GD is such that the product AD−1 × GD is a maximal subgroup of

E11 and it represents the duality group of maximal supergravity in D dimensions. Further

work in the same line was done in refs [75–77].

This construction can be reproduced in the context of half-maximal supergravities [78]

by using different Kac-Moody decompositions. The first example is the rank-11 algebra

D+++
8 , which works in the case of 10−D vector multiplets; in other cases, different Kac-

Moody algebras have been used (see e.g. B+++
7 and B+++

8 in ref. [78]). The Kac-Moody

approach to (half-)maximal supergravities consists then in disintegrating the preferred

Kac-Moody algebra into the gravity line (AD−1) times the duality group. In this way,

the full spectrum of the theory and its deformations can be determined. The general idea

is sketched in the examples in figures 2.1 and 2.2. More details on this approach can be

found in ref. [79]. For similar analyses in theories with 8 supercharges see ref. [80,81]. We

Figure 2.1: Decomposition of E11 in terms of (A1 ×A2) × A7. All the black nodes neigh-

bouring the gravity line are disabled and the cyan nodes represent the duality symmetry of

the maximal theory in eight dimensions.

have briefly presented the Kac-Moody approach as a valid method for deriving the duality

symmetries, the spectra and the consistent deformations of extended supergravities, but

we would like to stress that it still remains unclear whether Kac-Moody symmetries play

a more fundamental role in supergravities and string theory. The case of E11 has recently
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Figure 2.2: Decomposition of D+++
8 in terms of (A1 × A1) × A7. Again, all the black

nodes neighbouring the gravity line are disabled and the cyan nodes represent the duality

symmetry of the half-maximal theory in eight dimensions.

received a lot of attention in the literature [82–85], but there is still no final answer to the

question whether E11 can provide an organising principle for understanding the symmetries

of eleven-dimensional supergravity.

Maximal Supergravities in D = 11

In D = 11, a Majorana spinor has 32 real components and hence the only possible

supersymmetric theory that one can have is maximal supergravity, which, in this case,

corresponds to N = 1. Maximal supersymmetry restricts the field content to one massless

supermultiplet, i.e. the gravity multiplet. These massless degrees of freedom are classified

in terms of SO(9) irrep’s, where SO(9) is the little group. They are divided into

D = 11 : (44 ⊕ 84)B ⊕ (128)F ↔ {eµa, Cµνρ; ψµ} , (2.13)

which represent the vielbein, a 3-form gauge potential and a Majorana gravitino respect-

ively. The full action reads [86]

S =
1

2κ2

∫
d11x e

[
eaµ ebν Rµνab(ω) − ψµ γ

µνρDν

(
1

2
(ω + ω̌)

)
ψρ −

1

24
Gµνρσ Gµνρσ

−
√

2

192
ψν

(
γαβγδνρ + 12 γαβ gγν gδρ

)
ψρ
(
Gαβγδ + Ǧαβγδ

)
− 2

√
2

(144)2
e−1 εα

′β′γ′δ′αβγδµνρGα′β′γ′δ′ Gαβγδ Cµνρ

]
, (2.14)

where

ωµab = ωµab(e) + Kµab ,

ω̌µab = ωµab(e) −
1

4

(
ψµ γb ψa − ψa γµ ψb + ψb γa ψµ

)
,

Kµab = − 1

4

(
ψµ γb ψa − ψa γµ ψb + ψb γa ψµ

)
+

1

8
ψν γ

νρ
µab ψρ ,

Ǧµνρσ = 4 ∂[µCνρσ] +
3

2

√
2ψ[µ γνρ ψσ] , (2.15)

and the covariant derivative D acts on spinors as usual Dνψρ ≡ ∂νψρ + 1
4 ωνab γ

ab ψρ .
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This theory has an on-shell R+ symmetry acting as

gµν → λ2 gµν , Cµνρ → λ3Cµνρ , ψµ → λ1/2 ψµ , (2.16)

where λ ∈ R+. However, the Lagrangian (2.14) has a non-trivial weight under the

rescaling (2.16). This implies that this R+ cannot be promoted to an off-shell symmetry.

Such a symmetry is often referred to in the literature as trombone symmetry [87]. The

presence of the trombone symmetry is a general feature of all ungauged supergravities in

any D.

Maximal Supergravities in D = 10

In D = 10 with one time direction, MW fermions are the irreducible spinors. The max-

imal theories correspond to N = 2; since the two supersymmetry generators in the theory

are real and chiral, there are two discrete inequivalent possibilities (see also table 2.5):

N = (1, 1) (opposite chiralities) and N = (2, 0) (same chirality). These correspond to

type IIA and type IIB respectively. The consistence of the corresponding superalgebra in

IIA and IIB implies the possibility of extension by including gauge symmetries of different

rank. This translates into the fact that the two inequivalent supergravities have different

types of gauge fields.

In this subsection we will explicitly follow the conventions of ref [88]. Again because

of maximal supersymmetry, only the gravity multiplet is allowed; its on-shell degrees of

freedom rearranged in terms of SO(8) irrep’s read

IIA :
(
(1 ⊕ 28 ⊕ 35V) ⊕ (8V ⊕ 56V)

)
B
⊕
(
(8S ⊕ 56S) ⊕ (8C ⊕ 56C)

)
F
,

IIB :
(
(1 ⊕ 28 ⊕ 35V) ⊕ (1 ⊕ 28 ⊕ 35C)

)
B
⊕
(
2 · (8S ⊕ 56S)

)
F
.

(2.17)

The degrees of freedom in (2.17) can be translated into the following field contents

IIA :
{
gµν , Bµν , φ, C

(1)
µ , C

(3)
µνρ; ψµ, χ

}
,

IIB :
{
gµν , Bµν , φ, C

(0), C
(2)
µν , C

(4)
µνρσ|SD; ψµ, χ

}
,

(2.18)

where the subscript SD on C(4) stands for self-dual and the fermions ψµ and χ are chosen

in IIA to be real and containg two irreducible spinors of both chiralities, whereas in IIB,

they are complex and containg two irreducible spinors of only one chirality.

After introducing the modified field strenghts for the p-form potentials

G(d+1) ≡ dC(d) − dB ∧ C(d−2) , (2.19)

one can define the duality relation between a (d+ 1)-form and a (9− d)-form

?G(9−d) = (−1)(d+1)/2 e(4−d)φ/2G(d+1) , (2.20)

which turns out to give rise to a self-duality (SD) condition for G(5), which is the field

strength of C(4) appearing in (2.18).
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The bosonic part of the Lagrangian of type IIA supergravity reads

LIIA =
√−g

[
R − 1

2
(∂φ)2 − 1

2
e−φ |H|2 − 1

2

∑
d=1,3

e(4−d)φ/2 |G(d+1)|2

− 1

2
?
(
dC(3) ∧ dC(3) ∧ B

)]
, (2.21)

where H is the field strength associated to the NS-NS 2-form B. Type IIA supergravity

has two different R+ symmetries: the first one is the trombone symmetry, analog to the

one already encountered in D = 11, whereas the second one is a proper symmetry of the

Lagrangian and it acts on the fields in the following way

eφ → λ eφ , B → λ1/2B , C(1) → λ1/2C(1) , C(3) → λ−1/4C(3) , (2.22)

and leaves the rest of the fields invariant.

The bosonic part of the Lagrangian of type IIB supergravity reads

LIIB =
√−g

[
R − 1

2
(∂φ)2 − 1

2
e−φ |H|2 − 1

2

∑
d=0,2,4

e(4−d)φ/2 |G(d+1)|2

− 1

2
?
(
C(4) ∧ dC(2) ∧ B

)]
, (2.23)

which has to be supplemented by the SD condition for G(5). Since there is no way of

having an off-shell formulation of type IIB supergravity which already takes this condition

into account, (2.23) defines what is often called a pseudo-action. Type IIB supergravity

has two different symmetries: a trombone symmetry (which is, as always, only realised

on-shell) and an SL(2) symmetry. Any element

Λαβ ≡
(
a b

c d

)
∈ SL(2) (2.24)

acts on the fields in the second row of (2.18) in the following way

τ → a τ + b

c τ + d
, Bα →

(
Λ−1

)
β

α
Bβ , C(4) → C(4) ,

ψµ →
(
c τ∗ + d

c τ + d

)1/4

ψµ , χ →
(
c τ∗ + d

c τ + d

)3/4

χ ,

where, for convenience, we have defined τ ≡ C(0) + i e−φ and Bα ≡
(
−B, C(2)

)
. In

ref. [89] the SL(2) covariant reformulation of type IIB supergravity can be found. Type

IIB string theory breaks SL(2) into its discrete subgroup SL(2,Z). This group contains the

so-called S-duality transformation which flips the sign of the dilaton φ in a background

with vanishing axion C(0). Because of its very definition, S-duality turns out to be a

non-perturbative duality relating the strong- and weak-coupling regimes.
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2.3. The Embedding Tensor Formalism

Any ungauged supergravity in any dimension can be deformed (i.e. gauged) by pro-

moting a certain subgroup of its global bosonic symmetry to a local one. In the last decade,

a very powerful formalism has been developed in the context of extended supergravities in

order to give an exhaustive formulation of the consistent gaugings of supergravity. This is

called embedding tensor formalism [90–92]. In this section we will briefly present a general

discussion in the case of (half-)maximal supergravities in various dimensions; for more

details on this part, we refer to [93]. An analogous formalism may be developed also in

the minimally extended case (i.e. N = 2 in four dimensions, see for instance ref. [94]),

but this goes beyond the aim of this thesis.

The global symmetry group of the (half-)maximal theory, which is fixed by supersym-

metry4, turns out to rigidly determine and organise all the possible deformations, which

can therefore be described in a universal covariant formulation. As we will see later on

more explicitly, the global symmetries of these theories can be interpreted as the remnant

of dualities relating the different string theories from which they originate.

From now on, we will denote the global symmetry group of our ungauged supergravity

theory by G0. The gauging procedure promotes a subgroup G ⊂ G0 to a local symmetry.

This procedure breaks the symmetry of the gauged theory from G0 to G. However, there

is a way of promoting the structure constant of the gauge algebra to an embedding tensor

Θ which transforms under the full G0. To summarise this point, as long as one considers

Θ as a tensor, the full G0 covariance of the theory is recovered.

After gauging G, one needs to introduce minimal couplings of the vector gauge fields

in order to preserve gauge invariance. This implies replacing ordinary derivatives ∂µ

with covariant ones Dµ in the Lagrangian. The algebra g0 = lie(G0) is generated by

{tα}α=1,...,dim(g0), where α is an adjoint index. They satisfy

[tα, tβ] = fαβ
γ tγ . (2.25)

Let us denote by V the representation in which the vectors Aµ
M of the theory in exam

transform (for examples see tables 2.6 and 2.7). These vectors will now transform under

both global G0 transformations Lα and local G transformations ΛM (x)

δLAµ
M = −Lα [tα]N

M Aµ
N , δΛAµ

M = ∂µΛM . (2.26)

In order to construct the covariant derivative Dµ we need to relate indices of V (M,N, . . . )

to adjoint indices (α, β, . . . ); this will allow us to write down a minimal coupling for the

vector gauge fields. This is explicitly done by a linear map

Θ : V −→ g0 , (2.27)

4Actually, in the half-maximal case, it is only fixed after choosing the number of vector multiplets

n that one wants to couple to gravity, whereas in the maximal theory it is really fixed since maximal

supersymmetry does not allow for extra matter content.
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called embedding tensor which precisely specifies how the vectors enter the gauging pro-

cedure, hence completely specifying the gauged theory. The map defined in (2.27) allows

us to write down the gauge-covariant derivative as

Dµ = ∂µ − g Aµ
M ΘM

α tα , (2.28)

where g denotes the gauge coupling.

The embedding tensor Θ also explicitly specifies the generators XM of the gauge group

XM = ΘM
α tα . (2.29)

As a consequence of (2.27), the embedding tensor will in general transform in the tensor

product between the conjugate representation of V (which we will denote by V ′) and

the adjoint representation g0 of G0. This will in general contain several irrep’s θi, with

i = 1, . . . n

Θ ∈ V ′ ⊗ g0 = θ1 ⊕ θ2 ⊕ · · · ⊕ θn . (2.30)

However, consistency and supersymmetry restrict Θ to only live in a subset of all the

possible irrep’s in the r.h.s. of (2.30). This goes under the name of linear constraint (LC);

the procedure of imposing the LC can be regarded as projecting out all the embedding

tensor irrep’s which are forbidden by consistency. It is worth mentioning that, after

imposing gauge invariance of the vectors and the higher-rank tensor fields, supersymmetry

will in general still impose further restrictions. This is why it is normally stated that the

LC is eventually demanded by supersymmetry, even though we would like to stress that,

except for very few counterexamples, bosonic consistency already requires the LC in most

of the cases5. The set of consistent deformations of (half-)maximal supergravities in various

dimensions is shown in tables 2.6 and 2.7.

Gauge transformations Λ act in the following way on Θ

δΛΘN
α = gΛM ΘM

β
(

[tβ]N
P ΘP

α − fβγ
α ΘN

γ
)
. (2.31)

Requiring gauge invariance of the embedding tensor implies a set of quadratic constraints

(QC) which are then needed for consistency. These QC can be rewritten in terms of the

gauge generators (XM )N
P ≡ XMN

P expressed in the V representation. This yields

[XM , XN ] = −XMN
P XP , (2.32)

which translates immediately into the closure of the gauge algebra. This set of QC (2.32)

contains both a symmetric and an antisymmetric part in M ↔ N , which are respectively

interpreted as a condition imposing the antisymmetry of the brackets and the Jacobi

identities. We would like to stress that the tensor XMN
P representing the generalised

structure constants of the gauge group is in general not antisymmetric in M ↔ N and,

5In any case, the reason why this turns out to be the generic situation still remains obscure.
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D G0 H # scalars vectors Θ

9 R+×SL(2) SO(2) 3 1(+4) ⊕ 2(−3) 2(+3) ⊕ 3(−4)

8 SL(2)×SL(3) SO(2)×SO(3) 7 (2, 3′) (2, 3) ⊕ (2, 6′)

7 SL(5) SO(5) 14 10′ 15 ⊕ 40′

6 SO(5, 5) SO(5)×SO(5) 25 16 144

5 E6(6) USp(8) 42 27′ 351

4 E7(7) SU(8) 70 56 912

Table 2.6: Summary of some important facts about maximal gauged supergravities in vari-

ous D. As one can see here, the number of physical scalar degrees of freedom and the

number of embedding tensor components increase rather fast when moving to lower di-

mensions.

D G0 H # scalars vectors Θ

9 R+×SO(1, n) SO(n) 1 + n (1+n)(+1) ⊕

8 R+×SO(2, n) SO(2)×SO(n) 1 + 2n (2+n)(+1) ⊕

7 R+×SO(3, n) SO(3)×SO(n) 1 + 3n (3+n)(+1) 1 ⊕ ⊕

6a R+×SO(4, n) SO(4)×SO(n) 1 + 4n (4+n)(+1) ⊕

6b SO(5, n) SO(5)×SO(n) 5n none none

5 R+×SO(5, n) SO(5)×SO(n) 1 + 5n (5+n)(+1) ⊕ 1(−2) ⊕ ⊕

4 SL(2)×SO(6, n) SO(2)× SO(6)×SO(n) 2 + 6n (2, 6+n) (2, ) ⊕
(
2,

)

Table 2.7: Summary of some important facts about half-maximal gauged supergravities in

various D. The free parameter n represents the number of extra vector multiplets that can

be coupled to the gravity sector. Only in the case D = 6b the theory does not contain any

vectors; in this case n represents the number of self-dual tensor multiplets.

indeed, consistency only requires that X(MN)
P is killed whenever contracted with XP .

Precisely because of this, the embedding tensor formulation of a gauged supergravity

requires the introduction of higher-rank form potentials in the theory.

Any embedding tensor configuration Θ satisfying the LC and QC, i.e. schematically

P1(Θ) = 0 (LC) , (2.33)

P2(Θ⊗Θ) = 0 (QC) , (2.34)

defines a consistent gauged theory, where, in (2.33) and (2.34), P1 and P2 represent suitable

projectors selecting the forbidden linear and quadratic irreducible pieces that Θ could in
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principle generate.

In many explicit cases in various D, gauged supergravities have been worked out in

detail in the literature by making use of the embedding tensor formalism. For further

details on this topic, we want to refer to [92, 95–99] and [100] for gauged maximal and

half-maximal supergravities respectively.

Fermions and Supersymmetry

So far we have seen that the ungauged theory defines how deformation parameters

modify the terms in the Lagrangian for p-form potentials in order for the gauged action to

be gauge-invariant. This is basically done by means of the minimal substitution ∂ → D

and by defining gauge-covariant field strenghts. Nevertheless, this does not yet guarantee

invariance under supersymmetry.

The aim of this section is to understand how to deform the Lagrangian in order to ob-

tain a well-defined, gauge-invariant action which, on top of this, preserves supersymmetry.

We shall see that the addition of couplings between the fermions and a scalar potential,

both driven by the embedding tensor, together with an extra gauge-covariant topological

term, restores supersymmetry. As a consequence, one also needs to modify the supersym-

metry transformations for the fermions and therefore the Killing spinor equations.

Lgauged = Lungauged[∂ → D] + Ltop + Lfermi mass + Lpot . (2.35)

We already saw that scalars in (half-)maximal supergravities span the coset geometry

G0/H, where G0 is the global symmetry group and H its maximal compact subgroup.

All the fermions only tranform non-trivially under local H transformations and, as we

already observed in section 2.2, the scalar coset representative V needs to mediate all the

interactions with the p-forms. Moreover, in the gauged theory, V is also needed in order

to couple the fermions to the embedding tensor.

In particular, the fermions always transform under the R-symmetry (see def. in sec-

tion 2.1) group, which is in general only a subgroup of H. It only coincides with the full

H in maximal theories, whereas in half-maximal theories it is strictly a proper subgroup

of H. The gravity multiplet contains two different types of fermions: the gravitino ψµ

(helicity 3/2) and the dilatino χ (helicity 1/2). The inclusion of n extra vector multiplets

(only possible in the half-maximal case): the gaugino λ (again helicity 1/2). The way

these different fermions transform with respect to H is given in tables 2.8 and 2.9. Let

us now examine the term Lfermi mass in (2.35) in the simpler case of maximal supergravit-

ies6. By fermionic mass terms we mean bilinear couplings between the fermions without

6The maximal case is simpler because H = HR. In half-maximal theories, H = HR×SO(n) and

fermions in the gravity multiplet (ψµ and χ) are SO(n) singlets. The gaugini λ, instead, transform non-

trivially under SO(n) and one must introduce new fermionic couplings (giving rise to new T -tensor irrep’s)

which transform non-trivially under SO(n) as well.
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D H HR ψµ irrep’s χ irrep’s

9 SO(2) U(1) 1(+1) ⊕ 1(−1) 2 · 1(+1) ⊕ 2 · 1(−1)

8 SO(2)×SO(3) U(2) 2(+1) ⊕ 2(−1) 2(+1) ⊕ 2(−1) ⊕ 4(+3) ⊕ 4(−3)

7 SO(5) USp(4) 4 16

6 SO(5)×SO(5) USp(4)×USp(4) (1, 4) ⊕ (4, 1) (5, 4) ⊕ (4, 5)

5 USp(8) USp(8) 8 48

4 SU(8) SU(8) 8 ⊕ 8 56 ⊕ 56

Table 2.8: R-symmetry groups of the various maximal supergravities in D > 3. The

different fermions’ irrep’s are given with respect to HR.

D H HR ψµ irrep’s χ irrep’s λ irrep’s

9 SO(n) none

8 SO(2)×SO(n) U(1) 1(+1) ⊕ 1(−1) 1(+1) ⊕ 1(−1) 1(+1) ⊕ 1(−1)

7 SO(3)×SO(n) SU(2) 2 2 2

6 SO(4)×SO(n) SU(2)×SU(2) (2, 1) ⊕ (1, 2) (2, 1) ⊕ (1, 2) (2, 1) ⊕ (1, 2)

5 SO(5)×SO(n) USp(4) 4 4 4

4 SO(6)×SO(n) U(4) 4(+1) ⊕ 4(−1) 4(+1) ⊕ 4(−1) 4(+1) ⊕ 4(−1)

Table 2.9: R-symmetry groups of the various half-maximal supergravities in D > 3. The

different fermions’ irrep’s are given with respect to HR.

derivatives. These couplings, as we commented before, must be mediated by the scalar

fields through V. Schematically, they are the form

e−1 Lfermi mass = g
(
A1 ψµ γ

µν ψν + A2 χγ
µ ψµ + A3 χχ

)
+ h.c. , (2.36)

where e is the determinant of the spacetime vielbein, g the gauge coupling and A1, A2 and

A3 represent some tensors linear in the embedding tensor and depending on the scalars.

These objects are usually called fermionic shifts, for a reason which will become clear in

a moment.

Part of the terms in (2.36) are needed to cancel the supersymmetry variation of the

new couplings in the Lagrangian between the gauge fields. The rest of them, need a

modification of the Killing spinor equations induced by the gauging

(δ ψµ)gauged = (δ ψµ)ungauged + g A1 ε , (2.37)

(δ χ)gauged = (δ χ)ungauged + g A2 ε , (2.38)
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where ε parametrises a local supersymmetry transformation and A1 and A2 are the same

objects appearing in (2.36). As we already anticipated, the modification of (2.37) and

(2.38) implies the presence of a new potential term in (2.35) of the form

e−1 Lpot = −g2 V = 2 g2
(
|A1|2 − |A2|2

)
, (2.39)

where A1 and A2 depend on the scalars.

The T -tensor

In the last section we formally introduced the fermionic shifts A1, A2 and A3. We

already saw that these are certain combinations of the embedding tensor and scalars

which only transform with respect to local H transformations. These objects are obtained

from Θ by acting on any of its fundamental indices of G0 with V from the right. What

we then get is often called the T-tensor [101]. Group-theoretically, it corresponds with

the branching of the embedding tensor (G0) irrep’s with respect to its maximal compact

subgroup H:

Θ = θ1 ⊕ θ2 ⊕ · · · H ⊂G0−→ T = (t11 ⊕ t12 ⊕ · · · ) ⊕ (t21 ⊕ t22 ⊕ · · · ) ⊕ · · · . (2.40)

The irreducible components tij of the T -tensor are precisely the building-blocks of the

fermionic shifts. We will give the explicit construction in due course in the following

chapters whenever examining a specific theory in detail. For the moment we summarise

in table 2.10 the decomposition in T -tensor irrep’s in the case of maximal supergravities

in various dimensions.

D H = HR T -tensor irrep’s

9 U(1) 1(−2) ⊕ 1(−1) ⊕ 1(0) ⊕ 1(+1) ⊕ 1(+2)

8 U(1)×SU(2) 1(−1) ⊕ 1(+1) ⊕ 3(−1) ⊕ 3(+1) ⊕ 5(−1) ⊕ 5(+1)

7 USp(4) 1 ⊕ 5 ⊕ 14 ⊕ 35

6 USp(4)×USp(4) (4, 4) ⊕ (4, 16) ⊕ (16, 4)

5 USp(8) 36 ⊕ 315

4 SU(8) 36 ⊕ 36 ⊕ 420 ⊕ 420

Table 2.10: The irreducible components of the T -tensor in gauged maximal supergravities

in D > 3. These irrep’s contribute to the different fermionic quadratic couplings inside

Lfermi mass driven by A1, A2 and A3.

In general, we can say that the T -tensor analysis turns out to be very useful in order to

study the problem of the stabilisation of the scalars into a maximally symmetric vacuum
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and computing the mass spectra for the scalars at the critical points. This is related to the

fact that, for such an analysis, we need the formulation of the gauged supergravity theory

in exam in a specific point of moduli space (i.e. the scalar coset G0/H, in this case).

Whenever specifying the theory to a particular point, the full G0 covariance is broken to

its compact part H and hence the T -tensor becomes the natural object to use.

In this section, we hope to have covered some relevant generalities about the embedding

tensor and the T -tensor. The fact that the global symmetry group differs for any D implies

that the development of the formalism for a specific theory and the group-theoretical

analysis behind it needs a case-by-case study. In the following chapters, some specific

theories will be studied and examined in detail. This will allow us to use them for various

physical purposes.

2.4. Minimal D = 4 Supergravities and Deformations

In the previous sections we have introduced maximal supergravities in D = 10, 11 and

subsequently we have discussed the embedding tensor formalism as a tool for classifying

deformations of extended supergravities. In this section, we will now discuss minimal

supergravities in D = 4 and a particular set of deformations which will be relevant for us

later in this thesis.

The minimal amount of supercharges in four dimensions is 4, corresponding to N = 1

(see table 2.5). N = 1 supergravities in D = 4 have a universal part coming from the

gravity multiplet containing the graviton eµ
a and a Majorana gravitino ψµ. The universal

part of the action is made out of an Einstein term plus a Rarita-Schwinger term describing

the dynamics of a spin-3
2 particle coupled to gravity (see e.g. refs [51,102,103])

S =
1

2κ2

∫
d4x e

(
eaµ ebν Rµνab(ω) − ψµ γ

µνρDνψρ

)
, (2.41)

where Dµψν ≡ ∂νψρ + 1
4 ωµ

ab γab ψν . The above action is invariant under the following

local supersymmetry transformations

δ eµ
a = 1

2 ε γ
a ψµ , δ ψµ = Dµε (2.42)

only at a linear level in ψ if ω is the usual torsion-free connection ω(e). In order for the

(2.41) to be invariant at all orders one needs to include interaction terms in the Lagrangian

which are higher-order in the gravitino. These terms are obtained by correcting ω(e) with

torsion terms quadratic in ψ.

The Coupling to Chiral Multiplets

As we saw in table 2.4, N = 1 theories allow for an arbitrary number n of chiral

multiplets. The total field content is described by

{zα, λα}α=1,...,n , (2.43)
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where each of the zα is a complex scalar field and each of the λα is a chiral fermion.

These fields describing physical degrees of freedom must be supplemented by an extra

unphysical compensator multiplet
{
z0, λ0

}
. The above multiplets can be combined into{

zI , λI
}
I=0,...,n

. In section 2.1 we already saw that supersymmetry restricts the complex

scalar fields to span a Kähler-Hodge manifold. A Kähler manifold MK is a manifold

of real dimension 2n + 2 described by local complex coordinates zI ≡ φI + i φI+n, for

I = 0, . . . , n such that

MK is Hermitian, i.e. there exists a coordinate system in which the metric takes

the form

ds2 = 2KIJ̄ dz
I ⊗ dz̄J̄ ,

the hermitian metric KIJ̄ defines a closed Kähler form

J ≡ −2 iKIJ̄ dz
I ∧ dz̄J̄ ,

with dJ = 0.

As a consequence, every Kähler manifold has a metric which, locally in every coordinate

patch, can be written as

KIJ̄ = ∂I∂J̄ K(z, z̄) , (2.44)

where the real function K(z, z̄) is called Kähler potential. Please note that K is not

uniquely determined by (2.44) since the following transformation (therefore called Kähler

transformation)

K(z, z̄) 7−→ K(z, z̄) + f(z) + f̄(z̄) (2.45)

leaves the metric KIJ̄ invariant and therefore it is called Kähler symmetry. Such a sym-

metry transforms the fermions non-trivially and defines a U(1) bundle on the Kähler

manifold. This ensures that Kähler transformations are locally well-defined on intersec-

tions of charts. In order for MK to be Kähler-Hodge the following topological condition

has be satisfied by the Kähler form J

q

∫∫
J = 4π n , (2.46)

where q is the charge defining the U(1) covariant derivatives and n a suitable integer7.

Going back to our N = 1 supergravity coupled to chiral multiplets, the n complex

scalars
{
zI
}

will span a Kähler manifold MK and the Kähler metric will determine the

kinetic Lagrangian for the scalar fields

Lkin = −KIJ̄ ∂µz
I ∂µz̄J̄ . (2.47)

7Mathematically, the condition (2.46) requires the existence of a line bundle L −→ MK such

that [51] c1(L) = [J ], where c1 denotes the first Chern class and [J ] the cohomology class defined by the

Kähler form.
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Superpotential Deformations

N = 1 supergravity coupled to chiral multiplets can be deformed by adding an arbit-

rary holomorphic function W (z) called superpotential. W (z) is invariant under coordinate

transformations onMK and we will see later how it transforms under Kähler transforma-

tions in order to keep physical quantities invariant. Superpotential deformations of N = 1

supergravity have the following physical consequences:

A scalar potential is induced for
{
zI
}

of the form

V = eK
(
−3 |W |2 + KIJ̄ DIW DJ̄W

)
, (2.48)

where KIJ̄ is the inverse Kähler metric and the covariant derivative D is defined as

DIW ≡ ∂IW + ∂IKW .

Quadratic fermionic couplings to the scalars (often called fermionic mass terms) arise

of the form

Lfermi mass =
1

4
m3/2 ψµ (1−γ∗) γµν ψν −

1

2
mIJ χ

I χJ +mI ψµ γ
µ χI + h.c. , (2.49)

where
m3/2 = eK/2W ,

mIJ = eK/2DIDJW ,

mI =
1√
2
eK/2DIW .

(2.50)

The fermions ψµ and χI have modified supersymmetry rules by terms in which the

superpotential enters. These new scalar-dependent terms are

(δ ψµ)W =
1

2
eK/2W γµ ,

(
δ χI

)
W

= − 1√
2
eK/2KIJ̄ DJ̄W . (2.51)

From (2.51) we can see that, in a maximally symmetric vacuum with only non-zero

scalar vev’s, having DIW 6= 0 inevitably breaks supersymmetry, whereas having W 6= 0

does not necessarily imply supersymmetry breaking since the supersymmetry variation

of the gravitino always has the universal contribution in (2.42) given by the covariant

derivative of ε which can compensate the W term. Looking at (2.48), one realises that the

negative definite contribution in the scalar potential is the only contribution associated

with supersymmetric vacua, which therefore can only be Minkowski and anti-de Sitter

(AdS). De Sitter (dS) vacua are only possible by turning on the positive contribution in

(2.48) and hence can never be supersymmetric. Moreover, from (2.50) one can infer that

the cosmological constant in a supersymmetric vacuum can be interpreted as the gravitino

mass.
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Flux Compactifications

Starting from the various string theories in ten dimensions described in chapter 1,

one needs to construct compactifications thereof in order to make contact with four-

dimensional low energy descriptions. The first comapctifications studied in the literature

were those ones on Ricci-flat six-dimensional manifolds (e.g. tori or Calabi-Yau (CY)

manifolds). Unfortunately, as we mentioned in the introduction, these turned out to give

to rise to a number of massless scalars (a.k.a. moduli) which are in contradiction both

with particle phenomenology and with the precision tests of GR.

In this chapter we will briefly review flux compactifications as a mechanism for gener-

ating a scalar potential for the moduli. The lower-dimensional effective description is gen-

erically a gauged supergravity and it enjoys a duality symmetry coming from the winding

modes of strings along the compact internal directions. This naturally suggests the intro-

duction of non-geometric fluxes, whose name derives from their unclear string-theoretical

origin. In the last section we discuss T-duality covariant proposals such as Generalised

Complex Geometry (GCG) and Double Field Theory (DFT) as possible frameworks in

which to address the problem of the higher-dimensional origin of non-geometric fluxes.

3.1. Dimensional Reductions

In this section we want to analyse a class of well-understood (geometric) compactific-

ations of string theory. This corresponds to studying the propagation of superstrings on

a background of the form

M10 = M(1,9−d) × Md , (3.1)

where M(1,9−d) indicates the (10 − d)-dimensional background spacetime and Md is the

compact internal d-dimensional manifold. The physical properties of the lower-dimensional

effective theory obtained after the compactification procedure depend on the internal geo-

metry of Md.

Kaluza-Klein Reductions

The original construction of a compactification was done in the context of pure gravity

theories. In refs [104, 105] they considered the reduction of five-dimensional Einstein

gravity on a circle S1. This construction is called Kaluza-Klein (KK) reduction, after
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the authors of the above references. Starting from the Einstein Lagrangian in D + 1

dimensions1

L̂ =
√
−ĝ R̂ , (3.2)

one can compactify the (D + 1)-th direction y on S1. The coordinates x̂M are split into

(xµ, y), where µ runs from 0 to D−1. As a consequence of the periodicity in y, the metric

admits a Fourier decomposition of the form

ĝMN (xµ, y) =
∑
n∈Z

ĝ
(n)
MN (xµ) ei

ny
L , (3.3)

where L is the compactification radius. The KK reduction consists of the aforementioned

compactification on a circle, together with the restriction to the massless sector of the

lower-dimensional theory. This approach is justified by observing that all the non-zero

modes in the expansion (3.3) have a mass which is proportional to 1/L and hence relatively

large if L is chosen to be small enough.

The reduced D-dimensional theory describes a vector Aµ and a scalar φ in addition to

the metric gµν . The reduction Ansatz is the following

dŝ2 = e2αφ ds2 + e−2α (D−2)φ (dy + A)2 , (3.4)

where A ≡ Aµ dx
µ and α2 ≡ 1

2 (D−1) (D−2) . After performing the reduction, the D-

dimensional Lagrangian reads

L =
√−g

(
R − 1

2
(∂φ)2 − 1

4
e−2 (D−1)αφ Fµν F

µν

)
, (3.5)

where Fµν ≡ 2 ∂[µAν] is the field strength associated to Aµ. The Lagrangian (3.5) de-

scribes the Einstein-Maxwell theory in D-dimensions coupled to the scalar field φ (often

called dilaton). The corresponding equations of motion read

Gµν = 1
2

(
∂µφ∂νφ − 1

2 (∂φ)2 gµν
)

+ 1
2 e
−2 (D−1)αφ

(
Fµρ Fν

ρ − 1
4 F

2 gµν
)

,

∇µ
(
e−2 (D−1)αφ Fµν

)
= 0 ,

2φ = −1
2 (D − 1)α e−2 (D−1)αφ F 2 ,

(3.6)

where Gµν is the Einstein tensor, F 2 ≡ Fµν F
µν and 2 ≡ ∂µ ∂

µ. From the third equation

of motion in (3.6), one immediately realises that setting φ = const. is inconsistent, which

means that the dilaton associated with the size of the compactification circle has to be

dynamical. After such a reduction on a circle, part of what used to be spacetime (external)

symmetry in the (D + 1)-dimensional theory becomes gauge (internal) symmetry in the

D-dimensional theory, as summarised in figure 3.1.

In a more general context, as we saw at the beginning of the section, one needs to com-

pactify more than one dimension in order to relate four-dimensional (or any other D < 9)

1Note that here all the hatted quantities indicate (D + 1)-dimensional objects.
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D − dim.

diffeomorphisms

(D + 1)− dim.

diffeomorphisms

88

&&

U(1)

gauge symmetry

Figure 3.1: The KK reduction from D+1 to D breaks higher-dimensional diffeomorphisms

into lower-dimensional diffeomorphisms plus U(1) gauge transformations.

supergravity to string theory. The straightforward generalisation of the above construc-

tion is a so-called toroidal reduction, whereMd is chosen to be T d ≡ S1 × · · · × S1︸ ︷︷ ︸
d times

. The

dimensional reduction of type II supergravity on T d (or equivalently of eleven-dimensional

supergravity on T d+1) gives rise to maximal (ungauged) supergravity in 10−d dimensions.

Instead, if one wants to go beyond the ungauged case to include a scalar potential, one has

to go beyond tori and deal with internal manifolds with non-trivial geometry. However,

there is no guarantee that such compactifications are consistent in the general case.

A KK reduction is called consistent [106] when all the gauge bosons of the isometry

group G of the compact manifold are retained in a truncation keeping only a finite number

of lower-dimensional fields, with the essential requirement that setting the truncated fields

to zero is consistent with their own equations of motion. Put in another way, the reduction

ansatz is consistent if all the higher-dimensional equations of motion are satisfied as a

consequence of the equations of motion for the retained lower-dimensional fields. It is

only in very exceptional cases that such consistent KK reductions on compactifying spaces

other than tori are possible.

A particular class of compactifications which has received attention in the literature is

that of coset reductions, which include the relevant case of sphere reductions2. These are

particularly interesting since they preserve supersymmetry completely and they can be

used for obtaining semisimple gaugings of maximal supergravities in various dimensions.

Nevertheless, only in very few cases this procedure has been proven to be consistent.

The known sphere compactifications giving rise to gauged maximal supergravities are

summarised in table 3.1. A further discussion on this point can be found in refs [107,108].

2Please note that the sphere Sd can be seen as the coset space SO(d+1)
SO(d)

.



52 Flux Compactifications

D Gauging Origin

8 SO(3) IIA on S2 [109]

7 SO(5) 11D on S4 [110,111]

6 SO(5) IIA on S4 [112]

5 SO(6) IIB on S5 [113]

4 SO(8) 11D on S7 [114]

Table 3.1: The semisimple compact gaugings of maximal supergravities obtained from

sphere reductions of maximal supergravities in D = 10 or 11. For every case we give the

refs where the consistency of the corresponding sphere reduction is discussed. We would

like to stress that the S5 reduction, which provided the first evidence for the AdS/CFT

correspondence [115], has not yet fully been proven to be consistent.

Twisted Reductions

In the previous section we have seen how a toroidal reduction of a gravity theory

can give rise to theories in lower dimensions including lower-spin degrees of freedom (i.e.

vectors and scalars). However, such reductions do not contain any mechanism to stabilise

the scalar fields into a vacuum by giving them a mass. Subsequently, we saw that going

beyond toroidal compactifications is not only needed, but in general very difficult to achieve

because of consistency issues. As an example of this, we briefly discussed sphere reductions.

In this section, we will see how to exploit the global symmetry of a gravity theory

in order to obtain a deformed lower-dimensional theory, i.e. in which the field strenghts

associated to the gauge fields are modified and a scalar potential appears. In this context

we mean by twisted reduction the dimensional reduction over a group manifold [116] (SS).

These reductions will turn out to be very useful since their consistence can proven in a

very simple and general way.

A group manifold G is a set equipped with both a group structure defined by a mul-

tiplication operation and a differentiable manifold structure. The extra compatibility

condition between the two so far independent structures is that the group multiplication

operation and the map defining the inverse of a group element are differentiable maps.

This allows us to introduce a coordinate system {ym}m=1, ..., dim(G) in terms of which one

is able to parametrise the general element g(y) ∈ G. Because of the definition of group

manifold, one can always define the following two diffeomorphism (i.e. differentiable co-

ordinate transformations)

g 7−→ ΛL(h) g ≡ h g , g 7−→ ΛR(h) g ≡ g h , (3.7)

which are called left and right multiplication, respectively. However, ΛL and ΛR are not

isometries of the metric in general. Still, one can always define a set of left-invariant
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1-forms {σm}
Tm σ

m = g−1 dg , (3.8)

where {Tm} are the generators of G and d ≡ dym ∂
∂ym . Expressed on the coordinate basis

of 1-forms {dym}, the left-invariant forms read

σm = Umn(y) dyn , (3.9)

where Umn(y) are suitable functions on G. It turns out that the quantities

fmn
p = −2

(
U−1

)q
m

(
U−1

)r
n
∂[q U

p
r] (3.10)

do not depend on y and exactly represent the structure constants of G. The left-invariant

1-forms {σm} define a class of metrics on G for which ΛL is an isometry

ds2
G = gmn σ

m ⊗ σn . (3.11)

These isometries defined by ΛL are generated by a basis of Killing vectors {Lm} which

satisfy the so-called Maurer-Cartan equations

[Lm, Ln] = fmn
p Lp , (3.12)

where fmn
p are given in (3.10). Please note that there exist group manifolds for which

fmn
n 6= 0, but strictly speaking they are not good compactifying internal manifolds [116],

since their volume form is trivial in cohomlogy and hence it is not well-defined [117].

Reductions of Gravity on Twisted Tori

Starting from the Ansatz for toroidal reductions (generalisation of (3.4) for a T d with

coordinates (xµ, ym))

dŝ2 = e2αφ ds2 + e2β φMmn (dym + Amµ dx
µ) (dyn + Anν dx

ν) , (3.13)

where m, n = 1, . . . , d and

α2 ≡ d

2 (D + d− 2) (D − 2)
, β ≡ −(D − 2)α

d
, (3.14)

we promote the internal part of the metric to the left-invariant metric on a d-dimensional

group manifold defined in eqn. (3.11). This procedure yields the following reduction Ansatz

dŝ2 = e2αφ ds2 + e2β φMmn (σm + Amµ dx
µ) (σn + Anν dx

ν) , (3.15)

where σm ≡ Umn dy
n. The consistency of this construction is guaranteed by group theory,

in the sense that the KK truncation retains as lower-dimensional fields only those ones

which are left-invariant. An inconsistency in the reduction would imply the appearence

of left-invariant fields in the equations of motion of the truncated fields. However, this



54 Flux Compactifications

is impossible because one can never build a quantity which is not left-invariant out of

left-invariant fields.

As sketched in fig. 3.1, the reduction Ansatz (3.4) breaks the D-dimensional diffeo-

morphisms into (D− d)-dimensional diffeomorphisms times an internal symmetry GL(d).

The general idea of these twisted reductions is to make use of the y-dependent GL(d)

transformation U (called twist matrix ) in the compactification procedure. According to

the (3.10), U will turn on non-zero structure constants fmn
p which will appear in the

lower-dimensional theory as deformation parameters linearly modifying the field strengths

of the vectors Amµ and inducing a quadratic scalar potential.

By evaluating the Einstein Lagrangian (3.2) for the Ansatz (3.13), one finds

L =
√−g

[
R +

1

4
Tr(DµM DµM−1) − 1

2
(∂φ)2 − 1

4
e2 (α−β)φMmn F

m
µν F

nµν − V

]
,

(3.16)

with

Fmµν ≡ 2 ∂[µA
m
ν] − fnp

mAnµA
p
ν and DµMmn ≡ ∂µMmn + 2 fq(m

pAqµMn)p ,

(3.17)

whereas the scalar potential V reads

V =
1

4
e2 (β−α)φ (2 fmn

p fpq
mMnq + fmn

p fqr
sMmqMnrMps) , (3.18)

where Mmn represents the inverse of Mmn.

The lower-dimensional deformed theory is exactly the one obtained by gauging a sub-

group of GL(d), which is the global symmetry group of the undeformed lower-dimensional

theory obtained by means of a toroidal compactification. For compactifications of ten- or

eleven-dimensional supergravities, the deformation parameters fmn
p are often called met-

ric flux (ωmn
p) since they are associated with the spin connection of the internal manifold.

Another ingredient that can be added to these compactifications are the so-called

gauge fluxes. These are possible whenever a p-form gauge potential appears in the D-

dimensional theory coupled to gravity in a sort of Einstein-Maxwell theory. Gauge fluxes

are then nothing but the components of the aforementioned gauge potential integrated

along the internal directions. Such an integration gives rise to non-vanishing fluxes only

when the internal manifold admits non-trivial p-cycles.

3.2. String Compactifications with Metric and Gauge Fluxes

In the previous section we have shown how compactifications of theories including

gravity give rise to lower-dimensional theories with non-trivial internal symmetry, even

though in general we saw that it might be difficult to find the internal geometry being

able to describe the correct lower-dimensional effective description (e.g. all the moduli
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stabilised in a dS vacuum). In this section we will review (geometric) flux compactifications

in string theory with the inclusion of gauge and metric fluxes.

As we saw more in general in the previous sections, toroidal reductions of string theory

unfortunately give rise to a lower-dimensional ungauged supergravity, where therefore all

the moduli are massless. What one needs is to land in a gauged supergravity, e.g. in

D = 4, in order to effectively see a potential for the moduli fields. A way of generating

a gauging in the effective theory is to include fluxes in the compactification procedure.

We extensively saw in the previous sections that curving the internal manifold is a source

of potential that corresponds to adding metric flux. Now we will see which is the set of

fluxes that have been studied in string compactifications and which kind of physics they

give rise to.

Since the turn of the millenium, a lot of progress has been made in the context of flux

compactifications of string theory in order to obtain four-dimensional effective descrip-

tions with a number of desired features. In particular, from a phenomenological point

of view, one is interested in a vacuum with small but positive cosmological constant and

spontaneously broken supersymmetry. This implies the necessity of finding de Sitter (dS)

solutions from string theory compactifications. In addition to modelling dark energy, these

are relevant for embedding descriptions of inflation in string theory. Moreover, Anti-de

Sitter (AdS) solutions are employed in holographic applications in order to study physical

systems which have a conformal symmetry realised in the UV. Interesting reviews in flux

compactifications are refs [118,119].

Flux Compactifications in Type II String Theory

Many type II string theory constructions related to flux backgrounds compatible with

minimal supersymmetry have been studied so far. In particular, the mechanism of inducing

an effective superpotential from fluxes [120] has been extensively studied in the literature

for those compactifications giving rise to a so-called STU -model as low energy description

[121–125]. These theories arise from the T 6/(Z2 × Z2) orbifold compactifications of type

IIB with O3/O7-planes (and duals thereof).

After denoting by {ηm}m=1,...,6 the basis of 1-forms on the torus, the Z2 × Z2 orbifold

action is defined by3

θ1 :
(
η1, η2, η3, η4, η5, η6

)
7−→

(
η1, η2, −η3, −η4, −η5, −η6

)
,

θ2 :
(
η1, η2, η3, η4, η5, η6

)
7−→

(
−η1, −η2, η3, η4, −η5, −η6

)
,

(3.19)

the full Z2 × Z2 being {1, θ1, θ2, θ1θ2}. Such an orbifold action forces the factorisation of

T 6 shown in figure 3.2. The above orbifold action has no invariant 1-forms (nor 5-forms),

3Here we follow the conventions in ref. [126].
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η1

η2

η3

η4

η5

η6× ×

Figure 3.2: T 6 = T 2
1 × T 2

2 × T 2
3 torus factorisation and the coordinate basis.

whereas it admits the following set of invariant 2-forms (and dual 4-forms)

ω1 = η12 , ω2 = η34 , ω3 = η56 ,

ω̃1 = η3456 , ω̃2 = η1256 , ω̃3 = η1234 ,
(3.20)

where η12 ≡ η1 ∧ η2, and the following invariant 3-forms

α0 = η135 , α1 = η235 , α2 = η451 , α3 = η613 ,

β0 = η246 , β1 = η146 , β2 = η362 , β3 = η524 .
(3.21)

After choosing the normalisation ∫
M6

η123456 = vol6 , (3.22)

the invariant forms defined above satisfy∫
M6

α0 ∧ β0 = −vol6 ,
∫
M6

αI ∧ βJ = vol6 δ
J
I , (3.23)

where I, J = 1, 2, 3.

The Kähler 2-form J can be expanded in terms of the H2(M6,Z) basis elements

introduced in (3.20) as

J = A1 ω1 + A2 ω2 + A3 ω3 , (3.24)

where {AI} are real moduli (often called Kähler moduli) measuring the area of the surface

of T 2
I for I = 1, 2, 3. The holomorphic 3-form Ω is, instead defined in terms of the

H3(M6,Z) basis elements introduced in (3.21) as

Ω = α0 + αI τ
I + βI

τ1 τ2 τ3

τ I
+ β0 τ1 τ2 τ3 , (3.25)

where
{
τ I
}

are some extra complex moduli (often called complex structure moduli).

The six geometric moduli introduced in (3.24) and (3.25) come from the internal com-

ponents of the ten-dimensional metric tensor and generate the moduli space parametrising

the possible metrics on T 6/ (Z2 × Z2) away from singularities. These metrics can be ex-

plicitely written as

ds2
6 =

3∑
I=1

AI
Im(τ I)

(
|τ I |2

(
η2I−1

)2
+
(
η2I
)2 − 2 Re(τ I) η2I−1 ⊗ η2I

)
. (3.26)
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Compactifications of type IIB string theory on a T 6/ (Z2 × Z2) orbifold break super-

symmetry down to 1
4 of the original amount, thus giving rise to effective four-dimensional

descriptions preserving N = 2 supersymmetry.

Subsequently we will further break supersymmetry to N = 1 by means of the following

Z2 action

σ :
(
η1, η2, η3, η4, η5, η6

)
7−→

(
−η1, −η2, −η3, −η4, −η5, −η6

)
. (3.27)

The combined action of the orientifold σ with the orbifold group generated by θ1 and

θ2 gives rise to a Z3
2 parity describing O3- and O7-planes in the type IIB duality frame.

The T 6/ (Z2 × Z2) orbifold and orientifolds thereof are very interesting setups since the

internal manifold is its own mirror. The situation in CY compactifications is much more

complicated and one needs mirror symmetry [127] to relate different CY manifolds which

are linked to each other via dualities. In the Z2 × Z2 orbifold, instead, one can have low-

energy effective descriptions which are related by dualities and are still formally described

by the same effective theory, where only the fields and the couplings have been transformed.

In particular, this means that everything which we are here introducing in the context of

type IIB compactifications with O3- and O7-planes can reformualted or reinterpreted,e.g.

in the language of type IIA with O6-planes.

The O3-planes are described by the involution σ given in (3.27), which are required

to sit at each of the 4 × 4 × 4 = 64 fixed points of σ. The O7-planes, instead, are in a

triplet and are described by the involutions {σ θ1, σ θ2, σ θ1 θ2}.
The moduli space of type IIB orientifolds with O3- and O7-planes is given by {S, TI , UI},

where S represents the so-called axiodilaton, TI are the Kähler moduli and UI are the com-

plex structure moduli

S = C0 + i e−φ ,

TI =
1

vol6

∫
M6

(
C4 ∧ ωI + i e−φAJ AK

)
,

UI = τ I ,

(3.28)

with I 6= J 6= K. These scalars span a coset manifold given by

(
SL(2)

SO(2)

)7

. Please note

that the expression of TI simplifies due to the absence of C2 and B2 which are projected

out by the orientifold action. These compactifications, as anticipated above, preserve

N = 1 supersymmetry and the dynamics of the scalars in the case with no fluxes is totally

encoded in the following Kähler potential

K = − log
(
−i (S − S̄)

)
−

3∑
I=1

log
(
−i (TI − T̄I)

)
−

3∑
I=1

log
(
−i (UI − ŪI)

)
. (3.29)

In the absence of fluxes, the Lagrangian for the above 7 complex moduli is only given by

the kinetic part given in terms of K that we already introduced in (2.47). Now we will
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discuss how the introduction of fluxes induces a potential for the above scalars which can

be written, as according to (2.48), from a superpotential.

Gauge fluxes are constant non-zero background values that the field strengths of the

p-form fields in the theory can aquire. In type IIB with O3- and O7-planes, the only

allowed gauge fluxes are H̄3 and F̄3, which are associated with both the NS-NS H3 and

R-R F̃3 3-forms respectively. These field strengths are given by

F̃3 = F3 − H3 ∧ C0 + F̄3 ,

H3 = dB2 + H̄3 .
(3.30)

The background fluxes introduced in (3.30) can be now expanded on the basis of 3-forms

introduced in (3.21), thus yielding

H̄3 = b3 α0 + b
(I)
2 αI + b

(I)
1 βI + b0 β

0 ,

F̄3 = a3 α0 + a
(I)
2 αI + a

(I)
1 βI + a0 β

0 .
(3.31)

The above fluxes induce a superpotential deformation in the effective N = 1 description

which was first studied in ref. [128]. The superpotential W reads

W =

∫
M6

(
F̄3 − S H̄3

)
∧ Ω . (3.32)

After plugging here the expression of the holomorphic 3-form Ω given in (3.25), one finds

W = P1(UI) + P2(UI)S , (3.33)

where P1 and P2 are cubic polynomials in the complex structure moduli given by

P1(UI) = a0 −
∑
I

a
(I)
1 UI +

∑
I

a
(I)
2

U1 U2 U3

UI
− a3 U1 U2 U3 ,

P2(UI) = −b0 +
∑
I

b
(I)
1 UI −

∑
I

b
(I)
2

U1 U2 U3

UI
+ b3 U1 U2 U3 .

(3.34)

The N = 1 supergravity defined by the above superpotential has a no-scale feature due to

the absence of the moduli TI . This implies that they appear as completely flat directions

in the scalar manifold. The line of including some non-perturbative effects such as gaugino

condensation [129] has been considered as a possible mechanism to further stabilise the

Kähler moduli (see e.g. refs [22,130]).

From now on, for simplicity, we will restrict ourselves to the so-called isotropic limit

of the T 6/ (Z2 × Z2) orbifold, which basically reduces to 3 the number of independent

compex moduli vevs by imposing

T1 = T2 = T3 ≡ T and U1 = U2 = U3 ≡ U , (3.35)

which span the scalar coset

(
SL(2)

SO(2)

)3

. As far as the fluxes are concerned, the isotropic

limit implies the following identifications

a
(1)
1 = a

(2)
1 = a

(3)
1 ≡ a1 and b

(1)
1 = b

(2)
1 = b

(3)
1 ≡ b1 . (3.36)
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The theories described by this scalar content and the superpotential deformations thereof

are often referred to in the literature as STU -models. Apart from being simpler, we will

see in chapter 5 that these N = 1 theories have an interesting relation with particular

truncations of N = 4 gauged supergravities. The most general isotropic superpotential for

these supergravity models is up to linear in S and up to cubic in T and U , and therefore

it admits 2 × 4 × 4 = 32 couplings. These couplings, as we will see in the next section,

are related to the complete set of generalised fluxes.

As we were anticipating previously, the simplicity of the Z2 × Z2 orbifold allows us to

interpret the superpotential appearing in the effective N = 1 description as arising from

any compactification in the preferred duality frame. After choosing the duality frame,

what will change is the flux label that one assigns to every superpotential coupling within

the STU -model. In particular, also the set of allowed geometric fluxes will give rise to

different superpotentials depending on the choice of duality frame.

The most general geometric (i.e. gauge and metric fluxes) set of fluxes in type IIB

with O3- and O7-planes only consists of F3 and H3 fluxes, since metric flux turns out to

be projected out by the orientifold involution. The corresponding superpotential reads4

WGKP = PF (U) + S PH(U) , (3.37)

with PF (U) ≡ a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 and PH(U) ≡ b0 − 3 b1 U + 3 b2 U
2 − b3 U3.

In type IIA with O6-planes [121], the set of geomteric fluxes includes some metric flux,

even though part of it is still projected out by the orientifold involution, only half of

the components of the possible NS-NS gauge flux H and R-R gauge fluxes. The precise

dictionary will be explained in detail later.

As originally argued in ref. [131], applying a T-duality transformation to a background

given by the NS-NS flux Habc along the a direction gives rise to the metric flux ωbc
a, which,

as we saw previously, can be interpreted as the structure constants of the isometry algebra

of the internal space. Furthermore, since type IIB is invariant under S-duality, it makes

sense to construct a set of fluxes closed under S-duality. It turns out that such a duality

transformation corresponds to an inversion of the axiodilaton S and hence it interchanges

all the superpotential couplings linear in S with those ones independent of S. Thus, within

type IIB geometric compactifications, F3 and H3 are a doublet under S-duality.

The N = 1 effective descriptions presented above are a very useful playground to un-

derstand the mechanism of moduli stabilisation with fluxes. With respect to the string

theory interpretation of the theories at hand, progress in this direction has been (par-

tially) motivated by the search for dS solutions. Firstly, a no-go result was proven which

rules out the possibility of having dS solutions in the presence of only gauge fluxes [132].

Further generalisations have investigated the possibility to circumvent this no-go theorem

by including metric fluxes, see e.g. refs [133–139].

4We put the label GKP on this superpotential after the authors of ref. [120] who first considered this

setup and analysed the vacua structure thereof.
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However, by taking a look at the landscape of these geometric compactifications of

type II theories, classical dS vacua with no tachyonic directions (i.e. fully stable) have

not been found so far. In particular, if one analyses the subset of N = 1 constructions

admitting an uplift to extended supergravities, the situation becomes even harder and we

will see that dS solutions (even unstable) are ruled out. This, together with the purpose

of constructing a duality-invariant completion to geometric compactifications, will lead us

towards non-geometric fluxes in a very natural way.

Flux Compactifications in Heterotic String Theory

A different context to discuss flux compactifications is that of heterotic string theory.

These compactifications preserve half-maximal supersymmetry and let O(d, d) symmetry

emerge very naturally as T-duality group. In this section we will see how covariance with

respect to T-duality in the NS-NS sector of heterotic compactifications already suggests

the concept of non-geometric fluxes and the link with other constructions like Generalised

Geometry and Double Field Theory.

In ref. [140] twisted reductions of heterotic string theory on a T d have been considered.

The undeformed case (i.e. pure toroidal reduction with no twist) gives rise to half-maximal

supergravity in 10−d dimensions coupled to 16 vector multiplets, which enjoys an O(d, d+

16) as global symmetry. They found that the twist parameters induce a gauging of the

effective half-maximal supergravity and transform as tensors under O(d, d+ 16) dualities

(exactly as the embedding tensor Θ should do).

We start from the (bosonic) low energy action of heterotic string theory

S =

∫
d10x

√
−Ge−Φ

(
R + (∂Φ)2 − 1

12
HµνρH

µνρ − 1

4

16∑
I=1

F Iµν F
Iµν

)
, (3.38)

where Hµνρ ≡ 3

(
∂[µBνρ] − 1

2

16∑
I=1

AI [µ F
I
νρ]

)
is the modified field strength of the NS-NS

2-form Bµν and F Iµν ≡ 2 ∂[µA
I
ν] is the field strength of AIµ. After reduction, the internal

field components of G, B and A (GMN , BMN and AIM with M = 1, . . . , d) combine into

a scalar matrix which spans the coset

O(d, d+ 16)

O(d) × O(d+ 16)
.

The twisted reduction is done by means of the following Ansatz for the Zehnbein

Eam =

(
eαµ EAN V

N
µ

0 EAM

)
, (3.39)

where a = (α,A) and m = (µ,M). This construction turned out to formally reproduce

the scalar potential coming from part of the electric sector of half-maximal supergravity

in D = 4 coupled to 16 vector muliplets. In the following part we are going to ignore
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the presence of the extra vector multiplets and concentrate on the common sector of the

theory, in which all the fields and deformations are arranged into irrep’s of O(d, d). Some

concrete constructions of twisted reductions can be found in the context of heterotic [141]

and M-theory [142] compactifications respectively.

In the previous section, we saw that ω fluxes in the NS-NS sector can be obtained

by applying a T-duality along an isometry direction to a background generated by H3

flux. This implies that the equivalence between the two backgrounds is valid within

the supergravity approximation as established by the so-called Buscher rules [30] (see

section 1.3). However, the full embedding tensor deformations of the (10−d)-dimensional

theory admit as a universal piece a full 3-form of O(d, d) fMNP . When decomposing

fMNP into irrep’s of the diffeomorphism subgroup GL(d) ⊂O(d, d), one realises that the

geometric set of fluxes (i.e. {Hmnp, ωmn
p} where the fundamental index of O(d, d) M

splits into (m,
m) of GL(d)) only accounts for half of the total number of components of

the 3-form. This has two related consequences:

There are some embedding tensor deformations of the effective half-maximal su-

pergravity which cannot be obtained by means of geometric compactification and

hence do not have a clear higher-dimensional origin. These correspond to possible

extra ingredients in the compactification procedure that we do not fully understand.

Therefore we call them non-geometric fluxes. This situation is sketched in figure 3.3.

Even starting from a perfectly geometric background described by H3 and ω fluxes,

a general T-duality transformation would take it to an effective description including

non-geometric fluxes [24]. The challenge of flux compactifications becomes that of

establishing whether new physics (e.g. dS vacua, stability, etc.) related to the

presence of non-geometric fluxes can occur. If this turned out to be the case, then

the second aim would be that of finding an uplift for theories including non-geometric

fluxes.

3.3. Non-geometric Fluxes

As we saw in the previous sections, the study of non-geometric backgrounds is mainly

motivated by duality covariance arguments [24], but also by the search for classical vacua

in string theory [143] with a special regard for dS solutions [138]. In this section we

will first briefly introduce the set of generalised fluxes in heterotic compactifications and

subsequently go back to STU -models arising from type II compactifications and introduce

there the complete duality covariant flux-induced superpotential.
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Figure 3.3: The complete set of embedding tensor deformations of the lower-dimensional

theory is split into those ones which have a clear higher-dimensional origin and hence

have a one-to-one mapping with geometric fluxes, and those ones for which such a higher-

dimensional origin is not known.

T-duality Invariant Heterotic Fluxes

Previously we argued that the geometric set of heterotic fluxes only reproduces half

of the 3-form deformations that every half-maximal supergravity allows for. In this sub-

section we shall concentrate on the D = 4 case, even though we would like to stress that

none of the things presented here will crucially depend on this. To be precise, in fact,

the four-dimensional case has the special feature of the SL(2) electromagnetic duality

enhancing the 3-form fMNP to an SL(2) doublet fαMNP of 3-forms, where α = (+,−).

Nevertheless, a twisted toroidal reduction of heterotic string theory on a T 6, only gives

rise to the purely electric (i.e. only the + components are non-zero) sector of N = D = 4

supergravity. Restricting to f+MNP makes the D = 4 case perfectly analogous to all the

others where a single O(d, d) 3-form fMNP is allowed as deformation5.

From the four-dimensional point of view, O(6, 6) is a symmetry that relates equivalent

effective descriptions with different higher-dimensional origins. Geometric twisted com-

pactifications turn out to only be invariant under the GL(6) subgroup of O(6, 6) describing

diffeomorphisms and gauge transformations of the B-field on the 6-torus. In order to gen-

erate the full 220 of O(6, 6) (i.e. the 3-form representation), one needs to generalise the

prescriptions of T-duality beyond the Buscher rules by considering the possibility of per-

5Please note that in all half-maximal supergravities (see table 2.7) other deformations are possible, but

their higher-dimensional origin is not so clear and hence we restrict to gaugings in the 3-form which at

least contain a geometric subset, non-geometric fluxes only representing the T-duality completion thereof.
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forming it along directions in which no isometries are present [144]. This allows us to

complete the duality chain

Hmnp
Tm←→ ωnp

m Tn←→ Qp
mn Tp←→ Rmnp , (3.40)

where the second T-duality Tn is still legitimate in the supergravity sense but it produces

the so-called Q flux which describes a locally geometric background for which, though, a

global description is not possible; the third T-duality Tp to obtain the so-called R flux, on

the contrary, is done in a direction with no isometries and hence it describes a background

which does not even allow for a local description.

As already anticipated above, the NS-NS (non-)geometric fluxes introduced in the

duality chain (3.40) turn out to exactly fill out all the GL(6) irrep’s coming from the

decomposition of the 3-form of O(6, 6):

220
GL(6)⊂O(6,6)−→ 20 ⊕ (6 ⊕ 84) ⊕ (6′ ⊕ 84′) ⊕ 20′

fMNP Hmnp ωnp
m Qp

mn Rmnp
. (3.41)

Please note that the 6 and 6′ irrep’s present in (3.41) correspond with the traces of ω and

Q respectively and they must be included in the counting in order to obtain the full 220,

even though there might be some consistency subtleties related to these backgrounds. For

instance, in the case of a background with only metric flux, if this is not traceless, the

volume form cannot be correctly defined because of cohomology issues. This would make

it a problematic compactification from the mathematical viewpoint.

By including the complete set of generalised fluxes given in (3.41), one obtains the full

electric sector of gauged N = 4 supergravity with gaugings purely in the 220. The fluxes

turn out to reproduce the structure constants of the underlying 12-dimensional gauge

algebra generated by {Zm, Xm}m=1,...,6. Zm are the six KK generators and correspond to

the internal coordinate transformations δxm = λm, whereas Xm represent the generators

associated with the internal gauge transformations of the B-field δBmn = ∂[mλn]. The

brackets read

[Zm, Zn] = ωmn
p Zp + HmnpX

p ,

[Zm, X
n] = −ωmpnXp + Qm

np Zp ,

[Xm, Xn] = Qp
mnXp + Rmnp Zp .

(3.42)

These first relations between heterotic compactifications with non-geometric fluxes and

gauged N = 4 supergravities already suggest the importance of half-maximal supergrav-

ities in understanding the role of T-duality as an organising principle for string compacti-

fications.

At this point there are two relevant questions that one could try to address. Firstly, one

could wonder whether including non-geometric fluxes in our effective description always

gives rise to new physics. By this we mean that it would be very important to be able to
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classify fluxes in terms of T-duality orbits to see which backgrounds are genuinely non-

geometric and which other can be dualised to geometric ones. The second question could

be, suppose one finds truly non-geometric flux backgrounds, how can one construct an

uplift to string/M-theory? The origin of non-geometric fluxes by itself already suggests

that, in order to describe those backgrounds, a construction or framework might be needed

in which T-duality is promoted to a fundamental symmetry rather than just being a

symmetry of the compactified versions of string theory. Examples of such constructions

are Generalised Complex Geometry and Double Field Theory. In chapter 4 we will try to

address both of these issues in the context of Double Field Theory.

Generalised Fluxes in Type IIB Compactifications

In section 3.2 we have introduced the Z2 × Z2 orbifold and shown that orientifolds

thereof admit an effective N = 1 description with a superpotential for the moduli induced

by the presence of fluxes. Subsequently, we concentrated on the isotropic case, which is

described by an STU -model. There we saw that, in type IIB with O3- and O7-planes,

the only geometric background fluxes allowed are gauge fluxes, both NS-NS (H3) and R-R

(F3). The superpotential induced by these was given in (3.37) and, as we will see, happens

not to be invariant under duality transformations.

The aim of this subsection will be that of studying which kind of dualities these theories

possess and how these transform the effective description. The following step, then will be

writing down the fully duality invariant superpotential and interpreting its new couplings

introduced for duality arguments as non-geometric fluxes. We will call the fluxes forming

the complete set obtained in this way generalised fluxes. This approach was first followed

in refs [145, 146]. For a complete review of supergravity models induced by generalised

fluxes in the Z2 × Z2 orbifold, we recommend refs [126,147].

An STU -model enjoys a global symmetry of the form

G0 = SL(2)S × SL(2)T × SL(2)U , (3.43)

where the first factor can be interpreted as S-duality, while the rest generates a combination

of S- and T-dualities. Note that the supergravity theory has the full continuous symmetry,

whereas when all quantum corrections are included in string theory the above groups are

broken into discrete SL(2,Z) factors (see table 1.2).

As we already saw in chapter 1, the general Λ =

(
a b

c d

)
∈ SL(2)S act on the

axiodilaton S as

S 7−→ aS + b

c S + d
, (3.44)

and the same do SL(2)T and SL(2)U on T and U , respectively. In order for the effective

theory to be invariant under (3.44), the superpotential W needs to transform as

W (S) 7−→ 1

c S + d
W (S) . (3.45)
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This fact implies that the superpotential couplings (i.e. the fluxes) must transform as well

under SL(2)S [24] and the same for T-dualities. In particular, all the fluxes are paired into

irrep’s of G0. For instance, F3 and H3 have to transform as a doublet of SL(2)S(
F3

H3

)
7−→

(
a b

c d

) (
F3

H3

)
. (3.46)

As a consequence, the fully duality invariant superpotential must contain all the couplings

up to linear in S and up to cubic in T and U .

Within the NS-NS sector, starting from H flux and following the chain in (3.40),

one could in principle generate ω, Q and R just as in the heterotic case. However, the

orientifold projection only allows for non-vanishing Q flux. Towards the complete set of

generalised fluxes, one finds the necessity of introducing the so-called P -flux building an

S-duality doublet together with Q [145]. This completes the S-duality invariant set of

fluxes which still admit a locally geometric description. The corresponding superpotential

is given by

W (loc. geom.) = (PF + PH S) + 3T (PQ + PP S) , (3.47)

with

PF = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 , PH = b0 − 3 b1 U + 3 b2 U
2 − b3 U3 ,

PQ = c0 + C1 U − C2 U
2 − c3 U

3 , PP = d0 +D1 U −D2 U
2 − d3 U

3 ,

(3.48)

where, for the sake of convenience, we have introduced the flux combinations Ci ≡ 2 ci−c̃i ,

Di ≡ 2 di − d̃i entering the superpotential, and hence the scalar potential and any other

physical quantity.

Nevertheless, T-duality covariance requires yet new fluxes (called primed fluxes in

ref. [146]) to complete all the STU polynomials. These fluxes do not have any interpret-

ation even in the context of Generalised Geometry or Doubled Geometry, which were all

naturally developed in the heterotic duality frame where these fluxes are absent.

The complete set of generalised fluxes is presented in tables 3.2 and 3.3 and the fully

duality covariant induced superpotential W reads

W = (PF + PH S) + 3T (PQ + PP S) + 3T 2 (PQ′ + PP ′ S) + T 3 (PF ′ + PH′ S) , (3.49)

where the unprimed sector was defined in (3.48) and the primed sector is given by

PF ′ = a′3 + 3 a′2 U + 3 a′1 U
2 + a′0 U

3 , PH′ = b′3 + 3 b′2 U + 3 b′1 U
2 + b′0 U

3 ,

PQ′ = −c′3 + C ′2 U + C ′1 U
2 − c′0 U3 , PP ′ = −d′3 +D′2 U +D′1 U

2 − d′0 U3 ,

(3.50)

with C ′i ≡ 2 c′i − c̃′i and D′i ≡ 2 d′i − d̃′i .

We will see in chapter 5 that a particular subset of all the theories described by the

duality invariant superpotential (3.49) originate from a truncation of N = 4 supergravity.
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couplings Type IIB Type IIA fluxes

1 Fijk Faibjck a0

U Fijc Faibj a1

U2 Fibc Fai a2

U3 Fabc F0 a3

S Hijk Hijk −b0
S U Hijc ωij

c −b1
S U2 Hibc Qi

bc −b2
S U3 Habc Rabc −b3

T Qk
ab Habk c0

T U Qk
aj = Qk

ib , Qa
bc ωka

j = ωbk
i , ωbc

a c1 , c̃1

T U2 Qc
ib = Qc

aj , Qk
ij Qb

ci = Qa
jc , Qk

ij c2 , c̃2

T U3 Qc
ij Rijc c3

S T Pk
ab −d0

S T U Pk
aj = Pk

ib , Pa
bc −d1 , −d̃1

S T U2 Pc
ib = Pc

aj , Pk
ij −d2 , −d̃2

S T U3 Pc
ij −d3

Table 3.2: Mapping between unprimed fluxes and couplings in the superpotential both in

type IIB with O3 and O7 and in type IIA with O6. The six internal directions depicted in

figure 3.2 are split into “ − ” labelled by i = 1, 3, 5 and “ | ” labelled by a = 2, 4, 6. Note

that the empty boxes in type IIA are related to the presence of dual fluxes analogous to the

’primed’ notation in type IIB.

This will be the case whenever the couplings in W satisfy the N = 4 QC required for the

consistency of the gauging. On the other hand, from a stringy viewpoint, these QC should

be interpreted as the requirement that all the supersymmetry-breaking objects (branes

and dual branes) are absent.

3.4. T-duality Covariant Constructions

In the previous section we have seen that the existence of non-geometric fluxes was

first conjectured in order for the low energy effective theory to be duality covariant and

subsequently they turned out to be a crucial ingredient for dS extrema. Dualities are

correctly encoded in the global symmetry of the underlying gauged supergravity in four

dimensions [148]. In this sense, T-duality singles out the important role of half-maximal
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couplings Type IIB Type IIA fluxes

T 3 U3 F ′ijk a′0

T 3 U2 F ′ijc a′1

T 3 U F ′ibc a′2

T 3 F ′abc a′3

S T 3 U3 H ′ijk −b′0
S T 3 U2 H ′ijc −b′1
S T 3 U H ′ibc −b′2
S T 3 H ′abc −b′3
T 2 U3 Q′ab

k c′0

T 2 U2 Q′aj
k = Q′ib

k , Q′bc
a c′1 , c̃′1

T 2 U Q′ib
c = Q′aj

c , Q′ij
k c′2 , c̃′2

T 2 Q′ij
c c′3

S T 2 U3 P ′ab
k −d′0

S T 2 U2 P ′aj
k = P ′ib

k , P ′bc
a −d′1 , −d̃′1

S T 2 U P ′ib
c = P ′aj

c , P ′ij
k −d′2 , −d̃′2

S T 2 P ′ij
c −d′3

Table 3.3: Mapping between primed fluxes and couplings in the superpotential. The con-

ventions are the as in table 3.2 and again, just as there, the empty column should be filled

in with extra dual fluxes.

supergravities, whereas, in order to supplement it with non-perturbative dualities to gen-

erate the full U-duality group, one has to consider maximal supergravity.

Concentrating in particular on T-duality [149,150], different ways have been investig-

ated in the literature in order to implement T-duality covariance at a more fundamental

level in order to gain a better understanding of how non-geometric fluxes change the com-

pactification prescription, thus appearing in the effective theory [151–153]. One direction

to follow is Generalised Complex Geometry [127,154,155], in which the internal manifold

is given a particular bundle structure in which the gauge fields now span the full T-

duality group. Another possibility is that of doubling the internal coordinates [156–158]

by supplementing them with the corresponding duals to winding modes and viewing a

non-geometric flux background as something created by means of a twisted double torus

compactification [159].

Recently, this second approach has been further developed into the so-called Double

Field Theory (DFT) [160–163], which aims to promote T-duality to a fundamental sym-
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metry even independently of whether spacetime directions are compact or not [164, 165].

This theory in 10+10 dimensions is formulated in terms of a generalised metric, whose ac-

tion can be constructed to be fully O(10, 10) invariant. Moreover, there are some evidences

that the gaugings of N = 4 supergravity might follow from DFT reductions [166–168].

This would provide a higher-dimensional origin for non-geometric flux backgrounds, even

though the concrete construction leading to the most general background still needs to be

accomplished.

Doubled Geometry

Beyond conventional geometric string backgrounds consisting of a manifold equipped

with a metric and gauge fields, one can consistently define string theory on a background

in which all the local patches are geometric but these patches need to be glued together by

special transition functions which include not only diffeomorphisms and gauge transform-

ations, but also T-duality transformations [169]. Such an object describing non-geometric

backgrounds is called T-fold and historically it represented the first T-duality covariant

proposal for understanding non-geometric fluxes beyond the effective lower-dimensional

supergravity description.

A T-fold can be introduced by means of the so-called doubled formalism [170] developed

in the context of toroidal fibrations of the form U × T d × T̃ d, where U is an open set in

the internal manifold M6, whereas the doubled torus T d × T̃ d is the tangent space and

is described by the internal coordinates ym paired up with their corresponding winding

coordinates ỹm to give rise to the doubled coordinates YM ≡ (ym, ỹm) transforming in

the fundamental representation of O(d, d).

Let {Uα} be an open cover of the internal manifold M6, i.e. a collection of open sets

such thatM6 =
⋃
α
Uα. Then a T-fold is constructed as the collection of patches U × T d,

in each of which a metric gα and a two-form bα are well-defined and, on overlapping

patches Uα ∩ Uβ, they are glued together in the ordinary geometric way by means of

diffeomorphisms and b-transformations. The rest of the geometric features of a T-fold lies

in the moduli fields (g + b)mn and in some U(1)2d connections Aα and Ãα. These objects

are glued together over overlaps Uα ∩ Uβ by transition functions in O(d, d) × U(1)2d.

A background defined in the above way turns out to be geometric whenever the struc-

ture group Γd reduces a subgroup of GL(d). In any other case, T-folds describe non-

geometric backgrounds. The aforementioned construction can be recast in terms of a

doubled fibration T d × T̃ d, in which O(d, d) n U(1)2d acts geometrically. Given a doubled

background, one has to perform a so-called choice of polarisation in order to reproject

the tangent bundle of the internal space back to a single torus T d by choosing d physical

coordinates out of the 2d coordinates given by (ym, ỹm).
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After fixing the O(d, d) metric in light-cone coordinates to be

ηMN =

(
0 1d

1d 0

)
, (3.51)

one can introduce the so-called generalised metric HMN on such a doubled torus, which

is a symmetric O(d, d) tensor defined as

HMN =

(
g−1 −g−1 b

b g−1 g − b g−1 g

)
, (3.52)

where g and b are respectively the internal components of the metric and of the NS-NS

two-form present in the theory. The introduction of the generalised metric allows one to

describe the non-linear transformation of (g+b)mn under O(d, d) by means of the tensorial

transformation given by

H 7−→ ΛT HΛ , (3.53)

where Λ ∈ O(d, d).

Twisted Reductions on Doubled Tori

The doubled formalism has been used in the context of heterotic flux compactifications

in order to produce effective supergravity descriptions including Q and R fluxes [158]. The

dynamics can be formulated in terms of H which describes the metric on the doubled torus

ds2 = HMN dYM ⊗ dYN . (3.54)

In ref. [156] they considered reductions of O(d, d) invariant theories on a circle spanned

by z ∼ z + 1 with the inclusion of an O(d, d) duality twist. Such twist is specified by an

O(d, d) algebra element NM
N , whose corresponding z-dependent group element is given

by exp(N z). This duality twist reduction takes a (10 − d)-dimensional theory exhibitng

a U(1)2d gauge symmetry to a (9− d)-dimensional theory with a non-abelian gauge sym-

metry. If we denote by {TM}M=1,...,2d the U(1)2d generators, after the twisted reduction

they get supplemented by two extra generators {Zz, Xz} corresponding, respectively, to

shits in z and b-transformations with one leg along the z direction. The new non-abelian

gauge algebra of the lower-dimensional theory reads

[Zz, TM ] = −NN
M TN , [TM , TN ] = −NMN X

z , (3.55)

where NMN ≡ ηMP N
P
N = −NNM all the other commutators vanish.

From the viewpoint of flux compactifications, the twist matrix N describes the follow-

ing flux configuration

NM
N =

(
ωzm

n Qz
mn

Hzmn −ωznm

)
(3.56)
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Heterotic

S

##
I ≡ IIB/O9

T6

##
IIB/O3

NS-NS R-R

H3

ω

Q

R

NS-NS R-R

F3

ω

P

R

NS-NS R-R

H3 F3

Q P

Figure 3.4: The set of generalised fluxes which are allowed in different duality frames.

Please note that doubled geometry can only describe backgrounds containing purely NS-NS

fluxes. This is the reason why only in heterotic compactifications doubled geometry and

“non-geometry” happen to coincide (see remark in ref. [172]).

and it describes a locally geometric background. At this stage, a further T-duality bringing

R flux into the game was only conjectured.

In ref. [159], instead, twisted doubled tori reductions à la Scherk and Schwarz (SS) have

been considered in order to formally reproduce gaugings of half-maximal supergravity in

D = 4. In this case, one can define the following set of left-invariant 1-forms (see σm in

section 3.1)

EM ≡ UMN (Y) dYN , (3.57)

where U represents the twist matrix depending on the doubled coordinates YM ≡ (ym, ỹm).

These 1-forms satisfy

dEM = −1

2
fNP

M EN ∧ EP , (3.58)

for constant f . These constants can be seen as metric flux on a doubled space and

they contain all the set of possible generalised fluxes according to the splitting of the

fundamental O(6, 6) indexM into upper and lower GL(6) indices. In ref. [159] some explicit

example of U matrices are given which reproduce some particular heterotic backgrounds

with non-geometric fluxes turned on. Further work in this direction can be found in

ref. [171].

The concluding remark of this subsection is then precisely that, unlike in the heterotic

case, compactifications on doubled twisted tori in different duality frames (i.e. reduc-

tions of other string theories with or without orientifolds), do not reproduce the same

generalisation of geometric flux compactification suggested by the introduction of the first

non-geometric fluxes. This difference is depicted in figure 3.4.
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Generalised Complex Geometry

Generalised Complex Geometry (GCG) is a formalism introduced in ref. [173] that

interpolates between complex and symplectic manifolds. The basic idea is to treat tan-

gent and cotangent space of the internal manifold Md on equal footing by merging them

together into a new bundle structure whose elements are formal sums of tangent vectors

and 1-forms

X + ξ ∈ TMd ⊕ T ∗Md . (3.59)

The physical relevance of this construction is to be found again in (non-)geometric flux

compactifications since T-duality suggests that complex and symplectic geometry are each

other’s mirrors in string theory. Here we will only scketch some basic features of this

formalism, but we indicate refs [174–177] as very interesting and complete reviews.

From a formal point of view, a generalised almost-complex structure on such a bundle

is an endomorphism J of TMd ⊕ T ∗Md that squares to −12d, thus generalising the usual

almost-complex structure on TMd. This generalised bundle amdits a natural metric I
defined by

I(X + ξ, Y + η) ≡ 1

2
(ıY ξ + ıXη) , (3.60)

where ıY ξ ≡ Y m ξm. In the coordinate basis (∂m, dx
m), it turns out to be proportional

to the light-cone metric

I =
1

2

(
0 1d

1d 0

)
, (3.61)

which reduces the structure group to be O(d, d).

A generalised almost-complex structure J is then a map

J : TMd ⊕ T ∗Md −→ TMd ⊕ T ∗Md , (3.62)

such that

J 2 = −12d and J T I J = I . (3.63)

This further reduces the structure group to U(d2 ,
d
2).

Moreover, it turns out to be possible to define a generalisation of the Lie bracket, often

called Courant bracket, in the following way

[X + ξ, Y + η]C ≡ [X, Y ] + LXη − LY ξ −
1

2
d (ıXη − ıY ξ) , (3.64)

where [ , ] represent the ordinary Lie brackets and

LXη ≡ (Xm ∂mηn) dxn + (ηn ∂mX
n) dxm . (3.65)

The brackets defined in (3.64) are still anti-symmetric and admit a non-trivial automorph-

ism defined by a closed two-form b

eb (X + ξ) ≡ X + ξ + ıXb . (3.66)
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This could be physically interpreted as a transformation of the b-field in a string back-

ground in the more general case in which b is not closed anymore.

The Courant bracket defines a set of integrability conditions for J , which are differ-

ential constraints that J has to satisfy together with the algebraic ones given in (3.63) in

order to be called a generalised complex structure.

G Structures and Flux Compactifications

The formalism of GCG has been used in the literature [117, 178, 179] to study gener-

alised flux compactifications preserving e.g. N = 1 supersymmetry in four dimensions.

These analyses have been carried out by using the language of G structures, with particu-

lar relevance of SU(3) structures in type IIA compactifications [136] and SU(2) structures

in type IIB compactifications [139].

Whenever it is possible to have two commuting almost complex structures whose

product defines a positive-definite metric on TMd ⊕ T ∗Md, the structure group is broken

to the compact group [117] U(d2) × U(d2). It has been shown that a U(d2) × U(d2) automat-

ically provides a metric and a b-field through the natural T-duality covariant combination

which is known as the generalised metric in DFT.

Specifying ourselves to the case d = 6, one finds that the structure group is in fact

further restricted to SU(3)×SU(3). By making use of the mapping between spinors and

polyforms, it is possible to construct the objects which define the geometry of the manifold

in terms of two so-called pure spinors Φ+ and Φ−. These can be in turn rewritten as

bilinears of SO(d) spinors. Pure spinors are never vanishing and globally defined SO(d, d)

spinors Φ mapped to bilinears η1 ⊗ η†
2 such that

η1 γ
m1···mk η2 = 0 (3.67)

for any k ≤ d/2. This definition turns out to be equivalent [180] to the one given in

ref. [177] in terms of Dirac structures.

For SU(3) structures, these are a real (1, 1)-type tensor J and a holomorphic (3, 0)-type

tensor Ω such that

J ∧ Ω = 0 and iΩ ∧ Ω̄ =
4

3
J3 , (3.68)

where now, in constrast with the case of a CY manifold (i.e. Kähler manifold with SU(3)

holonomy), J and Ω do not need to be closed in general. J and Ω in (3.68) are given in

terms of the above pure spinors by

Φ+ =
1

8
e−i J and Φ− = − i

8
Ω . (3.69)

Supersymmetry equations for a given N = 1 background can be written in terms of the

spinors in (3.69) and subsequently, through the mapping between spinors and forms, one

can rewrite those conditions in the language of p-forms, which are much easier to handle.



3.4 T-duality Covariant Constructions 73

When analysing the supersymmetry equation of the following (warped) background

ds2 = e2A ηµν dx
µ dxν + ds2

6 , (3.70)

one schematically finds

(d − H ∧)
(
e2A−φ Φ1

)
= 0 ,

(d − H ∧)
(
e2A−φ Φ2

)
= e2A−φ dA ∧ Φ2 +

{
R-R Fluxes

}
,

(3.71)

where φ is the type IIA (IIB) dilaton and Φ1 = Φ+ and Φ2 = Φ− for type IIA and vice

versa for type IIB.

Another interesting bridge between GCG and (non-)geometric fluxes is represented by

the possibility of reinterpreting the twisted Courant bracket defining the integrable gen-

eralised complex structure of the internal manifold as a gauge algebra of the compactified

theory. Work in this direction has been done in refs [154,181,182]. In this sense, the gen-

eralised geometric structure of the internal manifold itself provides a local definition of the

non-geometric NS-NS fluxes H, ω, Q and R. In terms of the following gauge generators

X a ≡ Aam dxm + Bam ∂m and Xa ≡ Cam dxm + Dam ∂m , (3.72)

where A, B, C and D parametrise the full O(d, d), the flux-induced gauge algebra reads

[Xa, Xb] = ωab
cXc + HabcX c ,[

Xa, X b
]

= −ωacbX c + Qa
bcXc ,[

X a, X b
]

= Qc
abX c + RabcXc ,

(3.73)

where H, ω, Q and R are given in terms of derivatives of O(d, d) gauge fields. Please note

that these commutation relations exactly coincide with those ones given in (3.42).

Double Field Theory

DFT is a recent proposal that promotes T-duality to a symmetry in field theory [160,

183], and is currently defined in terms of a background independent action [161, 162].

The theory is constructed on a double space [170], and its original version was created to

describe the dynamics of closed strings on tori, the dual coordinates being associated to

the winding modes of the strings. However, the background independent action allows for

more general spaces, and SS compactifications of DFT were shown to formally reproduce

the bosonic (electric) sector of half-maximal gauged supergravities [166,167]. This already

suggests its relation to non-geometric flux compactifications.

Detailed reviews of DFT can be found in refs [184, 185]. Here we will only provide a

discussion of the minimal ingredients with the corresponding references to make contact

with the results of the analysis of the following chapter. Many other interesting works on

the subject towards the implementation of T-duality covariance can be found in refs [82,

84,85,155,186–192].
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As we saw in chapter 1, T-duality relates a string background on a T d with radius R

with the one on T d with radius α′/R via the non-compact duality group O(d, d). To give

a short review of DFT, we will here follow the conventions of ref. [184]. Starting from the

string theory world-sheet action given by

S =

∫
d2σ Eij(X) ∂+X

i ∂−X
j , (3.74)

where + and − indicate light-come directions on the world-sheet and Eij ≡ (Gij +Bij),

one can derive a linear fractional transformation on E . If the starting background admits

commuting isometries, such a transformation relates equivalent backgrounds. However,

this cannot be viewed as a symmetry of the world-sheet theory, since it involves non-trivial

transformations of the couplings.

From the string field theory viewpoint, this implies the appearence of winding modes

in the spectrum in addition to momentum modes. Therefore, the natural step towards

understanding T-duality at a more fundamental level, became that of geometrising it

by doubling the spacetime [193] thruogh the inclusion of “winding-type” coordinates x̃i

and allowing for novel spacetime rotation mixing ordinary coordinates with winding-type

coordinates.

The low-energy spacetime action of the common sector of string theory

S =

∫
d10x

√−g e−2φ

(
R + 4 (∂φ)2 − 1

12
|H|2

)
, (3.75)

where H ≡ db, is not backgound independent, since the background E appears explicitely

and hence O(10, 10) is not an actual symmetry of (3.75).

Even though a background independent formulation of closed string theory is not

known, recently such a construction has been performed for DFT. DFT is a field theory

with manifest invariance under the O(10, 10) T-duality group, and therefore captures

stringy features. The coordinates are combined to form fundamental vectors XM = (x̃i, x
i),

containing 10 spacetime coordinates xi and 10 dual coordinates x̃i, i = 1, ..., 10. The field

content is that of the NS-NS sector, but defined on a doubled space. The metric of the

global symmetry group

ηMN =

(
0ij δij

δi
j 0ij

)
(3.76)

raises and lowers the indices of all the O(10, 10) tensors, thus relating spacetime com-

ponents to winding-type ones. On the other hand, the dilaton φ is combined with the

determinant of g in a T-invariant way e−2d ≡ √−g e−2φ.

After introducing the following derivative opretors

Di ≡
∂

∂xi
− Eik

∂

∂x̃k
and D̄i ≡

∂

∂xi
+ Eik

∂

∂x̃k
, (3.77)



3.4 T-duality Covariant Constructions 75

one is able to write down the following background independent action

S =

∫
d10x d10x̃ e−2 d

[
− 1

4
gik gjlDpEklDpEij +

1

4
gkl
(
DjEik DiEjl + D̄jEki D̄iElj

)
+
(
Did D̄jEij + D̄idDjEji

) ]
.

(3.78)

The action (3.78) is invariant under

E 7−→ (a E + b) (c E + d)−1 and d 7−→ d , (3.79)

where

(
a b

c d

)
∈O(10, 10). Such a background independent action can be rewritten

by making use of the generalised metric (see also definition in (3.52)), which is given in

terms of the ordinary metric gij and the Kalb-Ramond field bij by the following symmetric

element of O(d, d)

HMN =

(
gij −gik bkj

bik g
kj gij − bik g

kl blj

)
, (3.80)

such that HMPHPN = δNM . In this formulation, the O(10, 10) invariant and background

independent action [162] can be written as

S =

∫
d10x d10x̃ e−2 d

(
1

8
HMN ∂MHPQ ∂NHPQ −

1

2
HMN ∂NHPQ ∂QHMP

−2 ∂Md ∂NHMN + 4HMN ∂Md ∂Nd

)
.

(3.81)

The gauge invariance of DFT and closure of its gauge algebra gives rise to a set of

constraints that restrict the coordinate dependence of the fields and gauge parameters.

The original cubic formulation [160] turned out to require the so-called Weak Constraint

(WC), which imposes

∂M∂
MA = 0 , (3.82)

where A represents a field or a gauge parameter. This constraint was found to arise from

the level-matching condition in the sigma model, which has to be imposed in the massless

sector of closed string theory (see also chapter 1)

0
!

= L0 − L0 = −piwi , (3.83)

where pi are the momenta and wi the winding number of a given state in the spectrum.

The final background independent formulation, on the other hand, was found to require

yet another more restrictive constraint [161], which was therefore called Strong Constraint

(SC). This constraint not only requires the operator ∂M∂
M to annhilate fields and gauge

parameters, but also any product of them.

Later on though, in ref. [168], a more general formulation of DFT was proposed in

which gauge invariance does not necessarily imply the SC. The first remark made there
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is that the very first formulation of DFT with the WC – which was consistent up to

cubic level – does not really make sense as a complete theory, since the WC is not gauge

invariant. The only subcase which gives rise to a well-defined theory is DFT with the SC,

which once solved, gives us back ten-dimensional supergravity. In general, though, one

finds that gauge invariance and the closure of the twisted Courant brackets require a much

more involved slice constraint, which even depends on several combinations of fields and

gauge parameters and this makes it cumbersome to solve it in full generality.

A possible set of solutions to such a constraint is given by restricting the fields and

gauge parameters to satisfy the SC. In such a situation, they can always be T-dualised

to a frame in which the dependence on dual coordinates is cancelled. This restriction

arises naturally in the context of toroidal compactifications. In such case, DFT provides

an interesting framework in which ten-dimensional supergravity can be rotated to T-dual

frames [151–153]. Different backgrounds violating the SC will be considered in the next

chapter in the context of twisted reductions of DFT and we will see how these are related

to non-geometric backgrounds in string theory.



Chapter 4

Duality Orbits and Double Field Theory

As we saw in the previous chapter, compactifications in duality covariant construc-

tions such as GCG and DFT have proven to be suitable frameworks to reproduce gauged

supergravities containing non-geometric fluxes. However, it is a priori unclear whether

these approaches only provide a reformulation of old results, or also contain new physics.

To address this question, we classify the T- and U-duality orbits of gaugings of (half-)

maximal supergravities in dimensions seven and higher. It turns out that all orbits have

a geometric supergravity origin in the maximal case, while there are non-geometric orbits

in the half-maximal case. We show how the latter are obtained from compactifications

of DFT. Some additional and technical material related to this chapter can be found in

appendix A. Most of the results of this chapter were first obtained in refs [194,195].

4.1. Why Duality Orbits?

In the context of half-maximal [100] and maximal [196] gauged supergravities, not only

does supersymmetry tightly organise the ungauged theory, but also it strictly determines

the set of possible deformations (i.e. gaugings). The development of the so-called embed-

ding tensor formalism (see section 2.3) has enabled one to formally describe all the possible

deformations in a single universal formulation, which therefore completely restores duality

covariance. Unfortunately, not all the deformations have a clear higher-dimensional origin,

in the sense that they can be obtained by means of a certain compactification of ten- or

eleven-dimensional supergravity.

One of the most interesting open problems concerning flux compactifications is to

reproduce, by means of a suitable flux configuration, a given lower-dimensional gauged

supergravity theory. Although this was done in particular cases (see for example refs [125,

197]), an exhaustive analysis remains to be done. This is due to fact that, on the one

hand we lack a classification of the possible gauging configurations allowed in gauged

supergravities and, on the other hand, only a limited set of compactification scenarios

are known. Typically, to go beyond the simplest setups one appeals to dualities. The

paradigmatic example [24] starts by applying T-dualities to a simple toroidal background

with a non-trivial two-form generating a single Habc flux. By T-dualising this setup, one

can construct a chain of T-dualities leading to new backgrounds (like twisted-tori or T-

folds) and generating new (dual) fluxes, like the so-called Qa
bc and Rabc. We saw in the
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previous chapter that it is precisely by following duality covariance arguments in the lower-

dimensional effective description that non-geometric fluxes were first introduced in order

to explain the mismatch between particular flux compactifications and generic gauged

supergravities. From the viewpoint of the lower-dimensional effective theory, it turns

out that half-maximal and maximal gauged supergravities give descriptions which are

explicitly covariant with respect to T- and U-duality respectively. This is schematically

depicted in table 4.1, even though only restricted to the cases we will address in this

chapter.

D T-duality U-duality

9 O(1, 1) R+×SL(2)

8 O(2, 2) = SL(2)×SL(2) SL(2)×SL(3)

7 O(3, 3) = SL(4) SL(5)

Table 4.1: The various T- and U-duality groups in D > 6. These turn out to coincide

with the global symmetry groups of half-maximal and maximal supergravities respectively

(see tables 2.6 and 2.7).

Here we would like to emphasise that all these (a priori) different T-duality connected

flux configurations by definition lie in the same orbit of gaugings, and therefore give rise to

the same lower-dimensional physics. In order to obtain a different gauged supergavity, one

should consider more general configurations of fluxes, involving for example combinations

of geometric and non-geometric fluxes, that can never be T-dualised to a frame in which the

non-geometric fluxes are absent. For the sake of clarity, we depict this concept in figure 4.1.

Unfortunately, the original background independent formulation of DFT introduced in the

previous chapter requires the SC for consistency and gauge invariance. This was found to

imply that every consistent background (i.e. satisfying the SC) can be rotated to a locally

geometric one by means of an O(d, d) transformation [161]. In this scenario, DFT cannot

possibly open up new T-duality orbits like orbit 1 in figure 4.1.

Subsequently, an indication has been given that gauge consistency of DFT does not

need the WC and SC [168]. Following this direction, we could wonder whether relaxing

these constraints can provide a higher-dimensional origin for all gaugings of extended

supergravity through DFT. Our aim in the present work is to assess to what extent DFT

can improve our description of non-geometric fluxes by giving a higher-dimensional origin

to orbits which do not follow from standard supergravity compactifications. We will call

such orbits of gaugings non-geometric (in figure 4.1 they are represented by orbit 1).

As a starting point for this investigation, we will address the problem in the context

of maximal and half-maximal gauged supergravities in dimension seven and higher, where

the global symmetry groups are small enough to allow for a general classification of orbits,

without needing to consider truncated sectors. We will show that in the half-maximal
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A

B

orbit 1

orbit 2
Flux configurations

Geometric

configurations

Figure 4.1: The space of flux configurations sliced into duality orbits (vertical lines). Mov-

ing along a given orbit corresponds to applying dualities to a certain flux configuration

and hence it does not imply any physical changes in the lower-dimensional effective de-

scription. Geometric fluxes only constitute a subset of the full configuration space. Given

an orbit, the physically relevant question is whether (orbit 2 between A and B) or not

(orbit 1) this intersects the geometric subspace. We refer to a given point in an orbit as a

representative.

supergravities in seven and higher dimensions, where the classifications of orbits can be

done exhaustively, all the orbits (including geometric and non-geometric) admit an uplift

to DFT, through SS [116] compactifications on appropriate backgrounds. We provide

explicit backgrounds for every orbit, and discuss their (un)doubled nature. The result

is that truly doubled DFT provides the appropriate framework to deal with orbits that

cannot be obtained from supergravity. In contrast, in maximal supergravities in eight and

higher dimensions, all orbits are geometric and hence can be obtained without resorting

to DFT.

4.2. Twisted Reductions of DFT

While toroidal compactifications of DFT lead to half-maximal ungauged supergrav-

ities, SS compactifications on more general doubled spaces are effectively described by

gauged supergravities like the ones we will analyse in the next sections. If the internal

space is restricted in such a way that there always exists a frame without dual coordinate

dependence, the only orbits allowed in the effective theory are those admitting represent-

atives that can be obtained from compactifications of ten-dimensional supergravity. This

is not the most general case, and we will show that some orbits require the compact space

to be truly doubled, thus capturing information of both momentum and winding modes.

Recently in ref. [168], a new set of solutions to the constraints for DFT has been found.
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For these solutions the internal dependence of the fields is not dynamical, but fixed. The

constraints of DFT restrict the dynamical external space to be undoubled, but allows for

a doubling of the internal coordinates as long as the QC (see section 2.3) for the gaugings

are satisfied. Interestingly, these are exactly the constraints needed for consistency of

gauged supergravity, so there is a priori no impediment to uplift any orbit to DFT in this

situation. In fact, in the following sections we show that all the orbits in half-maximal

D = 7, 8 gauged supergravities can be reached from twisted double tori compactifications

of DFT.

In the SS procedure described in section 3.1, the coordinates XM are split into external

directions X and compact internal Y coordinates. The former set contains pairs of O(D,D)

dual coordinates, while the latter one contains pairs of O(n, n) dual coordinates, with

d = D + n. This means that if a given coordinate is external (internal), its dual must

also be external (internal), so the effective theory is formally a (gauged) DFT. The SS

procedure is then defined in terms of a reduction ansatz, that specifies the dependence of

the fields in (X,Y)

HMN (X,Y) = U(Y)AM Ĥ(X)AB U(Y)BN , d(X,Y) = d̂(X) + λ(Y) . (4.1)

Here the hatted fields Ĥ and d̂ are the dynamical fields in the effective theory, paramet-

erising perturbations around the background, which is defined by U(Y) and λ(Y). The

matrix U is referred to as the twist matrix, and must be an element of O(n, n). It contains

a DFT T-duality index M , and another index A corresponding to the T-duality group of

the effective theory. When DFT is evaluated on the reduction ansatz, the twists generate

the gaugings of the effective theory

fABC = 3ηD[A (U−1)MB(U−1)NC]∂MU
D
M , (4.2)

ξA = ∂M (U−1)MA − 2(U−1)MA∂Mλ , (4.3)

where fABC and ξA build the generalised structure constants of the gauge group in the

lower-dimensional theory. Note that these relations generalise eq. (3.10).

Although U and λ are Y dependent quantities, the gaugings are forced to be constants

in order to eliminate the Y dependence from the lower-dimensional theory. When the

external-internal splitting is performed, namely d = D+n, the dynamical fields are written

in terms of their components which are a D-dimensional metric, a D-dimensional 2-form,

2n D-dimensional vectors and n2 scalars. These are the degrees of freedom of half-maximal

supergravities. Since these fields are contracted with the gaugings, one must make sure

that after the splitting the gaugings have vanishing Lorentzian indices, and this is achieved

by stating that the twist matrix is only non-trivial in the internal directions. Therefore,

although formally everything is covariantly written in terms of O(d, d) indices A,B,C, ...,

the global symmetry group is actually broken to O(n, n). We will not explicitly show how

this splitting takes place, and refer to [166] for more details. In this work, for the sake
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of simplicity, we will restrict to the case ξA = 0, which should be viewed as a constraint

for λ. Also we will restrict to O(n, n) global symmetry groups, without additional vector

fields.

There are two possible known ways to restrict the fields and gauge parameters in DFT,

such that the action is gauge invariant and the gauge algebra closes. On the one hand,

the so-called WC and SC can be imposed

∂M∂
MA = 0 , ∂MA ∂MB = 0 , (4.4)

where A and B generically denote products of (derivatives of) fields and gauge parameters.

When this is the case, one can argue [161] that there is always a frame in which the fields

do not depend on the dual coordinates. On the other hand, in the SS compactification

scenario, it is enough to impose the WC and SC only on the external space (i.e., on hatted

quantities)

∂M∂
M Â = 0 , ∂M Â ∂M B̂ = 0 , (4.5)

and impose QC for the gaugings

fE[ABf
E
C]D = 0 . (4.6)

This second option is more natural for our purposes, since these constraints exactly coin-

cide with those of half-maximal gauged supergravities1 (which are undoubled theories in

the external space, and contain gaugings satisfying the QC).

Notice that if a given U produces a solution to the QC, any T-dual U will also.

Therefore, it is natural to define the notion of twist orbits as the sets of twist matrices

connected through T-duality transformations. If a representative of a twist orbit generates

a representative of an orbit of gaugings, one can claim that the twist orbit will generate

the entire orbit of gaugings. Also, notice that if a twist matrix satisfies the WC and SC,

any representative of its orbit will, so one can define the notions of undoubled and truly

doubled twist orbits.

Non-geometry VS weak and strong constraint violation

Any half-maximal supergravity can be uplifted to the maximal theory whenever the

following constraint holds2

fABC f
ABC = 0 . (4.7)

This constraint plays the role of an orthogonality condition between geometric and non-

geometric fluxes. Interestingly, the constraint (4.7) evaluated in terms of the twist matrix

1We are working under the assumption that the structure constants not only specify the gauging, but

all couplings of the theory. Reproducing the correct structure constants therefore implies reproducing the

full theory correctly, as has been proven in D = 4 and D = 10 [166,167,190,198].
2D = 4 half-maximal supergravity is slightly different because its global symmetry group features an

extra SL(2) factor; for full details, see [199,200].
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U and λ can be rewritten as follows (by taking relations (4.2) and (4.3) into account)

fABC f
ABC = −3 ∂DU

A
P ∂

D
(
U−1

)P
A
− 24 ∂Dλ∂

Dλ + 24 ∂D∂
Dλ . (4.8)

The RHS of this equation is zero whenever the background defined by U and λ satisfies the

WC and SC. This immediately implies that any background satisfying WC and SC defines

a gauging which is upliftable to the maximal theory. Conversely, if an orbit of gaugings

in half-maximal supergravity does not satisfy the extra constraint (4.7), the RHS of this

equation must be non-vanishing, and then the WC and SC must be relaxed. In conclusion,

the orbits of half-maximal supergravity that do not obey the QC of the maximal theory

require truly doubled twist orbits, and are therefore genuinely non-geometric. This point

provides a concrete criterion to label these orbits as non-geometric. Also, notice that these

orbits will never be captured by non-geometric flux configurations obtained by T-dualising

a geometric background3.

For the sake of clarity, let us briefly review the definitions that we use. A twist orbit

is non-geometric if it doesn’t satisfy the WC/SC, and geometric if it does. Therefore, the

notion of geometry that we consider is local, and we will not worry about global issues

(given that the twist matrix is taken to be an element of the global symmetry group, the

transition functions between coordinate patches are automatically elements of O(n, n)).

On the other hand an orbit of gaugings is geometric if it contains a representative that

can be obtained from ten-dimensional supergravity (or equivalently from a geometric twist

orbit), and it is non-geometric it does not satisfy the constraints of maximal supergravity.

We have now described all the necessary ingredients to formally relate dimensional

reductions of DFT and the orbits of half-maximal gauged supergravities. In particular, in

what follows we will:

1. Provide a classification of all the orbits of gaugings in maximal and half-maximal

supergravities in D ≥ 7.

2. Explore mechanisms to generate orbits of gaugings from twists, satisfying

U(Y) ∈ O(n, n)

Constant fABC

fE[ABf
E
C]D = 0

3. Show that in the half-maximal theories all the orbits of gaugings can be obtained

from twist orbits in DFT.

4. Show that in the half-maximal theories the orbits that satisfy the QC of maximal

supergravity admit a representative with a higher-dimensional supergravity origin.

3However, we would like to stress that, in general, it is not true that an orbit satisfying the QC

constraints of maximal supergravity (4.7) is necessarily generated by an undoubled twist orbit. An example

can be found at the end of section 4.
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For these we provide concrete realisations in terms of unboubled backgrounds in

DFT. Instead, the orbits that fail to satisfy (4.7) require, as we argued, truly doubled

twist orbits for which we also provide concrete examples.

5. Show that there is a degeneracy in the space of twist orbits giving rise to the same

orbit of gaugings. Interestingly, in some cases a given orbit can be obtained either

from undoubled or truly doubled twist orbits.

In the next sections we will classify all the orbits in (half-)maximal D ≥ 7 supergrav-

ities, and provide the half-maximal ones with concrete uplifts to DFT, explicitly proving

the above points.

Parametrisation of the duality twists

Here we would like to introduce some notation that will turn out to be useful in the

uplift of orbits to DFT. We start by noting the double internal coordinates as YA = (ỹa, y
a)

with a = 1, ..., n. As we saw, the SS compactification of DFT is defined by the twists

U(Y) and λ(Y). The duality twist U(Y) is not generic, but forced to be an element of

O(n, n), so we should provide suitable parameterisations. One option is the light-cone

parameterisation, where the metric of the (internal) global symmetry group is taken to be

of the form

ηAB =

(
0 1n

1n 0

)
. (4.9)

The most general form of the twist matrix is then given by

U(Y) =

(
e 0

0 e−T

) (
1n 0

−B 1n

) (
1n β

0 1n

)
, (4.10)

with e ∈ GL(n) and B and β are generic n × n antisymmetric matrices. When β = 0,

e = e(ya) and B = B(ya), the matrix e can be interpreted as a n-dimensional internal

vielbein and B as a background 2-form for the n-dimensional internal Kalb-Ramond field

b. Whenever the background is of this form, we will refer to it as geometric (notice that

this still does not determine completely the background, which receives deformations from

scalar fluctuations). In this case the gaugings take the simple form

fabc = 3(e−1)α[a(e
−1)βb(e

−1)γc]∂[αBβγ] ,

fabc = 2(e−1)β [b(e
−1)γc]∂βe

a
γ ,

fabc = fabc = 0 . (4.11)

If we also turn on a β(ya), the relation of e, B and β with the internal g and b

is less trivial, and typically the background will be globally well defined up to O(n, n)

transformations mixing the metric and the two-form (this is typically called a T-fold). In

this case, we refer to the background as locally geometric but globally non-geometric, and
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this situation formally allows for non-vanishing fabc and fabc. Finally, if the twist matrix

is a function of ỹa, we refer to the background as locally non-geometric. Notice however,

that if it satisfies the WC and SC, one would always be able to rotate it to a frame in

which it is locally geometric, and would therefore belong to an undoubled orbit.

Alternatively, one could also define the cartesian parametrisation of the twist matrix,

by taking the metric of the (internal) global symmetry group to be of the form

ηAB =

(
1n 0

0 −1n

)
. (4.12)

This formulation is related to the light-cone parametrisation through a SO(2n) trans-

formation, that must also rotate the coordinates. In this case the relation between the

components of the twist matrix and the internal g and b is non-trivial. We will con-

sider the O(n, n) twist matrix to contain a smaller O(n−1, n−1) matrix in the directions

(y2, ..., yn, ỹ2, ..., ỹn) fibred over the flat directions (y1, ỹ1). We have seen that this typically

leads to constant gaugings.

Of course these are not the most general parameterisations and ansatz, but they will

serve our purposes of uplifting all the orbits of half-maximal supergravity to DFT. Inter-

esting works on how to generate gaugings from twists are [159,201].

4.3. U-duality Orbits of Maximal Supergravities

Following the previous discussion of DFT and its relevance for generating duality

orbits, we turn to the actual classification of these. In particular, we start with orbits

under U-duality of gaugings of maximal supergravity. Moreover, we will demonstrate that

all such orbits do have a higher-dimensional supergravity origin.

Starting with the highest dimension for maximal supergravity, D = 11, no known

deformation is possible here. Moreover, in D = 10 maximal supergravities, the only

possible deformation occurs in what is known as massive IIA supergravity4 [206]. It

consists of a Stückelberg-like way of giving a mass to the 2-form B2. Therefore, such a

deformation cannot be interpreted as a gauging. The string theory origin of this so-called

Romans’ mass parameter is nowadays well understood as arising from D8-branes [207].

Furthermore, its DFT uplift has been constructed in ref. [208]. Naturally, the structure

of possible orbits becomes richer when going to lower dimensions. In what follows we will

perform the explicit classification in dimensions nine and eight.

4Throughout this chapter we will not consider the trombone gaugings giving rise to theories without

an action principle, as discussed in e.g. refs [202–205].
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Orbits and origin of the D = 9 maximal case

Maximal D = 9 gauged supergravity

The maximal (ungauged) supergravity in D = 9 [209] can be obtained by reducing

either massless type IIA or type IIB supergravity in ten dimensions on a circle. The

global symmetry group of this theory is

G0 = R+ × SL(2) .

Note that G0 is the global symmetry of the action and hence it is realised off-shell, whereas

the on-shell symmetry has an extra R+ with respect to which the Lagrangian has a non-

trivial scaling weight. This is normally referred to as the trombone symmetry. As a

consequence, the on-shell symmetry contains three independent rescalings [88,203], which

we summarise in table 4.2. The full field content consists of the following objects which

ID e a
µ Aµ Aµ

1 Aµ
2 Bµν

1 Bµν
2 Cµνρ eϕ χ eφ ψµ λ , λ̃ L

α 9
7 3 0 0 3 3 3 6√

7
0 0 9

14 − 9
14 9

β 0 1
2 −3

4 0 −1
4

1
2 −1

4

√
7

4 −3
4

3
4 0 0 0

γ 0 0 1 −1 1 −1 0 0 2 −2 0 0 0

δ 8
7 0 2 2 2 2 4 − 4√

7
0 0 4

7 −4
7 8

Table 4.2: The scaling weights of the nine-dimensional fields. As already anticipated,

only three rescalings are independent since they are subject to the following constraint:

8α−48β−18γ−9δ = 0. As the scaling weight of the Lagrangian L shows, β and γ belong

to the off-shell symmetries, whereas α and δ can be combined into a trombone symmetry

and an off-shell symmetry.

arrange themselves into irrep’s of R+ × SL(2):

9D : e a
µ , Aµ , Aµ

i , Bµν
i , Cµνρ , ϕ , τ = χ + i e−φ︸ ︷︷ ︸

bosonic dof’s

; ψµ , λ , λ̃︸ ︷︷ ︸
fermionic dof’s

, (4.13)

where µ, ν, · · · denote nine-dimensional curved spacetime, a, b, · · · nine-dimensional flat

spacetime and i, j, · · · fundamental SL(2) indices respectively.

The general deformations of this theory have been studied in detail in ref. [99], where

both embedding tensor deformations and gaugings of the trombone symmetry have been

considered. For the present scope we shall restrict ourselves to the first ones. The latter

ones would correspond to the additional mass parameters mIIB and (m11,mIIA) in refs [99,

203], which give rise to theories without an action principle.

The vectors of the theory {Aµ , Aµi} transform in the V ′ = 1(+4) ⊕ 2(−3) of R+ ×
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SL(2) , where the R+ scaling weights are included as well5. The resulting embedding tensor

deformations live in the following tensor product

g0 ⊗ V = 1(−4) ⊕ 2 · 2(+3) ⊕ 3(−4) ⊕ 4(+3) . (4.14)

The LC projects out the 4(+3), the 1(−4) and one copy of the 2(+3) since they would

give rise to inconsistent deformations. As a consequence, the consistent gaugings are

parameterised by embedding tensor components in the 2(+3) ⊕ 3(−4). We will denote

these allowed deformations by θi and κ(ij).

The closure of the gauge algebra and the antisymmetry of the brackets impose the

following QC

εij θ
i κjk = 0 , 2(−1) (4.15)

θ(i κjk) = 0 . 4(−1) (4.16)

The R+×SL(2) orbits of solutions to the QC

The QC (4.15) and (4.16) turns out to be very simple to solve; after finding all the

solutions, we studied the duality orbits, i.e. classes of those solutions which are connected

via a duality transformation. The resulting orbits of consistent gaugings in this case are

presented in table 4.3.

ID θi κij gauging

1

(0, 0)

diag(1, 1) SO(2)

2 diag(1,−1) SO(1, 1)

3 diag(1, 0) R+
γ

4 (1, 0) diag(0, 0) R+
β

Table 4.3: All the U-duality orbits of consistent gaugings in maximal supergravity in D = 9.

For each of them, the simplest representative is given. The subscripts β and γ refer to the

rescalings summarised in table 4.2.

Higher-dimensional geometric origin

The four different orbits of maximalD = 9 theory have the following higher-dimensional

origin in terms of geometric compactifications [210]:

Orbits 1 – 3: These come from reductions of type IIB supergravity on a circle with

an SL(2) twist.

5The R+ factor in the global symmetry is precisely the combination
(

4
3
α − 3

2
δ
)

of the different res-

calings introduced in ref. [203].
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Orbit 4: This can be obtained from a reduction of type IIA supergravity on a circle

with the inclusion of an R+
β twist.

Orbits and origin of the D = 8 maximal case

Maximal D = 8 gauged supergravity

The maximal (ungauged) supergravity in D = 8 [109] can be obtained by reducing

eleven-dimensional supergravity on a T 3. The global symmetry group of this theory is

G0 = SL(2) × SL(3) .

The full field content consists of the following objects which arrange themselves into irrep’s

of SL(2) × SL(3):

8D : e a
µ , Aµ

αm , Bµνm , Cµνρ , L
I

m , φ , χ︸ ︷︷ ︸
bosonic dof’s

; ψµ , χI︸ ︷︷ ︸
fermionic dof’s

, (4.17)

where µ, ν, · · · denote eight-dimensional curved spacetime, a, b, · · · eight-dimensional flat

spacetime, m,n, · · · fundamental SL(3), I, J, · · · fundamental SO(3) and α, β, · · · funda-

mental SL(2) indices respectively. The six vector fields Aµ
αm in (4.17) transform in the

V ′ = (2,3′). There are eleven group generators, which can be expressed in the adjoint

representation g0.

The embedding tensor Θ then lives in the representation g0 ⊗ V , which can be de-

composed into irreducible representations as

g0 ⊗ V = 2 · (2,3)⊕
(
2,6′

)
⊕ (2,15)⊕ (4,3) . (4.18)

The LC restricts the embedding tensor to the (2,3) ⊕ (2,6′) [93]. It is worth noticing

that there are two copies of the (2,3) irrep in the above composition; the LC imposes

a relation between them [148]. This shows that, for consistency, gauging some SL(2)

generators implies the necessity of gauging some SL(3) generators as well. Let us denote

the allowed embedding tensor irrep’s by ξαm and fα
(mn) respectively.

The QC then read [194,211]

εαβ ξαpξβq = 0 ,
(
1,3′

)
(4.19)

f(α
npξβ)p = 0 ,

(
3,3′

)
(4.20)

εαβ (εmqrfα
qnfβ

rp + fα
npξβm) = 0 .

(
1,3′

)
⊕ (1,15) (4.21)

Any solution to the QC (4.19), (4.20) and (4.21) specifies a consistent gauging of a sub-

group of SL(2)×SL(3) where the corresponding generators are given by

(Xαm)β
γ = δγα ξβm −

1

2
δγβ ξαm , (4.22)

(Xαm)n
p = εmnq fα

qp − 3

4

(
δpm ξαn −

1

3
δpn ξαm

)
. (4.23)
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The SL(2)×SL(3) orbits of solutions to the QC

We exploited an algebraic geometry tool called the Gianni-Trager-Zacharias (GTZ)

algorithm [212]. This algorithm has been computationally implemented by the Singular

project [213] and it consists in the primary decomposition of ideals of polynomials (see

chapter 5 for more details). After finding all the solutions to the QC by means of the

algorithm mentioned above, one has to group together all the solutions which are connected

through a duality transformation, thus obtaining a classification of such solutions in terms

of duality orbits. The resulting orbits of consistent gaugings6 in this case are presented in

table 4.4.

ID f+
mn f−

mn ξ+m ξ−m gauging

1 diag(1, 1, 1)

diag(0, 0, 0) (0, 0, 0) (0, 0, 0)

SO(3)

2 diag(1, 1,−1) SO(2, 1)

3 diag(1, 1, 0) ISO(2)

4 diag(1,−1, 0) ISO(1, 1)

5 diag(1, 0, 0) CSO(1, 0, 2)

6 diag(0, 0, 0) diag(0, 0, 0) (1, 0, 0) (0, 0, 0) Solv2×Solv3

7 diag(1, 1, 0)

diag(0, 0, 0) (0, 0, 1) (0, 0, 0) Solv2×Solv38 diag(1,−1, 0)

9 diag(1, 0, 0)

10 diag(1,−1, 0)


1 1 0

1 1 0

0 0 0

 2
9(0, 0, 1) (0, 0, 0) Solv2×SO(2)nNil3(2)

Table 4.4: All the U-duality orbits of consistent gaugings in maximal supergravity in D = 8.

For each of them, the simplest representative is given. We denote by Solv2 ⊂SL(2) and

Solv3 ⊂SL(3) a solvable algebra of dimension 2 and 3 respectively. To be more precise,

Solv2 identifies the Borel subgroup of SL(2) consisting of 2× 2 upper-triangular matrices.

Solv3, instead, is a Bianchi type V algebra.

Higher-dimensional geometric origin

Orbits 1 – 5: These stem from reductions of eleven-dimensional supergravity on a

three-dimensional group manifold of type A in the Bianchi classification [214]. The

special case in orbit 1 corresponds to a reduction over an SO(3) group manifold and

it was already studied in ref. [109].

6Recently, also the possible vacua of the different theories have been analysed [194]. As we will explain

later in this section, it was found that only orbit 3 has maximally symmetric vacua.
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Orbit 6: This can be obtained from a reduction of maximal nine-dimensional su-

pergravity on a circle with the inclusion of an R+ twist inside the global symmetry

group.

Orbits 7 – 9: These can come from the same reduction from D = 9 but upon

inclusion of a more general R+ × SL(2) twist.

Orbit 10: This orbit seems at first sight more complicated to be obtained from a

dimensional reduction owing to its non-trivial SL(2) angles. Nevertheless, it turns

out that one can land on this orbit by compactifying type IIB supergravity on a

circle with an SL(2) twist and then further reducing on another circle with R+ ×
SL(2) twist given by the residual little group leaving invariant the intermediate nine-

dimensional deformation.

Remarks on the D = 7 maximal case

The general deformations of the maximal theory in D = 7 are constructed and presen-

ted in full detail in ref. [96]. For the present aim we only summarise here a few relevant

facts.

The global symmetry group of the theory is SL(5). The vector fields Aµ
MN = Aµ

[MN ]

transform in the 10′ of SL(5), where we denote by M a fundamental SL(5) index. The

embedding tensor Θ takes values in the following irreducible components

10 ⊗ 24 = 10 ⊕ 15 ⊕ 40′ ⊕ 175 . (4.24)

The LC restricts the embedding tensor to the 15 ⊕ 40′, which can be parameterised by

the following objects

Y(MN) , and Z [MN ],P with Z [MN,P ] = 0 . (4.25)

The generators of the gauge algebra can be written as follows

(XMN )P
Q = δQ[M YN ]P − 2 εMNPRS Z

RS,Q , (4.26)

or, identically, if one wants to express them in the 10,

(XMN )PQ
RS = 2 (XMN )[P

[R δ
S]
Q] . (4.27)

The closure of the gauge algebra and the antisymmetry of the brackets imply the following

QC

YMQ Z
QN,P + 2 εMRSTU Z

RS,N ZTU,P = 0 , (4.28)

which have different irreducible pieces in the 5′ ⊕ 45′ ⊕ 70′. Unfortunately, in this case,

both the embedding tensor deformations and the QC reach a level of complexity that

makes an exhaustive and general analysis difficult. Such analysis lies beyond the scope of

our work.
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The Critical Points of Maximal D = 8 Supergravities

Before going to the discussion of T-duality orbits of half-maximal theories, we would

like in this paragraph to schematically present the study of critical points of maximal

eight-dimensional supergravities. To this end, we will briefly summarise the results of

ref. [194] where the analysis of the scalar potential and its derivatives was preformed in

full generality. The first result of the above reference, in fact, is the derivation of the scalar

potential itself that we briefly sketch here. The scalar degrees of freedom present in (4.17)

can rearranged into the following coset representatives

Wαβ =

(
e−φ + χ2eφ χeφ

χeφ eφ

)
, Mmn = L i

m L j
n δij . (4.29)

of SL(2)/SO(2) and SL(3)/SO(3), respectively.

The gravity/scalar part of the action reads [215]

S =
1

16πG8

∫
d8x e

(
R +

1

4
Tr(∂M ∂M−1) +

1

4
Tr(∂W ∂W−1)

)
, (4.30)

where e is the determinant of the vielbein. The full bosonic action, in addition to the

terms in (4.30), contains kinetic terms for the vector fields, the two- and three-forms and

finally Chern-Simons terms.

The most general ansatz for the scalar potential induced by the gauging, consists of

the following terms

V = Wαβ [fα
mnfβ

pq (aMmpMnq + bMmnMpq) + c ξαmξβnM
mn] , (4.31)

Wαβ and Mmn denote the inverse matrices of Wαβ and Mmn appearing in (4.29), and

a, b and c are coefficients that are going to be determined. The way used for fixing

these coefficients is to restrict them by means of the scalar potential in maximal D = 7

supergravity, which we have just presented above.

In addition to the embedding tensor deformations extensively described in the previous

paragraph, we need to introduce the scalar sector and scalar potential of maximal D = 7

supergravities. Such scalar sector is described by the SL(5)/SO(5) coset geometry (see

table 2.6) parametrised by the symmetric matrixMMN with inverseMMN . This divides

the isometry group of the scalar manifold SL(5) into unphysical scalar degrees of freedom

(generating the adjoint representation of SO(5)) and physical scalar fields completing them

to the 24, i.e. the adjoint representation of SL(5). Maximal supersymmetry completely

and uniquely determines the scalar potential to be of the form

V =
1

64

(
2MMNYNPMPQYQM − (MMNYMN )2

)
+

+ ZMN,PZQR,S
(
MMQMNRMPS −MMQMNPMRS

)
. (4.32)
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Every gauging in D = 8 must be an at most six-dimensional subgroup of the global

symmetry group SL(2)×SL(3). After dimensional reduction to D = 7, the global sym-

metry group gets enhanced with respect to what one would naively expect7; for this reason,

one would certainly expect any consistent gauging of the eight-dimensional theory to be

reduced to a consistent gauging of the seven-dimensional theory where the gauge group,

though, undergoes an enlargement just in the same way as for the global symmetry group.

This statement implies that the irreducible components of the embedding tensor in eight

dimensions must be obtained as a truncation of the embedding tensor in D = 7. This

implies the possibility of deriving the scalar potential of maximal D = 8 gauged super-

gravity from the expression of the seven-dimensional scalar potential given in (4.32), after

understanding how the eight-dimensional degrees of freedom associated with internal sym-

metries sit inside SL(5) irrep’s. To this end, we need the branching of some relevant irrep’s

of SL(5) with respect to irrep’s of SL(2)×SL(3), which is a maximal subgroup thereof.

The embedding turns out to be unique and it gives rise to the following decompositions

5 −→ (2,1) ⊕ (1,3) , (4.33)

15 −→ (1,6) ⊕ (2,3) ⊕ (3,1) , (4.34)

24 −→ (1,1) ⊕ (1,8) ⊕ (2,3) ⊕ (2,3′) ⊕ (3,1) , (4.35)

40′ −→ (1,3′) ⊕ (1,8) ⊕ (2,1) ⊕ (2,6′) ⊕ (2,3) ⊕ (3,3′) . (4.36)

The decomposition (4.33) essentially tells that the fundamental SL(5) indexM = 1, 2, 3, 4, 5

goes into (α ; m), where α = +,− and m = 1, 2, 3 represent fundamental SL(2) and SL(3)

indices respectively. The decomposition (4.35) tells us how the SL(2)×SL(3) scalar de-

grees of freedom (living in the (1,8) ⊕ (3,1)) are embedded in the adjoint of SL(5). It

is worth mentioning at this point that we are losing a Cartan generator in the branching

procedure; such an abelian generator is realised as an extra R+ factor corresponding to

a dilaton in the seven-dimensional theory, with respect to which any eight-dimensional

object should have a scaling weight which we are omitting. This extra scalar exactly ac-

counts for the (1,1) irrep appearing in (4.35). The truncation that we need consists then

in switching off all the off-diagonal axionic excitations (spanning the (2,3) and (2,3′)

terms in (4.35)), thus resulting in the following parametrisation

MMN =

 e3σWIJ 0

0 e−2σMmn

 , (4.37)

where σ is the extra dilaton corresponding to R+, whereas WIJ and Mmn parametrise the

SL(2)/SO(2) and SL(3)/SO(3) cosets respectively. It has been checked explicitly that the

scaling weights of all the terms in the D = 8 scalar potential with respect to the extra R+

are all equal such that it is perfectly consistent to set σ = 0 in the rest of our derivation,

7One would expect R+ × SL(2) × SL(3), whereas it turns out to be enlarged to an SL(5).
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since any other constant value can be seen as a change of normalisation of the potential

energy in the Lagrangian.

The embedding tensor of the D = 8 theory is embedded as follows inside the one of

D = 7 theory

Zαm,n = −Zmα,n =
1

4
εαβfβ

mn − 1

16
εmnpεαβξβp , (4.38)

Zmn,α =
1

8
εmnpεαβξβp , (4.39)

Yαm = Ymα = ξαm . (4.40)

One can check that substituting (4.38), (4.39) and (4.40) into the D = 7 quadratic con-

straints (4.28) exactly leads to the ones in D = 8 as shown in (4.19), (4.20) and (4.21).

One can finally apply the decomposition rules (4.37) and (4.38), (4.39) and (4.40)

on the D = 7 scalar potential (4.32), so that the relative coefficients in (4.31) can be

determined, and by taking the normalisation of the action (4.30) into account one can

further fix the overall factor of (4.31). Then the D = 8 scalar potential is fully derived:

V =
1

2
Wαβ [fα

mnfβ
pq (2MmpMnq −MmnMpq) + ξαmξβnM

mn] . (4.41)

In total there are 7 scalars for the coset SL(2)
SO(2) ×

SL(3)
SO(3) . In (4.29) we already gave a

parametrisation for the SL(2) scalars; now we also specify a parametrisation of the vielbein

L appearing in (4.29) containing the information about the SL(3) scalars, which is given

by

L i
m =


e−φ1 χ1e

φ1−φ2
2 χ2e

φ1+φ2
2

0 e
φ1−φ2

2 χ3e
φ1+φ2

2

0 0 e
φ1+φ2

2

 . (4.42)

Subsequently, by substituting such a parametrisation into the scalar potential (4.41)

and requiring that
δV

δ (scalars)
= 0 , (4.43)

one obtains 7 equations which represent the extremality condition for the scalar potential.

Since the full theory enjoys a global SL(2)×SL(3) duality symmetry, one can choose to

solve these equations in the origin of moduli space (setting all 7 scalars to zero8.). As we

will explain in more detail in chapter 5, this can always be done without loss of generality

by performing a non-compact duality transformation. This will translate the 7 equations

of motion for the scalars into a set of 7 quadratic conditions in the embedding tensor

components. Furthermore the quadratic constraints (4.19), (4.20) and (4.21) give another

30 equations in the embedding tensor components which need to be satisfied for the

solution to be consistent. This set of 37 equations appears in the form an ideal consisting

8This translates into W = 12 and M = 13, from which it becomes manifest that the origin still presents

a residual SO(2)×SO(3) invariance.
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of homogeneous polynomial equations which can be solved for the components ξαm and

fα
(mn).

As explained in the footnote 8, we still have compact duality transformations that we

can use in order to simplify the general form of ξ and f without spoiling the choice of

solving the equations of motion in the origin. For instance, we can make use of an SO(3)

transformation in order to diagonalise f−
mn, whereas for the moment we do not need to

exploit SO(2) transformations.

By making again use of the GTZ algorythm [212] (see chapter 5), we find in the end

only one SO(2)×SO(3) orbit of solutions, in which the simplest representative is given by

f+
mn =


λ 0 0

0 λ 0

0 0 0

 , f−
mn = ξ+m = ξ−m = 0 , (4.44)

where λ represents an arbitrary real parameter, with V = 0 (Minkowski). This theory

belongs to orbit 1 in table 4.4, whereas all the other orbits of consistent theories listed

there turn out to have no critical points.

The solutions given in (4.44) turn out to always non-supersymmetric and have the

following mass spectrum

0 (× 5) , 8λ2 (× 2) , (4.45)

where, though, at least the SL(2) dilaton φ can never be stabilised at any higher-order

level since it corresponds to the overall eφ behaviour typical of no-scale supergravities.

4.4. T-duality Orbits of Half-maximal Supergravities

After the previous section on maximal supergravities, we turn our attention to theories

with half-maximal supersymmetry. In particular, in this section we will classify the orbits

under T-duality of all gaugings of half-maximal supergravity. We will only consider the

theories with duality groups R+ × SO(d, d) in D = 10 − d, which places a restriction on

the number of vector multiplets. For these theories we will classify all duality orbits, and

find a number of non-geometric orbits. Furthermore, we demonstrate that DFT does yield

a higher-dimensional origin for all of them.

Starting from D = 10 half-maximal supergravity without vector multiplets, it can be

seen that there is no freedom to deform this theory, rendering this case trivial. In D = 9,

instead, we have the possibility of performing an Abelian gauging inside R+×SO(1, 1),

which will depend on one deformation parameter. However, this is precisely the para-

meter that one expects to generate by means of a twisted reduction from D = 10. This

immediately tells us that non-geometric fluxes do not yet appear in this theory. In order

to find the first non-trivial case, we will have to consider the D = 8 case.
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Orbits and origin of the D = 8 half-maximal case

Half-maximal D = 8 gauged supergravity

Half-maximal supergravity in D = 8 is related to the maximal theory analysed in the

previous section by means of a Z2 truncation. The action of such a Z2 breaks SL(2)× SL(3)

into R+ × SL(2) × SL(2), where SL(2) × SL(2) = O(2, 2) can be interpreted as the T-

duality group in D = 8 as shown in table 4.1. The embedding of R+ × SL(2) inside SL(3)

is unique and it determines the following branching of the fundamental representation

3 −→ 1(+2) ⊕ 2(−1) ,

m −→ (• , i) ,

where the R+ direction labeled by • is parity even, whereas i is parity odd, such as the

other SL(2) index α. In the following we will omit all the R+ weights since they do not

play any role in the truncation.

The embedding tensor of the maximal theory splits in the following way

(2,3) −→ �
��H
HH(2,1) ⊕ (2,2) ,

(2,6′) −→ ��
�HHH(2,1) ⊕ (2,2) ⊕ ��

�HHH(2,3) ,

where all the crossed irrep’s are projected out because of Z2 parity. This implies that the

consistent embedding tensor deformations of the half-maximal theory can be described by

two objects which are doublets with respect to both SL(2)’s. Let us denote them by aαi

and bαi. This statement is in perfect agreement with the Kac-Moody analysis performed

in ref. [78]. The explicit way of embedding aαi and bαi inside ξαm and fα
mn is given by

fα
i• = fα

•i = εij aαj , (4.46)

ξαi = 4 bαi . (4.47)

The QC given in (4.19), (4.20) and (4.21) are decomposed according to the following

branching

(1,3′) −→ (1,1) ⊕ ��
�HHH(1,2) ,

(3,3′) −→ (3,1) ⊕ ��
�HHH(3,2) ,

(1,15) −→ (1,1) ⊕ ����
�XXXXX2 · (1,2) ⊕ 2 · (1,3) ⊕ ��

�HHH(1,4) .

As a consequence, one expects the set of Z2 even QC to consist of 3 singlets, a (3,1) and 2

copies of the (1,3). By plugging (4.46) and (4.47) into (4.19), (4.20) and (4.21), one finds

εαβ εij bαi bβj = 0 , (1,1) (4.48)

εαβ εij aαi bβj = 0 , (1,1) (4.49)

εαβ εij aαi aβj = 0 , (1,1) (4.50)

εij a(αi bβ)j = 0 , (3,1) (4.51)

εαβ aα(i bβj) = 0 . (1,3) (4.52)
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With respect to what we expected from group theory, we seem to be finding a (1,3) less

amongst the even QC. This could be due to the fact that Z2 even QC can be sourced by

quadratic expressions in the odd embedding tensor components that we truncated away.

After the procedure of turning off all of them, the two (1,3)’s probably collapse to the

same constraint or one of them vanishes directly.

The above set of QC characterises the consistent gaugings of the half-maximal theory

which are liftable to the maximal theory, and hence they are more restrictive than the pure

consistency requirements of the half-maximal theory. In order to single out only these we

need to write down the expression of the gauge generators and impose the closure of the

algebra. The gauge generators in the (2,2) read

(Xαi)βj
γk =

1

2
δγβ εij ε

kl aαl + δγα δ
k
j bβi −

3

2
δγβ δ

k
i bαj +

1

2
δγβ δ

k
j bαi + εαβ ε

γδ δkj bδi . (4.53)

The closure of the algebra generated by (4.53) implies the following QC

εαβ εij (aαi aβj − bαi bβj) = 0 , (1,1) (4.54)

εαβ εij (aαi bβj + bαi bβj) = 0 , (1,1) (4.55)

εij a(αi bβ)j = 0 , (3,1) (4.56)

εαβ aα(i bβj) = 0 . (1,3) (4.57)

To facilitate the mapping of gaugings aαi and bαi with the more familiar fABC and ξA

in the DFT language, we have written a special section in the appendix A.2. The mapping

is explicitly given in (A.16).

The O(2, 2) orbits of solutions to the QC

After solving the QC given in (4.54), (4.55), (4.56) and (4.57) again with the aid of

Singular , we find a 1-parameter family of T-duality orbits plus two discrete ones. The

results are all collected in table 4.5.

ID aαi bαi gauging

1 diag( cosα, 0) diag( sinα, 0) Solv2×SO(1, 1)

2 diag(1, 1) diag(−1,−1)
SL(2)×SO(1, 1)

3 diag(1,−1) diag(−1, 1)

Table 4.5: All the T-duality orbits of consistent gaugings in half-maximal supergravity in

D = 8. For each of them, the simplest representative is given. Solv2 refers again to the

solvable subgroup of SL(2) as already explained in the caption of table 4.4.
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Higher-dimensional geometric origin

The possible higher-dimensional origin of the three different orbits is as follows:

Orbit 1: This orbit can be obtained by performing a two-step reduction of type I

supergravity. In the first step, by reducing a circle, we can generate an R+×SO(1, 1)

gauging of half-maximal D = 9 supergravity. Subsequently, we reduce such a theory

again on a circle with the inclusion of a new twist commuting with the previous

deformation. Also, these orbits include a non-trivial ξA gauging, so we will not

address it from a DFT perspective.

Orbits 2 – 3: These do not seem to have any obvious geometric higher-dimensional

origin in supergravity. In fact, they do not satisfy the extra constraints (4.7), so one

can only hope to reproduce them from truly doubled twist orbits in DFT.

Therefore we find that, while the half-maximal orbits in D = 9 all have a known geometric

higher-dimensional origin, this is not the case for the latter two orbits in D = 8. We have

finally detected the first signals of non-geometric orbits.

Higher-dimensional DFT origin

As mentioned, the orbits 2 and 3 lack of a clear higher-dimensional origin. Here we

would like to provide a particular twist matrix giving rise to these gaugings. We chose

to start in the cartesian framework, and propose the following form for the SO(2, 2) twist

matrix

U =


1 0 0 0

0 cosh(my1 + n ỹ1) 0 sinh(my1 + n ỹ1)

0 0 1 0

0 sinh(my1 + n ỹ1) 0 cosh(my1 + n ỹ1)

 . (4.58)

This is in fact an element of SO(1, 1) lying in the directions (ỹ2, y
2), fibred over the double

torus (ỹ1, y
1). Here, the coordinates are written in the cartesian formulation, so we must

rotate this in order to make contact with the light-cone case.

For this twist matrix, the WC and SC in the light-cone formulation read (m+n)(m−
n) = 0, while the QC are always satisfied. The gaugings are constant, and when written

in terms of aαi and bαi we find

aαi = −bαi = diag

(
−m+ n

2
√

2
,
m− n
2
√

2

)
, (4.59)

so orbit 2 is obtained by choosing m = 0, n = −2
√

2, and orbit 3 by choosing m =

−2
√

2, n = 0. Notice that in both cases the twist orbit is truly doubled, so we find the

first example of an orbit of gaugings without a clear supergravity origin, that finds an

uplift to DFT in a truly doubled background.
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Orbits and origin of the D = 7 half-maximal case

Half-maximal D = 7 gauged supergravity

A subset of half-maximal gauged supergravities is obtained from the maximal theory

introduced at the end of section 4.3 by means of a Z2 truncation. Thus, we will in this

section perform this truncation and carry out the orbit analysis in the half-maximal theory.

As we already argued before, this case is not only simpler, but also much more insightful

from the point of view of understanding T-duality in gauged supergravities and its relation

to DFT.

The action of our Z2 breaks9 SL(5) into R+×SL(4). Its embedding inside SL(5) is

unique and it is such that the fundamental representation splits as follows

5 −→ 1(+4) ⊕ 4(−1) . (4.60)

After introducing the following notation for the indices in the R+ and in the SL(4) direc-

tions

M −→ ( � , m) , (4.61)

we assign an even parity to the � direction and odd parity to m directions.

The embedding tensor of the maximal theory splits according to

15 −→ 1 ⊕ �S4 ⊕ 10 , (4.62)

40′ −→ ��@@4
′ ⊕ 6 ⊕ 10′ ⊕ ��HH20 , (4.63)

where again, as in the D = 8 case, all the crossed irrep’s are projected out because of Z2

parity. This implies that the embedding tensor of the half-maximal theory lives in the

1 ⊕ 6 ⊕ 10 ⊕ 10′ and hence it is described by the following objects

θ , ξ[mn] , M(mn) , M̃
(mn) . (4.64)

This set of deformations agrees with the decomposition D+++
8 → A3 × A6 given in

ref. [78]. The objects in (4.64) are embedded in Y and Z in the following way

Y� � = θ , (4.65)

Ymn =
1

2
Mmn , (4.66)

Zmn, � =
1

8
ξmn , (4.67)

Zm �,n = −Z�m,n =
1

16
M̃mn +

1

16
ξmn , (4.68)

9The Z2 element with respect to which we are truncating is the following USp(4) = SO(5) element

α =

(
12 0

0 −12

)
projecting out half of the supercharges.
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where for convenience we defined ξmn = 1
2 ε

mnpq ξpq.

Now we will obtain the expression of the gauge generators of the half-maximal theory

by plugging the expressions (4.65) – (4.68) into (4.26). We find

(Xmn)p
q =

1

2
δq[mMn]p −

1

4
εmnpr

(
M̃ + ξ

)rq
, (4.69)

which extends the expression given in ref. [216] by adding an antisymmetric part to M̃

proportional to ξ. Note that the ξ term is also the only one responsible for the trace of

the gauge generators which has to be non-vanishing in order to account for R+ gaugings.

The presence of such a term in the expression (4.69) has another consequence: the asso-

ciated structure constants that one writes by expressing the generators in the 6 (Xmn)pq
rs

will not be automatically antisymmetric in the exchange between mn and pq. This implies

the necessity of imposing the antisymmetry by means of some extra QC10.

The QC of the maximal theory are branched into

5′ −→ 1 ⊕ ��@@4′ , (4.70)

45′ −→ �S4 ⊕ 6 ⊕ 15 ⊕ ��HH20 , (4.71)

70′ −→ 1 ⊕ �S4 ⊕ ��@@4′ ⊕ 10′ ⊕ 15 ⊕ ��HH36′ . (4.72)

By substituting the expressions (4.65) – (4.68) into the QC (4.28), one finds

θ ξmn = 0 , (6) (4.73)(
M̃mp + ξmp

)
Mpq = 0 , (1 ⊕ 15) (4.74)

Mmp ξ
pn − ξmp

(
M̃pn + ξpn

)
= 0 , (1 ⊕ 15) (4.75)

θ M̃mn = 0 . (10′) (4.76)

Based on the Kac-Moody analysis performed in ref. [78], the QC constraints of the half-

maximal theory should only impose conditions living in the 1 ⊕ 6 ⊕ 15 ⊕ 15. The

problem is then determining which constraint in the 1 is already required by the half-

maximal theory and which is not.

By looking more carefully at the constraints (4.73) – (4.76), we realise that the traceless

part of (4.74) exactly corresponds to the Jacobi identities that one gets from the closure

of the algebra spanned by the generators (4.69), whereas the full (4.75) has to be imposed

to ensure antisymmetry of the gauge brackets. Since there is only one constraint in the 6,

we do not have ambiguities there11.

10The QC which ensure the antisymmetry of the gauge brackets are given by

(Xmn)pq
rsXrs + (mn ↔ pq) = 0, where X is given in an arbitrary representation.

11We would like to stress that the parameter θ within the half-maximal theory is a consistent deformation,

but it does not correspond to any gauging and hence QC involving it cannot be derived as Jacobi identities

or other consistency constraints coming from the gauge algebra.
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We are now able to write down the set of QC of the half-maximal theory:

θ ξmn = 0 , (6) (4.77)(
M̃mp + ξmp

)
Mpq −

1

4

(
M̃npMnp

)
δmq = 0 , (15) (4.78)

Mmp ξ
pn + ξmp M̃

pn = 0 , (15) (4.79)

εmnpq ξmn ξpq = 0 . (1) (4.80)

We are not really able to confirm whether (6.25) is part of the QC of the half-maximal

theory, in the sense that there appears a top-form in the 6 from the D+++
8 decomposition

but it could either be a tadpole or a QC. This will however not affect our further discussion,

in that we only consider orbits of gaugings in which θ = 0. The extra QC required in

order for the gauging to admit an uplift to maximal supergravity are

M̃mnMmn = 0 , (1) (4.81)

θ M̃mn = 0 . (10′) (4.82)

The O(3, 3) orbits of solutions to the QC in the 10 ⊕ 10′

The aim of this section is to solve the constraints summarised in (6.25), (6.26), (6.27)

and (6.28). We will start by considering the case of gaugings only involving the 10 ⊕ 10′.

This restriction is motivated by flux compactification, as we will try to argue later on.

The only non-trivial QC are the following

M̃mpMpn −
1

4

(
M̃pqMpq

)
δmn = 0 , (4.83)

which basically implies that the matrix product between M and M̃ , which in principle

lives in the 1 ⊕ 15, has to be pure trace. We made use of a GL(4) transformation in order

to reduce M to pure signature; as a consequence, the QC (4.83) imply that M̃ is diagonal

as well [172]. This results in a set of eleven 1-parameter orbits12 of solutions to the QC

which are given in table 4.6.

As we will see later, some of these consistent gaugings in general include non-zero

non-geometric fluxes, but at least in some of these cases one will be able to dualise the

given configuration to a perfectly geometric background.

Higher-dimensional geometric origin

Ten-dimensional heterotic string theory compactified on a T 3 gives rise to a half-

maximal supergravity in D = 7 where the SL(4) = SO(3, 3) factor in the global symmetry

12We would like to point out that the extra discrete generator η of O(3, 3) makes sure that, given a

certain gauging with M and M̃ , it lies in the same orbit as its partner with the role of M and −M̃
interchanged.
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ID Mmn/ cosα M̃mn/ sinα range of α gauging

1 diag(1, 1, 1, 1) diag(1, 1, 1, 1) −π
4 < α ≤ π

4

{
SO(4) , α 6= π

4 ,

SO(3) , α = π
4 .

2 diag(1, 1, 1,−1) diag(1, 1, 1,−1) −π
4 < α ≤ π

4 SO(3, 1)

3 diag(1, 1,−1,−1) diag(1, 1,−1,−1) −π
4 < α ≤ π

4

{
SO(2,2) , α 6= π

4 ,

SO(2, 1) , α = π
4 .

4 diag(1, 1, 1, 0) diag(0, 0, 0, 1) −π
2 < α < π

2 ISO(3)

5 diag(1, 1,−1, 0) diag(0, 0, 0, 1) −π
2 < α < π

2 ISO(2, 1)

6 diag(1, 1, 0, 0) diag(0, 0, 1, 1) −π
4 < α ≤ π

4

{
CSO(2, 0, 2) , α 6= π

4 ,

f1 (Solv6) , α = π
4 .

7 diag(1, 1, 0, 0) diag(0, 0, 1,−1) −π
2 < α < π

2


CSO(2, 0, 2) , |α| < π

4 ,

CSO(1, 1, 2) , |α| > π
4 ,

g0 (Solv6) , |α| = π
4 .

8 diag(1, 1, 0, 0) diag(0, 0, 0, 1) −π
2 < α < π

2 h1 (Solv6)

9 diag(1,−1, 0, 0) diag(0, 0, 1,−1) −π
4 < α ≤ π

4

{
CSO(1, 1, 2) , α 6= π

4 ,

f2 (Solv6) , α = π
4 .

10 diag(1,−1, 0, 0) diag(0, 0, 0, 1) −π
2 < α < π

2 h2 (Solv6)

11 diag(1, 0, 0, 0) diag(0, 0, 0, 1) −π
4 < α ≤ π

4

{
l (Nil6(3) ) , α 6= 0 ,

CSO(1, 0, 3) , α = 0 .

Table 4.6: All the T-duality orbits of consistent gaugings in half-maximal supergravity

in D = 7. Any value of α parameterises inequivalent orbits. More details about the

non-semisimple gauge algebras f1, f2, h1, h2, g0 and l are given in appendix A.1.

of this theory can be interpreted as the T-duality group. The set of generalised fluxes

which can be turned on here is given by (see decomposition in (3.41)){
fabc, fab

c, fa
bc, fabc

}
≡
{
Habc, ωab

c, Qa
bc, Rabc

}
, (4.84)

where a, b, c = 1, 2, 3.

These are exactly the objects that one obtains by decomposing a three-form of SO(3, 3)

with respect to its GL(3) subgroup. The number of independent components of the above

fluxes (including traces of ω and Q) amounts to 1 + 9 + 9 + 1 = 20, which is the number

of independent components of a three-form of SO(3, 3). Nevertheless, the three-form rep-

resentation is not irreducible since the Hodge duality operator in 3+3 dimensions squares

to 1. This implies that one can always decompose it in a self-dual (SD) and anti-self-dual

(ASD) part

10 ⊕ 10′ of SL(4) ←→ 10SD ⊕ 10ASD of SO(3, 3) , (4.85)
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such that the matching between the embedding tensor deformations (Mmn, M̃
mn) and

the generalised fluxes given in (4.84) now perfectly works. The explicit mapping between

vectors of SO(3, 3) expressed in light-cone coordinates and two-forms of SL(4) can be

worked out by means of the SO(3, 3) ’t Hooft symbols [GA]mn (see appendix A.2). This

gives rise to the following dictionary between the M and M̃ -components and the fluxes

given in (4.84)

M = diag
(
H123, Q1

23, Q2
31, Q3

12
)
, M̃ = diag

(
R123, ω23

1, ω31
2, ω12

3
)
. (4.86)

The QC given in equations (6.25)-(6.28) enjoy a symmetry in the exchange

(M, ξ)
η↔ (−M̃, −ξ) . (4.87)

The discrete Z2 transformation η corresponds to the following O(3, 3) element with de-

terminant −1

η =

(
0 13

13 0

)
, (4.88)

which can be interpreted as a triple T-duality exchanging the three compact coordinates

ya with the corresponding winding coordinates ỹa in the language of DFT.

Now we have all the elements to analyze the higher-dimensional origin of the orbits

classified in table 4.6.

Orbits 1 – 3: These gaugings are non-geometric for every α 6= 0; for α = 0,

they correspond to coset reductions of heterotic string theory. See e.g. the S3

compactification in ref. [107] giving rise to the SO(4) gauging. This theory was

previously obtained in ref. [217] as N = 2 truncation of a maximal supergravity in

D = 7.

Orbits 4 – 5: For any value of α we can always dualise these representatives to the

one obtained by means of a twisted T 3 reduction with H and ω fluxes.

Orbits 6 – 7: For any α 6= 0 these orbits could be obtained from supergravity

compactifications on locally-geometric T-folds, whereas for α = 0 it falls again in a

special case of the reductions described for orbits 4 and 5.

Orbits 8 – 11: For any value of α, these orbits always contain a geometric repres-

entative involving less general H and ω fluxes.

To summarise, in the half-maximal D = 7 case, we encounter a number of orbits which

do not have an obvious higher-dimensional origin. To be more precise, these are orbits

1, 2 and 3 for α 6= 0. The challenge in the next subsection will be to establish what

DFT can do for us in order to give these orbits a higher-dimensional origin. Again, before

reading the following subsections we refer to section 4.2 for a discussion of what we mean

by light-cone and cartesian formulations.
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Higher-dimensional DFT origin

First of all we would like to show here how to capture the gaugings that only involve

(up to duality rotations) fluxes Habc and ωab
c. For this, we start from the light-cone

formulation, and propose the following Ansatz for a globally geometric twist (involving e

and B and physical coordinates y)

e =


1 0 ω1

ω3
sin(ω1 ω3 y

2)

0 cos(ω2 ω3 y
1) −ω2

ω3
cos(ω1 ω3 y

2) sin(ω2 ω3 y
1)

0 ω3
ω2

sin(ω2 ω3 y
1) cos(ω1 ω3 y

2) cos(ω2 ω3 y
1)

 , (4.89)

B =


0 0 0

0 0 H y1 cos(ω1 ω3 y
2)

0 −H y1 cos(ω1 ω3 y
2) 0

 , (4.90)

λ = −1

2
log(cos(ω1ω3y

2)) . (4.91)

This is far from being the most general ansatz, but it serves our purposes of reaching a

large family of geometric orbits. The parameters ωi can be real, vanishing or imaginary,

since U is real and well-behaved in these cases. The QC, WC and SC are all automatically

satisfied, and the gaugings read

M = diag(H , 0 , 0 , 0) , M̃ = diag(0 , ω2
1 , ω

2
2 , ω

2
3) . (4.92)

From here, by choosing appropriate values of the parameters the orbits 4, 5, 8, 10 and

11 can be obtained. Indeed these are geometric as they only involve gauge and (geo)metric

fluxes.

Secondly, in order to address the remaining orbits, we consider an SO(2, 2) twist U4

embedded in O(3, 3) in the following way

U =


1 0 0 0

0 A 0 B

0 0 1 0

0 C 0 D

 , U4 =

(
A B

C D

)
, λ = 0 . (4.93)

This situation is analog to the SO(1, 1) twist considered in the D = 8 case, but with a

more general twist. Working in the cartesian formulation, one can define the generators

and elements of SO(2, 2) as

[tIJ ]K
L = δL[IηJ ]K , U4 = exp

(
tIJφ

IJ
)
, (4.94)

where the rotations are generated by t12 and t34, and the boosts by the other generators.

Also, we take φIJ = αIJy1 + βIJ ỹ1 to be linear.

From the above SO(2, 2) duality element one can reproduce the following orbits em-

ploying a locally geometric twist (including e, B and β but only depending on y, usually

referred to as a T-fold):
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Orbit 6 can be obtained by taking

(6) α12 = −β12 = − 1√
2

(cosα+ sinα) , α34 = −β34 = − 1√
2

(cosα+ sinα) .

and all other vanishing.

Orbits 7 and 9 can be obtained by the following particular identifications

φ14 = φ23 , φ12 = φ34 and φ13 = φ24 .

(7) α14 = −β14 = − 1√
2

sinα , α12 = −β12 = − 1√
2

cosα , α13 = β13 = 0 ,

(9) α14 = −β14 = − 1√
2

sinα , α12 = β12 = 0 , α13 = β13 = − 1√
2

cosα .

All these backgrounds satisfy both the WC and the SC and hence they admit a locally

geometric description. This is in agreement with the fact that the simplest representative

of orbits 6, 7 and 9 given in table 4.6 contains H, ω and Q fluxes but no R flux.

Finally, one can employ the same SO(2, 2) duality elements with different identifications

to generate the remaining orbits with a non-geometric twist (involving both y and ỹ

coordinates):

Orbits 1, 3 can be again obtained by considering an SO(2)×SO(2) twist with

arbitrary φ12 and φ34:

(1) α12 = −2
√

2 (cosα+ sinα) , β34 = 2
√

2 (cosα− sinα) , α34 = β12 = 0 ,

(3) α34 = −2
√

2 (cosα+ sinα) , β12 = 2
√

2 (cosα− sinα) , α12 = β34 = 0 .

Orbit 2 can be obtained by means of a different SO(2, 2) twist built out of the two

rotations and two boosts subject to the following identification

φ14 = φ23 , φ12 = φ34 . (4.95)

(2) α14 = β12 =
1√
2

(cosα− sinα) , α12 = −β14 = − 1√
2

(cosα+ sinα) .

These backgrounds violate both the WC and the SC for α 6= 0. This implies that these

backgrounds are truly doubled and they do not even admit a locally geometric description.

Finally, let us also give an example of degeneracy in twist orbits-space reproducing the

same orbit of gaugings. The following twist

φ12 = φ13 , φ34 = φ24 , φ23 = φ14 = 0 (4.96)

(6) α13 = − 1√
2

(cosα+ sinα) , β24 =
1√
2

(cosα− sinα) , α24 = β13 = 0 ,

also reproduces the orbit 6, but in this case through a non-geometric twist. What happens

in this case is that although the twist matrix does not satisfy the WC/SC, the contractions

in (4.8) cancel.
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Concluding Remarks

In this chapter we have provided a litmus test to the notion of non-geometry, by

classifying the explicit orbits of consistent gaugings of different supergravity theories, and

considering the possible higher-dimensional origins of these. The results turn out to be

fundamentally different for the cases of U-duality orbits of maximal supergravities, and

T-duality orbits of half-maximal theories.

In the former case we have managed to explicitly classify all U-duality orbits in di-

mensions 8 ≤ D ≤ 11. This led to zero, one, four and ten discrete orbits in dimensions

D = 11, 10, 9 and 8, respectively, with different associated gauge groups. Remarkably, we

have found that all of these orbits have a higher-dimensional origin via some geometric

compactification, be it twisted reductions or compactifications on group manifolds or coset

spaces. In our parlance, we have therefore found that all U-duality orbits are geometric.

The structure of U-duality orbits is therefore dramatically different from the sketch of fig-

ure 4.1 in the introduction. Although a full classification of all orbits in lower-dimensional

cases becomes increasingly cumbersome, we are not aware of any examples that are known

to be non-geometric. It could therefore hold in full generality that all U-duality orbits are

necessarily geometric.

This is certainly not the case for T-duality orbits of gaugings of half-maximal su-

pergravities. In this case, we have provided the explicit classification in dimensions

7 ≤ D ≤ 10 (where in D = 7 we have only included three-form fluxes). The num-

bers of distinct families of orbits in this case are zero, one, three and eleven in dimensions

D = 10, 9, 8 and 7, respectively, which includes both discrete and one-parameter orbits.

A number of these orbits do not have a higher-dimensional origin in terms of a geometric

compactification. Such cases are orbits 2 and 3 in D = 8 and orbits 1, 2 and 3 in D = 7

for α 6= 0. Indeed, these are exactly the orbits that do not admit an uplift to the maximal

theory. As proven in section 4.2, all such orbits necessarily violate the WC and/or SC,

and therefore need truly doubled backgrounds. Thus, the structure of T-duality orbits is

very reminiscent of figure 4.1 in the introduction. Given the complications that already

arise in these simpler higher-dimensional variants, one can anticipate that the situation

will be similar in four-dimensional half-maximal supergravity.

Fortunately, the formalism of DFT seems tailor-made to generate additional T-duality

orbits of half-maximal supergravity. Building on the recent generalisation of the definition

of DFT [168], we have demonstrated that all T-duality orbits, including the non-geometric

ones in D = 7, 8, can be generated by a twisted reduction of DFT. We have explicitly

provided duality twists for all orbits. For locally-geometric orbits the twists only depend on

the physical coordinates y, while for the non-geometric orbits these necessarily also include

ỹ. Again, based on our exhaustive analysis in higher-dimensions, one could conjecture that

also in lower-dimensional theories, all T-duality orbits follow from this generalised notion

of DFT.
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At this point we would like to stress once more that a given orbit of gaugings can be

generated from different twist orbits. Therefore, there is a degeneracy in the space of twist

orbits giving rise to a particular orbit of gaugings. Interestingly, as it is the case of orbit

6 in D = 7 for instance, one might find two different twist orbits reproducing the same

orbit of gaugings, one violating WC and SC, the other one satisfying both. Our notion of

a locally geometric orbit of gaugings is related to the existence of at least one undoubled

background giving rise to it. However, this ambiguity seems to be peculiar of gaugings

containing Q flux. These can, in principle, be independently obtained by either adding a

β but no ỹ dependence (locally geometric choice, usually called T-fold), or by including

non-trivial ỹ dependence but no β (non-geometric choice) [166].

Another remarkable degeneracy occurs for the case of semi-simple gaugings, corres-

ponding to orbits 1 – 3 in D = 7. For the special case of α = 0, we have two possible

ways of generating such orbits from higher-dimensions: either a coset reduction over a

sphere or analytic continuations thereof, or a duality twist involving non-geometric co-

ordinate dependence. Therefore d-dimensional coset reductions seem to be equivalent to

2d-dimensional twisted torus reductions (with the latter in fact being more general, as it

leads to all values of α). Considering the complications that generally arise in proving

the consistency of coset reductions, this is a remarkable reformulation that would be in-

teresting to understand in more detail. Furthermore, when extending the notion of DFT

to type II and M-theory, this relation could also shed new light on the consistency of the

notoriously difficult four-, five- and seven-sphere reductions of these theories.

Our results mainly focus on SS compactifications leading to gauged supergravities with

vanishing ξM fluxes. In addition, we have restricted to the NS-NS sector and ignored α′-

effects. Also, we stress once again that relaxing the WC and SC is crucial in part of our

analysis. If we kept the WC, typically the Jacobi identities would lead to backgrounds

satisfying also the SC [168]. However, from a purely (double) field theoretical analysis the

WC is not necessary. A sigma model analysis beyond tori would help us to clarify the

relation between DFT without the WC and SC and string field theory on more general

backgrounds.





Chapter 5

Orientifold Compactifications

Many string theory constructions related to flux backgrounds compatible with minimal

supersymmetry have been studied so far. In particular, as we saw in chapter 3, the

mechanism of inducing an effective superpotential from fluxes has been extensively studied

in the literature [120,121,124,125,138,145,146,218,219] for those compactifications giving

rise to a so-called STU -model as low energy description. In this chapter we will firstly

give an overview of the recent progress in understanding the link between half-maximally

supersymmetric string backgrounds and gaugings of N = 4 supergravity [125, 172, 197]

and secondly show how this machinery can be exploited as a powerful tool for addressing

the same issue in the context of N = 4 compactifications.

Another interesting opportunity offered by the study of such flux compactifications

and their relation to half-maximal supergravity, is that of addressing the issue of stability

without supersymmetry in extended supergravity. More precisely, for a long time it was

believed that there are no stable vacua of maximal or half-maximal supergravity that

spontaneously break all supersymmetry. Recently [220], however, an example of an AdS

critical point which is both non-supersymmetric and stable has been found in maximal

supergravity. This adds further motivation to look for new such extrema in the half-

maximal case as well. Furthermore, the possible existence of stable dS vacua in this

context still remains an open discussion point [221]. Most of the results presented in this

chapter were first obtained in refs [172, 222]. Some additional material related to this

chapter can be found in appendix B.

5.1. Gauged N = 4 , D = 4 Supergravities

In this section we present a brief introduction to half-maximal (N = 4) supergravity

theories in four dimensions. We mostly follow the notation and conventions of ref. [100]

to work out the N = 4 supergravity theory invariant under the action of the G0 = SL(2)

× SO(6, 6) duality group (see table 2.7) in four dimensions1.

The 24 vectors of the theory transform in the (2,12) of G0. The SL(2) factor inside the

symmetry group is interpreted as electromagnetic duality. Beyond SL(2) × SO(6, 6), one

1We focus on the theory coupled to n = 6 vector multiplets, which, as we will see in the next chapter,

can be regarded as a Z2 truncation of N = 8 supergravity. This relates it to orientifold reductions of type

II string theory.
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can embed the vector representation labelled by the indices αM , inside the fundamental

representation of Sp(24,R), where α = (+,−) is a fundamental SL(2) index and M =

1, ..., 12 is the SO(6, 6) fundamental index. Such symplectic transformations change the

Lagrangian non-trivially such that the description that we give here would not be valid

anymore. Nevertheless, Lagrangians in different symplectic frames describe the same

theory at the level of the equation of motion.

The LC restricts the embedding tensor to the following irrep’s (see table 2.7)

Θ ∈ (2,12)︸ ︷︷ ︸
ξαM

⊕ (2,220)︸ ︷︷ ︸
fαMNP

.
(5.1)

Quadratic Constraints and Scalar Potential

The scalars of the theory span the coset geometry

SL(2)

SO(2)
× SO(6, 6)

SO(6)× SO(6)
. (5.2)

We will name Mαβ the scalars parameterising the first factor and MMN those ones

parameterising the second factor in (5.2). For the former we will use the following explicit

parameterisation

Mαβ = eφ

(
χ2 + e−2φ χ

χ 1

)
, α = (+,−) , (5.3)

where the SL(2) indices are raised and lowered using εαβ = εαβ with ε+− = −ε−+ = 1.

The matrix MMN , can be determined by starting from a ’vielbein’ denoted by V A
M ,

where A is an SO(6) × SO(6) index whereas M is an SO(6, 6) one. This object is such

that

M = V VT . (5.4)

Global SO(6, 6) transformations act on V from the left, whereas local SO(6) × SO(6)

transformations act from the right. Even though V is not by itself invariant under local

SO(6) × SO(6) transformations, the particular combinations constructed out of it which

will appear in the scalar potential are. In particular, the matrix M itself is invariant.

The non-vanishing embedding tensor components ξαM and fαMNP have to satisfy the

following QC

i) ξαM ξ M
β = 0 , (5.5)

ii) ξ P
(α fβ)PMN = 0 , (5.6)

iii) 3 fαR[MN f
R

βPQ] + 2 ξ(α[M fβ)NPQ] = 0 , (5.7)

iv) εαβ
(
ξ P
α fβPMN + ξαM ξβN

)
= 0 , (5.8)

v) εαβ
(
fαMNR f

R
βPQ − ξ R

α fβR[M [P ηQ]N ] − ξα[M fβN ]PQ + ξα[P fβQ]MN

)
= 0 , (5.9)
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which correspond with the following irrep’s of the SL(2) × SO(6, 6) symmetry of half-

maximal supergravity,

i) (3,1) ii) (3,66) iii) (3,495) (5.10)

iv) (1,66) v) (1,66) ⊕ (1,2079) . (5.11)

The combination of supersymmetry and gaugings then induces the following scalar poten-

tial2

V =
1

64
fαMNP fβQRSM

αβ

[
1

3
MMQMNRMPS +

(
2

3
ηMQ −MMQ

)
ηNRηPS

]
+

− 1

144
fαMNP fβQRS ε

αβMMNPQRS +
3

64
ξαM ξβN M

αβMMN , (5.12)

where

MMNPQRS ≡ εmnpqrsV m
M V n

N V p

P V
q

Q V
r

R V
s

S . (5.13)

The underlined indices here are time-like rather than light-like SO(6) indices, and they

are related by the change of basis

R ≡ 1√
2

(
−16 16

16 16

)
. (5.14)

Because of this distinction between time- and space-like indices of SO(6, 6), this completely

antisymmetric tensor is invariant under local SO(6)×SO(6) transformations. Despite this,

though, one would need to compute V associated with MMN explicitly in order to obtain

the full form of the scalar potential.

As we saw previously, the theory contains vector fields Aµ in four dimensions which

transform in the fundamental representation of SL(2) × SO(6, 6),

Aµ = V αM
µ TαM , (5.15)

The Gauge Algebra

In the ungauged theory, only a subgroup G = U(1)12 ⊂ SO(6, 6) is realised and the

vector fields become abelian, i.e. [TαM , TβN ] = 0. However, this ungauged theory can be

deformed away from the abelian structure without breaking the N = 4 supersymmetry

so that a non-abelian subgroup G ⊂ SO(6, 6) is realised. From now on3 , we will restrict

to the case ξαM = 0. The commutation relations defining the algebra G then read

[TαM , TβN ] = fαMN
P TβP , (5.16)

with fαMNP = fαMN
Q ηQP = fα [MNP ] being the structure constants of G and with

ηMN the SO(6, 6) metric. This automatically implies that only the G ⊂ SO(6,6) subgroups

2We have set the gauge coupling constant to g = 1
2

with respect to the conventions in ref. [100].
3In the main part of this chapter we will consider a group-theoretical truncation of N = 4 supergravity

in which the (2,12) embedding tensor irrep will be entirely projected out.
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admitting ηMN as a non-degenerate bi-invariant metric can be realised as deformations of

the ungauged theory. In other words, the adjoint representation of G has to be embeddable

within the fundamental representation of SO(6, 6). This embedding may not be unique,

resulting in non-equivalent realisations of the same G subgroup. From now on, we will use

light-cone coordinates, so that an SO(6, 6) index is raised or lowered by using the SO(6, 6)

light-cone metric

ηMN = ηMN =

(
0 16

16 0

)
. (5.17)

Let us perform the GL(6) splitting of the fundamental SO(6, 6) index M ≡ (m ,
m) ≡

(m, m̄) with m = 1, ..., 6 and m̄ = 1̄, ..., 6̄ . Then, the vectors split as TαM ≡ (Zαm , Xα
m)

alike, and the algebra in (5.16) can be rewritten as the set of brackets

[Zαm, Zβn] = fαmn
p Zβp + fαmnp Xβ

p ,

[Zαm, Xβ
n] = fαm

np Zβp + f n
αm p Xβ

p ,

[Xα
m, Zβn] = f m p

α n Zβp + f m
α np Xβ

p ,

[Xα
m, Xβ

n] = fα
mnp Zβp + f mn

α p Xβ
p .

(5.18)

It is worth noticing that this is only apparently a twenty-four-dimensional gauge algebra,

but in fact the actual gauging is twelve-dimensional after imposing the constraints

εαβ fαMNP Tβ
P = 0 , (5.19)

which ensure the anti-symmetry of the brackets in (5.16). This fact is related to the

observation in ref. [159], i.e. that only the algebra realised on the vectors can be embedded

in Sp(24,R), whereas the proper gauge algebra is that one realised on the curvatures, which

is obtained from the previous one after dividing out by the abelian ideal consisting of all

generators acting trivially on the curvatures. To summarise, in order to identify the correct

gauging, one has to solve these constraints by expressing half of the generators in terms

of the other ones and plug the solution into the brackets of (5.18).

Vacua Analysis and Supersymmetry

In this section we present the strategy followed to find the complete set of extrema of

the scalar potential induced by the gaugings and tools for analysing the mass spectrum

and supersymmetry breaking.

Combining dualities and algebraic geometry techniques

The investigation of the full vacua structure of a particular truncation4 is carried out

by making use of the following two ingredients:

4We will in this part specify to the SO(3) invariant sector of N = 4 supergravity, which enjoys an SL(2)

× SO(2, 2) duality symmetry and contains three complex scalars called S, T and U . The whole truncation

procedure will be studied in detail later in section 5.2
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part of the SL(2) × SO(2, 2) duality group in order to reduce the extrema scanning

to the origin of the moduli space without loss of generality5.

specific algebraic geometry techniques which permit an exhaustive identification of

the flux backgrounds producing such moduli solutions.

Provided a set of vacuum expectation values (VEVs) for the moduli fields

Φ0 ≡ (S0, T0, U0)

that satisfies the extremisation conditions of the scalar potential, ∂ΦV |Φ0
= 0 , it can

always be brought to the origin of the moduli space, i.e.

S0 = T0 = U0 = i , (5.20)

by subsequently applying a real shift together with rescaling upon each of the complex

moduli fields. These transformations span the non-compact part,

Gn.c. =
SL(2)× SO(2, 2)

SO(2)3
, (5.21)

of the duality group. In the case of the modulus S, they belong to the electric-magnetic

SL(2) factor, while transformations on the moduli T and U belong to SO(2, 2). In con-

sequence, the fluxes will also transform in such a way that they compensate the trans-

formation of the moduli fields and leave the scalar potential invariant.

Because of the aforementioned argument,

restricting the search of extrema to the origin of the moduli space does not imply a lack of

generality as long as the considered set of flux components is invariant under the action

of the non-compact part of the duality group.

This statement automatically leaves us with two complementary descriptions of the

same problem: the field and the flux pictures. In the former, a consistent flux background

is fixed and the problem reduces to the search of extrema of the scalar potential in the

field space. In the latter, the point in field space is fixed (the origin) and the problem

reduces to find the set of consistent flux backgrounds compatible with the origin being

an extremum of the scalar potential. The two descriptions are equivalent since dragging

different moduli solutions down to the origin in the field space maps to a splitting of the

corresponding flux background into various ones related by elements of Gn.c. in the flux

space. This correspondence is depicted in figure 6.2.

Using the flux picture results quite useful because, schematically, the scalar potential

induced by the gaugings takes the form of

V =
∑

terms

(fluxes)2 · (fields)high degree , (5.22)

5This approach differs from that followed in ref. [223] where the invariance under the action of the

duality group was used to remove redundant flux configurations producing physically equivalent solutions.
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⊗ ⊗

⊗ ⊗

Gn.c Gn.c

Gn.c Gn.c

field space

⊗

Gn.c Gn.c

Gn.c Gn.c

flux space

←→

Figure 5.1: Sketch of the correspondence between the field picture (crossed dots) and the

flux picture (filled dots). The left diagram represents moduli space, whereas the right

diagram illustrates the space of fluxes.

hence being a sum of terms which are quadratic in the fluxes and contain high degree

couplings between the moduli fields. After deriving the scalar potential with respect to

the fields and going to the origin of the moduli space, the extremum conditions reduce to

a set of quadratic conditions on the fluxes. Putting these conditions together with the QC

coming from the consistency of the gauging that will be later given for this specific case

in (5.67), we end up with a set of homogeneous polynomial equations, namely an ideal I

in the ring C [a0, . . . , d
′
3] , involving the different flux components as variables,

I = 〈 ∂ΦV |Φ0
, εαβ Λ C

αAB ΛβDEC , Λ C
(αA[B Λβ)D]EC 〉 . (5.23)

Nonetheless, only those solutions for which all the flux components turn out to be real are

physically acceptable.

The study of non-trivial multivariate polynomial systems and their link to geometry is

the subject of algebraic geometry [224]. A powerful computer algebra system for polyno-

mial computations is provided by the Singular project [213]. Moreover, a comprehensive

introduction to the specifics of this software as well as to the algebraic geometry techniques

implemented on it can be found in ref. [225]. These techniques have been shown to be

a successful approach to investigate the vacua structure of the effective supergravity the-

ories coming from flux compactifications of string theory [226, 227] and some extensions

including both fluxes and non-perturbative effects6 [229].

Among the set of algebraic geometry tools implemented within Singular, in this

work we will make extensive use of the Gianni-Trager-Zacharias (GTZ) algorithm [212]

for primary decomposition into prime ideals (for more details on primary decomposition

algorithms, see the appendix B of ref. [226] and references therein). Specifically, we will

apply this method to decompose the ideal I of (5.23) into a set of n simpler prime ideals

6For a computational implementation of these algebraic geometry tools into a Mathematica package

exploring vacuum configurations, see ref. [228].
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Jn ,

I = J1 ∩ J2 ∩ . . . ∩ Jn , (5.24)

which can be solved analytically. These prime ideals will only intersect in a finite number

of disjoint points and, in general, they may have different dimension.

For the sake of simplicity, we are not running this decomposition in the most general

case in which all the forty embedding tensor components (fluxes) allowed in the SO(3)

truncation are kept. Instead, we are considering two examples of gauged supergravities

which have a well understood interpretation as type II string compactifications in the

presence of flux backgrounds: type IIA compactifications with gauge and metric fluxes

[121,123,125,230] and type IIB compactifications with gauge fluxes [120,122,231].

Even though not all the fluxes are kept in these examples, the previous argument for

going to the origin of the moduli space without loss of generality still holds since the

transformation needed to bring any moduli solution from its original location to the origin

(i.e. an element of Gn.c.) does not turn on new flux components out of the initial setup.

We will restrict the analysis of more general flux backgrounds for which a realisation in

string theory is not known, namely those including non-geometric fluxes, to a set of simple

examples.

Supersymmetry breaking and full mass spectrum

Two further important steps in the analysis of critical points are those of computing

the amount of supersymmetry preserved at the extrema of the N = 4 theory and the mass

spectrum of the scalar sector. As already pointed out in the introduction, carrying out

such a computation for a whole set of vacua can help us shed further light on the relation

between supersymmetry breaking and instability, which has recently been a crucial point

of discussion in the context of extended supergravity. In order to do this, we will write

down the fermionic mass terms involving the gravitini in the Lagrangian [100] induced by

the irreducible components of the T -tensor (see section 2.3).

The fermionic sector of the theory is made out of 4 gravitini ψµi, 4 dilatini χi and 24

gaugini λai coming from the matter sector, where i = 1, ..., 4 is an SU(4)time-like index,

whereas a = 1, ..., 6 is a fundamental SO(6)space-like index. The aforementioned mass terms

then read

e−1Lfermi mass ⊃
1

6
Aij1 ψ̄µi Γµν ψνj −

i

6
Aij2 ψ̄µi Γµ χj +

i

2
A2ai

j ψ̄µ
i Γµ λaj + h.c. ,

(5.25)

with Aij1 = A
(ij)
1 . The irreducible components of the T -tensor are

(2,12) ⊕ (2,220)
U(4)R× SU(4)−→

2 · (10,1)(−2) ⊕ 2 · (6,1)(+2) ⊕ 2 · (6,15)(+2)

2 · (10,1)(+2) ⊕ 2 · (6,1)(−2) ⊕ 2 · (6,15)(−2)

⊕ c.c.

(5.26)
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and they are given in terms of the complexified SL(2) and SO(6, 6) vielbeins by

Aij1 = εαβ (Vα)∗ VMkl VNik VPjl fβMNP ,

Aij2 = εαβ Vα VMkl VNik VPjl fβMNP + 3
2 ε

αβ Vα VMij ξβM ,

A2 ai
j = εαβ Vα VMa VNik VPjk fβMNP − 1

4 δ
j
i ε
αβ Vα VMa ξβM .

(5.27)

The complexified SL(2) vielbein Vα is written as

Vα = eφ/2 (S , 1) , where S = χ+ i e−φ , (5.28)

whereas the complexified (Lorentzian) SO(6, 6) vielbein VM [ij] is built from the VMm

real vielbein by using the mapping

VMij = VMm [Gm]ij , (5.29)

where [Gm]ij represent the time-like and ASD ’t Hooft symbols given in (C.21) of ap-

pendix C. This choice is consistent with

vij = (vij)∗ = −1

2
εijkl v

kl , (5.30)

together with the normalisation

− vm δmn vn =
1

2
εijkl v

ij vkl . (5.31)

Please note the difference with the conventions in ref. [100]. Using the gravitino mass

matrix Aij1 , the Killing spinor equations determining the amount of supersymmetry at

any extremum is translated into the eigenvalues equation

Aij1 qj =
√
−3V0 q

i , (5.32)

where qi is an SU(4) vector and V0 is the potential energy at either an AdS4 or a

Minkowski extremum.

Working in the SO(3) truncation of the SO(6, 6) theory translates into an Aij1 gravitini

mass matrix of the general form

A1 = diag (κ1 , κ2 , κ2 , κ2 ) , with κ1, κ2 ∈ C , (5.33)

which reflects the splitting 4 → 1 ⊕ 3 of the fundamental of SU(4) under the action of

SO(3). Consequently one expects that the amount of supersymmetry preserved would be

i) N = 4 at those extrema where |κ1| = |κ2| =
√−3V0.

ii) N = 3 at those extrema where |κ1| > |κ2| with |κ2| =
√−3V0.

iii) N = 1 at those extrema where |κ1| < |κ2| with |κ1| =
√−3V0.

iv) N = 0 at any other extremum.
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The presented conditions for preserving supersymmetry only constrain the modulus of the

eigenvalues of A1 since the relation (5.32) exhibits a U(1) × U(1) covariance. The action of

these transformations can be expressed in terms of the diagonal matrix diag(λ , µ , µ , µ),

where λ, µ ∈ U(1).

Now it is worthwhile making a comment about the computation of the full mass spec-

trum of the scalar sector for a vacuum of the N = 4 theory. To this purpose we applied

the mass formula given in ref. [221], where the scalar potential of the full N = 4 theory

has been expanded up to second order around the origin in order to be able to read off

the second derivatives of the potential with respect to all of the 38 scalars of the theory

evaluated in the origin of moduli space. The Hessian matrix evaluated in the origin is

nevertheless not yet the physical mass matrix from where one can draw conclusions about

stability of a solution. Suppose one has

e−1Lcanonic =
1

2
R− 1

2
Kij (∂φi)(∂φj)− V , (5.34)

where i = 1, ..., 38 , then the covariant normalised mass2 at an extremum φ0 of the scalar

potential V is then given by

(mass2)ij =
1

|V | K
ik ∂2V

∂φk∂φj

∣∣∣∣
φ=φ0

, (5.35)

where Kij denotes the inverse of the matrix Kij appearing in (5.34). This (mass2) matrix

is known as the canonically normalised mass matrix, which is consistent with taking the

“mostly plus” signature for the space-time metric and its eigenvalues are to be read as the

values for the squared mass in natural units7. According to this definition of covariant

mass, the Breitenlohner-Freedman (BF) bound for the stability of an AdS4 moduli solution

is given by [232]

m2 ≥ −3

4
, (5.36)

where m2 denotes the lightest eigenvalue of the mass matrix (5.35) at the AdS4 extremum.

The mass formulae for the masses of the SL(2) scalars, those ones of the SO(6, n) sector

and finally the mixing between them are given in ref. [221]. In the next sections, when

presenting results, we shall give both a table with the values of the masses of the scalars

in the SO(3) truncation and the full mass spectrum for comparison’s sake.

5.2. Fluxes and Embedding Tensor: the Dictionary

Now our final aim in this chapter will be to apply the whole analysis presented in the

previous section toN = 4 gaugings coming from geometric type II string compactifications.

7Every numerical value given in the following sections for the energy and the mass is computed by

setting the reduced Planck mass mp to 1, whereas one needs to reinsert the value mp = (8πG)−1/2 =

2.43× 1018 GeV when expressing quantities in energy units.
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To this end, let us first see what gauge algebras can be induced by flux compactifications.

The starting point in this discussion are the results of Kaloper and Myers [140] (see

the second part of section 3.2). They found that the dimensional reduction of heterotic

supergravity to four dimensions leads to a non-Abelian gauge algebra if one includes fluxes.

In particular, they derived the four-dimensional effect of the following fluxes for the ten-

dimensional field content consisting of the metric, a two-form and a dilaton8.

As we saw previously, when reducing the metric from ten to four dimensions, one can

generalise ordinary dimensional reduction by replacing the torus with a group manifold

[116]. A group manifold is specified by structure constants ωmn
p, where the indices run

over the dimension of the group manifold. The four-dimensional effect of such so-called

metric flux is to convert the gauge group U(1)6, that corresponds to general coordinate

transformations on the torus, to a non-Abelian group with commutation relations

[Zm, Zn] = ωmn
p Zp , (5.37)

where Zm is the generator corresponding to the internal coordinate transformation δxm =

λm.

Due to the presence of the two-form gauge potential in the ten-dimensional theory,

the four-dimensional gauge algebra is actually larger. In particular, there is an additional

U(1)6 corresponding to internal gauge transformations of the form δBmn = ∂[mλn]. We

will denote these generators by Xp. These commute amongst themselves, but form a

representation of the group spanned by (5.37). Furthermore, one can introduce gauge

fluxes Hmnp for this potential. The total algebra spanned by the six Kaluza-Klein and six

gauge generators reads [140]

[Zm, Zn] = ωmn
p Zp + HmnpX

p ,

[Zm, X
n] = −ωmpnXp ,

[Xm, Xn] = 0 .

(5.38)

Note that the resulting algebra is purely electric. Furthermore, the gauge generators span

an ideal of the algebra, and hence the full algebra is non-semi-simple.

In order to make contact with the SO(6, 6) notation of N = 4 supergravity, one needs

to split up the SO(6, 6) index M = (m,
m). The twelve doublets of generators then split

up according to XαM = (Zαm, X
αm). The identification between the embedding tensor

and the fluxes is then apparent:

f+mnp = Hmnp , f+mn
p = ωmn

p , (5.39)

while the magnetic components vanish.

8We will only include fluxes for the metric and the two-form. There is a similar possibility for the

dilaton, which we will not consider, that leads to gauging with non-vanishing ξαM [233]. Moreover, we will

also not consider trombone gaugings of the type introduced in ref. [204] for the maximal theory.
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A natural question is how to generalise this to the case where one includes, in addition

to gauge and metric flux, also the types of non-geometric fluxes introduced in ref. [24]. In

section 3.3 we saw that the full heterotic dictionary is given by (3.41) and, following the

T-duality chain (3.40), leads to the gauge algebra that we gave in (3.42). Note that this

algebra, with all types of NS-NS fluxes, is still purely electric.

Subsequently one could reason that in the IIB duality frame with O3-planes one needs

to mod out by the Z2 symmetry (−)FLΩI4···9. Under this symmetry, the only allowed

fluxes are H and Q. Therefore the algebra for these fluxes reads

[Zm, Zn] = HmnpX
p ,

[Zm, X
n] = Qm

np Zp ,

[Xm, Xn] = Qp
mnXp .

(5.40)

The relation between the embedding tensor and the fluxes can be easily read off from this

algebra. Before we give it, let us introduce a slight generalisation by including S-duality

related fluxes as well. For the two-form gauge potentials this is very natural, as we know

that these form a doublet (H,F ) under S-duality. Similarly, it has been conjectured that

there is a doublet of non-geometric fluxes (Q,P ) as well [145]. Including the two doublets

of gauge and non-geometric fluxes, the relation to the embedding tensor that follows from

(5.18) is

f+mnp = Hmnp , f+m
np = Qm

np ,

f−mnp = Fmnp , f−m
np = Pm

np . (5.41)

The full algebra, including the commutation relations between electric and magnetic gener-

ators, then follows trivially from (5.16). Similarly, one can deduce the full set of constraints

on the fluxes from the QC given in (5.5)–(5.9) specialised to the case9 ξαM = 0

fαR[MN fβP ]Q
R = 0 , εαβ fαMNR fβPQ

R = 0 . (5.42)

Note that the algebra (5.40) in general does not have any non-trivial ideals, and hence

is not necessarily non-semi-simple. This form of the algebra has been used in e.g. [138] in

their classification of the possible solutions of the corresponding Jacobi identities. Indeed,

they encountered simple and semi-simple possibilities. This poses a clear puzzle: we claim

to have performed a number of dualities, under which the effective description should

transform covariantly, and nevertheless the algebra (5.38) of the starting point clearly

differs from (5.40). Indeed, one is necessarily non-semi-simple while the other is not.

9The only further subtlety is that the second set of QC in (5.42) can be obtained from (5.19) by

specifying it to the adjoint representation. Nevertheless, these sets of constraints are only equivalent if

such adjoint representation is faithful, otherwise one has to take into account that the linear dependence

relations between the 24 generators have to be supplemented with the vanishing conditions for some of

them.
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What has happened? In our opinion, the confusion stems from the identification of the

starting point.

The starting point of Kaloper and Myers corresponds to the heterotic string, and

therefore contains an NS-NS two-form gauge potential. However, in order to make contact

with type II string theories with orientifold planes, e.g. the preferred duality frame of type

IIB with O3-planes, one should first perform an S-duality. This takes one to type I string

theory, or equivalently type IIB with O9-planes. In this case the two-form is not NS-NS

but rather R-R, which will be a crucial distinction when applying T-duality. As mentioned

before, in the NS-NS sector T-duality raises and lowers indices. In contrast, in the R-R

sector the effect of T-duality is to create or annihilate indices:

Tp :

Fm1···mn → Fm1···mnp ,

Fm1···mnp → Fm1···mn .
(5.43)

In other words, a gauge potential remains a gauge potential but its rank changes.

The correct starting point for our purpose is

[Zm, Zn] = ωmn
p Zp + FmnpX

p ,

[Zm, X
n] = −ωmpnXp ,

[Xm, Xn] = 0 ,

(5.44)

where Fmnp is the R-R three-form flux. Upon a six-tuple T-duality to go to the type IIB

duality frame with O3-planes, this transforms into

[Zm, Zn] = 0 ,

[Zm, X
n] = Qm

np Zp ,

[Xm, Xn] = Qp
mnXp + F̃mnp Zp ,

(5.45)

where F̃mnp ≡ 1
6ε
mnpqrsFqrs. This fixes the complete electric part of the gauge algebra.

The remaining part follows straightforwardly once one has made the identification between

the embedding tensor and the fluxes. Again we will give an S-duality covariant set of

fluxes, including the gauge doublet (F,H) and the non-geometric doublet (Q,P ). With

the algebra (5.45) this identification reads

f+
mnp = F̃mnp , f+m

np = Qm
np ,

f−
mnp = H̃mnp , f−m

np = Pm
np . (5.46)

The full algebra and corresponding QC then follow from (5.18) and (5.42). The latter

read

Qr
[mnQq

p]r = Pr
[mnPq

p]r = 0 ,

Pr
[mnQq

p]r = Qr
mnPq

pr − PrmnQqpr = 0 , (5.47)
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involving only non-geometric flux, and

F̃ r[mnQr
pq] = H̃r[mnPr

pq] = 0 ,

F̃ r[mnPr
p]q +Qr

[mnH̃p]qr = 0 , (5.48)

involving gauge fluxes as well. The fully anti-symmetric parts of the latter set of equations

imply the absence of any 7-branes; these would break supersymmetry further to N = 1.

The same form of the algebra and QC was derived in the beautiful work10 [146] from a

different starting point.

Note the differences between the two algebras11 (5.40) and (5.45). First of all, NS-NS

fluxes induce a purely electric gauging in the former algebra [233], while in the latter this

involves magnetic generators as well. Moreover, the former can describe a (semi-)simple

algebra [138, 234, 235], while the latter is always non-semi-simple algebra, as it should.

This crucial difference between the two stems from the appearance of the Hodge dualised

three-form F̃ , instead of the three-form itself, in (5.45). This qualitative difference can be

traced back to the different behaviour of NS-NS and R-R gauge potentials under T-duality.

Finally, the QC (6.26) are in general different for the two algebras. For instance, it

can be seen from the SL(2) scaling weight that the last equation of (6.26) could never

arise from (5.41). However, in the truncation where one of the two non-geometric fluxes

vanishes, e.g. P = 0, the QC bilinear in the NS-NS fluxes are in fact identical (provided

Qm
mn = 0). There is still a difference in the constraints bilinear in Q and F : these are

much stronger for the first identification (5.41) than those given in (6.26).

What About De Sitter?

All the gaugings that are known to give rise to dS solutions in N = 4 gauged super-

gravity [236,237] are of the form

G = G1 ×G2 × · · · , (5.49)

i.e. a direct product of a number of gauge factors. This is a solution to the QC (5.42) once

the Jacobi identities are separately satisfied in the different factors. Moreover, in order to

have a dS solution, the gauge group must contain electric and magnetic factors. Finally,

the gauge factors have to be specific (semi-)simple groups. In particular, we will focus

on the case of two gauge factors. Each factor is of the form SO(p, q) with p + q = 4 and

embedded in an SO(3, 3) factor. A number of examples of such gaugings with dS solutions

10Due to different conventions regarding the SO(6, 6) and SL(6) indices, our form of the identification

(5.46) does not involve any non-trivial metrics, as in ref. [146]. Moreover, the QC given in ref. [146] are

not all linearly independent, and hence can be written in a more economic way.
11Most of the literature that uses (5.40) takes place in an N = 1 context, where the scalar potential is

not given in terms of structure constants but rather a superpotential. Therefore our argument does not

affect any of the results on N = 1 moduli stabilisation etc.
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was discussed in [236,237]. Moreover, it was shown in ref. [238] that the contracted versions

CSO(p, q, r) with p+ q + r = 4 of such gauge groups do not lead to any solutions with a

positive scalar potential. In this section we will assess to what extend one can obtain such

gaugings from the flux compactifications considered earlier.

The direct product structure (5.49) leads us to split SO(6, 6) into two SO(3, 3) factors in

which to embed G1 and G2 respectively. Without loss of generality, we will take the first to

be electric and lie in the directions {1, 2, 3, 1̄, 2̄, 3̄}, while the second is taken magnetic and

lies in the complementary directions. We will discuss the embedding of the first factor in

some detail; the discussion for the second factor is completely analogous. However, before

we discuss SO(4) embeddings in SO(3, 3) ' SL(4), we first generalise this to arbitrary N .

In general, the embedding of SO(N) and its analytic continuations into SL(N) can be

written in terms of the following generators in the fundamental representation

(Tij)
k
l = 4δk[iMj]l , (5.50)

in terms of a symmetric matrix M , that can always be diagonalised by a convenient choice

of basis. It is in fact given by the identity in the case of SO(N). These generators labelled

by antisymmetric pairs of indices satisfy the following commutation relations

[Tij , Tkl] = f mn
ij,kl Tmn , f mn

ij,kl = 8δ
[m
[iMj][kδ

n]
l] . (5.51)

Analytic continuations of SO(N) correspond to a number of minus signs in the M -matrix.

Contractions thereof, denoted by CSO(p, q, r) with p + q + r = N (see e.g. [238]), can

be understood in this notation by replacing r non-zero diagonal entries of M with zero

entries.

However, the most general form of CSO(p, q, r) structure constants for the special case

of N = 4 is given in terms of two symmetric matrices rather than one [216], which we will

denote by M and M̃ . The generators are then given by

(Tij)
k
l = 4δk[iMj]l − 2εijmlM̃

mk , (5.52)

giving rise to the following general expression of the structure constants

f mn
ij,kl = 8δ

[m
[iMj][kδ

n]
l] − εiji′j′εklk′l′ε

mni′l′M̃ j′k′ . (5.53)

With such a form we need some extra consistency constraints in terms of M and M̃ ,

coming from imposing the Jacobi identities. These translate into

MijM̃
jk − 1

4δ
k
i MjlM̃

jl = 0 . (5.54)

If one still diagonalises M by a convenient basis choice, the Jacobi identity imply M̃ to

be diagonal as well. In this case the constraints reduce to

M11M̃
11 = M22M̃

22 = M33M̃
33 = M44M̃

44 . (5.55)
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Let us now connect the adjoint representation in terms of SL(4) indices to fundamental

SO(3, 3) indices. This is exactly what we already showed in appendix A.2 and it leads to

the following identification between the diagonal components of the two matrices M and

M̃ , and the components of the embedding tensor fαMNP in the first SO(3, 3) factor:

M = diag(f+123, f+12̄3̄, f+1̄23̄, f+1̄2̄3) ,

M̃ = diag(f+1̄2̄3̄, f+1̄23, f+12̄3, f+123̄) . (5.56)

Other components of the embedding tensor in this SO(3, 3) factor, such as f+11̄2, corres-

pond to off-diagonal components of M and M̃ and hence have been set equal to zero.

We have discussed in the previous sections how the embedding tensor can be sourced by

different fluxes. In particular, we have discussed the two identifications (5.41) and (5.46).

It will be illuminating to illustrate the different consequences of the two identifications in

this context. Using the first identification, the matrices are given by

M = diag(H123, Q1
23, Q2

31, Q3
12) ,

M̃ = diag(0, 0, 0, 0) . (5.57)

In this case it would therefore be possible to use the different fluxes to generate a simple

gauge factor. Given that the discussion in the second, magnetic factor is completely

analogous, one could e.g. generate an SO(4)el × SO(4)magn gauge group, which certainly

leads to dS solutions. However, we have argued that this is not the correct identification;

instead, one should use (5.46). In this case, the matrices read

M = diag(0, Q1
23, Q2

31, Q3
12) ,

M̃ = diag(F456, 0, 0, 0) . (5.58)

The crucial point is that in this case the gauge flux does not enter in the M matrix to make

it non-singular; instead, it enters in the other matrix M̃ . These singular matrices only

lead to non-semi-simple gauge groups. In particular, the matrix M gives rise to ISO(3)

and analytic continuations and contractions thereof. Provided the three components Qi
jk

are non-zero, the additional parameter F456 does not modify the gauge group, but only

describes different embeddings of it in SO(3, 3). Three of these are inequivalent, corres-

ponding to F456 being positive, zero or negative. Exactly the same embeddings of ISO(3)

and ISO(2, 1) were considered in ref. 12 [238], where it was found that such gauge groups

do not give rise to scalar potentials with positive extrema.

Indeed, one can infer from the same reasoning that none of the gauge groups discussed

in [236,237] follows from a flux compactification with the identification (5.46). The simple

bottom line is that all the gauge groups necessarily consist of (semi-)simple gauge factors,

while one can only get non-semi-simple factors from flux compactifications.

12The relation to the notation of [238] is λ2 = (1− F456)/(1 + F456).
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In the following subsection, we will focus on deformations arising as consistent SO(3)

truncations of the general theory and will show that they admit a string theory realisa-

tion in terms of flux compactifications in the presence of generalised background fluxes.

the underlying theories will be STU models for which we will provide the fux-induced

superpotential.

The SO(3) Truncation

Let us consider the SO(3) truncation of the full theory enjoying an SL(2) × SO(6, 6)

global symmetry13. In the following sections of this work we will be dealing with (non-)

geometric flux compactifications of type II string theory having such a low-energy effective

description. This truncation is performed by considering an SO(3) subset in SO(6, 6)

and keeping in the theory only the singlets with respect to this subgroup both in the

scalar sector and in the embedding tensor part. Such a group theoretical truncation is

always guaranteed to be consistent in the sense that all of the non-singlet scalars can be

consistently set to zero in that their field equations can never be sourced by SO(3) singlets.

However, it by no means guarantees the stability of the non-singlets, and hence one must

always explicitly check the mass spectrum of these fields as well.

The Scalar Sector

The decomposition of the adjoint representation of SO(6, 6) contains six scalars

66→ 6 · (1,1)⊕ non-singlet representations , (5.59)

amongst which two of them correspond to the product SO(6)× SO(6) and therefore they

are pure gauge. This implies that the scalar coset associated with the matter multiplets is

parameterised in terms of only four physical scalars: two dilatons (ϕ1, ϕ2) and two axions

(χ1, χ2). The scalar coset in this sector reduces in the following way under the SO(3)

truncation
SO(2, 2)

SO(2)× SO(2)
. (5.60)

The explicit parameterisation of MMN is defined in terms of a symmetric G and an

antisymmetric B matrices as

MMN ≡
(

G−1 −G−1B

BG−1 G−BG−1B

)
, (5.61)

where G and B are given by

G = eϕ2−ϕ1

(
χ2

2 + e−2ϕ2 −χ2

−χ2 1

)
⊗ 13 , B =

(
0 χ1

−χ1 0

)
⊗ 13 . (5.62)

13This is the natural generalisation of the SL(3) × SL(3) truncation considered in ref. [197], and indeed

will lead to a much richer landscape of vacua.
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In consequence, we will choose the vielbein V in (5.4) to be

V ≡
(

eT 0

B eT e−1

)
⊗ 13 , e ≡ e(ϕ1+ϕ2)/2

(
1 χ2

0 e−ϕ2

)
, (5.63)

with eT e = G−1.

Using this parameterisation of the scalar sector in the truncated theory, the kinetic

terms then reduce to

Lkin =
1

8
(∂Mαβ)(∂Mαβ) +

1

16
(∂MMN )(∂MMN ) (5.64)

= −1

4

[
(∂φ)2 + e2φ(∂χ)2 + 3(∂ϕ1)2 + 3 e2ϕ1(∂χ1)2 + 3(∂ϕ2)2 + 3 e2ϕ2(∂χ2)2

]
.

The Quadratic Constraints

First of all, the number of allowed embedding tensor components turns out to be 40,

arranged into 20 SL(2) doublets, 20 being the number of SO(3)-singlets contained in the

decomposition of the 220 of SO(6, 6):

(2,220)→ 20 · (2,1)⊕ non-singlet representations . (5.65)

A convenient way of describing these 20 SO(3)-invariant doublets is described in ref. [121],

where the relevant components of the embedding tensor are classified using the SO(2, 2)×
SO(3) subgroup of SO(6, 6) with embedding 12 = (4,3). In this case, one can rewrite

every SO(6, 6) index M as a pair (AI), where I = 1, 2, 3 is a fundamental SO(3) index,

whereas A = 1, ..., 4 is a fundamental SO(2, 2) index. Due to this decomposition, the

structure constants of the gauge algebra can be factorised as follows

fαMNP = fαAI BJ CK = ΛαABC εIJK , (5.66)

from which one can infer that the SO(2, 2)-tensor ΛABC is completely symmetric. This

observation takes us back to the number of 20 as expected from the group theoretical

decomposition. What one can now do, is to write down the QC (5.42) in terms of the Λ

tensor. One obtains

εαβ Λ C
αAB ΛβDEC = 0 , Λ C

(αA[B Λβ)D]EC = 0 , (5.67)

where the extra indices α, β = (+,−) still represent the SL(2) phase.

The first set of constraints in (5.67) takes values in the following representation of

SL(2) × SO(2, 2)

(1, ( ⊗ )a) , (5.68)

which has dimension 45, whereas the the second set of constraints in (5.67) takes values

in this other one (
3,

)
, (5.69)
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which should not yet be thought of as only consisting of its irreducible (traceless) part and

therefore it has dimension 63. This leads us to 108 as total amount of constraints, which

can also be obtained by means of a computer. It turns out, though, that the number of

independent constraints reduces to14 105. We will come back to this point in the next

section when investigating the superpotential formulation of our truncated theory.

Relation To Flux Compactifications

So far, we have introduced the main features of the SO(3) truncation of half-maximal

supergravity in four dimensions. As we have seen in the previous section, the scalar

manifold in the truncated theory reduces to

SL(2)

SO(2)
× SO(2, 2)

SO(2) × SO(2)
∼
(

SL(2)

SO(2)

)3

, (5.70)

where each of the SL(2) factors can be parameterised by a complex scalar field. The

resulting supergravity models are commonly referred to in the literature as STU -models

(see section 3.2). They consist of three complex fields which are related to those entering

the Mαβ matrix in (5.3) and the MMN matrix in (5.61) – through the metric G and the

B-field in (5.62) – by

S ≡ χ+ i e−φ , T ≡ χ1 + i e−ϕ1 and U ≡ χ2 + i e−ϕ2 . (5.71)

Furthermore, the splitting 4 → 1 ⊕ 3 of the fundamental representation of SU(4) ∼
SO(6) R-symmetry under the action of SO(3) ensures an N = 1 structure of the su-

pergravity describing the truncated theory. This implies that it has to be possible to

formulate it in terms of a real Kähler potential K(Φ, Φ̄) and a holomorphic superpo-

tential W (Φ) (see section 2.4), where Φ = (S, T, U) , by using the standard minimal

supergravity formalism. According to it, the scalar potential can be worked out as

V = eK

(∑
Φ

KΦΦ̄|DΦW |2 − 3|W |2
)
, (5.72)

where KΦΦ̄ denotes the inverse of the Kähler metric KIJ̄ = ∂K
∂ΦI∂Φ̄J̄

, and DΦW =
∂W
∂Φ + ∂K

∂ΦW is the Kähler derivative.

The Kähler Potential

Let us start by noticing that the kinetic Lagrangian in (5.64) can be rewritten in terms

of the complex fields in (5.71) as

Lkin = KIJ̄ ∂ΦI∂Φ̄J̄ =
∂S∂S̄(

−i(S − S̄)
)2 + 3

∂T∂T̄(
−i(T − T̄ )

)2 + 3
∂U∂Ū(

−i(U − Ū)
)2 , (5.73)

14This fact should be understood in the following way: the trace part of (5.69) is already implied by the

remaining full set of constraints coming from both (5.68) and (5.69).
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with KIJ̄ being again the Kähler metric. The above kinetic terms are then reproduced

from the Kähler potential

K = − log
(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
− 3 log

(
−i (U − Ū)

)
, (5.74)

which matches the one obtained in string compactifications given in (3.29) in the isotropic

case and is valid to first order in the string and the sigma model perturbative expansions.

The Superpotential: Flux Backgrounds and Embedding Tensor

Finding out the precise superpotential WSO(3)(Φ) from which to reproduce the scalar

potential in (5.12) is certainly not an easy task. The reason for this is that both scalar

potentials, namely the one computed from the superpotential and that of (5.12), do not

have to perfectly match each other but they have to coincide up to the QC in (5.67).

As for the above Kähler potential, we want the superpotential WSO(3)(Φ) also to stem

from (orientifolds of) some string compactifications from ten to four dimensions. Their

compatibility with producing an SO(3) truncation of half-maximal supergravity in four

dimensions allows for a simple interpretation of the internal space of the compactifica-

tion. It can be taken to be the factorised six-torus of figure B.1 in appendix B.1 (see

also section 3.2) whose coordinate basis is denoted ηm with m = 1, . . . , 6 , supplemented

with a set of flux objects fitting the embedding tensor components f±MNP surviving the

truncation.

The identification between the embedding tensor components (gauging parameters) in

the supergravity side and the flux objects in the string compactification side crucially de-

pends on the string theory under investigation. As an example, when considering N = 1

type IIA orientifold compactifications including O6-planes and D6-branes, only a few em-

bedding tensor components in the supergravity side are known to correspond to flux com-

ponents on the string theory side. In contrast, all of them correspond to (generalised) fluxes

in N = 1 orientifold compactifications of type IIB string theory including O3/O7-planes

and D3/D7-branes. In this type IIB scheme [146,172], as we just saw, the correspondence

between embedding tensor components and fluxes entering the superpotential reads

f+mnp = F̃ ′mnp , f+mn
p = Q′mn

p , f mn
+ p = Qmn

p , f mnp
+ = F̃mnp ,

f−mnp = H̃ ′mnp , f−mn
p = P ′mn

p , f mn
− p = P mn

p , f mnp
− = H̃mnp ,

(5.75)

where, for instance, F̃mnp ≡ 1

3!
εmnpm′n′p′ Fm′n′p′ . The correspondence between SO(6, 6)

and SO(2, 2) embedding tensor components with known/conjectured flux objects in both

type IIA and type IIB orientifold compactifications is presented in appendix B.1.

Irrespective of the particular string theory realisation, we have explicitly checked that

the scalar potential (5.12) induced by the gaugings in the SO(3) truncated theory is

correctly reproduced, up to N = 4 QC, from the flux-induced superpotential given in

(B.2), using the standard results in minimal supergravity.
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The superpotential in (B.2) was originally derived from a type II string theory ap-

proach in ref. [145] by using duality arguments. Concretely, they worked out the N = 1

duality invariant effective supergravity arising as the low energy limit of type II orientifold

compactifications on the T 6/(Z2×Z2) toroidal orbifold. More recently, this has been put

in the context of type IIB (with O3/O7-planes)/F-theory compactifications in ref. [146]

and connected to generalised geometry in ref. [239]. Finally, some aspects of the vacua

structure of this supergravity have been explored in refs [223, 227, 240] where only the

unprimed fluxes inducing the polynomials in (B.3) were considered.

A worthwhile final remark about the SO(3) truncation of half-maximal supergravity

in four dimensions is that the resulting scalar potential V is left invariant by the action

of a discrete Z2 = {1 , α1} symmetry. This parity symmetry transforms simultaneously

the moduli fields Φ = (S, T, U) and the different fluxes fi as

α1 : Φ −→ −Φ̄ ,

fi −→ (−1)n1+n2+n3 fi ,
(5.76)

where fi S
n1Tn2Un3 denotes a generic term in the superpotential (B.2). This trans-

formation can be equivalently viewed as taking the superpotential from holomorphic to

anti-holomorphic, i.e., W (Φ) → W (Φ̄), without modifying the Kähler potential. This

additional generator extends the SO(2, 2) part of the duality group to O(2, 2), while also

acting with an element of determinant −1 on the SL(2) indices.

Understanding the matching: are there unnecessary quadratic constraints?

Let us go deeper into the matching between the N = 1 and N = 4 supergravity

formulations of the theory. This equivalence happens to hold only after the N = 4 QC in

(5.67) are imposed on the N = 1 side as well. Some of those constraints happen to kill

some moduli dependences which are not allowed by N = 4, since they cannot be expressed

in an SL(2) × SO(6, 6) covariant way, whereas some others are only needed in order to

recover the same coefficients in front of terms which are present in both of the theories. A

further subtlety is that, in total, one only needs to impose 96 out of the 105 independent

QC. This means that there are 9 QC which do not seem to be needed in order for the

matching to work. Going back to the representation theory analysis we started in (5.68)

and (5.69), one realises that (5.68) splits in the following irrep’s of SO(2, 2) in the case of

the SO(3) truncated theory(
⊗

)
a

= ⊕ ⊕ , (5.77)

that is to say, a splitting of the 45 into 6 ⊕ 9 ⊕ 30. It turns out that all of the unneeded

constraints combine together to give the 9 irreducible component in the right-hand side

of (5.77). The reason why these constraints are not needed still remains unclear but it is

a peculiar feature of the SO(3) truncation. This can be understood by going back to the
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full theory, where those constraints combine together with other ones into a bigger irrep

of SL(2)× SO(6, 6) and hence they have to be necessary as well as the other constraints

in order to have a complete matching between the N = 4 and N = 1 scalar potentials.

Up to our knowledge, these results represent the first general demonstration15 of the

explicit relation between the embedding tensor formulation of N = 4 supergravity and

the superpotential formulation of N = 1 supergravity in this particular truncation.

5.3. Vacua of Geometric Type IIA Compactifications

In this section we will analyse the complete vacua structure of the SO(3) truncation of

N = 4 supergravity which arises as the low energy limit of certain type IIA orientifold com-

pactifications including background fluxes, D6-branes and O6-planes. More concretely, it

is obtained from type IIA orientifold compactifications on a T 6/(Z2×Z2) isotropic orbifold

in the presence of gauge R-R (F0, F2, F4, F6) and NS-NS H3 fluxes, together with metric

ω fluxes, D6-branes and O6-planes. In order to preserve half-maximal supersymmetry

in four dimensions, the D6-branes have to be parallel to the O6-planes, i.e. they wrap

the 3-cycle in the internal manifold which is invariant under the action of the orientifold

involution16.

According to the mapping between fluxes and SO(3)-invariant embedding tensor com-

ponents listed in table 3.2, this type IIA flux compactification gives rise to an N = 4

gauged supergravity for which the possible gaugings are determined in terms of the elec-

tric and magnetic flux parameters

f+āb̄c̄ = −a0 , f+āb̄k̄ = a1 , f+āj̄k̄ = −a2 , f+īj̄k̄ = a3 ,

f−āb̄c̄ = −b0 , f−āb̄k̄ = b1 , f+āb̄k = c0 , f+āj̄k = f+īb̄k = c1 , f+ab̄c̄ = c̃1 .

(5.78)

It is worth noticing here that in the type IIA scheme: (a0, a1, a2, a3) are R-R fluxes,

(b0, c0) are NS-NS H3-fluxes and (b1, c1, c̃1) are metric ω-fluxes. As we just showed,

this effective supergravity admits an N = 1 formulation in terms of the Kähler potential

in (5.74) and the superpotential

WIIA = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 − b0 S + 3 b1 S U + 3 c0 T + (6 c1 − 3 c̃1)T U . (5.79)

Observe how acting upon this supergravity with the non-compact part of the duality

group, i.e. rescalings and real shifts of the moduli fields, will not turn on new couplings

in the superpotential (5.79).

The QC in (2.34) coming from the consistency of the N = 4 gauging give rise to the

15This point was also discussed in ref. [146] and we thank the authors for correspondence on their results.
16Sources invariant under the combined action of the orientifold involution and the orbifold group break

from half-maximal to minimal supersymmetry in four dimensions.
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three flux relations

c1 (c1 − c̃1) = 0 , b1 (c1 − c̃1) = 0 , −a3 c0 − a2 (2 c1 − c̃1) = 0 . (5.80)

The first and the second are respectively identified with the nilpotency (d2 = ω2 = 0) of

the exterior derivative operator d = ∂+ω ∧ and the closure of the NS-NS flux background

dH3 = ω ∧H3 = 0 . The third one is however related to the flux-induced tadpole∫
10d

(ω ∧ F2 +H3 ∧ F0) ∧ C7 ⇒ N6 = ω ∧ F2 +H3 ∧ F0 , (5.81)

for the R-R gauge potential C7 that couples to the D6-branes. In particular, it corresponds

to the vanishing of the components along the internal directions orthogonal to the O6-

planes,

N⊥6 = −a3 c0 − a2 (2 c1 − c̃1) = 0 . (5.82)

In contrast, the component parallel to the O6-planes, denoted N
||
6 , remains unrestricted

since it can be cancelled by adding sources still preserving half-maximal supersymmetry

N
||
6 = 3 a2 b1 − a3 b0 . (5.83)

Nevertheless, whenever N
||
6 = 0 for a consistent flux background, then the resulting

gauged supergravity admits an embedding into an N = 8 theory. As a result, the flux

background does not induce a tadpole for the C7 gauge potential, i.e., N⊥6 = N
||
6 = 0, and

an enhanced four-elements discrete Z2×Z2 = {1 , α1 , α2 , α1α2} symmetry group shows

up when it comes to relate non-equivalent vacuum configurations.

This Z2 × Z2 discrete group is generated by the α1-transformation in (5.76) and an

extra parity transformation defined by

α2 : U −→ −Ū ,

fi −→ (−1)n3+1 fi ,
(5.84)

where now fi S
n1Tn2Un3 denotes a generic term in the superpotential of (5.79). The

action of the α2-transformation can equivalently be viewed as taking the original super-

potential to a “fake” new one

WIIA(S, T, U)→ −WIIA(S, T, Ū) . (5.85)

As a consequence, the scalar potential gets also modified as V → V +δV where δV takes

the form

δV =
1

8 (ImT )3

[
3

(
ImT

ImS

)
N⊥6 −N ||6

]
. (5.86)

Therefore, having N⊥6 = N
||
6 = 0 (equivalently an N = 8 flux background) ensures

δV = 0 and hence a complete realisation of the Z2 × Z2 discrete group on the vacua

distribution. The first relates a supersymmetric critical point to another supersymmetric

one, while the second brings one to a pair of fake supersymmetric critical points [241].
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The aim of this section is to completely map out the vacua structure of these N = 4

type IIA compactifications. In particular, we are computing the complete set of extrema

of the flux-induced scalar potential as well as the number of supersymmetries which they

preserve and their mass spectrum. In the appendix B.2, we have also studied the effect

of introducing O6/D6 sources breaking from half-maximal to minimal supersymmetry,

namely N⊥6 6= 0 , and their consequences from the moduli stabilisation perspective.

Full vacua analysis of the N = 4 theory

Here we will present the complete vacua data of the N = 4 supergravity theory

introduced above. By this we mean to specify:

1. The complete set of vacua forming the landscape of the theory and the connections

among themselves.

2. The associated data for each of these solutions: vacuum energy, supersymmetries

preserved, mass spectrum and stability under fluctuations of all the scalar fields in

the N = 4 theory.

3. The gauge group G0 underlying the solutions.

As it was explained in the previous section, algebraic geometry techniques are found

to be powerful enough to find the entire set of extrema of the flux-induced scalar potential

but, unfortunately, they will not give us any information about whether, and if so how,

these extrema are linked to each other. To this respect, we will use the non-compact

part Gn.c. of the duality group in (5.21) together with the discrete group generated by

the transformations in (5.76) and (5.84) as an organising principle to connect different

vacuum solutions. These connections will shed light upon the often confusing landscape

of N = 4 flux vacua.

Our starting point is the ideal I in (5.23) consisting of the set of N = 4 QC in (5.80)

together with the six extremisation conditions of the scalar potential with respect to the

real and imaginary parts of the S, T and U fields evaluated at the origin of the moduli

space. After decomposing it into prime factors, as explained before, we are left with a

set of simpler pieces which can be solved analytically. The outcome of this process is a

splitting of the landscape of vacua into sixteen pieces of dim= 1 and an extra piece of

dim= 2. Let us go deeper into the features of these critical points.

The sixteen critical points of dim= 1

The sixteen critical points of dim = 1 in the N = 4 theory are presented in table 5.1.

More concretely, we list the associated flux backgrounds after having brought these moduli

solutions to the origin of the moduli space, as it was explained in detail in the subsection
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id a0 a1 a2 a3 b0 b1 c0 c1 = c̃1

1(s1,s2) s2
3
√

10

2
λ s1

√
6

2
λ −s2

√
10

6
λ s1

5
√

6

6
λ −s1 s2

√
6

3
λ

√
10

3
λ s1 s2

√
6

3
λ

√
10λ

2(s1,s2) s2
16
√

10

9
λ 0 0 s1

16
√

2

9
λ 0

16
√

10

45
λ 0

16
√

10

15
λ

3(s1,s2) s2
4
√

10

5
λ −s1

4
√

30

15
λ s2

4
√

10

15
λ s1

4
√

30

15
λ s1 s2

4
√

30

15
λ

4
√

10

15
λ −s1 s2

4
√

30

15
λ

4
√

10

5
λ

4(s1,s2) s2
16
√

10

9
λ 0 0 s1

16
√

2

9
λ 0

16
√

2

9
λ 0

16
√

2

9
λ

Table 5.1: List of the sixteen critical points of the N = 4 theory generated by R-R (a0,1,2,3) ,

NS-NS (b0, c0) and metric (b1, c1, c̃1) flux backgrounds in type IIA scenarios. They can

be organised into four groups each of which consists of four equivalent solutions labelled

by a pair (s1, s2) ≡ {(+,+), (+,−), (−,+), (−,−)}. The quantity λ is a free parameter

setting the AdS energy scale V0 ∝ −λ2 at the solutions.

about the analysis of critical points. The vacuum energy at the solutions turns out to be

V0

[
1(s1,s2)

]
= −λ2 , V0

[
2(s1,s2)

]
= V0

[
4(s1,s2)

]
= −32λ2

27
, V0

[
3(s1,s2)

]
= −8λ2

15
.

(5.87)

As we already discussed before, the number of supersymmetries preserved in these

solutions can be computed from the gravitini mass matrix Aij1 in (5.33). After solving

the eigenvalues equation of (5.32), we find that all the solutions of the N = 4 theory

are non-supersymmetric except those ones labelled by 1(+,+) and 1(−,+) which turn out

to preserve N = 1 supersymmetry. Nevertheless, it is worth noticing here that they all

actually enjoy an embedding in an N = 8 theory due to the lack of flux-induced tadpoles

for the local sources17, i.e.,

N⊥6 = N
||
6 = 0 . (5.88)

This observation was previously made for the N = 1 type IIA supersymmetric solution

found in ref. [125]. Now we are extending the statement about the existence of an N = 8

lifting to the complete vacuum structure of the theory including both minimal supersym-

metric and non-supersymmetric solutions. This fact has two immediate implications, the

second actually been a direct consequence of the first:

i) The discrete Z2 group generated by the α2-transformation in (5.84) is “accidentally”

realised as a symmetry of the flux-induced scalar potential V (Φ). Then a complete

discrete symmetry group Z2×Z2 = {1 , α1 , α2 , α1α2} appears in the landscape of

17The condition N
||
6 = 0 is in fact implied by the N = 4 QC and two of the three axionic field equations

provided c0 a1 6= 0. This is the case for the solutions 1(s1,s2) and 3(s1,s2) in table 5.1, whereas for the flux

background in the remaining cases it is straightforward.
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the N = 4 theory connecting solutions through the chain

N(+,+)
α1−→ N(−,+)

α2−→ N(−,−)
α1−→ N(+,−)

α2−→ N(+,+) , (5.89)

where N = 1, 2, 3, 4 stands for the four groups of solutions N(s1,s2) in table 5.1.

In fact, we have checked that combining these discrete transformations with the

continuous non-compact part Gn.c. in (5.21) of the duality group, the vacua structure

of the theory turns out to be a net of extrema connected by elements of the enhanced

group

Gvac = Gn.c. × Z2 × Z2 . (5.90)

As it is shown in figure 5.2, all the sixteen critical points of dim = 1 in the N = 4

theory are then connected to each other by an element of Gvac.

1(−,+)

1(−,−)

1(+,+)

1(+,−)

2(−,+)

2(−,−)

2(+,+)

2(+,−)

3(−,+)

3(−,−)

3(+,+)

3(+,−)

4(−,+)

4(−,−)

4(+,+)

4(+,−)

SL(2) × SO(2, 2) / SO(2)3

SL(2) × SO(2, 2) / SO(2)3

S
L
(2
)
×

S
O
(2
,2
)
/
S
O
(2
)3

S
L
(2)×

S
O
(2,2)

/
S
O
(2)

3

α1

α1

α2α2

α1

α1

α2 α2

α1

α1

α2α2

α1

α1

α2 α2

Figure 5.2: Net of connections between the dim = 1 sixteen critical points of the N = 4

theory.

ii) Since the α2-transformation in (5.84) is an accidental symmetry of the scalar po-

tential but not of the superpotential, then the existence of non-supersymmetric and

nevertheless stable solutions is guaranteed as long as there are supersymmetric ones.

The reason is that these non-supersymmetric solutions would be “fake” supersym-

metric in the sense that they do correspond to supersymmetric solutions of the

“fake” superpotential in (5.85). Consequently, all the results concerning stability
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of supersymmetric solutions still apply to these non-supersymmetric ones since the

scalar potential is left invariant. Supersymmetric and “fake” supersymmetric (non-

supersymmetric) solutions of the theory are then connected by

SUSY SUSY FAKE SUSY FAKE SUSY

1(+,+)
α1−→ 1(−,+)

α2−→ 1(−,−)
α1−→ 1(+,−)

.

We will see this explicitly by computing the full mass spectrum associated to these

solutions and checking that they coincide.

The first step to check stability involves computing the masses only for the SO(3)-

invariant fields, namely the SL(2)/SO(2) axiodilaton S and the two SO(2, 2)/SO(2)2

moduli fields T and U . Nonetheless, stability of a solution under fluctuations of these

2 + 4 = 6 real fields does not imply stability with respect to the rest of the N = 4 scalars

which may render it unstable. The set of normalised masses of the SO(3)-invariant scalars

at the sixteen dim = 1 extrema of the N = 4 theory are summarised in table 5.2. As

we anticipated, they do not depend on the choice of a particular (s1, s2) solution within

a N(s1,s2) group.

id m2
1 m2

2 m2
3 m2

4 m2
5 m2

6 BF

1(s1,s2) 0 −2

3

4 +
√

6

3

4−
√

6

3

47 +
√

159

9

47−
√

159

9
m2 = −2

3
→ stable

2(s1,s2) 0 −4

5
−2

5
2

64

15

20

3
m2 = −4

5
→ unstable

3(s1,s2) 0 0 2 2
20

3

20

3
min

4(s1,s2) 0 0
4

3
2 6

20

3
min

Table 5.2: Eigenvalues of the SO(3)-truncated canonically normalised mass matrix at the

AdS4 extrema of the scalar potential in the N = 4 theory. For those being saddle points,

the last column shows their stability according to the BF bound in (5.36).

Up to this point, the given information about the mass spectrum and stability of

solutions is still incomplete. In order to determine whether these critical points are actually

stable under fluctuations of all the scalar fields in the N = 4 theory, we have to compute

the full mass spectrum. As already anticipated, we have made use of the mass formula

provided in ref. [221] to address the issue of stability. The computation of the complete

mass spectrum for the sixteen dim = 1 solutions of the N = 4 geometric type IIA

compactifications gives the following results:

The normalised scalar field masses and their multiplicities for the four solutions
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1(s1,s2) take the values of

1

9

(
47±

√
159
)

(×1) ,
1

3

(
4±
√

6
)

(×1) ,
29

9
(×3) ,

1

18

(
89 + 5

√
145±

√
606 + 30

√
145

)
(×5) , 0 (×10) ,

1

18

(
89− 5

√
145±

√
606− 30

√
145

)
(×5) , −2

3
(×1) .

The unique tachyonic scalar then implies m2 = −2
3 so these AdS4 solutions satisfy

the BF bound in (5.36) hence being totally stable. Notice that the dangerous tachy-

onic mode has a special mass value, corresponding to a massless supermultiplet and

being identical to that of a conformally coupled scalar field in AdS4 [242]. In terms

of group theory, it corresponds to the discrete unitary irreducible representation for

AdS4, while all other masses with m2 ≥ −3
4 comprise a continuous family of such

irreps.

The normalised scalar field masses and their multiplicities for the four solutions

2(s1,s2) take the values of

1

15

(
77± 5

√
145
)

(×5) ,
2

15

(
31±

√
145
)

(×5) ,
64

15
(×1) ,

20

3
(×1) ,

46

15
(×3) , 2 (×1) , 0 (×10) , −2

5
(×1) , −4

5
(×1) .

In this case the most tachyonic mode gives rise to m2 = −4/5 that is below the BF

bound in (5.36), so these AdS4 solutions become unstable under fluctuations of this

mode.

The normalised scalar field masses and their multiplicities for the four solutions

3(s1,s2) take the values of

1

3

(
19±

√
145
)

(×10) ,
20

3
(×2) ,

14

3
(×3) , 2 (×2) , 0 (×11) ,

whereas those corresponding to the four solutions 4(s1,s2) are given by

20

3
(×1) , 6 (×6) ,

8

3
(×5) , 2 (×4) ,

4

3
(×6) , 0 (×16) .

One observes that all the normalised masses are non-negative so these AdS4 solutions

do actually correspond to stable extrema of the scalar potential.

Therefore, this shows that most of the AdS4 moduli solutions of the N = 4 theories coming

from geometric type IIA flux compactifications are non-supersymmetric and nevertheless

stable even when considering all the 2 + 36 = 38 scalar fields18.

18It would be interesting to understand the (dis-)similarities with the non-supersymmetric vacua of

[243,244].
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A point to be highlighted is that, in this type IIA case, the SO(3) truncation turns

out to capture the interesting dynamics of the scalars, in the sense that the lightest mode

is always kept by the truncation. This is by no means guaranteed by the consistency

of the truncation. Indeed, there are N = 8 examples of consistent truncations where the

non-singlets lead to instabilities of critical points that are stable with respect to the singlet

sector [245]. The situation for the critical points here differs from this in two respects.

Firstly, the non-singlet masses always lie above the lightest mode in the singlet sector.

Moreover, the non-singlet masses are in fact always non-negative.

Another remarkable feature is that the supersymmetric solutions 1(+,+) and 1(−,+)

are not the (stable) ones with highest potential energy. Indeed, the solutions 3(s1,s2)

are non-supersymmetric and still stable with a higher vacuum energy, as can be read

from (5.87). This again differs from the situation in the prototypical N = 8 supergravity

with SO(8) gauging, where the vacuum that preserves all supersymmetry has the highest

potential energy of all known critical points [246].

Finally we want to identify the gauge group(s) G0 underlying these solutions. The

antisymmetry of the brackets in (5.18), when restricted to the fluxes compatible with type

IIA geometric backgrounds, allows to write the magnetic generators in terms of the electric

ones

X−
a = −(b1 c0 + b0 c1)

c1 c̃1
Z+a +

b1
c̃1

Z+i , X−
i =

b1
c1

Z+a , Z−a = Z−i = 0 ,

(5.91)

with pairs (a, i) = {(1, 2), (3, 4), (5, 6)} . Notice that c1 c̃1 6= 0 for all the solutions listed

in table 5.1. In terms of electric generators, the algebra g0 of G0 is expressed as a twelve-

dimensional algebra which is now suitable to define a consistent gauging of the theory.

The brackets involving isometry-isometry generators are given by

[Z+a, Z+b] = [Z+a, Z+j ] = [Z+i, Z+j ] = 0 , (5.92)

and then span an abelian u(1)6 subalgebra of g0. Furthermore, the mixed non-vanishing

isometry-gauge brackets read

[Z+a, X+
b] = c̃1 Z+c , [Z+i, X+

b] = c0 Z+c + c1 Z+k , [Z+i, X+
j ] = c1 Z+c ,

(5.93)

so the isometry generators actually determine an abelian ideal within g0. Accordingly to

the Levi’s decomposition theorem, the algebra g0 can then be written as

g0 = ggauge ⊕ u(1)6 , (5.94)

where ggauge has to be read off from the gauge-gauge brackets after quotienting g0 by

the abelian ideal. They take the form of

[X+
a, X+

b] = c̃1X+
c + c0X+

k , [X+
a, X+

j ] = c1X+
k , [X+

i, X+
j ] = 0 , (5.95)
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so the gauge-gauge brackets are identified with ggauge = iso(3). As a result, the algebra

g0 turns out to be

g0 = iso(3)⊕ u(1)6 ∼ so(3)⊕ nil9(2) , (5.96)

where nil9(2) denotes a nilpotent 9-dimensional ideal of order two (three steps) spanned

by the generators
{
X+

i , Z+a , Z+i

}
and with lower central series{

X+
i , Z+a , Z+i

}
⊃ {Z+a , Z+i} ⊃ 0 . (5.97)

The main property to be highlighted is that there is an unique gauge group, i.e.,

G0 = ISO(3) n U(1)6 , (5.98)

underlying all the solutions of the IIA geometric theory. This was already noted for the

supersymmetric solution in ref. [125]. As a final remark, none of the generators in the

adjoint representation vanishes at these solutions, so the algebra g0 in (5.96) is actually

embeddable within the so(6, 6) duality group.

The above gauge group has three compact and nine non-compact generators. The

latter are spontaneously broken at all critical points. The corresponding vector bosons in

such cases acquire a mass due to gauge symmetry breaking by absorbing a scalar degree

of freedom. In the scalar mass spectra listed above, there will always be nine scalar fields

that do not correspond to propagating degrees of freedom. Being pure gauge, these do

not appear in the scalar potential and hence have m2 = 0.

In all critical points considered above, the number of scalar fields with m2 = 0 exceeds

nine. This implies that there will always be a number of propagating degrees of freedom

whose value is not fixed by the quadratic terms in V . Of course there could be higher-

order terms that do give rise to moduli stabilisation, or could lead to a negative potential

energy. However, in contrast to the Minkowski case, such scalar fields do not represent

a potential instability due to the additional contribution from the space-time curvature.

Instead, in Anti-de Sitter one should be worried about fields whose quadratic mass term

is at the BF bound, and if possible verify if their higher-order terms give rise to stability

or rather to tachyons. Having no such mass values in our spectra, this issue plays no role

here.

The critical point solution of dim = 2

Besides the previous sixteen critical points, the landscape of the N = 4 type IIA

geometric theory still has a dim = 2 piece. In terms of the flux background, it is given

by19

c0 = c1 = c̃1 = 0 , a0 = a1 = 0 , b1 = a2 , b0 = −a3 . (5.99)

19We would like to stress that the superpotential induced by gauge fluxes in type IIB enjoys an extra

compact SO(2)S duality symmetry which can be used to rewrite the solution in (5.99) in terms of only one

physical parameter.
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After three T-dualities along the ηa directions, where a = 1, 3, 5, this type IIA background

is mapped to a type IIB one only involving certain gauge fluxes (see table 3.2). We

postpone the discussion of this solution to the next section where type IIB backgrounds

including gauge fluxes, O3-planes and D3-branes are being explored in full generality.

5.4. Vacua of (Non-)Geometric Type IIB Compactifications

In this final part we study other realisations of the SO(3)-truncation of half-maximal

supergravity in four dimensions. This time it will be in the context of isotropic type IIB

compactifications on T 6/(Z2 × Z2) including generalised background fluxes.

GKP Flux Compactifications: Stability and Gaugings

Let us start with the well known type IIB string compactifications including a back-

ground for the gauge fluxes (H3, F3) and eventually O3-planes and/or D3-branes sources

in order to cancel a flux-induced tadpole∫
10d

(H3 ∧ F3) ∧ C4 ⇒ N3 = H3 ∧ F3 , (5.100)

for the R-R gauge potential C4. These compactifications were presented in the seminal

GKP paper of ref. [120] (see also section 3.2) and deeply explored from the moduli stabil-

isation point of view in refs [122,124,231,247] among many others.

When compatible with an SO(3) truncation of half-maximal supergravity, these com-

pactifications correspond to having non-vanishing (a0, a1, a2, a3) as well as (b0, b1, b2, b3)

flux components in table B.1. The flux-induced superpotential for the resulting STU -

models then reads

WGKP = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 +
(
b0 − 3 b1 U + 3 b2 U

2 − b3 U3
)
S , (5.101)

and the theory comes out with a non-scale structure [248]. It is worth noticing at this

point that in these IIB models with only gauge fluxes there are no QC from (5.67) to

fulfill.

At the origin of the moduli space, the potential energy arranges into a sum of square

terms hence being non-negative defined

V0 =
1

32

(
(a0 − b3)2 + 3 (a1 + b2)2 + 3 (a2 − b1)2 + (a3 + b0)2

)
. (5.102)

Using the stabilisation of the imaginary part of the modulus T , it can be shown that there

is no solution to the extremum conditions without satisfying V0 = 0 , i.e., any solution

will be a Minkowski extremum. Then the H3 flux background is related to the F3 one

via20

b3 = a0 , b2 = −a1 , b1 = a2 , b0 = −a3 , (5.103)

20The same comment made in footnote 19 applies here for the solution in (5.103).
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and the flux-induced tadpole in (5.100) simply reads

N3 = a2
0 + 3 a2

1 + 3 a2
2 + a2

3 . (5.104)

The κ1 and κ2 values entering the gravitini mass matrix Aij1 in (5.33), and then determ-

ining the amount of supersymmetry preserved at an extremum, are given by

κ1 =
3

4
√

2

√
(a0 − 3 a2)2 + (a3 − 3 a1)2 , κ2 =

3

4
√

2

√
(a0 + a2)2 + (a1 + a3)2 .

(5.105)

As a consequence, a generic GKP solution will be non-supersymmetric. However, let us

comment about two interesting limits which give rise to solutions that preserve certain

amount of supersymmetry:

The first limit is that of taking a0 = 3 a2 and a3 = 3 a1. This limit results in κ1 = 0

and κ2 =
3
√
a2

1+a2
2√

2
so that the solutions preserve N = 1 supersymmetry.

The second limit is that of taking a0 = −a2 and a3 = −a1. This limit results in

κ2 = 0 and κ1 =
3
√
a2

1+a2
2√

2
so that the solutions preserve N = 3 supersymmetry

[247].

Let us now present the mass spectrum of these N = 4 compactifications21. In terms

of the quantities

M =
1

16

(
9
(
a2

1 + a2
2

)
+ 6 (a0 a2 + a1 a3) + 5 (a2

0 + a2
3)
)

,

N =
1

16

(
5
(
a2

1 + a2
2

)
− 2 (a0 a2 + a1 a3) + (a2

0 + a2
3)
)

,

Q =
1

16

√(
(a0 − 3 a2)2 + (a3 − 3 a1)2

)(
(a0 + a2)2 + (a1 + a3)2

)
,

(5.106)

the moduli (masses)2 as well as their multiplicities are given by

M ± 3Q (×1) , N ±Q (×6) ,
1

8

(
(a0 + a2)2 + (a1 + a3)2

)
(×3) , 0 (×21) .

Only the third of the above masses is not recovered when considering only the scalars of

the SO(3) truncation. Clearly though, these solutions can never be stable because of the

general presence of flat directions.

The last question we will address is to determine the gauging underlying this GKP

backgrounds. The brackets in (5.18) get now simplified to

[X+
m, X+

n] = F̃mnp Z+p , [X+
m, X−

n] = F̃mnp Z−p ,

[X−
m, X−

n] = H̃mnp Z−p , [X−
m, X+

n] = H̃mnp Z+p .
(5.107)

21The numerical values of the eigenvalues of the mass matrix were computed in ref. [249] for some de

Sitter GKP examples corresponding to non-isotropic moduli VEVs.
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Even when there are no QC for the fluxes to obey, the antisymmetry of the brackets in

(5.107) when substituting (5.103) is guaranteed iff

Z+a = −Z−i , (a0 + a2)Z+i = (a1 + a3)Z−i , (a0 + a2)Z−a = (a1 + a3)Z−i ,

(5.108)

again with pairs (a, i) = {(1, 2), (3, 4), (5, 6)}. As a result, the isometry Zαm generators

span a central extension of a u(1)12 algebra specified by the Xα
m generators in (5.107).

Consequently, RAdj [Zαm] = 0 and the antisymmetry conditions in (5.108) are trivially

satisfied in this representation22. This is the representation of the gauging which has

to be embeddable into the so(6, 6) duality algebra, so the gauging is the abelian group

G0 = U(1)12.

Non-Geometric Backgrounds: The SO(3, 3)× SO(3, 3) Splitting

In this final section we move to study some gaugings which cannot be realised as

geometric type II string compactifications. Specifically, we will focus on those based on

the direct product splitting SO(3, 3) × SO(3, 3) discussed in refs [236–238] and further

interpreted as non-geometric flux compactifications in refs [172,197].

This splitting implies the factorisation of the gauge group in terms of G1 ×G2, where

furthermore G1 and G2 were chosen in ref. [237] to be electric and magnetic respectively.

This provides the simplest solution to the the second set of QC in (2.34) and moreover a

non-trivial gauging at angles which is necessary in order to guarantee moduli stabilisation

[250]. In ref. [237] some de Sitter solutions have been found by investigating the case in

which G1 and G2 are chosen to be some SO(p, q), with p+q = 4. Later on non-semi-simple

gaugings of the form CSO(p, q, r)×CSO(p, q, r) have been investigated in ref. [238], but

no de Sitter solutions were found.

Let us go deeper into the vacua structure of these CSO(p, q, r)×CSO(p, q, r) gaugings.

In order to do so, we will use the parameterisation of the embedding of each CSO factor

inside SO(3, 3) in terms of the two real symmetric matrices M± and M̃± as explained in

ref. [216]. In the case of the SO(3) truncation, these are given by

M+ ≡ diag
(
−a′0 , c̃1 , c̃1 , c̃1

)
, M̃+ ≡ diag

(
−a0 , c̃

′
1 , c̃

′
1 , c̃

′
1

)
, (5.109)

together with

M− ≡ diag
(
b′3 , d̃2 , d̃2 , d̃2

)
, M̃− ≡ diag

(
b3 , d̃

′
2 , d̃

′
2 , d̃

′
2

)
, (5.110)

where the relation between the entries of the above matrices and the embedding tensor

components can be read off from tables B.1 and B.2. The flux-induced superpotential in

(B.2) then reduces to

WSO(3,3)2 = a0 + b3 S U
3 − 3 c̃1 T U − 3 d̃2 S T U

2 +

+ a′0 T
3 U3 + b′3 S T

3 − 3 c̃′1 T
2 U2 + 3 d̃′2 S T

2 U .
(5.111)

22In other words, the adjoint representation is no longer faithful.
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The antisymmetry of the brackets in (5.18) now translates into

Z+i = X+
i = Z−a = X−

a = 0 , (5.112)

and the resulting twelve-dimensional algebra g0 is written as

[Z+a, Z+b] = c̃′1 Z+c − a′0X+
c , [Z−i, Z−j ] = d̃′2 Z−k + b′3X−

k ,

[Z+a, X+
b] = c̃1 Z+c + c̃′1X+

c , [Z−i, X−
j ] = d̃2 Z−k + d̃′2X−

k ,

[X+
a, X+

b] = −a0 Z+c + c̃1X+
c , [X−

i, X−
j ] = b3 Z−k + d̃2X−

k .

(5.113)

The first set of QC in (2.34) gets also simplified and forces the product M+ M̃+ and

M− M̃− to be proportional to the identity matrix.

For the sake of simplicity we will consider the case of having only unprimed fluxes,

i.e. having a type IIB background including gauge (F3, H3) and non-geometric (Q,P )

fluxes. Such backgrounds, although being non-geometric, still admit a locally geometric

description and in accord with ref. [172], they can never give rise to semi-simple gaugings.

Their associated flux-induced superpotential takes the quite simple form of

W loc. geom.
SO(3,3)2 = a0 + b3 S U

3 − 3 c̃1 T U − 3 d̃2 S T U
2 . (5.114)

These backgrounds already satisfy all of the QC as well as the extremality conditions for

the axions at the origin of moduli space23. In addition, their corresponding flux-induced

tadpoles are given by

N3 = a0 b3 , N7 = Ñ7 = N ′7 = 0 , (5.115)

where N7, Ñ7 and N ′7 relate to the SL(2)-triplet of 7-branes in a type IIB S-duality

invariant realisation of the theory [35, 251]. In fact, the second condition in (5.115) is

actually identified with N = 4 QC since these 7-branes would break from half-maximal

to minimal supergravity.

Restricting our search of extrema to the origin of the moduli space, we find five critical

points some of them with novel features compared to the “geometric” results obtained in

the previous sections. Apart from the GKP-like solution appearing when switching off the

non-geometric fluxes, i.e, c̃1 = d̃2 = 0 , the set of extrema of the scalar potential and their

vacuum energy are summarised in table 5.3. Notice that solutions 3a and 3b are related to

each other by a simultaneous inversion of the S and U moduli fields, i.e., by an element

of the compact subgroup SO(2)3 of the duality group. The critical points labelled 1 and

2 are invariant under this transformation. This is similar to the Z2 × Z2 structure in the

geometric IIA case. However, in contrast to that situation, the other critical points in

table 5.3 cannot be related by non-compact duality transformations. Therefore these are

solutions to different theories.
23This fact points out that the origin of moduli space is an especially interesting point even though it is

not the most general solution since this flux background is not duality invariant.
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ID a0 c̃1 b3 d̃2 V0 BF

1 −λ λ −λ −λ −3λ2

8
m2 = −2

3
→ stable

2 λ −λ −λ −λ λ2

8
unstable de Sitter

3a 5λ 3λ −λ −λ −15λ2

8
m2 = −26

15
→ unstable

3b −λ λ 5λ −3λ −15λ2

8
m2 = −26

15
→ unstable

Table 5.3: Set of extrema of the scalar potential (at the origin of the moduli space) for

the SO(3, 3) × SO(3, 3) embeddable type IIB backgrounds admitting a locally geometric

description. We also present their stability according to the BF bound in (5.36).

The computation of the gravitini mass matrix Aij1 in (5.33) shows that the solution

1 in table 5.3 preserves N = 4 supersymmetry whereas all the others turn out to be

non-supersymmetric. The normalised mass spectra for these solutions are as follows:

The normalised masses and their multiplicities for the solution 1 are given by

4

3
(× 2) , 0 (× 24) , −2

3
(× 12) . (5.116)

The twelve tachyonic modes imply m2 = −2/3 and then satisfy the BF bound in

(5.36) ensuring the stability of this AdS4 solution.

The normalised masses and their multiplicities for the solution 2 are given by

6 (× 10) , 4 (× 18) , −2 (× 2) , 0 (× 8) , (5.117)

so this de Sitter solution is automatically unstable since it contains two tachyons.

The normalised masses and their multiplicities for the solutions 3a,b are given by

−26

15
(×5) , −4

5
(×9) , − 2

15
(×1) ,

1

15

(
23±

√
1009

)
(×1) ,

2

5
(×5) ,

16

15
(×1) ,

4

3
(×9) , 0 (×6) ,

so these AdS4 solutions do not satisfy the BF bound in (5.36) for fourteen tachyonic

modes hence becoming unstable.

We would like to point out that in these non-geometric flux vacua the lightest mode

generically no longer belongs to the SO(3) truncation.

Concerning the gauge group underlying these locally geometric type IIB backgrounds,

it is directly identified with

G0 = ISO(3)× ISO(3) , (5.118)
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when keeping only unprimed fluxes in the brackets of (5.113). The three different theories

correspond to inequivalent embeddings of this gauge group in the global symmetry group.

All critical points break the non-compact generators of this gauge group, and hence six of

the massless scalars in the mass spectra listed above correspond to non-physical scalars.

As a final remark, we want to highlight that table 5.3, even though not being ex-

haustive, contains interesting solutions such as an example of N = 4 supersymmetric AdS

vacuum and an example of dS solution obtained from a non-semi-simple gauging. The

latter is the first example with such a gauge group; all previously constructed dS solutions

are based on semi-simple groups [236,237].





Chapter 6

Exceptional Flux Compactifications

In the previous chapter we have studied the landscape of geometric N = 4 compacti-

fications and we saw that non-geometric fluxes seem to provide a crucial ingredient for dS

extrema. In section 3.3 we have seen that their existence was first conjectured in order for

the low energy effective theory to be duality covariant. This duality is correctly encoded

in the global symmetry of the underlying gauged supergravity in four dimensions [148].

In this sense, T-duality singles out the important role of half-maximal supergravities (see

realtions to DFT in chapter 4), whereas, in order to supplement it with non-perturbative

dualities to generate the full U-duality group, one has to consider maximal supergravity.

The combination of some recent developments makes it interesting to further investig-

ate the structure of maximal gauged supergravities in order to better understand which role

U-dualities play in the context of flux compactifications. The embedding of half-maximal

into maximal supergravity [199, 200] allows one to study flux backgrounds that preserve

maximal supersymmetry. An interesting fact is that the completion of half-maximal su-

pergravity deformations to maximal is given by objects which behave as spinors under

T-duality.

Our goal in this work will be to elaborate on the results of ref. [222] and explicitly

show how these IIA geometric flux backgrounds and any other type II background can be

embedded in maximal supergravity. To this end we will therefore need to relate different

formulations of N = 8 gauged supergravity. The embedding tensor formalism provides

an E7(7) covariant formulation of maximal gauged supergravity in D = 4 (see table 2.6).

However, in order to make contact with flux compactifications, we need a rewriting of this

theory in terms of irrep’s of the S- and T-duality groups, i.e. SL(2) × SO(6, 6), following

the philosophy of ref. [239]. Finally, in order to study the physical properties of scalars,

such as equations of motions and the mass matrix, SU(8) is the correct group rearranging

all the 70 scalar physical degrees of freedom into an irrep. This can be summarised as

N = 8 SUGRA

E7(7)

↔ Fluxes

SL(2) × SO(6, 6)
↔ Mass spectra

SU(8)

Employing this mapping, we will derive the mass spectrum and the gauge group of such

“exceptional” cases of flux backgrounds without branes.

In this chapter we will first briefly review gauged N = 8 supergravities in the so-

called SU(8) formulation. Secondly, we will see how to embed N = 4 backgronds into
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N = 8. This will turn out to be natural in what we will call the SL(2) × SO(6, 6)

formulation. Finally, we will show how to connect these formulation in order to compute

all the physical quantities for N = 4 backgrounds admitting an uplift to N = 8, just like

in the case of the geometric type IIA vacua presented in table 5.1. Most of the results of

these chapter where obtained and first presented in refs [200, 252, 253]. Some additional

technical material relevant here is collected in appendix C.

6.1. Gauged N = 8 , D = 4 Supergravities

Maximal supergravity appears when reducing type II ten-dimensional supergravities

on a torus down to four dimensions. The embedding tensor formalism in maximal su-

pergravity [196] describes the gauging procedure, i.e. promoting to local a part of the

E7(7) global symmetry of the 4D theory. After applying a gauging, a non-Abelian gauge

symmetry is realised in a way compatible with still keeping N = 8 supersymmetry in

four dimensions. Moreover, a non-trivial potential V for the 70 (physical) scalar fields in

the lower-dimensional theory (a.k.a. moduli fields) is also generated, hence opening the

possibility for them to get stabilised, i.e. to acquire a mass, due to the gauging. The aim

of this chapter is to explore the interplay between gaugings and moduli stabilisation in

the context of maximal supergravity.

Embedding tensor and the E7(7) formulation

A gauging is totally encoded inside the embedding tensor ΘM
A , where M = 1, ..., 56

and A = 1, ..., 133 respectively denote indices in the fundamental 56 and adjoint 133

representations of E7(7). The tensor ΘM
A lives in the 56 ⊗ 133 = 56 ⊕ 912 ⊕ 6480

irrep’s of E7(7) and specifies which subset of the E7(7) generators {tA=1,...,133} become gauge

symmetries after the gauging procedure and hence have an associated gauge boson VM in

four dimensions. As in standard gauge theories, the ordinary derivative is replaced by a

covariant one, ∇ → ∇− g V M ΘM
A tA , and a non-Abelian gauge algebra

[XM, XN] = −XMN
PXP with XMN

P = ΘM
A [tA ]N

P , (6.1)

is spanned by the generators XM. Since E7(7) ⊂ Sp(56,R), and even though E7(7) does

not have any invariant metric, one can still use the Sp(56,R) invariant matrix ΩMN (skew-

symmetric) in order to raise and lower E7(7) fundamental indices. In what follows, we

adopt the SouthWest-NorthEast (SW-NE) convention, e.g. XM = XN ΩNM, together with

ΩMP ΩNP = δNM.

Maximal supersymmetry requires the tensor XMNP = XM(NP) = −XMN
Q ΩQP to live in

the 912 irrep of E7(7). This translates into the following set of LC

X(MNP) = 0 , XPM
P = 0 . (6.2)
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On the other hand, the tensor XMNP must also satisfy a set of QC coming from the

consistency of the gauge algebra in (6.1). These QC sit in the (133⊗ 133)a = 133⊕ 8645

irrep’s of E7(7) and are given by

ΩRSXRMNXSPQ = 0 . (6.3)

The above set of linear (6.2) and quadratic (6.3) constraints guarantee the consistency of

the maximal gauged supergravity in four dimensions [196].

Switching on a gauging has strong implications for the scalar sector of the four-

dimensional theory. It consists of 133 scalars out of which only 70 are physical degrees

of freedom – the remaining 63 can be removed from the theory after gauge fixing – and

parameterise an E7(7)/SU(8) coset element MMN = M(MN). Because of the gauging, a

non-trivial scalar potential appears

V =
g2

672
XMNPXQRS

(
MMQMNRMPS + 7MMQ ΩNR ΩPS) , (6.4)

which is invariant under the linear action of E7(7) transformations. This scalar potential

might contain a rich structure of critical points where to stabilise all the moduli fields in

the four-dimensional theory.

Fermionic Mass Terms and the SU(8) Formulation

The Lagrangian of maximal supergravity in four dimensions can be unambiguously

written in terms of SU(8) tensors, since SU(8) is one of the maximal subgroups of E7(7).

More concretely, it is its maximal compact subgroup and is identified with the R-symmetry

group under which the eight gravitini of the theory get rotated amongst themselves.

Bosonic Field Content

Under its SU(8) maximal subgroup, we have the following branching for some relevant

E7(7) representations

E7(7) ⊃ SU(8) fields

56 → 28⊕ 28 vectors: VIJ ⊕ V IJ

133 → 63⊕ 70 scalars: φI
J (unphysical)⊕ φIJKL (physical)

912 → 36⊕ 420⊕ 36⊕ 420 emb tens: AIJ ⊕AIJKL ⊕AIJ ⊕AIJKL

related to the vectors, scalars and embedding tensor1 in the four-dimensional theory.

When expressed in terms of SU(8) fundamental indices I = 1, ..., 8, the above fields have

the following symmetry properties according to the irrep’s they are associated to:

1Strictly speaking, the AIJ and AIJKL fermionic mass terms as well as their complex conjugates

correspond to the irrducible components of the T -tensor (see section 2.3), obtained by dreesing up the

embedding tensor with scalar vielbeins.
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i) VIJ = V[IJ ] and V IJ = (VIJ )∗ for the complex vector fields.

ii) φI
I = 0 and φIJKL = φ[IJKL] for the scalar fields which are further restricted by

the pseudo-reality condition

φIJKL =
1

24
εIJKLMNPQ φ

MNPQ with φMNPQ = (φMNPQ)∗ . (6.5)

It is worth noticing that the physical scalars φIJKL in the theory fit an irrep, namely

the 70 of SU(8). This will no longer be the case when using another formulation of

the theory, as we will see in the next section.

iii) AIJ = A(IJ ), AIJKL = AI [JKL] and AQQIJ = 0 and equivalently for their

complex conjugate counterparts AIJ = (AIJ )∗ and AIJKL = (AIJKL)∗ .

In the SU(8) formulation, the Sp(56,R) invariant (skew-symmetric) matrix ΩMN

takes the form

ΩMN = −i

 0 δKLIJ

−δIJKL 0

 . (6.6)

Fermionic Mass Terms and Scalar Potential

The AIJ and AIJKL tensors play a central role in the SU(8) formulation of maximal

supergravity. They determine the fermionic mass terms for the gravitini ψ Iµ and the

dilatini χIJK in the four-dimensional Lagrangian [196] (where in this formula µ, ν are

understood as space-time indices)

e−1 g−1 Lfermi =

√
2

2
AIJ ψ Iµ γµν ψ Jν +

1

6
AIJKL ψ Iµ γµ χJKL+AIJK,LMN χIJK χLMN+h.c. ,

(6.7)

where AIJK,LMN ≡
√

2
144 ε

IJKPQR[LMAN ]
PQR . The number of supersymmetries pre-

served by an AdS (V0 < 0) or Minkowski (V0 = 0) solution of the theory is related to the

number of spinors satisfying the Killing equations

gAIJ εJ =

√
−1

6
V0 εI . (6.8)

The scalar potential in (6.4) can also be rewritten in terms of the fermionic mass terms

as

g−2 V = −3

4
|A1|2 +

1

24
|A2|2 , (6.9)

where |A1|2 = AIJ AIJ and |A2|2 = AIJKLAIJKL . This potential will possess a

structure of critical points satisfying

∂V

∂φIJKL

∣∣∣∣
〈φIJKL〉

= 0 , (6.10)
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where 〈φIJKL〉 denotes the VEV for the 70 physical scalar fields. Provided 〈VIJ 〉 = 0

for the vector fields, maximally symmetric solutions of the theory are obtained by solving

the equations of motion [254] of the physical scalars

CIJKL +
1

24
εIJKLMNPQ CMNPQ = 0 , (6.11)

where CIJKL = AM[IJKAL]M + 3
4 AMN [IJ ANKL]M . At these solutions, the mass

matrix for the physical scalars [254,255] reads

g−2
(
mass2

)
IJKL

MNPQ
= δMNPQIJKL

(
5
24 ARST U ARST U − 1

2 ARS ARS
)

+ 6 δ
[MN
[IJ

(
AKRS|P AQ]

L]RS − 1
4 ARS|PQ]ARS|KL]

)
− 2

3 A[I
[MNP AQ]

JKL] .

(6.12)

Defining the normalised mass as
(
mass2

)
norm

= 1
|V0|

(
mass2

)
, then the BF bound for

the stability of an AdS solution is again given by (5.36) for the lowest eigenvalue of

the normalised mass matrix at the AdS extremum with energy V0 < 0 . We will make

extensive use of (6.12) and (5.36) in the last part of the chapter when discussing stability

of solutions in specific maximal supergravity models arising from flux compactifications of

type II strings.

Quadratic Constraints

The set of QC in (6.3) can also be expressed in terms of the AIJ and AIJKL tensors.

Using the branching relations

E7(7) ⊃ SU(8) (6.13)

133 −→ 63 ⊕ 70 , (6.14)

8645 −→ 63 ⊕ 378 ⊕ 378 ⊕ 945 ⊕ 945 ⊕ 2352 ⊕ 3584 , (6.15)

as an organising principle, one gets the following QC [196]

9ARSTMARST I −AIRSTAMRST − δMI |A2|2 = 0 ,

3ARSTMARST I −AIRSTAMRST + 12AIRAMR − 1
4 δ
M
I |A2|2 − 3

2 δ
M
I |A1|2 = 0 ,

AIJV[MAVNPQ] +AJV δI[MAVNPQ] −AJ [MAINPQ]

+ 1
24 εMNPQRST U

(
AJ IVRAVST U +AIV δRJ AVST U −AIRAJ ST U

)
= 0 ,

−1
8 δ
N
I
(
ARSTMARST J −AJ RSTAMRST

)
+ 1

8 δ
M
J
(
ARST NARST I −AIRSTANRST

)
+AIRSMANJRS −AJ RSNAMIRS + 4A(M

IJRAN )R − 4A(I
MNRAJ )R = 0 ,

−9A[I
R[MNAP]

JK]R − 9 δ
[M
[I AJ RS|NAP]

K]RS − 9 δ
[MN
[IJ ARP]STARK]ST

+ δMNPIJK |A2|2 +ARMNPARIJK = 0 ,
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living in the 63 (the first two), 70⊕378⊕3584 , 945⊕945 and 2352 irrep’s of SU(8),

respectively. The above set of QC in (6.1) automatically guarantees the consistency of the

maximal gauged supergravity.

The SO(8) gauging [256] as well as the CSO(p, q, r) with p+ q + r = 8 contractions

thereof [216, 257] are either simple gauge groups or straightforward contractions thereof.

For this reason it has been relatively easy to explore these from a pure supergravity view-

point, irrespective of their realisation in string theory. However, as the relation between

gauged supergravities and flux compactifications of string theory became better under-

stood [148], more complicated non-semisimple gauge groups other than the CSO gaugings

have gained interest both in maximal [258] and half-maximal [125,172,197,222] supergrav-

ity. The reason is that, as we will show later, the CSO gaugings turn out to correspond to

non-geometric flux backgrounds for which an origin in string theory remains unknown2,

whereas gaugings corresponding to flux backgrounds with a higher-dimensional origin are

in general not CSO. The latter are called geometric backgrounds and include fluxes as-

sociated to the NS-NS and R-R gauge fields present in the spectrum of the string [258]

together with a metric flux associated to a spin connection in the internal space. How-

ever, the SU(8) formulation of maximal supergravity is not the most intuitive when it

comes to describe gauged supergravities arising from flux compactifications of string the-

ory. Instead, an alternative formulation in terms of SL(2)×SO(6, 6) tensors becomes more

adequate as we discuss in the next section.

6.2. Embedding N = 4 Inside N = 8

Compactifications of string theory in the presence of background fluxes have become

a very active research line when it comes to address the problem of moduli stabilisa-

tion. Non-geometric fluxes and their further extension to generalised fluxes or dual fluxes

were originally introduced in order to recover invariance of four-dimensional supergrav-

ity under the action of duality transformations: more concretely, under non-perturbative

S-duality and target space T-duality. The combined action of S-duality and T-duality

relates “apparently” different four-dimensional backgrounds amongst themselves via an

SL(2) × SO(6, 6) transformation. This group of transformations corresponds with the

global symmetry group of half-maximal N = 4 supergravity in four dimensions [100].

The relation between half-maximal supergravity and string compactifications with fluxes

has been explored in refs [146, 172, 222]. As a speculative remark – and up to quantum

requirements such as the discrete nature of the gaugings when understood as fluxes –

, by covering the different SL(2) × SO(6, 6) orbits of half-maximal supergravities, one

might have access to intrinsically stringy effects involving winding modes and/or dyonic

2Nevertheless, some of them can still be obtained from M-theory reductions, as the SO(8) gauging that

appears after reducing eleven-dimensional supergravity on a S7 sphere.
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backgrounds, even though it is formulated as a supersymmetric field theory of point-like

particles.

Both S-duality and T-duality belong to a larger U-duality group, the E7(7) global

symmetry group of maximal supergravity in four dimensions. Consequently, in order to

go from half-maximal to maximal supergravity [200], one has to enlarge the field content

of the theory, i.e. vectors, scalars and embedding tensor components, to complete irrep’s

of E7(7). It is at this point where an alternative formulation of maximal supergravity in

terms of SL(2) × SO(6, 6) tensors becomes mandatory in order to understand the relation

between flux compactifications of string theory and maximal supergravity.

Bosonic field content

Complementary to the SU(8) formulation of the previous section, maximal supergravity

can also be unambiguously expressed in terms of SL(2) × SO(6, 6) tensors since that is a

maximal subgroup of E7(7) as well. Under SL(2) × SO(6, 6) , we now have the following

branching

E7(7) ⊃ SL(2)× SO(6, 6) fields

56 → (2,12)⊕ (1,32) vectors: VαM ⊕ Vµ
133 → (1,66)⊕ (3,1)⊕ (2,32′) scalars: φMN ⊕ φαβ ⊕ φαµ̇
912 → (2,220)⊕ (2,12)⊕ (1,352′)⊕ (3,32) emb ten: fαMNP ⊕ ξαM ⊕ FMµ̇ ⊕ Ξαβµ

for the E7(7) representations associated to vectors, scalars and embedding tensor respect-

ively. We follow the conventions in ref. [200] for the indices: α = +,− is a fundamental

SL(2) index, M = 1, ..., 12 is a fundamental SO(6, 6) index and µ (µ̇) = 1, ..., 32 denotes

a left (right) Majorana-Weyl spinor transforming in the 32 (32′) of SO(6, 6). In order to

fit the irrep’s, the above set of fields come out with the following symmetry properties:

i) The real vectors VαM and Vµ are unrestricted.

ii) The scalars satisfy φMN = φ[MN ] and φαβ = φ(αβ) whereas φαµ̇ remain unres-

tricted. However, in contrast to the SU(8) formulation, the 70 physical scalars no

longer fit an irrep of SL(2)×SO(6, 6) . Instead, 38 of them parameterise an element

of the coset space SL(2)
SO(2) ×

SO(6,6)
SO(6)×SO(6) , whereas the remaining 32 extend it to an

E7(7)

SU(8) coset element. At the origin of the moduli space, i.e. φMN = φαβ = φαµ̇ = 0 ,

we are left with a symmetric E7(7) scalar matrix of the form

MMN

∣∣∣
origin

=

 δαβ δMN 0

0 Bµν

 , (6.16)

where the symmetric and unitary matrix Bµν is the conjugation matrix introduced

in appendix C.2 to define a reality condition upon gamma matrices of SO(6, 6) .
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It is worth mentioning here that the explicit form of Bµν crucially depends on

the choice of the gamma matrices representation. For instance, if taking the real

representation presented in appendix C.2, then Bµν = 132 . On the other hand,

if taking the complex representation that makes SU(4)× SU(4) covariance explicit

(see also the appendix C.2), one finds that Bµν =

(
0 116

116 0

)
. Then, different

choices of gamma matrices representation do change the notion of what is called the

origin of the moduli space according to its definition in (6.16), even though they are

related via a unitary U(32) transformation.

In order to avoid confusion, we will adopt the convention of Bµν = 132 when

referring to the origin of the moduli space, hence being compatible with the natural

choice of

MMN

∣∣∣
origin

= 156 , (6.17)

as the origin of field space.

iii) The different pieces of the embedding tensor fαMNP , ξαM , FMµ̇ and Ξαβµ satisfy

fαMNP = fα[MNP ] together with /F
µ ≡ FMν̇ [γM ]µν̇ = 0 and Ξαβµ = Ξ(αβ)µ .

In the SL(2)× SO(6, 6) formulation, the Sp(56,R) skew-symmetric invariant matrix

ΩMN becomes block-diagonal and reads

ΩMN =

 ΩαMβN 0

0 Ωµν

 =

 εαβ ηMN 0

0 Cµν

 , (6.18)

where εαβ is the Levi-Civita SL(2)-invariant tensor (normalised as ε+− = 1 ) and where

ηMN and Cµν are the metric and the charge conjugation matrix of SO(6, 6), respectively.

We have summarised our conventions for spinorial representations, gamma matrices, etc.

of SO(6, 6) in the appendix C.2.

Fluxes and The Embedding Tensor

The decomposition of the 56 of E7(7) under SL(2) × SO(6, 6) translates into the

index splitting M = αM ⊕ µ . When expressed in terms of the different pieces of the

embedding tensor, the tensor XMNP entering the gauge brackets in (6.1) can then be split

into components involving an even number of fermionic indices

XαMβNγP = − εβγ fαMNP − εβγ ηM [N ξαP ] − εα(β ξγ)M ηNP ,

XαMµν = −1

4
fαMNP

[
γNP

]
µν
− 1

4
ξαN

[
γM

N
]
µν

,

XµαMν = XµναM =
1

8
fαMNP

[
γNP

]
µν
− 1

24
fαNPQ

[
γM

NPQ
]
µν

+
1

8
ξαN

[
γM

N
]
µν
− 1

8
ξαM Cµν ,

(6.19)
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which turn out to be sourced by fαMNP and ξαM , together with those involving an odd

number of them

Xµνρ = −1

2
FMν̇ [γN ]µ

ν̇ [γMN
]
νρ

,

XµαMβN = −2 εαβ F[Mν̇

[
γN ]

]
µ

ν̇ − 2 ηMN Ξαβµ ,

XαMµβN = XαMβNµ = εαβ [γN ]µ
ν̇ FMν̇ + Ξαβν [γMN ]νµ + Ξαβµ ηMN ,

(6.20)

which are sourced by FMµ̇ and Ξαβµ . The set of components in (6.19) specifies how

half-maximal supergravity is embedded inside maximal [200], whereas the remaining com-

ponents in (6.20) represent the completion from half-maximal to maximal supergravity.

A derivation of the expression in (6.19) and (6.20) can be found in the appendix C.2.

The brackets of the gauge algebra in (6.1) involving the XM = XαM ⊕ Xµ generators

in maximal supergravity then takes the form

[XαM , XβN ] = − XαMβN
γP XγP − XαMβN

ρXρ ,

[XαM , Xµ] = − XαMµ
γP XγP − XαMµ

ρXρ ,

[Xµ, Xν ] = − Xµν
γP XγP − Xµν

ρXρ ,

(6.21)

where, if looking at the part only involving the XαM generators, namely

[XαM , XβN ] = − XαMβN
γP XγP , (6.22)

we rediscover the gauge algebra of half-maximal supergravity [100] where the Xµ gener-

ators have been projected out of the theory.

Moving to explicit string constructions, the fαMNP and ξαM embedding tensor pieces

have been related to different background fluxes, e.g. to gauge, geometric and non-

geometric fluxes, in compactifications of type II and Heterotic strings producing half-

maximal supergravities [125,146,172]. As we have seen, these fluxes restore the invariance

of the four-dimensional supergravity under T- and S-duality, i.e. under SL(2)× SO(6, 6)

transformations. The FMµ̇ and Ξαβµ embedding tensor pieces are related to additional

background fluxes which restore the invariance of the theory under U-duality, i.e. under

E7(7) transformations [239]. Nevertheless, the identification between embedding tensor

components and fluxes strongly depends on the string theory under consideration. For

instance, a component of the embedding tensor corresponding to a metric flux ω in a type

IIA construction might correspond to a non-geometric Q flux in a type IIB one and vice

versa (see tables B.1 and B.2 in appendix B.1). We will take this fact into account in the

last section when analysing specific type II flux models.

Quadratic Constraints

Plugging the expression for the components of the tensor XMNP in (6.19) and (6.20)

into the QC in (6.3) one finds a set of quadratic relations for the embedding tensor pieces
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fαMNP , ξαM , FMµ̇ and Ξαβµ . In doing so we use the Sp(56,R) invariant matrix

ΩMN in (6.18). As for the SU(8) formulation in the previous section, let us use the

E7(7) ⊃ SL(2)× SO(6, 6) branching relations

133 −→ (1,66) ⊕ (3,1) ⊕ (2,32′) , (6.23)

8645 −→ (1,66) ⊕ (1,2079) ⊕ (3,66) ⊕ (3,495) ⊕ (3,1) ⊕ (1,462′) ⊕

⊕ (2,32′) ⊕ (2,352) ⊕ (2,1728′) ⊕ (4,32′) , (6.24)

as an organising principle for the QC. After a straightforward but tedious computation,

one finds the following set of QC:

i) ξαM ξ M
β + 4 εγδ Cµν Ξαγµ Ξβδν = 0 , (6.25)

ii) ξ P
(α fβ)PMN − 4 Ξαβµ F[Mν̇ [γN ]]

µν̇ = 0 , (6.26)

iii) 3 fαR[MN f
R

βPQ] + 2 ξ(α[M fβ)NPQ] (6.27)

− 4 Ξαβµ F[Mν̇ [γNPQ]]
µν̇ − εγδ Ξαγµ Ξβδν [γMNPQ]µν = 0 ,

iv) εαβ
(
ξ P
α fβPMN + ξαM ξβN

)
(6.28)

− 4FMµ̇ FN
µ̇ − FPµ̇ F

P
ν̇ [γMN ]µ̇ν̇ + 2 εαγ εβδ Ξαβµ Ξγδν [γMN ]µν = 0 ,

v) εαβ
(
fαMNR f

R
βPQ − ξ R

α fβR[M [P ηQ]N ] − ξα[M fβN ]PQ + ξα[P fβQ]MN

)
(6.29)

+ 4F[Mµ̇ [γN ][P ]µ̇ν̇ FQ]ν̇ − FRµ̇ F
R
ν̇ [γ̄[M ηN ][P γQ]]

µ̇ν̇ + 2 Ξαβµ Ξαβν [γ[M ηN ][P γ̄Q]]
µν = 0 ,

vi) fαMNP fβ
MNP + 30 εγδ Cµν Ξαγµ Ξβδν = 0 , (6.30)

vii) εαβ fα[MNP fβQRS]

∣∣∣
SD
− 1

40
FT µ̇ F

T
ν̇ [γMNPQRS ]µ̇ν̇ = 0 , (6.31)

associated to the irrep’s

i) (3,1) ii) (3,66) iii) (3,495) iv) (1,66) (6.32)

v) (1,66) ⊕ (1,2079) vi) (3,1) vii) (1,462′) , (6.33)

together with three additional ones

viii) f(αMNP Ξβγ)ν [γMNP ]νµ̇ − 15 ξ(αM Ξβγ)ν [γM ]νµ̇ = 0 , (6.34)

ix) −3 ξαM FMµ̇ + εβγ
(

1

2
ξβM [γM ]νµ̇ +

1

6
fβMNP [γMNP ]νµ̇

)
Ξαγν = 0 , (6.35)

x) fαMN
P FP

µ̇ +
1

4
fαPQ[M FN ]ν̇ [γPQ]ν̇µ̇ − 1

12
fαPQR F[Mν̇ [γN ]

PQR]ν̇µ̇ (6.36)

+
1

4
ξαP F[Mν̇ [γN ]

P ]ν̇µ̇ + εβγ
(
fβMNP [γP ]νµ̇ − ξβ[M [γN ]]

νµ̇
)

Ξαγν

− 5

4
ξα[M FN ]

µ̇ = 0
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associated to

viii) (4,32′) ix) (2,32′) x) (2,32′) ⊕ (2,352) ⊕ (2,1728′) . (6.37)

Let us comment a bit more about the above set of QC. If we refer to the embedding

tensor pieces fαMNP and ξαM as “bosonic” and to FMµ̇ and Ξαβµ as “fermionic”, then

the first seven conditions can be understood as (bos × bos) + (fermi × fermi) = 0 QC

whereas the last three are of the form (bos × fermi) = 0 . As a check of consistency, the

first seven conditions reduce to those of the form (bos × bos) = 0 in ref. [200] by setting

FMµ̇ = Ξαβµ = 0 , namely, by switching off fluxes associated to SO(6, 6)-fermi irrep’s of

the embedding tensor. In particular, in such a case, the first five conditions characterise a

consistent N = 4 gauging [100] and the remaining two extra conditions select those N = 4

gaugings given by fαMNP and ξαM which admit an uplift to the maximal theory [200]. In

this case, the last three conditions are trivially satisfied.

As mentioned before, looking for a higher-dimensional origin of dual fluxes is becoming

a very exciting line of research. As far as fluxes related to the fαMNP components of the

embedding tensor are concerned, only purely electric SO(6, 6) gaugings have been at first

formally addressed by DFT [166–168]. However, the explicit twelve-dimensional twist

matrices producing such gaugings have only been built in some particular cases [157–159].

In chapter 4 based on ref. [195] the construction has been presented for D ≥ 7. In

order to firstly extend to SL(2)× SO(6, 6) gaugings including fluxes related to ξαM and

secondly to E7(7) gaugings involving also fluxes related to the FMµ̇ and Ξαβµ components

(such as R-R gauge fluxes amongst others), a generalisation to a 56-dimensional “twisted

megatorus” reduction has been proposed [159]. The restrictions upon the 56-dimensional

twist matrices on this megatorus have not been worked out yet, but, when expressed in

terms of fluxes, they should at least imply those in (6.25)-(6.31) and (6.34)-(6.36) whenever

the twist is compatible with maximal supersymmetry in four dimensions.

6.3. Connecting SU(8) and SL(2)×SO(6, 6)

In order to relate the SL(2) × SO(6, 6) and the SU(8) formulations of maximal

supergravity, it is mandatory to derive the expression of the XMNP tensor entering the

brackets in (6.21) as a function of the fermionic mass terms in (6.7). This can be done in

a two-step procedure as follows:

1) By using the tensors AIJ and AIJKL, we can build the so-called T -tensor [196,254].
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The components of this T -tensor take the form

TIJKLMN = 1
24 εKLMNRST U δ

R
[I AJ ]

ST U ,

TIJKL
MN = 1

2 δ
[M
[K AN ]

L]IJ + δMN[I[K AL]J ] ,

T KL
IJ MN = −1

2 δ
[K
[MAL]

N ]IJ − δKL[I[MAN ]J ] ,

TIJ
KLMN = δ

[K
[I AJ ]

LMN ] ,

(6.38)

together with their complex conjugates. We can arrange them into a TMN
P tensor

by using the decomposition M = [IJ ]⊕ [ĪJ̄ ] ≡
{
IJ ,

IJ } of the 56 of E7(7) under

SU(8) .

2) The constant XMNP tensor in the SU(8) formulation, let us denote it X̃MNP to

avoid confusion with that in the SL(2)×SO(6, 6) formulation, can then be obtained

by removing the dependence of the TMNP tensor on the scalar fields (see footnote 1)

X̃MNP = 2 Ṽ Q
M Ṽ R

N Ṽ S
P TQRS , (6.39)

where Ṽ Q
M is the E7(7)/SU(8) vielbein in the SU(8) formulation [196]. After

removing the scalar dependence, the X̃MNP and XMNP constant tensors in the

SU(8) and SL(2)× SO(6, 6) formulations are related via a constant change of basis

XMNP = V̊ Q
M V̊ R

N V̊ S
P X̃QRS . (6.40)

Composing (6.39) and (6.40), the resulting vielbein3 V N
M = V̊ P

M Ṽ N
P directly con-

nects the tensors XMNP and TMNP

XMNP = 2V Q
M V R

N V S
P TQRS . (6.41)

Schematically, the connection between the two formulations of maximal supergravity

works in the following way(
AIJ , AIJKL

)︸ ︷︷ ︸
fermi. masses

=⇒ TMNP =⇒ XMNP︸ ︷︷ ︸
flux background

.

(6.38) (6.41)
(6.42)

By inverting the above chain4 we are able to relate a flux background given in terms of

fαMNP , ξαM , FMµ̇ and Ξαβµ to certain fermionic mass terms AIJ and AIJKL . This

amounts to know the relations

AIJ = AIJ
(
fαMNP , ξαM , FMµ̇ , Ξαβµ ; VMN

)
AIJKL = AIJKL

(
fαMNP , ξαM , FMµ̇ , Ξαβµ ; VMN

)
,

(6.43)

3For more details on the vielbein V N
M , see appendix C.4.

4The inversion of the relations in (6.38) gives AIJ = 4
21
T IKJLKL and AIJKL = 2TMI

MJKL,

showing that there is some redundancy in the T -tensor components.
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where VMN = (V−1) M
N is the inverse vielbein. Having the relations (6.43), we can make

use of (6.9), (6.11) and (6.12) in order to compute the scalar potential, the E.O.M’s and

the masses of the 70 physical scalars for a specific flux background.

The FMµ̇ = Ξαβµ = 0 Case

Let us derive the relations (6.43) between fermionic mass terms and embedding tensor

components when FMµ̇ = Ξαβµ = 0 . On the string theory side, this means that fluxes

related to fermionic components of the embedding tensor are set to zero, so that

AIJ = AIJ
(
fαMNP , ξαM ; VMN

)
AIJKL = AIJKL

(
fαMNP , ξαM ; VMN

)
.

(6.44)

Before presenting the explicit form of the relations in (6.44), we want to point out an

issue that appears during the computation, the way to overcome it and the corresponding

price to pay:

i) In the SL(2)× SO(6, 6) formulation of maximal supergravity, the scalar fields split

into “bosonic” {φαβ , φMN} and “fermionic” φαµ̇ ones. While the former enter

the vielbein VMN in a simple way, the latter do it in a very complicated way. In

the derivation of the relations (6.44), we will set φαµ̇ = 0 which means that all

the “fermionic” scalars are fixed to their values at the origin of the moduli space.

Therefore, the relation between fluxes and fermionic mass terms that we present

here is only valid in the submanifold of the moduli space where φαµ̇ = 0 .

ii) Being tight to the submanifold with φαµ̇ = 0 is perfectly consistent with embedding

N = 4 flux compactifications (and truncations thereof) inside N = 8 supergravity,

since “fermionic” scalars are projected out (set to zero) when truncating from max-

imal to half-maximal supergravity in four dimension [200]. A special point in this

submanifold is the origin of the moduli space defined in (6.16), where both “bosonic”

and “fermionic” scalars are set to zero.

iii) One of the main consequences of taking FMµ̇ = Ξαβµ = 0 as well as φαµ̇ = 0 is that

the method introduced in ref. [222] (and further exploited in ref. [257]) for charting

critical points of the scalar potential becomes more subtle. This method relies on

the fact that the manifold spanned by the scalars, i.e. E7(7)/SU(8) in the case of

maximal supergravity, is homogeneous so any critical point can be brought back

to the origin of the moduli space by applying an E7(7) transformation. However,

neither FMµ̇ = Ξαβµ = 0 nor φαµ̇ = 0 are U-duality covariant conditions: E7(7)

transformations will mix “fermionic” and “bosonic” embedding tensor components

and scalars, hence rendering the relations in (6.44) no longer valid. We will be back

to this point in the last section when discussing specific flux backgrounds yielding

maximal supergravities.
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Taking FMµ̇ = Ξαβµ = 0 together with φαµ̇ = 0 has strong implications for the map-

ping between fluxes and fermionic mass terms. By virtue of the decompositions (C.33) and

(C.34), only those components (as well as their c.c.) of the form {VαMij , VαM îĵ , Viĵkl̂}
inside the vielbein V N

M are non-vanishing. They are expressed in terms of an SL(2)

complexified vielbein Vα and an SO(6, 6) vielbein VM = {VMij ,VMîĵ} where i = 1, ..., 4

and î = 1, ..., 4 respectively denote SU(4)time-like and SU(4)space-like fundamental indices

(see appendix C.4).

Considering this reduced set of vielbein components, we can build the explicit mapping

between fermionic mass terms and fluxes by following the prescription in (6.42). It will

be useful to define the tensors

Aij1 = εαβ (Vα)∗ VMkl VNik VPjl fβMNP

Aij2 = εαβ Vα VMkl VNik VPjl fβMNP + 3
2 ε

αβ Vα VMij ξβM

A2 îĵi
j = εαβ Vα VMîĵ VNik VPjk fβMNP − 1

4 δ
j
i ε
αβ Vα VMîĵ ξβM

(6.45)

which reproduce the fermionic mass terms in N = 4 supergravity [100] (see expressions

given in (5.27), where the SO(6)space-like indices have been complexified by means of the

space-like and SD ’t Hooft symbols [Ga]
îĵ given in (C.22)), together with their counterparts

Aîĵ1 = εαβ Vα VMk̂l̂ VNîk̂ VP ĵl̂ fβMNP

Aîĵ2 = εαβ (Vα)∗ VMk̂l̂ VNîk̂ VP ĵl̂ fβMNP − 3
2 ε

αβ (Vα)∗ VMîĵ ξβM

A2 ijî
ĵ = εαβ (Vα)∗ VMij VN îk̂ VP ĵk̂ fβMNP + 1

4 δ
ĵ

î
εαβ (Vα)∗ VMij ξβM

(6.46)

which complete the N = 8 theory. In terms of these, the relation between fluxes and

fermionic mass terms is given by

gAIJ =
1

3
√

2

 Aij1 0

0 i Aîĵ1

 (6.47)

for the components inside AIJ and

gAijkl = − 1

3
√

2
εjklmA2mi , gAî ĵk̂l̂ =

i

3
√

2
εĵk̂l̂m̂A2 m̂î

gAijk̂l̂ =
i

2
√

2
εk̂l̂̂iĵ A2 îĵi

j , gAî ĵkl = − 1

2
√

2
εklij A2 ijî

ĵ

(6.48)

for those inside AIJKL. Further components involving an odd number of î indices, e.g.

Aiĵ or Aijkl̂ , are sourced by fermionic fields and fluxes, thus vanishing in our setup.

In the next section we present a series of consistent truncations of maximal supergravity

yielding simpler theories with a smaller set of fields and embedding tensor components.

Later on, we will investigate the lifting of (solutions of) these truncations to maximal

supergravity making use of the explicit correspondence between flux backgrounds and

fermionic mass terms derived here.
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A Web of Group-theoretical Truncations

Starting from gauged maximal supergravity in four dimensions, we present a net of

group-theoretical truncations (see figure 6.1) which connects various supergravity theories

preserving different amounts of supersymmetry with different field contents and sets of de-

formation parameters (embedding tensor components). By group-theoretical truncation,

we mean the following procedure: a certain subgroup H of the global symmetry group G

of the theory under consideration is chosen, the branching of G irrep’s in which fields and

deformations live are computed and only the fields and deformations which are singlets

with respect to H are kept.

N = 8 :
E7(7)

SU(8)

vectors 56

scalars 133

emb ten 912

–1–

N = 2 :

(
SL(2)

SO(2)

)
T

×
G2(2)

SO(4)

vectors (4,1)

scalars (3,1)⊕ (1,14)

emb ten (2,1)⊕ (4,14)⊕ (2,7)

–2–

N = 2 :

(
SL(2)

SO(2)

)
T

× SU(2, 1)

SU(2)×U(1)U

vectors (4,1)

scalars (3,1)⊕ (1,8)

emb ten (2,1)⊕ (4,8)⊕ (2,1)

–3–

N = 4 :

(
SL(2)

SO(2)

)
S

× SO(6, 6)

SO(6)× SO(6)

vectors (2,12)

scalars (3,1)⊕ (1,66)

emb ten (2,12)⊕ (2,220)

–4–

N = 1 :
∏

Φ=S,T,U

(
SL(2)

SO(2)

)
Φ

vectors —

scalars (3,1,1)⊕ (1,3,1)⊕ (1,1,3)

emb ten (2,2,2)⊕ (2,4,4)

–5–

N = 1 :
∏

Φ=S,T

(
SL(2)

SO(2)

)
Φ

vectors —

scalars (3,1)⊕ (1,3)

emb ten (2,4)⊕ (2,4)

–6–

Figure 6.1: Starting from gauged maximal supergravity (box –1– in the above diagram),

one can move step by step downwards or towards the right by performing group-theoretical

truncations which are described below in detail. The labels S, T and U are introduced in

order to keep track of the different group factors along the truncations.

Step from –1– to –2–: a truncation with respect to an H = SO(3) subgroup of

the G = E7(7) global symmetry of maximal supergravity is performed by making

use of the following chain of maximal subgroups

E7(7) ⊃ SL(2)T × F4(4) ⊃ SL(2)T × G2(2) × SO(3) . (6.49)

By looking at the decomposition of the fundamental representation of the SU(8)
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R-symmetry group in –1– under the SO(3) diagonal subgroup5

SU(8) ⊃ SU(4) × SU(4) ⊃ SU(3) × SU(3) ⊃ SO(3) × SO(3) ⊃ SO(3)diag ,

(6.50)

one finds 8 = 3 ⊕ 3 ⊕ 1 ⊕ 1 , hence containing two singlets. This implies that the

theory preserves N = 2 supersymmetry with

MSK =

(
SL(2)

SO(2)

)
T

and MQK =
G2(2)

SO(4)
, (6.51)

being the special Kähler (SK) and the quaternionic Kähler (QK) manifolds as-

sociated to one vector multiplet and two hypermultiplets respectively. From the

diagram in figure 6.1 one reads that the vector fields in maximal supergravity,

transforming in the 56 of E7(7), are branched into the sum of several irrep’s of

SL(2)T ×G2(2) × SO(3), of which, though, only the ones transforming in the (4,1)

of SL(2)T ×G2(2) are SO(3) singlets hence surviving the truncation. The resulting

theory then comprises four vectors out of which only two (the graviphoton plus an

extra vector coming from the vector multiplet) are linearly independent due to the

Sp(4,R) electric-magnetic duality. In addition, the theory contains 2 + 8 physical

scalars spanning MSK and MQK respectively, together with 72 deformation para-

meters associated to the embedding tensor components surviving the truncation.

Due to the presence of vectors, this theory might have interesting applications in

holographic superconductivity as well as in Cosmology as far as the existence of dS

solutions via D-terms uplifting is concerned. We hope to come back to these two

issues in the near future.

Step from –2– to –3–: the truncation is now with respect to an H = Z3 discrete

subgroup of the G = SL(2)T ×G2(2) global symmetry of the previous N = 2 theory

via the chain

SL(2)T ×G2(2) ⊃ SL(2)T × SU(2, 1) ⊃ SL(2)T × SU(2)×U(1)U . (6.52)

More concretely we mod-out the different fields in the theory by a Z3 element of

the form ei
2π
3
q, where q mod(3) denotes the charge of the fields with respect to the

U(1)U factor in (6.52). The field content inside the box –3– follows from the G2(2)

irrep decompositions

G2(2) ⊃ SU(2, 1) ⊃ SU(2)×U(1)U

1 → 1 → 1(0)

7 → 1⊕ 3⊕ 3 → 1(0) ⊕ ( 1(−2) ⊕ 2(1) )⊕ ( 1(2) ⊕ 2(−1) )

14 → 8⊕ 3⊕ 3 → ( 1(0) ⊕ 2(0) ⊕ 2(0) ⊕ 3(0) )⊕ ( 1(−2) ⊕ 2(1) )⊕ ( 1(2) ⊕ 2(−1) )

5The diagonal subgroup SO(3)diag in the chain (6.50) is obtained by identifying the two SO(3) factors,

namely, the fundamental representation of the first with the fundamental of the second.
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where the subindex in n(q) refers to the U(1)U charge q of the SU(2) irrep n .

The truncated theory has an SL(2)T × SU(2, 1) global symmetry and still keeps

N = 2 supersymmetry. This fact can be seen by obtaining the theory directly from

an SU(3) truncation of maximal supergravity without any intermediate step, as we

see next.

Step from –1– to –3–: truncating maximal supergravity with respect to a compact

H = SU(3) subgroup of its G = E7(7) global symmetry via the chain

E7(7) ⊃ SL(2)T × F4(4) ⊃ SL(2)T × SU(2, 1) × SU(3) , (6.53)

gives rise to the theory inside the box –3– of figure 6.1. The truncation preserves

N = 2 supersymmetry as results from the decomposition 8 = 3 ⊕ 3 ⊕ 1 ⊕ 1 of the

fundamental representation of the SU(8) R-symmetry group of the maximal theory

under the SU(3) diagonal subgroup6

SU(8) ⊃ SU(4) × SU(4) ⊃ SU(3) × SU(3) ⊃ SU(3)diag . (6.54)

The N = 2 truncated theory involves the special Kähler and the quaternionic Kähler

manifolds

MSK =

(
SL(2)

SO(2)

)
T

and MQK =
SU(2, 1)

SU(2)×U(1)U
, (6.55)

associated to one vector multiplet and one hypermultiplet respectively. This theory

can therefore be seen as a truncation of that in box –2– where one of the hypermul-

tiplets is projected out after modding out by the Z3 discrete subgroup previously

introduced. The same truncation was explored in ref. [245] and further investigated

in refs [259,260] as gravity dual of non-relativistic field theories.

Step from –1– to –4–: this is the truncation connecting maximal supergravity

and half-maximal supergravity coupled to six vector multiplets. It can be seen as a

truncation with respect to an H = Z2 discrete subgroup of the G = E7(7) global

symmetry of the maximal theory. The resulting theory keeps N = 4 supersymmetry

due to the branching of the R-symmetry group of the maximal theory

SU(8) ⊃ SU(4)× SU(4) ∼ SO(6)× SO(6) , (6.56)

where one of the SU(4) factors, let us say the first, is parity even under the Z2 and

the other is parity odd. The fundamental representation of the R-symmetry group

of maximal supergravity then decomposes as 8 = (4,1)⊕(1,4) = 4even⊕4odd hence

keeping only half of the supersymmetries, namely, those related to 4even . The action

6This time the diagonal subgroup SU(3)diag in the chain (6.54) is obtained by anti-identifying the two

SU(3) factors, namely, the fundamental representation of the first with the anti-fundamental of the second.
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of the Z2 on the fundamental representation of E7(7) becomes more transparent by

looking at the branching

E7(7) ⊃ SL(2)S × SO(6, 6)

56 → (2,12)⊕ (1,32)

Under the Z2 , the different E7(7) irrep’s are modded-out according to the SO(6, 6)

irrep’s appearing in their branchings. In particular, SO(6, 6) bosonic irrep’s, e.g.

the 1, 12, 66, etc., are parity even and survive the truncation. In contrast, SO(6, 6)

fermionic irrep’s involving an odd number of Majorana-Weyl indices, e.g. the 32 and

32′, are parity odd and are projected out whereas those involving an even number

of them are parity even hence surviving the truncation. As a result, the vectors Vµ ,

the scalars φαµ̇ and the embedding tensor pieces FMµ̇ and Ξαβµ in the bosonic field

content of maximal supergravity are truncated away when going to half-maximal.

The remaining fields then describe an N = 4 supergravity coupled to six vector

multiplets with an associated

Mscalar =

(
SL(2)

SO(2)

)
S

× SO(6, 6)

SO(6)× SO(6)
, (6.57)

coset space spanned by the 2 + 36 physical scalars in the theory belonging to the

gravity multiplet and the six vector multiplets respectively. Further details about

this truncation can be found in ref. [200].

Step from –4– to –5–: this step corresponds to a truncation with respect to an

H = SO(3) subgroup of the G = SL(2)S×SO(6, 6) global symmetry of half-maximal

supergravity coupled to six vector multiplets following the chain

SL(2)S×SO(6, 6) ⊃ SL(2)S×SO(2, 2)×SO(3) ∼
∏

Φ=S,T,U

SL(2)Φ × SO(3) . (6.58)

The truncation (see the last part of section 5.2) breaks half-maximal to minimal

N = 1 supergravity due to the decomposition 4 = 1 ⊕ 3 of the fundamental

representation of the SU(4) R-symmetry group in N = 4 supergravity under the

SO(3) subgroup

SU(4) ⊃ SU(3) ⊃ SO(3) . (6.59)

The resulting theory does not contain vectors since there are no SO(3)-singlets in the

decomposition 12 = (4,3) of the fundamental of SO(6, 6) under SO(2, 2)× SO(3).

The physical scalar fields span the coset space

Mscalar =
∏

Φ=S,T,U

(
SL(2)

SO(2)

)
Φ

, (6.60)

involving three SL(2)/SO(2) factors each of which can be parameterised by a com-

plex scalar Φ = (S, T, U). In addition, the embedding tensor of the theory contains
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40 independent components fitting two irrep’s of the SL(2)S × SL(2)T × SL(2)U

global symmetry group, as shown inside box –5– in figure 6.1. We will come back to

this truncation in the next section when studying type II string models.

This N = 1 supergravity theory has been extensively investigated because of its

direct connection to string theory via type II orientifold compactifications with

fluxes [121, 123, 145, 218, 219, 230, 231]. The resulting supergravity models are re-

ferred to as STU -models and different background fluxes in the string theory side

correspond with different embedding tensor configurations in the supergravity side.

However, not all the embedding tensor configurations in the supergravity side have

a higher-dimensional interpretation since most of them correspond to non-geometric

flux backgrounds for which an origin in string theory, if possible, remains to be

found.

It is worth noticing here that this theory can be lifted to that in box –2– by com-

pleting it with the fermionic irrep’s removed by the Z2 truncation taking from the

box –1– to the box –4– in figure 6.1.

Step from –5– to –6–: this truncation is with respect to an H = Z3 discrete

subgroup of the G = SL(2)S × SL(2)T × SL(2)U global symmetry in –5– via the

chain

SL(2)S × SL(2)T × SL(2)U ⊃ SL(2)S × SL(2)T ×U(1)U . (6.61)

As happened when truncating from –2– to –3– before, we mod-out again the different

fields in the theory by a Z3 element of the form ei
2π
3
q, with q mod(3) being this

time the charge of the fields with respect to the U(1)U factor in (6.61). Now, the

relevant branchings in order to derive the field content inside the box –6– are

SL(2)U ⊃ U(1)U

1 → 1(0)

2 → 1(−1) ⊕ 1(1)

3 → 1(−2) ⊕ 1(0) ⊕ 1(2)

4 → 1(0) ⊕ 1(−1) ⊕ 1(1) ⊕ 1(0)

where, as before, the subindex in 1(q) refers to the U(1)U charge q of the state.

The truncated theory still has N = 1 supersymmetry since the gravitino in the

parent theory was already a singlet with respect to both U(1)T and U(1)U .

The scalars in the truncated theory span the scalar manifold

Mscalar =
∏

Φ=S,T

(
SL(2)

SO(2)

)
Φ

. (6.62)
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It can be parameterised by two complex scalars S and T associated to the SL(2)/SO(2)

factors. As summarised inside the box –6– in figure 6.1, the embedding tensor con-

sists of two pieces sitting in the same irrep of the global symmetry group of the

theory.

In the next section we concentrate back on the N = 1 theory inside box –5– which

can be seen as a truncation of the N = 4 theory inside box –4– . We will investigate

the lifting of some vacuum solutions found in chapter 5 to N = 8 supergravity (box

–1–) making use of the relations (6.44) between fermionic masses and flux backgrounds

when FMµ̇ = Ξαβµ = 0 , i.e. when spinorial fluxes do vanish. It would be interesting to

explore the phenomenology of fluxes related to embedding tensor components fitting these

fermionic irrep’s and still having a higher-dimensional origin in string theory as gauge

fluxes or metric fluxes.

6.4. Exceptional Flux Backgrounds

When compactifying type II ten-dimensional supergravities down to four dimensions,

background fluxes threading the internal space can be switched on during the compac-

tification procedure giving rise to gauged maximal supergravity models. As introduced

in section 6.2, flux backgrounds on the string side correspond to deformation parameters

related to the fαMNP , ξαM , FMµ̇ and Ξαβµ pieces of the embedding tensor on the

supergravity side. For the sake of simplicity, we will restrict our study to the case

FMµ̇ = Ξαβµ = 0 , (6.63)

that is, to string backgrounds not including fluxes associated to SO(6, 6) fermionic irrep’s

of the embedding tensor. However, even though the remaining fαMNP and ξαM pieces

reproduce those of half-maximal supergravity, the set of QC they are restricted by will be

that of maximal supergravity derived in section 6.2. Setting to zero spinorial fluxes as in

(6.63) does not amount to modding out maximal supergravity by a Z2 symmetry. While

the former does not affect other fields in the theory (as scalars and vectors), the latter

projects out some of them in order to truncate from maximal to half-maximal supergravity.

On the string theory side, modding out by this Z2 symmetry is commonly referred to as

applying an orientifold projection.

String Theory Embedding vs Moduli Stabilisation

Thus far, we have discussed in detail the correspondence between maximal gauged

supergravities and type II flux compactifications. However, one might also be interested

in the interplay between gaugings, fluxes and moduli stabilisation: in short, fluxes were

introduced in order to achieve moduli stabilisation. Sketchily, the picture in this respect

seems to be the following
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semisimple gaugings

moduli stabilisation 3

string embedding 7

↔

intermediate gaugings

moduli stabilisation ?

string embedding ?

↔

nilpotent gaugings

moduli stabilisation 7

string embedding 3

Semisimple gaugings are likely to produce critical points and moduli stabilisation [246,

257, 261, 262], but we will show that their embedding as type II flux compactifications

involves highly non-geometric backgrounds. On the other hand, nilpotent gaugings can be

obtained from type II compactifications including gauge fluxes [258], but they seem not

to be enough to get moduli stabilisation. Intermediate gaugings containing a semisimple

part and an Abelian part have recently been found in ref. [257], although their embedding

into string theory/M-theory has not been explored yet.

Here we will present a novel intermediate gauging consisting of a semisimple and a

nilpotent part which allows for moduli stabilisation and can be embedded into string

theory as a type IIA flux compactification including gauge and metric fluxes.

Setting up the flux models

Our starting point is the N = 1 supergravity theory inside box –5– in figure 6.1.

As explained at the end of section 6.3, this theory can be obtained by truncating the

N = 4 supergravity in box –4– with respect to an SO(3) subgroup which, in turn, can

be obtained by a Z2 truncation of N = 8 supergravity in box –1–. As summarised

in appendix B.1, all the deformation parameters of this theory belong to the fαMNP

piece of the embedding tensor which comes out with forty independent components [222].

These can be arranged into a tensor ΛαABC = Λα(ABC) , where α = +,− denotes an

SL(2)S electric-magnetic index and A = 1, ..., 4 denotes an SO(2, 2) ∼ SL(2)T × SL(2)U

fundamental index of the global symmetry group. The theory comprises three complex

scalars S , T and U parameterising the complex Kähler manifold

Mscalar =

(
SL(2)

SO(2)

)
S

×
(

SL(2)

SO(2)

)
T

×
(

SL(2)

SO(2)

)
U

, (6.64)

and no vector fields since they are projected out in the truncation. This supergravity

theory can be obtained from type II orientifolds of Z2 × Z2 orbifold compactifications in

the presence of generalised flux backgrounds, and the scalar potential can be derived from

the N = 1 flux-induced superpotential in (B.2).

Now we want to lift this N = 1 theory firstly to N = 4 by removing the SO(3)

truncation and secondly to N = 8 by also removing the Z2 orientifold projection. This

amounts to re-introduce the 28 physical vectors in maximal supergravity and to com-

plete the number of scalars from 6 to 70 without changing the set of embedding tensor

components, in other words, without modifying the flux backgrounds. Nevertheless, in

order for a flux background to be liftable to maximal supergravity, the set of QC found in
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SO(3)-invarianttype IIA

type IIA

type IIA

SO(3)-truncation

Z2-truncation

Figure 6.2: Diagram of the two-step lifting of N = 1 flux backgrounds firstly to N = 4

by removing the SO(3) truncation and secondly to N = 8 by removing the Z2 orientifold

projection. As depicted in the figure, only a subset of N = 4 theories can be truncated

to N = 1 theories via an SO(3) truncation. On the other hand, only a subset of N = 4

theories can be obtained from N = 8 supergravity via a Z2 orientifold projection. The

relevant fact is that the intersection between these two subsets of N = 4 theories happens

not to be empty and, furthermore, contains some theories for which a realisation in terms

of type IIA string theory is known.

section 6.2 must be imposed. These guarantees the absence of supersymmetry-breaking

branes and all their U-dual local sources [263,264].

In the rest of the section we will concentrate on two specific type II fluxes models

which are relevant from a string theory point of view:

Type IIB non-geometric flux backgrounds with an SO(3, 3) × SO(3, 3) splitting

in N = 4 supergravity and lifting to SO(8) , SO(4, 4) , SO(3, 5) and CSO(2, 0, 6)

gaugings in N = 8 supergravity.

Type IIA geometric flux backgrounds lifting to ISO(3) n U(1)6 gaugings in N = 4

supergravity and further lifting to SO(4) n Nil22 gaugings in N = 8 supergravity.

We will reduce our search of critical points to the origin of the moduli space and

discuss the issues of stability and supersymmetry at those solutions. However, due to the

restriction (6.63), our classification of critical points will no longer be exhaustive since

spinorial fluxes might produce new solutions we do not have access to by only looking at

the origin of the moduli space [222,257].
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CSO(p, q, r) gaugings from type IIB with non-geometric fluxes

Let us concentrate on a set of type IIB flux backgrounds for which one has the direct

product splitting SL(2)S × SO(6, 6) ⊃ SO(3, 3)+× SO(3, 3)− , where the labels + and −
stand for SL(2)S electric and magnetic pieces, respectively. These backgrounds can be

obtained from type IIB flux compactifications including the following set of generalised

fluxes: R-R and NS-NS gauge fluxes (F3, H3) , non-geometric fluxes (Q,P ) and their

primed counterparts which have been less studied in the literature.

The above set of fluxes gives rise to maximal gauged supergravities based on CSO(p, q, r)

gauge groups with p + q + r = 8 . By applying the Z2 orientifold projection truncating

from maximal to half-maximal supergravity, the CSO(p, q, r) gauge groups get broken to

the direct product of two smaller CSO± groups as

N = 8 N = 4

CSO(p, q, r) −→ CSO+(p+, q+, r+) × CSO−(p−, q−, r−) ,
(6.65)

with p± + q± + r± = 4 . As explained in ref. [216], each of the CSO± factors in the r.h.s

of (6.65) can be parameterised in terms of two real symmetric 4 × 4 matrices M± and

M̃± which determine their embedding into an SO(3, 3)± group, respectively. In terms of

generalised flux components, these matrices read

M+ =

(
−a′0 0

0 c̃1 × 13

)
(F ′3 , Q )

and M̃+ =

(
−a0 0

0 c̃′1 × 13

)
(F3 , Q′ )

(6.66)

together with

M− =

(
b′3 0

0 d̃2 × 13

)
(H′3 , P )

and M̃− =

(
b3 0

0 d̃′2 × 13

)
(H3 , P ′ )

(6.67)

where the concrete identification between flux entries in M± and M̃± and embedding

tensor components fαMNP can be read off from tables B.1 and B.2 in appendix B.1. By

substituting into the set of QC derived in section 6.2, one finds three families of solutions:

i) Flux matrices corresponding to a (Q,F3) -flux background

M+ =

(
0 0

0 λ1 × 13

)
, M̃+ =

(
λ2 0

0 0× 13

)
and M− = M̃− = 0

(6.68)

ii) Flux matrices corresponding to a (P,H3) -flux background

M− =

(
0 0

0 λ1 × 13

)
, M̃− =

(
λ2 0

0 0× 13

)
and M+ = M̃+ = 0

(6.69)
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iii) Flux matrices corresponding to a (F ′3 , Q , H3 , P
′) -flux background

M+ = unrestricted , M̃− = unrestricted and M̃+ = M− = 0 (6.70)

together with three additional ones obtained by swapping M± ↔ M̃± . This amounts to

interchange primed and unprimed fluxes, i.e. to apply six T-dualities along the internal

space directions, so the resulting theories are physically equivalent.

ID 1
λM+ and 1

λ M̃− N = 8 gauging N = 4 gauging 1
λ2 V0 Mass spectrum

1
M+ = (1, 1, 1, 1)

M̃− = (1, 1, 1, 1)
SO(8) SO(4)2

−3

2
(70×) − 2

3

2
M+ = (5, 1, 1, 1)

M̃− = (1, 1, 1, 1)
−5

2
2 , (27×) − 4

5 , (35×) − 2
5 , (7×) 0

3
M+ = (1, 1, 1, 1)

M̃− = (1,−3,−3,−3)
SO(5, 3) SO(4)× SO(1, 3)

3

2
−2 , (5×) 4 , (30×) 2 , (14×) 4

3 , (5×) − 2
3 , (15×) 0

4
M+ = (1,−1,−1,−1)

M̃− = (−1, 1, 1, 1)
SO(4, 4)

SO(1, 3)× SO(3, 1)

1

2
(2×) − 2 , (36×) 2 , (16×) 1 , (16×) 0

5
M+ = (1, 1, 1, 1)

M̃− = (−1,−1,−1,−1)
SO(4, 0)× SO(0, 4)

6
M+ = (1, 0, 0, 0)

M̃− = (1, 0, 0, 0)
CSO(2, 0, 6) CSO(1, 0, 3)2 0 (20×) λ

2

8 , (2×) λ
2

2 , (48×) 0

Table 6.1: Set of critical points of the scalar potential for generalised type IIB flux back-

grounds compatible with an SL(2)S × SO(6, 6) ⊃ SO(3, 3)+ × SO(3, 3)− splitting. The

first two correspond to AdS solutions, the next three to dS solutions and the last one is a

Minkowski solution. By looking for solutions of the Killing equations (6.8), we find that

all the solutions break all the supersymmetries except the first one which preserves N = 8

supersymmetry.

The next step is to build the fermionic mass terms AIJ and AIJKL in maximal

supergravity as a function of the matrices M± and M̃± by using the relations (6.44).

Plugging them into the set of E.O.M’s for the scalars (6.11), it turns out that gaugings

belonging to the first and the second family of solutions to the QC do not generate critical

points at the origin of the moduli space. This is related to the fact that they are purely

electric and magnetic gaugings in half-maximal supergravity, so moduli stabilisation is

not possible [250]. In contrast, six inequivalent patterns7 of flux matrices belonging to

the third family of solutions, i.e. M+, M̃− 6= 0 and M̃+ = M− = 0 , are compatible

with moduli stabilisation at the origin of the moduli space (6.17). They correspond to

dyonic gaugings in half-maximal supergravity even though their parent CSO gaugings in

7Additional solutions apart from those shown in table 6.1 can be obtained by exchanging the flux

matrices M+ ↔ M̃− . However, they go back to those in the table via the composition of an S-duality and

three T-duality transformations, hence being physically equivalent.



6.4 Exceptional Flux Backgrounds 167

the maximal theory turn out to be purely electric. These are determined by the signature

of the block-diagonal flux matrix

Melectric =

 M+ 0

0 M̃−

 . (6.71)

We have computed the value of the energy8 V0 , the normalised mass spectrum (for those

solutions with V0 6= 0 ) and the amount of residual supersymmetry at the solutions to-

gether with the corresponding gauge group in maximal and half-maximal supergravity

according to the chain (6.65). The results are summarised in table 6.1, matching perfectly

those in ref. [257].

Type IIA with gauge and metric fluxes

Now we investigate specific flux backgrounds having a higher-dimensional interpreta-

tion in terms of type IIA string compactifications including geometric fluxes: these are

R-R F0,2,4,6 and NS-NS H3 gauge fluxes together with a metric flux ω associated to the

spin connection of the internal space.

By using again the fluxes/embedding tensor correspondence of table B.1 and the re-

lations (6.44), we can build the fermionic mass terms AIJ and AIJKL in maximal

supergravity associated to these type IIA backgrounds. Imposing the set of N = 8 QC

(6.1) and the E.O.M’s for the scalar fields (6.11), we obtain exactly the same sixteen AdS

critical points at the origin of the moduli space (6.17) which we collected in table 5.1.

As anticipated in ref. [252], they can be seen as the uplifting to maximal supergravity of

half-maximal supergravity solutions compatible with the total absence of sources9.

With the fermionic mass terms AIJ and AIJKL at our disposal, we can now compute

the different values of the cosmological constant (6.9) at the above set type IIA solutions.

These are given by

V0

[
1(s1,s2)

]
= −λ2 , V0

[
2(s1,s2)

]
= V0

[
4(s1,s2)

]
= −32λ2

27
, V0

[
3(s1,s2)

]
= −8λ2

15
.

(6.72)

In addition, we can also obtain the complete mass spectrum for the 70 physical scalars by

using the mass formula (6.12) and check stability as well as the amount of supersymmetry

preserved. The mass spectrum at the critical points in table 5.1 turns out to be the

following:

At the solution 1(s1,s2) , the normalised scalar field masses and their multiplicities

8We are setting g = 1
2

in analogy to ref. [222].
9The presence of sources as O6-planes and D6-branes in these type IIA scenarios modifies the set of

N = 8 QC.
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are given by

1

9

(
47±

√
159
)

(×1) ,
1

3

(
4±
√

6
)

(×1) ,
29

9
(×3) ,

1

18

(
89 + 5

√
145±

√
606 + 30

√
145

)
(×5) , 0 (×10) ,

1

18

(
89− 5

√
145±

√
606− 30

√
145

)
(×5) , −2

3
(×1) ,

for the 38 scalars surviving the truncation from maximal to half-maximal super-

gravity, together with

1

3

(
4±
√

6
)

(×3) , 6 (×3) ,
13

3
(×5) , −2

3
(×1) , 0 (×17) ,

for the additional 32 scalars in the maximal theory. There are two tachyons in the

spectrum both with the same normalised mass m2 = −2
3 , so this AdS solution is

completely stable since it satisfies the BF bound in (5.36).

At the solution 2(s1,s2) , the values of the normalised scalar masses and their multi-

plicities read

1

15

(
77± 5

√
145
)

(×5) ,
2

15

(
31±

√
145
)

(×5) ,
64

15
(×1) ,

20

3
(×1) ,

46

15
(×3) , 2 (×1) , 0 (×10) , −2

5
(×1) , −4

5
(×1) ,

for the scalars surviving the truncation to half-maximal supergravity, and also

6 (×3) , 4 (×5) , 2 (×3) , −4

5
(×1) , 0 (×20) ,

for the scalars been projected out by the Z2 orientifold projection. There are three

tachyons in the spectrum, two of them with m2 = −4/5 . This value is below the

BF bound in (5.36), rendering this AdS solution unstable.

At the solution 3(s1,s2) , the normalised scalar field masses and their multiplicities

take the values of

1

3

(
19±

√
145
)

(×10) ,
20

3
(×2) ,

14

3
(×3) , 2 (×2) , 0 (×11) ,

for those scalars still present in half-maximal supergravity, and

2 (×6) , 6 (×5) , 8 (×3) , 0 (×18) ,

for those ones completing to maximal supergravity. It is worth noticing that all the

masses are non-negative at this critical point, hence corresponding to an AdS stable

extremum of the theory.
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At the solution 4(s1,s2) , the set of normalised scalar masses and their multiplicities

are

20

3
(×1) , 6 (×6) ,

8

3
(×5) , 2 (×4) ,

4

3
(×6) , 0 (×16) .

again for the 38 scalars present in half-maximal supergravity, as well as

8

3
(×5) , 6 (×3) , −4

3
(×1) , 2 (×3) ,

4

3
(×3) , 0 (×17) .

for the 32 extra ones in the maximal theory. Amongst the latter, there is a tachyon

with a normalised mass m2 = −4/3 lying below the BF bound (5.36). Therefore,

this solution, while stable with respect to the scalars in half-maximal supergravity,

becomes unstable when lifted to the maximal theory.

In order to determine the amount of residual supersymmetry preserved by the above

set of critical points, we have to look for solutions to the Killing equations (6.8). The final

outcome is that supersymmetry becomes completely broken in all the solutions except in

1(s1,s2) which preserves N = 1 supersymmetry. Let us go deeper into the way in which

minimal supersymmetry is preserved by the 1(s1,s2) solution. Recalling the decomposition

of the SU(8) R-symmetry group of maximal supergravity first under the Z2 orientifold

projection truncating to half-maximal supergravity and then under the SO(3) truncation

yielding minimal supergravity

SU(8)
Z2⊃ SU(4)even × SU(4)odd ⊃ SO(3)even × SO(3)odd

8 → (4,1)even ⊕ (1,4)odd → (1,1)even ⊕ (3,1)even ⊕ (1,1)odd ⊕ (1,3)odd

one observes that there are two invariant (covariantly constant) spinors associated to

the (1,1)even and (1,1)odd irrep’s respectively. This implies that there are two possible

N = 1 residual supersymmetry that can be preserved by the 1(s1,s2) configurations. How-

ever, since the SU(4) R-symmetry group of half-maximal supergravity is identified with

SU(4)even and not with SU(4)odd , only those configurations preserving the N = 1 super-

symmetry associated to the (1,1)even irrep ( 1(+,+) and 1(−,+) ) can still be truncated to

half-maximal supergravity as N = 1 supersymmetric solutions. In contrast, solutions pre-

serving the N = 1 supersymmetry associated to the (1,1)odd irrep ( 1(−,−) and 1(+,−) )

appear as non-supersymmetric solutions when truncated to half-maximal supergravity.

Nevertheless, they are fake supersymmetric in the sense that they are supersymmetric

with respect to the “wrong” R-symmetry group, hence inheriting all the stability proper-

ties associated to supersymmetric solutions.

At this point, the nature of the two Z2 factors labelled by (s1, s2) becomes clear. The

first one, as already pointed out in ref. [222], is a symmetry of the N = 4 theory and

hence it does not really label different solutions, whereas, at this level, the second Z2 seems

to appear as an accidental symmetry forcing the value of the energy and the mass spectra
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of inequivalent critical points to be identical. When lifting these solutions to maximal

supergravity, the second Z2 becomes a symmetry as well: it corresponds precisely to the

SU(8) element interchanging SU(4)time-like with SU(4)space-like , thus relating equivalent

solutions. As a consequence, the number of inequivalent critical points reduces to four

and they can be seen as different solutions of the same maximal gauged supergravity.

Let us now identify the gauge group underlying these type IIA geometric backgrounds

in a maximal gauged supergravity context. Since we set FMµ̇ = Ξαβµ = 0 , the XMNP

components in (6.20) do vanish. Then, the brackets (6.1) of the gauge group G0 take the

simpler form

[XαM , XβN ] = − XαMβN
γP XγP ,

[XαM , Xµ] = − XαMµ
ρXρ ,

[Xµ, Xν ] = − Xµν
γP XγP .

(6.73)

The 12-dimensional subgroup Gbos ⊂ G0 spanned by the linearly independent10 XαM

bosonic generators in (6.75) turns out to be

Gbos = ISO(3) n U(1)6 . (6.74)

This is the gauge group of the half-maximal theory in which fermionic generators Xµ

are projected out by the Z2 orientifold projection [222]. The 16 linearly independent

fermionic generators extend Gbos in (6.74) to the complete 28-dimensional gauge group

G0 of maximal supergravity which is identified with

G0 = SO(4) n Nil(22) , (6.75)

for these type IIA geometric flux backgrounds. To be more concrete about the structure

of the gauge group, let us split the 28 linearly independent generators into 6 generators

{T (0)
i , T

(0)
a } spanning the semisimple SO(4) ∼ SU(2)i × SU(2)a part in (6.75) and 22

generators {
T

(1)
i , T (1)

a , T
(2)
i , T (2)

a , Tia , T
}

(6.76)

associated to the nilpotent ideal Nil(22) . The index structure of the generators, where

i, a = 1, 2, 3 , reflects their transformation properties with respect to the semisimple part

of the gauge group. In the appropriate basis, we can write the non-vanishing gauge brackets

as

[T
(0)
i , T

(p)
j ] = εijk T

(p)
k (p = 0, 1, 2) and [T

(0)
i , Tja] = εijk Tka , (6.77)

which involve the semisimple generators T
(0)
i , together with

[T
(1)
i , T

(2)
j ] = δij T , [T

(1)
i , T (1)

a ] = −Tia , and [T
(1)
i , Tja] = δij T

(2)
a , (6.78)

10Only 12 out the 24 bosonic generators XαM are linearly independent hence entering the gauging.

Adopting the same choice that in ref. [222], we decide to write the magnetic generators as a function of

the electric ones, i.e. X−M (X+M ) .
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involving generators in the nilpotent part. When non-equivalent, the above set of brackets

must be supplemented with additional ones obtained by exchanging T
(p)
i ↔ T

(p)
a , εijk ↔

εabc and δij ↔ δab . By inspection of the above brackets, one finds that the Nil(22) piece

is a nilpotent 22-dimensional ideal of order three (four steps) with lower central series{
T

(1)
i , T (1)

a , T
(2)
i , T (2)

a , Tia , T
}
⊃
{
T

(2)
i , T (2)

a , Tia , T
}
⊃
{
T

(2)
i , T (2)

a , T
}
⊃ {T} ⊃ {0} .

As an aside remark, we have taken the real realisation of gamma matrices (see ap-

pendix C.2) when building the structure constants of the gauge algebra in (6.73). Oth-

erwise, if taking the SU(4)× SU(4) covariant realisation, the structure constants turn

out to be complex an so the gauge generators in the adjoint representation. Thus, one

still would have to impose a reality condition upon vectors when it comes to identify the

gaugings.

Because of all the aforementioned, we conclude that the gauge group in (6.75) gives

rise to N = 1 supersymmetric and non-supersymmetric AdS stable solutions of maximal

supergravity at the origin of the moduli space which can be embedded in string theory as

type IIA flux compactifications in the presence of geometric fluxes.





Conclusions and Outlook

In this thesis we have analysed many aspects of flux compactifications in string theory

preserving maximal and half-maximal supersymmetry. To this aim, we have exploited

gauged supergravities, not only as lower-dimensional effective descriptions but also as a

guideline to understand the role of string dualities in flux compactifications. The main

reason for expecting such a relation is that supergravities in any dimension enjoy global

symmetries which happen to exactly match the duality groups coming from their corres-

ponding stringy origin (see tables 1.2 and 2.6 – 2.7).

We have seen how gauged supergravities effectively describe compactifications of string

theory preserving some supersymmetry in the presence of fluxes. Unfortunately, though,

as we pointed out in figure 3.3, lower-dimensional supergravities allow for a wider set

of deformations (i.e. gaugings), some of which have no known higher-dimensional origin

and therefore they are called non-geometric fluxes. From the viewpoint of the effective

description, one realises that non-geometric fluxes are a very helpful (if not necessary!)

ingredient for achieving moduli stabilisation. However, the open problem remains precisely

that of providing a higher-dimensional origin for them.

We have used the so-called embedding tensor formalism in order to accomodate all

the consistent deformations of half-maximal and maximal supergravities into irrep’s of

the aforementioned duality groups which appear in the compactified theories as actual

symmetries. This implies as a straightforward consequence that embedding tensor con-

figurations which are related to each other by a duality transformation describe the same

physics. Thus, in order to understand whether or not non-geometric fluxes really bring

new physics into the game, one realises the importance of classifying duality orbits of

gaugings. Only in the case of new orbits with no geometric representative, one should

actually worry about providing a higher-dimensional description thereof. This has been

discussed in chapter 4, where we have performed the orbit classification mentioned above

starting from the highest dimensions (D = 9, 8, 7) in both the maximal and half-maximal

case. We found that all the considered maximal supergravities only admit theories which

are geometric up to U-duality transformations. On the contrary, in the half-maximal case
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we found a number of non-geometric orbits of theories. Still, we were able to provide an

uplift to Double Field Theory (DFT) for all of them by means of a twisted doubled torus

reduction.

DFT is a recently proposed construction which implements O(10, 10) invariance at the

level of a field thoery living in 10+10 dimensions. Its gauge invariance in the original back-

ground independent formulation was only proven by imposing an additional constraint on

the dependence of the fields. Such a constraint is generally referred to as the strong con-

straint and, whenever satisfied, it implies the possibility of rotating away any dependence

on doubled coordinates. Because of its general features, DFT seems to be a very natural

framework for addressing the issue of uplifting non-geometric fluxes. An important point

concerning our results is that such a successful uplift was found to require a more recent

formulation of DFT in which the strong constraint turns out not to be strictly required by

gauge invariance and hence can be relaxed. In reductions of DFT, in particular one could

imagine of relaxing the strong constraint by allowing higher-dimensional fields to have

a more general coordinate dependence along the internal directions and only requiring a

single field theory description in the large dimensions, i.e. after reduction.

The interesting further steps in this research line would be to try to generalise the above

results to lower dimensions (D < 7). Unfortunately though, the duality groups become

larger and larger; hence the problem of classifying duality orbits of gaugings ceases to be

computationally accessible. The main interesting facts that one would like to confirm in

full generality or disprove by finding a counterexample are the following:

do U-duality orbits of gaugings in maximal supergravities always admit a geometric

representative?

if not, does the above statement become true once the field equations are imposed?

do all T-duality orbits of gaugings in half-maximal supergravities allow for a DFT

uplift?

Concentrating now on D = 4, the embedding tensor formalism has helped us in a

somehow related but different type of analysis, that is building the dictionary between

embedding tensor deformations in N = D = 4 and geometric fluxes in orientifold com-

pactifications of type II string theories. The conclusion in this context is that none of

the semisimple gaugings giving rise to dS solutions in N = 4 supergravity is accessible

by geometric flux compactifications (see chapter 5). Subsequently, we completed the dic-

tionary of type II generalised fluxes corresponding with the full set of emebedding tensor

deformations. Finally, we moved to the analysis of critical points. In order to reduce

the computational complexity of the problem, we restricted to an interesting truncation

admitting an N = 1 description (STU -model). This truncation is very relevant in flux

compactifications because it contains effective theories describing type IIA compactifica-

tions with O6/D6. We were able to analyse the full set of vacua of geometric type IIA
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compactifications. What we found was a number of AdS critical points, for which we could

also compute the full mass spectrum for all the scalar fields. The most peculiar fact about

these solutions is that they all required the absence of local sources, which suggested the

possibility of uplifting such a solution to maximal supergravity.

Following this natural idea, we decided to exploit these solutions in order to understand

how to embed flux compactifications into N = 8 gauged supergravities in the case in which

no branes are required in the construction. This has been discussed in chapter 6, where,

as an intermediate step we worked out the truncation taking N = 8 to N = 4 in four

dimensions. Subsequently, given an N = 4 background related in a known way to fluxes

(see previous chapter), we show which extra constraints the fluxes have to satisfy in order

for it to admit an uplift to N = 8. In the case of the geometric type IIA setup introduced

above, we showed that these extra constraints can be interpreted as the absence of local

sources. Surprisingly, the uplifted AdS solutions turn out to be critical points of a unique

theory within N = 8 with a non-semisimple gauging. Finally, by making use of the mass

formula for the scalars given in the standard formulation of maximal supergravity, we were

able to explicitely compute the full mass spectrum of the AdS critical points that we had

just uplifted. We found the interesting presence of a non-supersymmetric and nevertheless

fully stable vacuum. This represents a further example to be considered when discussing

the issue of stability without supersymmetry in extended supergravities.

We would like to stress once more that the analysis done in chapter 5 in the context of

geometric type IIA compactifications preserving half-maximal supersymmetry is exhaust-

ive since it was performed by searching critical points only in the origin of moduli space

but keeping all the embedding tensor components which are related among themselves by

non-compact duality transformations. We have then shown that the critical points that

we found can all be regarded as solutions of the maximal theory. However, they do not

constitute a complete set of vacua of the maximal theory in that the set of included em-

bedding tensor components is not as well closed with respect to more general non-compact

U-dualities. This means that, in order to exhaustively study the full landscape of vacua

of geometric type II compactifications without branes, one should also include geometric

fluxes which are odd under the orientifold involution defining the truncation from maximal

to half-maximal theory.

As we just argued, the analysis of the full set of critical points of geometric type II

compactifications would require the inclusion of flux components which are odd under the

orientifold projection, like e.g. metric flux in type IIB with O3-planes. These odd fluxes

sit in spinorial irrep’s of SO(6, 6) and so far very few things are known about backgrounds

including them. Therefore it would be extremely interesting to perform an exhaustive

analysis able to scan the landscape of vacua of geometric type II compactifications in the

absence of branes. The possibility of finding new interesting critical points makes it a

very promising research line. Moreover, analysing these backgrounds might shed a light
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on the role of U-duality in string compactifications. Such a duality, which is indeed only

a symmetry at the level of the effective supergravity description, could still constitute an

organising principle at a more fundamental level. We hope to come back to these points

in a future project.



Appendix A

Gaugings of D = 7, 8 Supergravities

A.1. Different solvable and nilpotent gaugings

In section 4.4 we have studied the T-duality orbits of gaugings in half-maximal D = 7

supergravity and for each of them, we identified the gauge algebra and presented the

results in table 4.6. Since there is no exhaustive classification of non-semisimple algebras

of dimension 6, we would like to explicitly give the form of the algebras appearing in

table 4.6.

Solvable algebras

The CSO(2, 0, 2) and CSO(1, 1, 2) algebras

The details about these algebras can be found in ref. [238]; we summarise here some

relevant facts.

The six generators are labelled as {t0, ti, si, z}i=1,2, where t0 generates SO(2) (SO(1, 1)),

under which {ti} and {si} transform as doublets

[t0, ti] = εi
j tj , [t0, si] = εi

j sj , (A.1)

where the Levi-Civita symbol εi
j has one index lowered with the metric ηij = diag(±1, 1)

depending on the two different signatures. z is a central charge appearing in the following

commutators

[ti, sj ] = δij z . (A.2)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
6 times

), where the ∓ is again related to the two

different signatures.

The f1 and f2 algebras

These are of the form Solv4×U(1)2. The 4 generators of Solv4 are labeled by {t0, ti, z}i=1,2,

where t0 generates SO(2) (SO(1, 1)), under which {ti} transform as a doublet

[t0, ti] = εi
j tj , (A.3)

[ti, tj ] = εij z . (A.4)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
6 times

).
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The h1 and h2 algebras

The 6 generators are {t0, ti, si, z}i=1,2 and they satisfy the following commutation

relations

[t0, ti] = εi
j tj , [t0, si] = εi

j sj + ti ,

[ti, sj ] = δij z , [si, sj ] = εij z .
(A.5)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
6 times

).

The g0 algebra

The 6 generators are {t0, tI , z}I=1,··· ,4, where t0 transforms cyclically the {tI} amongst

themselves such that [[[
[tI , t0], t0

]
, t0

]
, t0

]
= tI , (A.6)

and

[t1, t3] = [t2, t4] = z . (A.7)

Note that this algebra is solvable and not nilpotent even though its Cartan-Killing metric

is completely zero.

Nilpotent algebras

The CSO(1, 0, 3) algebra

The details about this algebra can be again found in ref. [238]; briefly summarizing,

the 6 generators are given by {tm, zm}m=1,2,3 and they satisfy the following commutation

relations

[tm, tn] = εmnp z
p , (A.8)

with all the other brackets being vanishing. The order of nilpotency of this algebra is 2.

The l algebra

The 6 generators {t1, · · · , t6} satisfy the following commutation relations

[t1, t2] = t4 , [t1, t4] = t5 , [t2, t4] = t6 . (A.9)

The corresponding central series reads

{t1, t2, t3, t4, t5, t6} ⊃ {t4, t5, t6} ⊃ {t5, t6} ⊃ {0} , (A.10)

from which we can immediately conclude that its nilpotency order is 3.
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A.2. SO(2, 2) and SO(3, 3) ’t Hooft symbols

In section 4.2 we discuss the origin of a given flux configuration from DFT backgrounds

specified by twist matrices U . The deformations of half-maximal supergravity inD = 10−d
which can be interpreted as the gauging of a subgroup of the T-duality group O(d, d) can

be described by a 3-form of O(d, d) fABC which represents a certain (non-)geometric flux

configuration.

In D = 8 and D = 7, the T-duality group happens to be isomorphic to SL(2)×SL(2)

and SL(4) respectively. As a consequence, in order to explicitly relate flux configurations

and embedding tensor orbits, we need to construct the mapping between T-duality irrep’s

and irrep’s of SL(2)×SL(2) and SL(4) respectively.

From the (2,2) of SL(2)×SL(2) to the 4 of SO(2, 2)

The ’t Hooft symbols [GA]αi are invariant tensors which map the fundamental repres-

entation of SO(2, 2) (here denoted by A), into the (2,2) of SL(2)×SL(2)

vαi = [GA]αi vA , (A.11)

where vA denotes a vector of SO(2, 2) and the indices α and i are raised and lowered by

means of εαβ and εij respectively. [GA]αi and [GA]αi satisfy the following identities

[GA]αi [GB]αi = ηAB , (A.12)

[GA]αi
[
GA
]βj

= εαβ εij , (A.13)

where ηAB is the SO(2, 2) metric.

After choosing light-cone coordinates for SO(2, 2), our choice for the tensors [GA]αi is

the following

[G1]αi =

[
0 0

0 1

]
, [G2]αi =

[
0 1

0 0

]
, (A.14)

[G1̄]αi =

[
1 0

0 0

]
, [G2̄]αi =

[
0 0

−1 0

]
. (A.15)

By making use of the mapping (A.11), we can rewrite the structure constants (Xαi)βj
γk

as a 3-form of SO(2, 2) as follows:

fABC = (Xαi)βj
γk [GA]αi [GB]βj [GC ]γk . (A.16)

From the 6 of SL(4) to the 6 of SO(3, 3)

The ’t Hooft symbols [GA]mn are invariant tensors which map the fundamental rep-

resentation of SO(3, 3), i.e. the 6 into the anti-symmetric two-form of SL(4)

vmn = [GA]mn vA , (A.17)
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where vA denotes a vector of SO(3, 3). The two-form irrep of SL(4) is real due to the role

of the Levi-Civita tensor relating vmn to vmn

vmn =
1

2
εmnpq v

pq . (A.18)

The ’t Hooft symbols with lower SL(4) indices [GA]mn carry out the inverse mapping of

the one given in (A.17). The tensors [GA]mn and [GA]mn = 1
2 εmnpq [GA]pq satisfy the

following identities

[GA]mn [GB]mn = 2 ηAB , (A.19)

[GA]mp [GB]pn + [GB]mp [GA]pn = −δnm ηAB , (A.20)

[GA]mp [GB]pq [GC ]qr [GD]rs [GE ]st [GF ]tn = δnm εABCDEF , (A.21)

where ηAB and εABCDEF are the SO(3, 3) metric and Levi-Civita tensor respectively.

After choosing light-cone coordinates for SO(3, 3) vectors, our choice of the ’t Hooft

symbols is

[G1]mn =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , [G2]mn =


0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , (A.22)

[G3]mn =


0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0

 , [G1̄]mn =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , (A.23)

[G2̄]mn =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , [G3̄]mn =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 . (A.24)

Thus, we can rewrite the structure constants in the 6, (Xmn)pq
rs, arising from (4.69)

as a 3-form of SO(3, 3) as follows:

fABC = (Xmn)pq
rs [GA]mn [GB]pq [GC ]rs . (A.25)
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Gaugings and Superpotentials from Fluxes

B.1. Type II fluxes and the embedding tensor fαMNP

In this appendix, we summarise the identification between embedding tensor compon-

ents fαMNP in the 220 (alternatively ΛαABC as explained in section 5.2) and type II

flux backgrounds for the N = 1 supergravity theory.

η1

η2

η3

η4

η5

η6× ×

Figure B.1: T 6 = T 2
1 × T 2

2 × T 2
3 torus factorisation and the coordinate basis.

In the following we will use early Latin indices a, b, c for horizontal “−” x-like directions

(η1, η3, η5) and late Latin indices i, j, k for vertical “ | ” y-like directions (η2, η4, η6) in the 2-

tori TI with I = 1, 2, 3. This splitting of coordinates is in one-to-one correspondence with

the SO(6, 6) index splitting of the embedding tensor components given in (5.66), where

A = (1, 2, 3, 4) ≡ (a, i, ā, ī) refers to an SO(2, 2) fundamental index and εIJK denotes

the usual totally antisymmetric tensor. The conventions adopted here are chosen such

in a way that they match those ones introduced in section 3.2 in the context of N = 1

supergravity models coming from fluxes.

This identification1 was originally proposed in ref. [172] and further developed in ref. [222].

We include it here for the sake of completeness.

Irrespective of their IIA or IIB string theory interpretation, the above set of fluxes

generates the following N = 1 flux-induced superpotential

W = (PF + PH S) + 3T (PQ + PP S) + 3T 2 (PQ′ + PP ′ S) + T 3 (PF ′ + PH′ S) , (B.2)

1Notice that refs [172, 222] use light-cone coordinates for SO(6, 6) fundamental indices. In this

basis, the metric takes the form ηMN =

(
0 16

16 0

)
which is related to the Lorentzian metric

diag(−1, · · · ,−1︸ ︷︷ ︸
6

,+1, · · · ,+1︸ ︷︷ ︸
6

) through an SO(12) rotation of the form

U =
1√
2

(
−16 16

16 16

)
. (B.1)
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couplings SO(6, 6) SO(2, 2) type IIB type IIA fluxes

1 −f+āb̄c̄ −Λ+333 Fijk Faibjck a0

U f+āb̄k̄ Λ+334 Fijc Faibj a1

U2 −f+āj̄k̄ −Λ+344 Fibc Fai a2

U3 f+īj̄k̄ Λ+444 Fabc F0 a3

S −f−āb̄c̄ −Λ−333 Hijk Hijk −b0
S U f−āb̄k̄ Λ−334 Hijc ωcij −b1
S U2 −f−āj̄k̄ −Λ−344 Hibc Qbci −b2
S U3 f−īj̄k̄ Λ−444 Habc Rabc −b3

T f+āb̄k Λ+233 Qabk Habk c0

T U f+āj̄k = f+īb̄k , f+ab̄c̄ Λ+234 , Λ+133 Qajk = Qibk , Qbca ωjka = ωibk , ωabc c1 , c̃1

T U2 f+īb̄c = f+āj̄c , f+īj̄k Λ+134 , Λ+244 Qibc = Qajc , Qijk Qcib = Qjca , Qijk c2 , c̃2

T U3 f+īj̄c Λ+144 Qijc Rijc c3

S T f−āb̄k Λ−233 P abk −d0

S T U f−āj̄k = f−īb̄k , f−ab̄c̄ Λ−234 , Λ−133 P ajk = P ibk , P bca −d1 , −d̃1

S T U2 f−īb̄c = f−āj̄c , f−īj̄k Λ−134 , Λ−244 P ibc = P ajc , P ijk −d2 , −d̃2

S T U3 f−īj̄c Λ−144 P ijc −d3

Table B.1: Mapping between unprimed fluxes, embedding tensor components and couplings

in the flux-induced superpotential. We have made the index splitting M = {a, i, ā, ī} for

SO(6, 6) light-cone coordinates.

involving the three complex moduli S, T and U surviving the SO(3) truncation introduced

in section 5.2. However, just by a simple inspection of tables B.1 and B.2, it is clearly

more convenient to adopt the terminology of the type IIB string theory when it comes to

associate embedding tensor components to fluxes. In this picture, the superpotential in

(B.2) contains flux-induced polynomials depending on both electric and magnetic pairs –

schematically (e,m) – of gauge (F3, H3) fluxes and non-geometric (Q,P ) fluxes,

PF = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 , PH = b0 − 3 b1 U + 3 b2 U
2 − b3 U3 ,

PQ = c0 + C1 U − C2 U
2 − c3 U

3 , PP = d0 +D1 U −D2 U
2 − d3 U

3 ,

(B.3)

as well as those induced by their less known primed counterparts (F ′3, H
′
3) and (Q′, P ′)

fluxes,

PF ′ = a′3 + 3 a′2 U + 3 a′1 U
2 + a′0 U

3 , PH′ = b′3 + 3 b′2 U + 3 b′1 U
2 + b′0 U

3 ,

PQ′ = −c′3 + C ′2 U + C ′1 U
2 − c′0 U3 , PP ′ = −d′3 +D′2 U +D′1 U

2 − d′0 U3 .

(B.4)
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couplings SO(6, 6) SO(2, 2) type IIB type IIA fluxes

T 3 U3 −f+abc −Λ+111 F ′ijk a′0

T 3 U2 f+abk Λ+112 F ′ijc a′1

T 3 U −f+ajk −Λ+122 F ′ibc a′2

T 3 f+ijk Λ+222 F ′abc a′3

S T 3 U3 −f−abc −Λ−111 H ′ijk −b′0
S T 3 U2 f−abk Λ−112 H ′ijc −b′1
S T 3 U −f−ajk −Λ−122 H ′ibc −b′2
S T 3 f−ijk Λ−222 H ′abc −b′3
T 2 U3 f+abk̄ Λ+114 Q′kab c′0

T 2 U2 f+ajk̄ = f+ibk̄ , f+ābc Λ+124 , Λ+113 Q′kaj = Q′kib , Q
′a
bc c′1 , c̃′1

T 2 U f+ibc̄ = f+ajc̄ , f+ijk̄ Λ+123 , Λ+224 Q′cib = Q′caj , Q
′k
ij c′2 , c̃′2

T 2 f+ijc̄ Λ+223 Q′cij c′3

S T 2 U3 f−abk̄ Λ−114 P ′kab −d′0
S T 2 U2 f−ajk̄ = f−ibk̄ , f−ābc Λ−124 , Λ−113 P ′kaj = P ′kib , P

′a
bc −d′1 , −d̃′1

S T 2 U f−ibc̄ = f−ajc̄ , f−ijk̄ Λ−123 , Λ−224 P ′cib = P ′caj , P
′k
ij −d′2 , −d̃′2

S T 2 f−ijc̄ Λ−223 P ′cij −d′3

Table B.2: Mapping between primed fluxes, embedding tensor components and couplings

in the flux-induced superpotential. We have made the index splitting M = {a, i, ā, ī} for

SO(6, 6) light-cone coordinates.

For the sake of clarity, we have introduced the flux combinations Ci ≡ 2 ci − c̃i , Di ≡
2 di − d̃i , C ′i ≡ 2 c′i − c̃′i and D′i ≡ 2 d′i − d̃′i entering the superpotential (B.2), and hence

also the scalar potential.

As we already saw in chapter 3, these so-called primed fluxes have been conjectured

in ref. [145] to be needed in order to have a fully U-duality invariant flux background, but

there is no further understanding of their physical role and of the types of sources coupling

to them at the present stage. Still, those give a hint to understand the relation between

doubled geometry and non-geometry as anticipated in the introduction. In the heterotic

duality frame those two exactly coincide, in the sense that all the fluxes introduced by

using doubled geometry happen to be interpretable as non-geometric fluxes. However,

in such a duality frame it is impossible to introduce their magnetic dual counterparts.

After performing an S-duality to go to type I (equivalent to type IIB with O9-planes)

and subsequently a 6-tuple T-duality, we are in IIB with O3-planes. In such a duality

frame, non-geometry and doubled geometry happen to give rise to two complementary

generalised sets of fluxes (see figure 3.4), the second one consisting with these primed
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fluxes. Moreover, this particular frame is S-duality invariant and therefore such a flux

background can be completed to a fully S-duality invariant one. This construction in the

isotropic case allows us to at least formally2 describe all the embedding tensor components

included in the SO(3) truncation.

B.2. Full N = 1 flux vacua of geometric type IIA

The techniques developed to analyse the vacua of the N = 4 theory turn out to be

powerful enough to also work out the complete set of solutions of type IIA geometric

backgrounds compatible with minimal supersymmetry. As we saw in section 5.2, the

SO(3) truncation admits an N = 1 superpotential formulation. In this context it becomes

natural to relax the QC in (5.82) which can be understood as the lack of D6-branes

orthogonal to the O6-planes. Namely,

N⊥6 = −a3 c0 − a2 (2 c1 − c̃1) 6= 0 . (B.5)

After this, the theory no longer enjoys N = 4 supersymmetry but it still admits an N = 1

description3. In this section we will explore its vacuum structure.

We will distinguish between two types of IIA geometric flux backgrounds, namely,

those having only gauge fluxes and those with both gauge and metric fluxes.

Backgrounds only with gauge fluxes

Let us start by fixing the components of the metric ω flux to zero, namely,

b1 = c1 = c̃1 = 0 . (B.6)

Putting together the first and the second QC in (5.80) and the extremality conditions,

and using again the GTZ algebraic method of prime decomposition (details explained in

section 5.1), we obtain a solution space consisting of two pieces:

i) The first piece has dimension 2 and it is directly identified with the solution in (5.99)

of the N = 4 theory.

ii) The second piece consists of eight critical points of dimension 1, all of them implying

a non-vanishing tadpole for both

N⊥6 = −a3 c0 6= 0 and N
||
6 = −a3 b0 6= 0 , (B.7)

so they cannot be embedded into the previous N = 4 theory. These moduli solutions

are stable AdS4 vacua which are summarised in table B.3. Finally, these solutions of

2Primed fluxes do not have any well-defined string theory description, not even a local one, since they

stem from some strongly coupled limit of the IIB theory.
3Nevertheless, any solution of the N = 1 theory compatible with the absence of such sources can be

embedded into the N = 4 theory.
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ID a0 a1 a2 a3 b0 b1 c0 c1 = c̃1 V0 BF

1 0
3λ

2
0

5λ

2
−λ 0 λ 0 −3λ2

32
m2 = −2

3
→ stable

2 0 −3λ

2
0

5λ

2
−λ 0 λ 0 −3λ2

32
m2 = −2

3
→ stable

3 0
√

6λ 0 5λ −4λ 0 λ 0 −λ
2

4
min

4 0 −
√

6λ 0 5λ −4λ 0 λ 0 −λ
2

4
min

5s1 0 s1 λ λ −2 s1 λ s1 λ 0 −s1 λ 0 −λ
2

16
min

6s1 0 s1
7λ

3
−λ

3
−s1

14λ

3
s1

11λ

3
0 −s1 λ 0 −11λ2

48
m2 = −0.14251→ stable

Table B.3: The set of stable AdS4 extrema of dimension 1 in the N = 1 type IIA theory

only with gauge fluxes.

the N = 1 theory are non-supersymmetric except that labelled with 1 in table B.3

which turns out to preserve N = 1 supersymmetry. The scalar potential induced

by the fluxes of solutions 2 and 4 is respectively related to that one induced by the

fluxes of 1 and 3 in table B.3 by the transformation

α3 : V (S, T, U) = −i V ( i S, i T,−i U ; −a1, fi) , (B.8)

where fi refers to all the fluxes left invariant. Such a transformation can also be

viewed at the level of the superpotential as W (S, T, U)→ iW (S, T, U). Unlike those

in the previous section, this transformation modifies the Kähler potential and, as a

consequence, the mass spectrum for the solutions 1 and 2 (also 3 and 4) is different

even when they share the lightest mass. They correspond to completely different

solutions a they look quite similar each other.

Backgrounds with both gauge and metric fluxes

Let us now allow for backgrounds with non-vanishing metric fluxes. Putting again

together the first and second QC in (5.80) and the extremum conditions, and running

the GTZ method of prime decomposition, we obtain two prime factors of dimension 2

compatible with real fluxes:

i) The first piece represents a branch of non-supersymmetric solutions which cannot

be embedded into the N = 4 theory (all the solutions come out with N⊥6 6= 0).

This piece implies a0 = a1 = 0 . Without loss of generality, we can set the global

scale of V by fixing c̃1 = 1 in order to exhaustively explore the structure of extrema
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by varying the quantity δ ≡ |c0|. It is found to contain an unstable Minkowski

solution [240] at the critical value δc ∼ 2.69 as well as unstable dS ones if going

beyond this critical value (the region with δ > δc presents an asymptotic behaviour).

This is depicted in figure B.2.
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Figure B.2: Left: Plot of the potential energy at the extrema, V0 , as a function of the

scanning parameter δ: the point A corresponds to two degenerate and unstable AdS4 solu-

tions; points B and C correspond to singular points; point D associated to δc ∼ 2.69 is

an unstable Minkowski solution. Right: Plot of the lowest normalised mass in (5.35) as a

function of the scanning parameter δ. After reaching the dS region, the system undergoes

an asymptotic behaviour where m2 → −4
3 as long as δ →∞.
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Figure B.3: Left: Plot of the potential energy at the extrema, V0 , as a function of the

scanning parameter δ. Right: Plot of the lowest normalised mass as a function of the

scanning parameter δ. As long as δ → ∞, the system undergoes a four-fold asymptotic

behaviour with m2 always above the BF bound.

ii) The second piece can be also explored in terms of the quantity δ ≡ |c0| after fixing

again the global scale of V by the choice c̃1 = 1. It only contains AdS4 solutions

which are mostly non-supersymmetric4 and cannot be embedded into the N = 4

4The N = 4 QC (after relaxing (B.5)) together with the vanishing of the F-terms imply a0 = 3
2
c̃1,
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theory because of N⊥6 6= 0. Nevertheless, some special AdS4 solutions with N⊥6 = 0

do appear at the special values δ = 0 , δ = 1/
√

15 and δ = 1/
√

3, hence being

embeddable into the N = 4 theory. This is depicted in figure B.3.

a1 = 3
2
c0, a2 = − 1

6
c̃1, a3 = 5

2
c0, b0 = −c0, b1 = 1

3
c̃1 and c1 = c̃1. As a result, for a given value of

(c0 , c̃1) , one extremum is always supersymmetric whereas the others (solving ∂V = 0) are not. At the

supersymmetric extremum N⊥6 = N
||
6 holds and m2 = − 2

3
. Furthermore, this supersymmetric extremum

can be embedded into the N = 4 theory (even N = 8) when c0
c̃1

= 1√
15

since N⊥6 = N
||
6 = 0.





Appendix C

Different Formulations of N = 8

C.1. Summary of indices

All through the text in chapter 6 we extensively make use of indices of different groups.

Here we give a list of the notations retained here (conventions based on ref. [253])

A , B , · · · adjoint of E7(7)

M , N , · · · fundamental of E7(7) (global)

M , N , · · · fundamental of E7(7) (local)

I , J , · · · fundamental of SU(8)

α , β , · · · fundamental of SL(2)

M , N , · · · fundamental of SO(6, 6)

µ , ν , · · · M-W spinor of SO(6, 6) (L)

µ̇ , ν̇ , · · · M-W spinor of SO(6, 6) (R)

A , B , · · · fundamental of SO(2, 2)

m, n , · · · fundamental of SO(6)time-like

a , b , · · · fundamental of SO(6)space-like

i , j , · · · fundamental of SU(4)time-like

î , ĵ , · · · fundamental of SU(4)space-like .

(C.1)

C.2. Majorana-Weyl spinors of SO(6, 6)

Our starting point is a Majorana spinor in 6 + 6 dimensions carrying 26 = 64 real

degrees of freedom. For Majorana spinors there exists a real representation of the Γ-

matrices {ΓM}M=1,··· ,12 such that they satisfy

{ΓM ,ΓN} = 2 ηMN 164 , (C.2)

where ηMN = ηMN is the SO(6, 6) invariant metric. We adopt a set of conventions

in which Majorana spinors are naturally objects of the form χa and hence Γ-matrices

carry indices [ΓM ]ab . In addition to the Γ-matrices, we introduce two antisymmetric

matrices, Cab and Cab , which turn out to represent the components of the transposed

charge conjugation matrix C and its inverse respectively. We will use these objects in

order to raise and lower spinorial indices according to the so-called SouthWest-NorthEast
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(SW-NE) conventions [36]. This translates into the following rules

χa = χb Cba , χa = Cab χb , (C.3)

and the consistency of the two rules implies

Cab Ccb = δac and Cba Cbc = δ c
a . (C.4)

The charge conjugation matrix mentioned above relates Γ-matrices to their transpose in

the following way

(ΓM )T = −C ΓM C−1 , (C.5)

whereas one can also define a conjugation matrix B = −A−T C , such that

B∗B = 164 and Γ∗M = −B ΓM B−1 with A = Γ1...Γ6 . (C.6)

Majorana spinors live in the 64 of SO(6, 6) which is not an irrep and can be de-

composed in terms of left- and right-handed Majorana-Weyl (M-W) spinors. These are

related to the 32 and 32′ irrep’s, respectively. In a basis in which Γ13 = Γ1 · · ·Γ12 takes

the form Γ13 = diag(+132,−132) , one can introduce the so-called 2-component formalism

such that

χa =

(
χµ

χµ̇

)
, (C.7)

where the indices µ and µ̇ respectively denote left- and right-handed M-W spinors. Ac-

cordingly to this decomposition, the Γ-matrices split into 32× 32 blocks as follows

[ΓM ]ab =

(
0 [γM ]µν̇

[γ̄M ]µ̇ν 0

)
, (C.8)

and the charge conjugation and conjugation matrices become

Cab =

(
Cµν 0

0 Cµ̇ν̇

)
and Bab =

(
Bµν 0

0 Bµ̇ν̇

)
. (C.9)

In terms of these 32×32 gamma matrices, the relations (C.2) and (C.5) can be respectively

written as[
γ(M

]µρ̇ [
γ̄N)

]
ρ̇ν

= ηMN δ
µ
ν and [γ̄M ]µ̇ν = [γM ]νµ̇ = Cνσ [γM ]σρ̇ Cρ̇µ̇ . (C.10)

Antisymmetrised products of two gamma matrices can be defined both for left- and

right-handed M-W representations as

[γMN ]µν ≡ [γ[M ]µρ̇ [γ̄N ]]ρ̇ν and [γMN ] ν̇µ̇ ≡ [γ̄[M ]µ̇ρ [γN ]]
ρν̇ , (C.11)
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and further extended to antisymmetrised products of an even number of gamma matrices.

However, only those up to degree six are linearly independent since higher-degree ones

(from 7 to 12) are related to them by Hodge duality1. After defining all the products

of gamma matrices, one can make use of Cµν , Cµ̇ν̇ and their inverse transpose in order

to rise and lower indices. As a result, antisymmetrised products of two and six gamma

matrices are symmetric, whereas the ones with four are antisymmetric.

SU(4)× SU(4) covariant formulation of M-W spinors

Decomposing the vector and the left- and right-handed M-W spinor irrep’s of SO(6, 6)

under its maximal compact subgroup

SU(4)time-like × SU(4)space-like ∼ SO(6)time-like × SO(6)space-like ⊂ SO(6, 6) , (C.12)

yields the following branching relations

index SO(6, 6) ⊃ SU(4)× SU(4)

M 12 → (6,1)⊕ (1,6)

µ 32 → (4,4)⊕ (4̄, 4̄)

µ̇ 32’ → (4, 4̄)⊕ (4̄,4) .

(C.13)

At the level of indices, this translates into the splittings M = m⊕a , with m, a = 1, ..., 6 ,

together with µ =
{
iĵ ⊕ iĵ

}
and ν̇ =

{
i
ĵ ⊕ i

ĵ

}
with i, î = 1, ..., 4 . The fundamental

SO(6) indices m and a respectively correspond to the time-like and space-like parts of

the block-diagonal ηMN = ηMN metric of SO(6, 6) in Lorentzian coordinates

ηMN =

 −δmn 0

0 δab

 . (C.14)

When written in terms of SU(4) ∼ SO(6) invariant tensors, the antisymmetric charge

conjugation matrices in (C.9) take the block off-diagonal form

Cµν =

 0 Ciĵkl̂ = −i δki δ l̂ĵ

Ciĵkl̂ = i δikδ
ĵ

l̂
0

 , Cµ̇ν̇ =

 0 Ci l̂

ĵk
= −i δikδ l̂ĵ

C ĵk
i l̂

= i δki δ
ĵ

l̂
0

 ,

(C.15)

whereas the gamma matrices in (C.8) split into a set of time-like matrices with a block-

diagonal structure

[γm]µν̇ =

 [γm]iĵk
l̂

= [Gm]ikδĵ
l̂

0

0 [γm] l̂

iĵk
= [Gm]ikδ

l̂
ĵ

 , (C.16)

1The limit case of the antisymmetrised product of six gamma matrices turns out to be anti-selfdual

(ASD) when involving undotted indices and self-dual (SD) when involving dotted indices.
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[γ̄m]µ̇ν =

 [γ̄m] ĵ
i kl̂

= [Gm]ikδ
ĵ

l̂
0

0 [γ̄m]i kl̂
ĵ

= [Gm]ikδ l̂
ĵ

 , (C.17)

and a set of space-like ones

[γa]
µν̇ =

 0 [γa]
iĵ l̂

k
= [Ga]

ĵ l̂δik

[γa]
k

iĵ l̂
= [Ga]ĵ l̂δ

k
i 0

 , (C.18)

[γ̄a]µ̇ν =

 0 [γ̄a]
ĵkl̂

i
= −[Ga]

ĵ l̂δki

[γ̄a]
i

ĵkl̂
= −[Ga]ĵ l̂δ

i
k 0

 , (C.19)

with a block off-diagonal structure. The invariant tensors Gm = [Gm]ij and Ga = [Ga]
îĵ

are defined with upper indices and correspond to the gamma matrices for each of the

SO(6) ∼ SU(4) factors in (C.12). Often they are also called ’t Hooft symbols and we take

them to satisfy the (anti-)self-duality conditions2

[Gm]ij = −1

2
εijkl [Gm]kl and [Ga ]̂iĵ =

1

2
ε̂iĵk̂l̂ [Ga]

k̂l̂ , (C.20)

where [Gm]ij = ([Gm]ij)∗ and [Ga ]̂iĵ = ([Ga]
îĵ)∗ . All along the present work, we have

used the following explicit realisation of anti-self-dual Gm ’t Hooft symbols

[G1] =

 0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , [G3] =

 0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , [G5] =

 0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ,

[G2] =

 0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0

 , [G4] =

 0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

 , [G6] =

 0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 ,
(C.21)

together with the self-dual Ga ones

[G1] =

 0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , [G3] =

 0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 , [G5] =

 0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 ,

[G2] =

 0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

 , [G4] =

 0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

 , [G6] =

 0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

 .
(C.22)

Notice that they are complex matrices and then will lead to a complex representation of

gamma matrices in (C.16)-(C.19). This is related to the fact that SO(6) does not admit

2The non-vanishing parts of the scalar vielbeins VMij and VMîĵ in (6.45) and (6.46) reduce to 1
2
[Gm]ij

and 1
2
[Ga]îĵ when evaluated at the origin of the moduli space, so them both must square to the identity

in order to satisfy V VT = 1 at the origin.
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M-W spinors (it is SO(3, 3) which does), so a real representation of SO(6, 6) gamma

matrices is no longer possible when moving to an SU(4)× SU(4) covariant formulation.

When arranged into 64× 64 matrices according to the splittings (C.8) and (C.9), one

verifies that the defining relations (C.2) and (C.5) hold and also that Γ13 = diag(+132,−132) .

Finally, the conjugation matrices (C.9) entering the definition of the scalar matrix in (6.16)

take the form

Bµν =

 0 116

116 0

 , Bµ̇ν̇ =

 0 −116

−116 0

 , (C.23)

producing a non-standard definition of the origin of the moduli space, as discussed in

detail in the main text.

Real formulation of M-W spinors

In addition to the SU(4) × SU(4) covariant formulation of M-W spinors described

above, we can adopt another realisation such that: i) it is a real realisation of M-W

spinors ii) it is compatible with the standard choice of (6.17) as the origin of the moduli

space.

We build our real 64 × 64 Γ-matrices in a Majorana representation out of the 2× 2

Pauli matrices σ1,2,3 in the following way

Γ1 = i σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12

Γ2 = i σ3 ⊗ σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12

Γ3 = i σ3 ⊗ σ3 ⊗ σ2 ⊗ 12 ⊗ 12 ⊗ 12

Γ4 = i σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ 12 ⊗ 12

Γ5 = i σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ 12

Γ6 = i σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2

,

Γ7 = σ1 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12

Γ8 = σ3 ⊗ σ1 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12

Γ9 = σ3 ⊗ σ3 ⊗ σ1 ⊗ 12 ⊗ 12 ⊗ 12

Γ10 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ 12 ⊗ 12

Γ11 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ 12

Γ12 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1

(C.24)

where we decide to use a set of Pauli matrices satisfying [σi, σj ] = 2 i εijk σk . This corres-

ponds to the choice

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (C.25)

Building the 64× 64 charge conjugation matrix as

C = −i σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 , (C.26)

one can easily check that (C.24) and (C.26) automatically satisfy the conditions in (C.2)

and (C.5) with the ηMN metric given in (C.14). By applying an SO(64) rotation taking

Γ13 = diag(+132,−132) , we go to a real M-W basis according to the splittings (C.8) and

(C.9). In this basis, the conjugation matrix in (6.16) happens to be Bµν = −Bµ̇ν̇ = 132 ,
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hence being compatible with the standard choice for the origin of the moduli space in

(6.17). We will use this real representation of M-W spinors when it comes to identify

gaugings associated to critical points at the origin of the moduli space.

C.3. XMNP in the SL(2)× SO(6, 6) formulation

In this appendix we derive the explicit form of the components of the XMNP tensor

given in (6.19) and (6.20). Let us first start by giving the explicit form of the E7(7)

symmetric generators [tA ]MN in the fundamental representation following the conventions

in ref. [200]. By virtue of the index splittings M = αM ⊕ µ and A = αMβN ⊕ γµ̇

associated to the branching of the 56 and 133 irrep’s of E7(7) under SL(2) × SO(6, 6),

they are given by

[tαMβN ]γPδQ = εαβ εγδ [tMN ]PQ + ηMN ηPQ [tαβ]γδ ,

[tαMβN ]µν =
1

4
εαβ [γMN ]µν ,

[tαµ̇]βNν = [tαµ̇]νβN = εαβ [γ̄N ]µ̇ν = εαβ [γN ]νµ̇ ,

(C.27)

where [tαβ]γδ = δ
(γ
α δ

δ)
β and [tMN ]PQ = δPQMN are the generators of SL(2) and SO(6, 6) ,

respectively.

On the other hand, we need the Θ-components of the embedding tensor ΘM
A in order

to compute XMNP . These can be split into those components involving an even number

of fermionic indices

ΘαM
βNγP = −1

2
εβγ fαM

NP − 1

2
εβγ δ

[N
M ξ

P ]
α +

1

12
δ

(β
α ξ

γ)
M ηNP ,

Θµ
αν̇ =

1

24
εαβ fβMNP

[
γMNP

] ν̇

µ
− 1

8
εαβ ξβM

[
γM
] ν̇

µ
,

(C.28)

which were already derived in ref. [200], together with a set of additional ones involving

an odd number of fermionic indices. The most general ansatz for the latter according to

the symmetry is given by

ΘαM
βµ̇ = h1 δ

β
α FM

µ̇ + h2 ε
βγ Ξαγν [γM ]νµ̇ ,

Θµ
αMβN = h3 ε

αβ F [M
ν̇

[
γN ]
] ν̇

µ
+ h4 Ξαβµ η

MN ,

(C.29)

where hi=1,2,3,4 are constant coefficients to be fixed as follows: i) Following the definition

in (6.1) and using the form of the ΩMN matrix in (6.18), we can build the XMNP tensor

as XMNP = ΘM
A [tA ]N

R ΩRP . ii) By requiring the XMNP tensor to live in the 912 irrep

of E7(7) we still have to impose the LC in (6.2). This imposes the relations h3 = h1 and

h4 = −1
6 h2 on the coefficients. iii) Finally we set the remaining free parameters to the

values h1 = −1 and h2 = 1 , what fixes the relative normalisation between FMµ̇ and
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Ξαβµ . The final expression is then given by

ΘαM
βµ̇ = −δβα FMµ̇ + εβγ Ξαγν [γM ]νµ̇ ,

Θµ
αMβN = −εαβ F [M

ν̇

[
γN ]
] ν̇

µ
− 1

6
Ξαβµ η

MN ,

(C.30)

and after some algebra, the set of independent components of the XMNP tensor are those

given in (6.19) and (6.20).

C.4. The vielbein in the origin of the moduli space

As stated in section 6.3, the vielbein V N
M is the fundamental object connecting the

SU(8) and SL(2)×SO(6, 6) formulations of maximal supergravity. Recalling the relation

(6.41)

XMNP = 2V Q
M V R

N V S
P TQRS , (C.31)

one concludes that the vielbein V Q
M has the row index M in the SL(2)× SO(6, 6) basis

and the column index Q in the SU(8) one. In order to determine the form of V Q
M we

must go to a common basis where to simultaneously describe SL(2)×SO(6, 6) and SU(8)

indices. This common basis turns out to be

SO(2)× SO(6)time × SO(6)space ∼ U(1)× SU(4)time × SU(4)space , (C.32)

since it is the only maximal subgroup being shared by them both. Furthermore, it coincides

with their maximal compact subgroup. All our conventions related to the SU(4)× SU(4)

covariant formulation of SO(6, 6) spinors, gamma matrices, etc. are summarised in ap-

pendix C.2.

In what follows we will make an extensive use of two different decompositions of an

E7(7) fundamental index:

i) the decomposition with respect to SL(2)× SO(6, 6)

E7(7) ⊃ SL(2)× SO(6, 6) ⊃ SL(2) × SO(6)time × SO(6)space

56 → (2,12)⊕ (1,32) → (2,6,1)⊕ (2,1,6)⊕ (1,4,4)⊕ (1, 4̄, 4̄)

M = αM ⊕ µ = αm ⊕ αa ⊕ i ĵ ⊕ i ĵ

(C.33)

ii) the decomposition with respect to SU(8)

E7(7) ⊃ SU(8) ⊃ U(1) × SU(4)time × SU(4)space

56 → 28⊕ 28 → (6,1)(−2) ⊕ (1,6)(2) ⊕ (4,4)(0) ⊕ c.c.

M = [I J ] ⊕ c.c. = [i j] ⊕ [̂i ĵ] ⊕ i ĵ ⊕ c.c.

(C.34)
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where (q) in (C.34) denotes the U(1) charge of the SU(4) × SU(4) irrep’s. By comparing

the decompositions in (C.33) and (C.34), the non-vanishing components of the vielbein3

will correspond to

V Q
M =

{
VαM [IJ ] , VαM [IJ ] , Vµ[IJ ] , Vµ[IJ ]

}
=

{
Vαm[ij] , Vαm[ij] , Vαa [̂iĵ] , Vαa[̂iĵ] , Viĵkl̂ , V iĵkl̂

}
,

(C.35)

where α = +,− is an SL(2) index raised and lowered by εαβ and where [ij] , [̂iĵ] and

iĵ are pairs of fundamental SU(4) indices with i, î = 1, ..., 4 . The fundamental SO(6)

indices m and a correspond to the time-like and space-like parts of the diagonal metric

ηMN = (−1, ...,−1︸ ︷︷ ︸
6 times

, 1, ..., 1︸ ︷︷ ︸
6 times

) of SO(6, 6) in Lorentzian coordinates.

If setting all the scalar fields to zero, i.e. moving to the origin of the moduli space,

the set of vielbein components in (C.35) must reduce to the product of a constant SL(2)

complexified vielbein Lα ≡ Vα|origin = (i , 1) satisfying

Lα L
∗
β = δαβ + i εαβ , (C.36)

with a set of SO(6) ∼ SU(4) invariant tensors. These are the ’t Hooft symbols Vmij |origin =
1
2 [Gm]ij , Vaîĵ |origin = 1

2 [Ga]
îĵ (see appendix C.2) and the Kronecker deltas δji and δĵ

î
.

The non-vanishing components of the vielbein VMN are given by

Vαmij =
−i

2
√

2
(Lα)∗ [Gm]ij , Vαm ij =

i

2
√

2
Lα [Gm]ij , Viĵkl̂ =

(1 + i)

2
δki δ

l̂
ĵ

,

Vαaîĵ =
−1

2
√

2
Lα [Ga]

îĵ , Vαa îĵ =
−1

2
√

2
(Lα)∗ [Ga ]̂iĵ , V iĵkl̂ =

(1− i)
2

δik δ
ĵ

l̂
,

(C.37)

whereas those of the inverse vielbein VMN read

Vαmij =
−1

2
√

2
Lα [Gm]ij , Vαm ij =

−1

2
√

2
(Lα)∗ [Gm]ij , V iĵkl̂ =

(1− i)
2

δik δ
ĵ

l̂
,

Vαaîĵ =
−i

2
√

2
(Lα)∗ [Ga ]̂iĵ , Vαa îĵ =

i

2
√

2
Lα [Ga]îĵ , Viĵkl̂ =

(1 + i)

2
δki δ

l̂
ĵ

,

(C.38)

and completely specify the relations (6.43). One can check that the vielbein VMN satisfies

the normalisation conditions [196]

VMIJ VNIJ − VMIJ VNIJ = iΩMN ,

ΩMN VMIJ VNKL = i δIJKL ,

ΩMN VMIJ VNKL = 0 .

(C.39)

3As discussed in section 6.3, we are setting all the “fermionic” scalars to the origin of the moduli space.
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