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Abstract
The singular set of a viscosity solution to a Hamilton–Jacobi equation is known to propagate,
from any noncritical singular point, along singular characteristics which are curves satisfying
certain differential inclusions. In the literature, different notions of singular characteristics
were introduced. However, a general uniqueness criterion for singular characteristics, not
restricted to mechanical systems or problems in one space dimension, is missing at the
moment. In this paper, we prove that, for a Tonelli Hamiltonian on R2, two different notions
of singular characteristics coincide up to a bi-Lipschitz reparameterization. As a significant
consequence, we obtain a uniqueness result for the class of singular characteristics that was
introduced by Khanin and Sobolevski in the paper [On dynamics of Lagrangian trajectories
for Hamilton-Jacobi equations. Arch. Ration. Mech. Anal., 219(2):861–885, 2016].
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1 Introduction

This paper is devoted to study the local propagation of singularities for viscosity solutions
of the Hamilton–Jacobi equations

H(x, Du(x)) = 0, x ∈ R
n, (HJs)

H(x, Du(x)) = 0, x ∈ �, (HJloc)
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where H is a Tonelli Hamiltonian in (HJs) and H is of class C1 and strictly convex in the
p-variable in (HJloc). In (HJs), we assume that 0 on the right-hand side is Mañé’s critical
value. The existence of global weak KAM solutions of (HJs) was obtained in [12]. In (HJloc),
we suppose � ⊂ R

n is a bounded domain.
Semiconcave functions are nonsmooth functions that play an important role in the study

of (HJs) and (HJloc). For semiconcave viscosity solutions of Hamilton–Jacobi equations,
Albano and the first author proved in [1] that singular arcs can be selected as generalized
characteristics. Recall that a Lipschitz arc x : [0, τ ] → R

n is called a generalized character-
istic starting from x for the pair (H , u) if it satisfies the following:{

ẋ(s) ∈ co Hp
(
x(s), D+u(x(s))

)
a.e. s ∈ [0, τ ],

ẋ(0) = x,
(1.1)

where co stands for the convex hull. If x ∈ Sing (u)—the singular set of u—then [1, Theo-
rem5] gives a sufficient condition for the existence of a generalized characteristic propagating
the singularity of u locally.

The local structure of singular (generalized) characteristics was further investigated by
the first author and Yu in [11], where singular characteristics were proved more regular near
the starting point than the arcs constructed in [1]. Such additional properties will be crucial
for the analysis we develop in this paper.

For any weak KAM solution u of (HJs), the class of intrinsic singular (generalized)
characteristics was constructed in [4] by the authors of this paper, using the positive type
Lax-Oleinik semi-group. Such a method allowed to construct global singular characteristics,
which we now call intrinsic. Moreover, in [5,6] the “intrisic approach” turned out to be useful
for pointing out topological properties of the cut locus of u, including homotopy equivalence
to the complement of the Aubry set (see also [7] for applications to Dirichlet boundary value
problems).

In spite of its success in capturing singular dynamics, it could be argued that the relaxation
procedure in the original definition of generalized characteristics—that is, the presence of the
convex hull in (1.1)—might cause a loss of information coming from theHamiltonian dynam-
ics behind. On the other hand, such a relaxation is necessary to ensure convexity of admissible
velocities for the differential inclusion in (1.1), since the map x ⇒ Hp(x, D+u(x)) fails to
be convex-valued, in general.

The most important example where the above relaxation is unnecessary is probably given
by mechanical Hamiltonians of the form H(x, p) = 1

2 〈A(x)p, p〉 + V (x), where A(x) is
a symmetric positive definite n × n-matrix smoothly depending on x and V (x) is a smooth
function on Rn . In this case, (1.1) reduces to the generalized gradient system{

ẋ(t) ∈ A(x(t))D+u(x(t)) t > 0 a.e.

ẋ(0) = x,
(1.2)

the solution of which, unique for any initial datum, forms a Lipschitz semi-flow (see, e.g.,
[1–3,8,9]). Unfortunately, the argument that justifies such a uniqueness property cannot be
adapted to general Hamiltonians (see [11,15]).

Recent significant progress in the attempt to develop a more restrictive notion of singular
characteristics is due to Khanin and Sobolevski [13]. In this paper, we will call such curves
strict singular characteristic but in the literature they are also refereed to as broken character-
istics, see [16,17]. We now proceed to recall their definition: given a semiconcave solution u
of (HJloc), a Lipschitz singular curve x : [0, T ] → � is called a strict singular characteristic
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from x ∈ Sing (u) if there exists a measurable selection p(t) ∈ D+u(x(t)) such that{
ẋ(t) = Hp(x(t), p(t)) a.e. t ∈ [0, T ],
x(0) = x .

(1.3)

As already mentioned, the existence of strict singular characteristics (for a time dependent
version of (HJloc)) was proved in [13], where additional regularity properties of such curves
were established, including the right-differentiability of x for every t , the right-continuity of
ẋ, and the fact that p(·) : [0, T ] → R

n satisfies

H(x(t), p(t)) = min
p∈D+u(x(t))

H(x(t), p) ∀t ∈ [0, T ]. (1.4)

In Appendix A, we give a proof of the existence and regularity of strict characteristics for
solutions to (HJloc) for the reader’s convenience.

In view of the above considerations, it is quite natural to raise the following questions:

(Q1) What is the relation between a strict singular characteristic, x, and a singular charac-
teristic, y, from the same initial point?

(Q2) What kind of uniqueness result can be proved for singular characteristics? What about
strict singular characteristics?

In this paper, we will answer the above questions in the two-dimensional case under the
following additional conditions:

(A) n = 2 and y is Lipschitz;
(B) the singular initial point x0 = y(0) of the singular characteristic y is not a critical point

with respect the pair (H , u), i.e., 0 /∈ Hp(x0, D+u(x0));
(C) y is right differentiable at 0 and

ẏ+(0) = H(x0, p0),

where p0 = argmin{H(x0, p) : p ∈ D+u(x0)};
(D) limt→0+ ess sups∈[0,t] |ẏ(s) − ẏ+(0)| = 0.

The meaning of conditions (A) is clear. Condition (B) ensures the fact that singular charac-
teristics are not constant. The right differentiability of singular characteristics at 0 and the
essential right continuity of ẏ at 0 are crucial properties to our approach. On the one hand,
together with condition (B) they ensure that a singular characteristic is a genuine arc near
t = 0. On the other hand, (D) is essential to construct the change of variable on which our
uniqueness result is based. Notice that any strict singular characteristic x and the singular
characteristic y given in [11] (see also Proposition 2.12) satisfy conditions (A)–(D) provided
that the initial point is not critical. The intrinsic singular characteristic z constructed in [4]
(see also Proposition 2.13) satisfies just conditions (A)–(C), in general.

The main results of this paper can be described as follows.

• For any pair of singular curves x1 and x2 satisfying condition (A)-(D), there exists τ > 0
and a bi-Lipschitz homeomorphism φ : [0, τ ] → [0, φ(τ )] such that, x1(φ(t)) = x2(t)
for all t ∈ [0, τ ]. In other words, the singular characteristic staring from a non-critical
point x is unique up to a bi-Lipschitz reparametrization (Theorem 3.6).

• In particular, if x is a strict singular characteristic and y is a singular characteristic starting
from the same noncritical initial point x , then there exists τ > 0 and a bi-Lipschitz
homeomorphism φ : [0, τ ] → [0, φ(τ )] such that y(φ(t)) = x(t) for all t ∈ [0, τ ]
(Corollary 3.8).
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• We have the following uniqueness property for strict singular characteristics: let

x j : [0, T ] → � ( j = 1, 2)

be strict singular characteristics from the same noncritical initial point x . Then there
exists τ ∈ (0, T ] such that x1(t) = x2(t) for all t ∈ [0, τ ]. (Theorem 3.9)

Finally, we remark that the results of this paper cannot be applied to intrinsic singular
characteristics because of the mentioned lack of condition (D). Extra techniques will have to
be developed to cover such an important class.

Thepaper is organized as follows. InSect. 2,we introducenecessarymaterial onHamilton–
Jacobi equations, semiconcavity, and singular characteristics. In Sect. 3, we answer question
(Q1)–(Q2) in the two-dimensional case. In the appendix, we give a detailed proof of the
existence result for strict singular characteristics.

2 Hamilton–Jacobi equation and semiconcavity

In this section, we review some basic facts on semiconcave functions and Hamilton–Jacobi
equations.

2.1 Semiconcave function

Let � ⊂ R
n be a convex open set. We recall that a function u : � → R is semiconcave (with

linear modulus) if there exists a constant C > 0 such that

λu(x) + (1 − λ)u(y) − u(λx + (1 − λ)y) ≤ C

2
λ(1 − λ)|x − y|2 (2.1)

for any x, y ∈ � and λ ∈ [0, 1].
Let u : � ⊂ R

n → R be a continuous function. For any x ∈ �, the closed convex sets

D−u(x) =
{
p ∈ R

n : lim inf
y→x

u(y) − u(x) − 〈p, y − x〉
|y − x | ≥ 0

}
,

D+u(x) =
{
p ∈ R

n : lim sup
y→x

u(y) − u(x) − 〈p, y − x〉
|y − x | ≤ 0

}
.

are called the subdifferential and superdifferential of u at x , respectively.
The following characterization of semiconcavity (with linear modulus) for a continuous

function comes from proximal analysis.

Proposition 2.1 Let u : � → R be a continuous function. If there exists a constant C > 0
such that, for any x ∈ �, there exists p ∈ R

n such that

u(y) ≤ u(x) + 〈p, y − x〉 + C

2
|y − x |2, ∀y ∈ �, (2.2)

then u is semiconcave with constant C and p ∈ D+u(x). Conversely, if u is semiconcave in
� with constant C, then (2.2) holds for any x ∈ � and p ∈ D+u(x).

Let u : � → R be locally Lipschitz. We recall that a vector p ∈ R
n is called a reachable

(or limiting) gradient of u at x if there exists a sequence {xn} ⊂ �\{x} such that u is
differentiable at xk for each k ∈ N, and

lim
k→∞ xk = x and lim

k→∞ Du(xk) = p.
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The set of all reachable gradients of u at x is denoted by D∗u(x).
The following proposition concerns fundamental properties of semiconcave funtions and

their gradients (see [10] for the proof).

Proposition 2.2 Let u : � ⊂ R
n → R be a semiconcave function and let x ∈ �. Then the

following properties hold.

(a) D+u(x) is a nonempty compact convex set in R
n and D∗u(x) ⊂ ∂D+u(x), where

∂D+u(x) denotes the topological boundary of D+u(x).
(b) The set-valued function x � D+u(x) is upper semicontinuous.
(c) If D+u(x) is a singleton, then u is differentiable at x.Moreover, if D+u(x) is a singleton

for every point in �, then u ∈ C1(�).
(d) D+u(x) = co D∗u(x).
(e) If u is both semiconcave and semiconvex in �, then u ∈ C1,1(�).

Definition 2.3 Let u : � → R be a semiconcave function. x ∈ � is called a singular point
of u if D+u(x) is not a singleton. The set of all singular points of u is denoted by Sing (u).

Definition 2.4 Let k ∈ {0, 1, . . . , n} and let C ⊂ R
n . C is called a k-rectifiable set if there

exists a Lipschitz continuous function f : Rk → R
n such that C ⊂ f (Rk). C is called a

countably k-rectifiable set if it is the union of a countable family of k-rectifiable sets.

Let us recall a result on the rectifiability of the singular set Sing (u) of a semiconcave
function u in dimension two.

Proposition 2.5 [10] Let� ⊂ R
2 be an open domain, u : � → R be a semiconcave function,

and set

Singk(u) = {x ∈ Sing (u) : dim(D+u(x)) = k}, k = 0, 1, 2.

Then Singk(u) is countably (2 − k)-rectifiable for k = 0, 1, 2. In particular, Sing2(u) is
countable.

2.2 Aspects of weak KAM theory

For any x, y ∈ R
n and t > 0, we denote by �t

x,y the set of all absolutely continuous curves
ξ defined on [0, t] such that ξ(0) = x and ξ(t) = y. Define

At (x, y) = inf
ξ∈�t

x,y

∫ t

0
L(ξ(s), ξ̇ (s)) ds, x, y ∈ R

n, t > 0. (2.3)

We call At (x, y) the fundamental solution for the Hamilton–Jacobi equation

Dtu(t, x) + H(x0, Dxu(t, x)) = 0, t > 0, x ∈ R
n .

Byclassical results (Tonelli’s theory), the infimum in (2.3) is aminimum.Each curve ξ ∈ �t
x,y

attaining such a minimum is called a minimal curve for At (x, y).

Definition 2.6 For each u : Rn → R, let and Ttu and T̆t u be the Lax-Oleinik evolution of
negative and positive type defined, respectively, by

Ttu(x) = inf
y∈Rn

{u(y) + At (y, x)},

T̆t u(x) = sup
y∈Rn

{u(y) − At (x, y)}, (x ∈ R
n, t > 0).
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The following result is well-known.

Proposition 2.7 [12] There exists a Lipschitz semiconcave viscosity solution of (HJs). More-
over, such a solution u is a common fixed point of the semigroup {Tt }, i.e., Ttu = u for all
t ≥ 0.

Clearly, (HJs) has no unique solution and we call each solution, given as a fixed point of the
semigroup {Tt }, a weak KAM solution of (HJs).

Definition 2.8 Let u be a continuous function on M . We say u is L-dominated if

u(ξ(b)) − u(ξ(a)) ≤
∫ b

a
L(ξ(s), ξ̇ (s)) ds,

for all absolutely continuous curves ξ : [a, b] → R
n (a < b), with ξ(a) = x and ξ(b) = y.

We say such an absolutely continuous curve ξ is a (u, L)-calibrated curve, or a u-calibrated
curve for short, if the equality holds in the inequality above. A curve ξ : (−∞, 0] → R

n is
called a u-calibrated curve if it is u-calibrated on each compact sub-interval of (−∞, 0]. In
this case, we also say that ξ is a backward calibrated curve (with respect to u).

The following result explains the relation between the set of all reachable gradients and
the set of all backward calibrated curves from x (see, e.g., [10] or [14] for the proof).

Proposition 2.9 Let u : Rn → R be a weak KAM solution of (HJs) and let x ∈ R
n. Then

p ∈ D∗u(x) if and only if there exists a unique C2 curve ξ : (−∞, 0] → R
n with ξ(0) = x

and p = Lv(x, ξ̇ (0)), which is a backward calibrated curve with respect to u.

2.3 Propagation of singularities

In this paper, we will discuss various types of singular arcs describing the propagation of
singularities for Lipschitz semiconcave solutions of the Hamilton–Jacobi equations (HJloc)
and (HJs).

Definition 2.10 x0 is called a critical point with respect to (H , u) if 0 ∈ Hp(x0, D+u(x)).

Let u be a Lipschitz semiconcave viscosity solution of (HJloc) and x ∈ Sing (u).

Definition 2.11 (a) A singular characteristic from x0 is a Lipschitz arc x : [0, τ ]→�(τ>0)
such that:

(1) x is a generalized characteristic with x(0) = x0,
(2) x(t) ∈ Sing (u) for all t ∈ [0, τ ],
(3) ẋ+(0) = Hp(x0, p0) where p0 = argmin{H(x0, p) : p ∈ D+u(x0)},
(4) limt→0+ ess sups∈[0,t] |ẋ(s) − ẋ+(0)| = 0.

(b) A singular characteristic x : [0, T ] → � from x0 is called a strict singular characteristic
if there exists a measurable selection p(t) ∈ D+u(x(t)) such that{

ẋ(t) = Hp(x(t), p(t)) a.e. t ∈ [0, T ],
x(0) = x0.

The following existence of singular characteristic is due to [1,11].
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Proposition 2.12 Let u be a Lipschitz semiconcave solution of (HJloc) and x ∈ Sing (u).
Then, there exists a singular characteristic y : [0, T ] → � with y(0) = x.

Now, suppose u is a Lipschitz semiconcave weak KAM solution of (HJs). In [4], another
singular curve for u is constructed as follows. First, it is shown that there exists λ0 > 0 such
that for any (t, x) ∈ R+ ×R

n and any maximizer y for the function u(·)− At (x, ·), we have
that |y − x | ≤ λ0t . Then, taking λ = λ0 + 1, one shows that there exists t0 > 0 such that, if
t ∈ (0, t0], then there exists a unique yt,x ∈ B(x, λt) of u(·) − At (x, ·) such that

T̆t u(x) = u(yt,x ) − At (x, yt,x ). (2.4)

Moreover, such a t0 is such that −At (x, ·) is concave with constant C2/t and C1 −C2/t < 0
for 0 < t ≤ t0. We now define the curve

z(t) =
{
x, t = 0,

yt,x , t ∈ (0, t0]. (2.5)

Proposition 2.13 [4] Let the curve z be defined in (2.5). Then, the following holds:

(1) z is Lipschitz,
(2) if x ∈ Sing (u) then z(t) ∈ Sing (u) for all t ∈ [0, t0],
(3) ż+(0) exists and

ż+(0) = Hp(x, p0)

where p0 = argmin{H(x, p) : p ∈ D+u(x)}.
Definition 2.14 The Lipschitz arc z defined in (2.5) is called the intrinsic characteristic from
x ∈ Sing (u).

3 Singular characteristic onR
2

We now return to questions (Q1) and (Q2) from the Introduction. So far, we have introduced
three kinds of singular arcs issuing from a point x0 ∈ Sing (u), namely

• strict singular characteristics, that is, solutions to (1.3),
• singular characteristics, introduced in Definition 2.11, and
• the intrinsic singular characteristic z given by Proposition 2.13.

In this section, we will compare the first two notions of characteristics when � ⊂ R
2.

We begin by introducing the following class of Lipschitz arcs.

Definition 3.1 Given T > 0, we denote by Lip0(0, T ;�) the class of all Lipschitz arcs
x : [0, T ] → � such that the right derivative

ẋ+(0) = lim
t↓0

x(t) − x(0)
t

does exist and satisfies
lim
t→0+ ess sup

s∈[0,t]
|ẋ(s) − ẋ+(0)| = 0. (3.1)

For any x ∈ Lip0(0, T ;�) we set

ωx(t) := ess sup
s∈[0,t]

|ẋ(s) − ẋ+(0)|. (3.2)

Owing to (3.1), we have that ωx(t) → 0 as t ↓ 0.
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Lemma 3.2 Let x ∈ Lip0(0, T ;�) be such that ẋ+(0) 
= 0. Then,∣∣|x(t1) − x(t0)| − |t1 − t0| · |ẋ+(0)|∣∣ ≤ |t1 − t0|ωx(t1 ∨ t0) ∀t0, t1 ∈ [0, T ] (3.3)

and x is injective on some interval [0, T0] with 0 < T0 < T .

Proof Observe that, for any 0 ≤ t0 ≤ t1 ≤ T , the identity

x(t1) − x(t0) =
∫ t1

t0
ẋ(t) dt = (t1 − t0)ẋ+(0) +

∫ t1

t0
(ẋ(t) − ẋ+(0)) dt

immediately gives (3.3). In turn, (3.3) implies that, if x(t1) − x(t0) = 0, then

|t1 − t0| · |ẋ+(0)| ≤ |t1 − t0|ωx(t1)

Since ẋ+(0) 
= 0, we conclude that t1 = t0 if t0, t1 ∈ [0, T0] with T0 sufficiently small.

Let x ∈ R
2 and let θ ∈ R

2 be a unit vector. For any ρ ∈ (0, 1) let us consider the cone

Cρ(x, θ) = {
y ∈ R

2
∣∣ |〈y − x, θ〉| ≥ ρ|y − x |} (3.4)

with vertex in x , amplitude ρ, and axis θ . Clearly, Cρ(x, θ) is given by the union of the two
cones

C+
ρ (x, θ) = {

y ∈ R
2

∣∣ 〈y − x, θ〉 ≥ ρ|y − x |}
and

C−
ρ (x, θ) = {

y ∈ R
2

∣∣ 〈y − x, θ〉 ≤ −ρ|y − x |},
which intersect each other only at x .

Lemma 3.3 Let x j ∈ Lip0(0, T ;�) ( j = 1, 2) be such that

(i) x1(0) = x2(0) =: x0,
(ii) ẋ+

1 (0) = ẋ+
2 (0), and

(iii) ẋ j (s) 
= 0 ( j = 1, 2) for a.e. s ∈ [0, T ].
Define

θ1(s) = ẋ1(t)
|ẋ1(t)| (s ∈ [0, T ] a.e.) (3.5)

and fix ρ ∈ (0, 1). Then the following holds true:

(a) there exists sρ ∈ (0, T ] such that x0 ∈ C−
ρ (x1(s), θ1(s)) for a.e. s ∈ [0, sρ];

(b) there exists τρ ∈ (0, T ] such that for all t ∈ (0, τρ] there exists σρ(t) ∈ (0, T ] such that

|x2(t) − x1(s)| ≤ 1 + ρ

2ρ
t |ẋ+

1 (0)| ∀s ∈ [0, σρ(t)] (3.6)

x2(t) ∈ C+
ρ (x1(s), θ1(s)) for a.e. s ∈ [0, σρ(t)]. (3.7)

Proof Hereafter, we denote by oi (s) (i ∈ N) any (scalar- or vector-valued) function such
that

lim
s→0+

oi (s)

s
= 0.

In view of (3.3) we conclude that

|x0 − x1(s)| = s|ẋ+
1 (0)| + o1(s) ∀s ∈ [0, T ]. (3.8)
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Moreover, setting θ1(0) = ẋ+
1 (0)/|ẋ+

1 (0)|, for a.e. s ∈ [0, T ] we have that
〈x0 − x1(s), θ1(s)〉 = 〈x0 − x1(s), θ1(0)〉 + 〈x0 − x1(s), θ1(s) − θ1(0)〉

= − s|ẋ+
1 (0)| + o2(s).

(3.9)

Now, having fixed ρ ∈ (0, 1) let sρ ∈ (0, T1] be such that, for a.e. s ∈ [0, sρ],
|o1(s)|

s
≤ 1 − ρ

2ρ
|ẋ+

1 (0)| and
|o2(s)|

s
≤ 1 − ρ

2
|ẋ+

1 (0)|.

Then |x0 − x1(s)| ≤ 1+ρ
2ρ s|ẋ+

1 (0)| by (3.8). From (3.9) it follows that

〈x0 − x1(s), θ1(s)〉 ≤ −1 + ρ

2
s|ẋ+

1 (0)| ≤ −ρ|x0 − x1(s)| (s ∈ [0, sρ] a.e.)
and (a) follows.

The proof of (b) is similar: since ẋ+
2 (0) = ẋ+

1 (0) by condition (ii), for all t ∈ [0, T ] and
s ∈ [0, T ] we have that

x2(t) − x1(s) = (t − s)ẋ+
1 (0) + o3(t) + o3(s). (3.10)

Hence, for all s, t ∈ (0, T ] we deduce that∣∣∣x2(t) − x1(s)

t |ẋ+
1 (0)| − ẋ+

1 (0)

|ẋ+
1 (0)|

∣∣∣ ≤ s

t
+ |o3(t)| + |o3(s)|

t |ẋ+
1 (0)| .

So,

|x2(t) − x1(s)| ≤ t |ẋ+
1 (0)|

(
1 + s

t
+ |o3(t)| + |o3(s)|

t |ẋ+
1 (0)|

)
. (3.11)

Next, take the scalar product of each side of (3.10) with θ1(s) to obtain

〈x2(t) − x1(s), θ1(s)〉 = t〈ẋ+
1 (0), θ1(s)〉 − 〈sẋ+

1 (0) − o3(t) − o3(s), θ1(s)〉
= t |ẋ+

1 (0)| + t〈ẋ+
1 (0), θ1(s) − θ1(0)〉 − 〈sẋ+

1 (0) − o3(t) − o3(s), θ1(s)〉 (3.12)

for all t ∈ [0, T ] and a.e. s ∈ [0, T ].
Once again, having fixed ρ ∈ (0, 1), we can find τρ ∈ (0, T ] satisfying the following: for

all t ∈ (0, τρ] there exists σρ(t) ∈ (0, T ] such that

t |〈ẋ+
1 (0), θ1(s) − θ1(0)〉| + |〈sẋ+

1 (0) − o3(t) − o3(s), θ1(s)〉| ≤ 1 − ρ

2
t |ẋ+

1 (0)|
and

1 + s

t
+ |o3(t)| + |o3(s)|

t |ẋ+
1 (0)| ≤ 1 + ρ

2ρ

for all t ∈ [0, τρ] and a.e. s ∈ [0, σρ(t)]. Then, (3.11) leads directly to (3.6). Moreover,
returning to (3.12), for all t ∈ [0, τρ] and a.e. s ∈ [0, σρ(t)] we conclude that

〈x2(t) − x1(s), θ1(s)〉 ≥ t |ẋ+
1 (0)| − 1 − ρ

2
t |ẋ+

1 (0)| = 1 + ρ

2
t |ẋ+

1 (0)| ≥ ρ|x2(t) − x1(s)|,
where we have used (3.11) to deduce the last inequality. Hence, (3.7) follows.

Given a semiconcave solution u of (HJloc), we hereafter concentrate on singular arcs for
u, that is, arcs x ∈ Lip0(0, T ;�) such that x(t) ∈ Sing (u) for all t ∈ [0, T ]. We denote such
a subset of Lip0(0, T ;�) by Lipu0(0, T ;�).
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Lemma 3.4 Let u be a semiconcave solution of (HJloc) and let x ∈ Lipu0(0, T ;�) be such
that ẋ+(0) 
= 0. Then there exists T0 ∈ (0, T ] such that the set

Sx =
{
s ∈ [0, T0]

∣∣ D+u(x(s)) = [p1s , p2s ] with p1s , p
2
s ∈ D∗u(x(s)) , p1s 
= p2s

}
.

has full measure in [0, T0]. Moreover, lims→0+ pis = pi0 with pi0 ∈ D∗u(x0) (i = 1, 2) and

〈ẋ(s), p2s − p1s 〉 = 0 for a.e. s ∈ [0, T0] (3.13)

Proof The structure of the superdifferential of u along x is described by Proposition 2.5 and
Proposition 3.3.15 in [10].

Lemma 3.5 Let u be a semiconcave solution of (HJloc) and let x0 ∈ Sing (u) be such that
0 /∈ Hp(x0, D+u(x0)). Let x ∈ Lipu0(0, T ;�) be such that x(0) = x0 and

ẋ+(0) = Hp(x0, p0) where p0 = argmin{H(x0, p) : p ∈ D+u(x0)}.
Let T0 ∈ (0, T ] be given by Lemma 3.4 and, for every s ∈ Sx, let ξ1s and ξ2s be backward
calibrated curves on (−∞, 0] satisfying

ξ is (0) = x(s) and ξ̇ is (0) = Hp(x(s), pis) (i = 1, 2) (3.14)

Then there exist constants r1 > 0, s1 ∈ (0, T0], and δ ∈ (0, 1) and such that

|x(s) − ξ is (−r)| ≥ δr (i = 1, 2) (3.15)

and, for all s ∈ [0, s1] ∩ Sx and r ∈ [0, r1],
ξ1s (−r) ∈ C+

δ (x(s), θ2(s)) and ξ2s (−r) ∈ C−
δ (x(s), θ2(s)) (3.16)

where

θ2(s) = p2s − p1s
|p2s − p1s |

(s ∈ Sx).

Proof The existence of backward calibrated curves satisfying (3.14) follows from Proposi-
tion 2.9. Moreover, for all r ≥ 0 we have that

x(s) − ξ is (−r) = ξ is (0) − ξ is (−r) = r ξ̇ i (0) + o(r) = r Hp(x(s), pis) + o(r) (i = 1, 2)
(3.17)

where limr→0+ o(r)/r = 0 uniformly with respect to s ∈ Sx.
Now, observe that, since x0 is not a critical point with respect to (u, H), by possibly

reducing T0 we have that x(s) is also not a critical point for all s ∈ [0, T0] due to the upper-
semicontinuity of the set-valued map s ⇒ Hp(x(s), D+u(x(s))). So, for some r0 > 0,
s0 ∈ (0, T1], and δ0 ∈ (0, 1), we deduce that

r

δ0
≥ |x(s) − ξ is (−r)| = r |Hp(x(s), pis)| + o(r) ≥ δ0r (i = 1, 2) (3.18)

for all s ∈ [0, s0] ∩ Sx and r ∈ [0, r0]. This proves (3.15).
Next, recall that H(x0, pi0) = 0 because pi0 ∈ D∗u(x0) (i = 1, 2). So, by the strict

convexity of H(x0, ·), we deduce that there exists ν > 0 such that

〈Hp(x0, p
2
0), p

2
0 − p10〉 ≥ H(x0, p

2
0) − H(x0, p

1
0) + ν|p20 − p10|2 = ν|p20 − p10|2 > 0

〈Hp(x0, p
1
0), p

2
0 − p10〉 ≤ H(x0, p

2
0) − H(x0, p

1
0) − ν|p20 − p10|2 = −ν|p20 − p10|2 < 0
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Local singular characteristics onR2

Hence, the upper-semicontinuity of the set-valued map s ⇒ Hp(x(s), D+u(x(s))) ensures
the existence of numbers δ1 ∈ (0, 1) and s1 ∈ (0, s0] such that

〈Hp(x(s), p2s ), θ2(s)〉 ≥ δ1, 〈Hp(x(s), p1s ), θ2(s)〉 ≤ −δ1 ∀s ∈ [0, s1] ∩ S. (3.19)

Therefore, combining (3.17) and (3.19), we conclude that, after possibly replacing r0 by a
smaller nummber r1 > 0,

〈ξs(−r) − x(s), θ2(s)〉 = −r〈Hp(x(s), p1s ), θ2(s)〉 + o(r) ≥ rδ1 + o(r) ≥ r
δ1

2

for all s ∈ [0, s1] ∩ Sx and r ∈ [0, r1]. By (3.18) and the above inequality we have that
ξ1s (−r) ∈ C+

δ (x(s), θ2(s)) with δ = δ0δ1/2.
The analogous statement for ξ2s in (3.16) can be proved by a similar argument.

We are now ready to state our main result, which ensures that singular curves coincide up
to a bi-Lipschitz reparameterization, at least when x is not a critical point.

Theorem 3.6 Let u be a semiconcave solution of (HJloc) and let x0 ∈ Sing (u) be such that
0 /∈ Hp(x0, D+u(x0)). Let x j ∈ Lipu0(0, T ;�) ( j = 1, 2) be such that x j (0) = x0 and

ẋ+
j (0) = Hp(x0, p0) where p0 = argmin{H(x0, p) : p ∈ D+u(x0)}.

Then, there exists σ ∈ (0, T ] such that there exists a unique bi-Lipschitz homeomorphism

φ : [0, σ ] → [0, φ(σ )] ⊂ [0, T2]
satisfying x1(s) = x2(φ(s)) for all s ∈ [0, σ ].

We begin the proof with the following lemma.

Lemma 3.7 Under all assumptions of Theorem 3.6, there exists σ ∈ (0, T ] such that for all
s ∈ [0, σ ] there exists a unique ts ∈ [0, T ] satisfying x2(ts) = x1(s).

Proof First, reduce T > 0 in order to ensure that x1 and x2 are both injective on [0, T ] and
satisfy ẋ j (s) 
= 0 for a.e. s ∈ [0, T ] ( j = 1, 2).

Then, observe that Lemma 3.5, applied to x = x1, ensures the existence of r1 > 0,
s1 ∈ (0, T ], and δ ∈ (0, 1) such that for a.e. s ∈ [0, s1] one can find backward calibrated
curves ξ1s and ξ2s on (−∞, 0] satisfying (3.14), (3.15), and (3.16) for all r ∈ [0, r1].

Next, choose

ρ = 1 + √
1 − δ2

2
∈ (√

1 − δ2, 1
)

in Lemma 3.3 and let sρ , τρ , and σρ(·) be such that

(i) x0 ∈ C−
ρ (x1(s), θ1(s)) for a.e. s ∈ [0, sρ],

(ii) x2(t) ∈ C+
ρ (x1(s), θ1(s)) for all t ∈ [0, τr ] and a.e. s ∈ [0, σρ(t)],

(iii) |x2(t) − x1(s)| ≤ 1+ρ
2ρ t |ẋ+

1 (0)| for all t ∈ [0, τr ] and all s ∈ [0, σρ(t)].
By possibly reducing τρ , without loss of generality we can suppose that (Fig. 1)

1 + ρ

2ρ
τρ |ẋ+

1 (0)| < δr1. (3.20)

Then, recalling that

θ1(s) = ẋ1(s)
|ẋ1(s)| and θ2(s) = p2s − p1s

|p2s − p1s |
(s ∈ [0, T ] a.e.)
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Fig. 1 The illustration of various objects near x1(s) for sufficiently small s > 0

are orthogonal unit vectors, we claim that, for a.e. 0 ≤ s ≤ s1 ∧ σρ(τρ),

Cρ(x1(s), θ1(s))
⋂

Cδ(x1(s), θ2(s)) = {x1(s)}.
Indeed, for any x ∈ Cρ(x1(s), θ1(s)) ∩ Cδ(x1(s), θ2(s)) we have that

|x − x1(s)|2 =〈x − x1(s), θ1(s)〉2 + 〈x − x1(s), θ2(s)〉2
≥ (ρ2 + δ2)|x − x1(s)|2.

This yields x = x1(s) because ρ2 + δ2 > 1.
Now, define σ = min

{
s1, sρ, σρ(τρ)

}
and fix s ∈ [0, σ ] in the set of full measure on

which (i) is satisfied together with (ii) and (iii), that is,

x2(τρ) ∈ C+
ρ (x1(s), θ1(s)) and |x2(τρ) − x1(s)| < δr1

where (3.20) has also been taken into account. By possibly reducing σ , we also have that
|x2(t) − x1(s)| < δr1 for all t ∈ [0, τρ]. So, the arc x2, restricted to [0, τρ], connects
the point x2(τρ) of the cone C+

ρ (x1(s), θ1(s)) with x0 ∈ C−
ρ (x1(s), θ1(s)), remaining in

the open ball of radius δr1 centered at x1(s). Thus, in view of (3.15) and (3.16), x2 must
intersect at least one of the two calibrated curves ξ1s and ξ2s .

1 However, this can happen only
at ξ1s (0) = x1(s) = ξ2s (0), because u is smooth at all points ξ2s (−r) with 0 < r < ∞,
whereas x2 is a singular arc. Finally, such an intersection occurs at a unique time ts owing to
Lemma 3.2.

To complete the proof we observe that x2(ts) = x1(s) for all s ∈ [0, σ ], not just on a set
of full measure. This fact can be easily justified by an approximation argument.

1 This is the point where our reasoning requires to be in dimension 2.
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Local singular characteristics onR2

We are now in a position to prove our main result.

Proof of Theorem 3.6 Let σ ∈ (0, T ] be given by Lemma 3.7. Then for each s ∈ [0, σ ] there
exists a unique φ(s) := ts ∈ [0, T1] with x2(φ(s)) = x1(s).

Recalling that, thanks to Lemma 3.2, both x1(·) and x2(·) can be assumed to be injective
on [0, σ ] and [0, φ(σ )], respectively, we proceed to show that φ is also an injection. Observe
that, for any 0 ≤ s0, s1 ≤ σ ,

x2(φ(s1)) − x2(φ(s0)) =
∫ φ(s1)

φ(s0)
ẋ2(t) dt

=
∫ φ(s1)

φ(s0)
(ẋ2(t) − ẋ+

2 (0)) dt + (φ(s1) − φ(s0))ẋ
+
2 (0).

Therefore,

|x2(φ(s1)) − x2(φ(s0)) − (φ(s1) − φ(s0))ẋ
+
2 (0)| ≤ ωx2(φ(s1) ∨ φ(s0))|φ(s1) − φ(s0)|,

where ωx2 is given by (3.2). Thus, returning to x1 = x2 ◦ φ we derive

|x1(s1) − x1(s0)| ≥ |φ(s1) − φ(s0)|
(|ẋ+

2 (0)| − ωx2(φ(s1) ∨ φ(s0))|
)
,

|x1(s1) − x1(s0)| ≤ |φ(s1) − φ(s0)|
(|ẋ+

2 (0)| + ωx2(φ(s1) ∨ φ(s0))|
)
.

(3.21)

Notice that (3.21) leads to

|φ(s1) − φ(s0)| ≥ |x1(s1) − x1(s0)|
|ẋ+

2 (0)| + ωx2(φ(s1) ∨ φ(s0))|
(3.22)

and this implies that φ is injective as so is x1.
Next, we prove that φ is continuous on [0, σ ], or the graph of φ is closed. Let s j → s̄ be

any sequence such that φ(s j ) → t̄ as j → ∞. Then

x1(s j ) → x1(s̄) and x2(φ(s j )) = x1(s j ) → x2(t̄) as j → ∞.

So, x2(φ(s̄)) = x1(s̄) = x2(t̄). Since x2(·) is injective, it follows that t̄ = φ(s̄).
Being continuous, φ is a homeomorphism. It remains to prove that φ is bi-Lipschitz. The

continuity of φ at 0 ensures that, after possibly reducing σ ,

ωx1(φ(s1)), ωx2(φ(s2)) ≤ |ẋ+
2 (0)|
2

= |ẋ+
1 (0)|
2

(3.23)

for all s0, s1 ∈ [0, σ ]. Thus, by (3.21) we have that

|φ(s1) − φ(s0)| ≤ |x1(s1) − x1(s0)|
|ẋ+

2 (0)| − ωx2(φ(s1) ∨ φ(s0))|
≤ 2 Lip (x1)

|ẋ+
1 (0)| · |s1 − s0|

for all s ∈ [0, σ ] and t ∈ [0, φ(σ )]. So, φ is Lipschitz on [0, σ ]. The fact that φ−1 is also
Lipschitz follows by a similar argument. Indeed, writing (3.22) for ti = φ(si ) and appealing
to Lemma 3.2 and (3.23) once again we obtain

|t1 − t0| ≥ |x2(t1) − x2(t0)|
|ẋ+

2 (0)| + ωx2(t1 ∨ t0)
= |x1(s1) − x1(s0)|

|ẋ+
2 (0)| + ωx2(t1 ∨ t0)

≥ |ẋ+
1 (0)| − ωx1(s1 ∨ s0)

|ẋ+
2 (0)| + ωx2(t1 ∨ t0)

· |s1 − s0| ≥ 1

3
· |s1 − s0|

The proof is completed noting that φ is unique due to the injectivity of x1 and x2.
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Corollary 3.8 Let x be a strict singular characteristic as in (1.3) and let y be any singular
characteristic as in Proposition 2.12. If x0 is not a critical point with respect to (H , u), then
there exists σ > 0 and a bi-Lipschitz homeomorphism φ : [0, σ ] → [0, φ(σ )] such that
y(φ(s)) = x(s) for all s ∈ [0, σ ].

For strict singular characteristics, uniqueness holdswithout reparameterization aswe show
next.

Theorem 3.9 Let u be a semiconcave solution of (HJloc) and let x0 ∈ Sing (u) be such that
0 /∈ Hp(x0, D+u(x0)). Let x j : [0, T ] → � ( j = 1, 2) be strict singular characteristics
with initial point x0. Then there exists τ ∈ (0, T ] such that x1(t) = x2(t) for all t ∈ [0, τ ].
Proof By Theorem 3.6 there exists a bi-Lipschitz homeomorphism φ : [0, τ1] → [0, τ2],
with 0 ≤ τ j ≤ T ( j = 1, 2), such that

x1(t) = x2(φ(t)) ∀t ∈ [0, τ1]. (3.24)

Moreover, since x1 and x2 are strict characteristics we have that{
ẋ+
j (t) = Hp(x j (t), p j (t))

H(x j (t), p j (t)) = minp∈D+u(x j (t)) H(x j (t), p)
∀t ∈ [0, τ j ] ( j = 1, 2)

Therefore,

Hp(x1(t), p1(t)) = φ′(t)Hp(x2(φ(t)), p2(φ(t))) (t ∈ [0, τ1])
where, in addition to (3.24), we have that

p2(φ(t))) = arg min
p∈D+u(x2(φ(t))

H(x2(φ(t)), p) = arg min
p∈D+u(x1(t)

H(x1(t), p) = p1(t).

So,Hp(x1(t), p1(t)) = φ′(t)Hp(x1(t), p1(t)) for all t ∈ [0, τ1]. Since0 /∈ Hp(x0, D+u(x0)),
we conclude that φ′(t) = 1, or φ(t) = t , on some interval 0 ≤ t ≤ τ ≤ τ .

Theorems 3.6 and 3.9 establish a connection between the absence of critical points and
uniqueness of strict singular characteristics. In this direction, we also have the following
global result.

Corollary 3.10 Let u be a semiconcave solution of (HJloc) and let x0 ∈ Sing (u). Let x j :
[0, T ] → � ( j = 1, 2) be strict singular characteristics with initial point x0 such that
0 /∈ Hp(x j (t), D+u(x j (t))) for all t ∈ [0, T ]. Then x1(t) = x2(t) for all t ∈ [0, T ].
Proof On account of Theorem 3.9 we have that

T := {
τ ∈ (0, T ] | x1(t) = x2(t) , ∀t ∈ [0, τ ]}

is a nonempty set. Let τ0 = sup T = max T . We claim that τ0 = T . For if τ0 < T , applying
Theorem 3.9 with initial point x1(τ0) we conclude that x1(t) = x2(t) on some intarval
τ0 ≤ t < τ0 + δ, contradicting the definition of τ0.

Another well-known example where we have uniqueness of the generalized characteristic
is the mechanical Hamiltonian

H(x, p) = 1

2
〈A(x)p, p〉 + V (x), (x, p) ∈ � × R

n, (3.25)
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with A(x) is positive definite symmetricn×n-matrixC2-smooth in x andV a smooth function
on �. More precisely, if x ∈ Sing (u), then there exists a unique Lipschitz arc y determined
by ẏ+(t) = A(y(t))p(t), where y(0) = x and p(t) = argminp∈D+u(y(t))〈A(y(t))p, p〉. In
this case, uniqueness follows from semiconcavity by an application of Gronwall’s lemma
(see, e.g., [2,10]) ensuring that, in addition, any generalized characteristic is strict. We now
give another justification of such a property from the point of view of this section.

Corollary 3.11 If H is a mechanical Hamiltonian as in (3.25), then the reparameterization
φ in Theorem 3.6 is the identity.

Proof We observe that, for almost all t ≥ 0,

ẏ(t) = A(y(t)){λ(t)p0(t) + (1 − λ(t))p1(t)}
where λ(t) ∈ [0, 1] and we can assume D+u(y(t)) is a segment, say [p1(t), p0(t)], or
{p0(t), p1(t)} ∈ D∗u(y(t)). Notice that {p0(t), p1(t)} is also the set of extremal points of
the convex set D+u(y(t)).

Since x(t) = y(φ(t)), differentiating we obtain that

ẋ(t) = p(t) =φ′(t)ẏ(φ(t))

=φ′(t)A(y(φ(t))){λ(φ(t))p0(φ(t)) + (1 − λ(φ(t)))p1(φ(t))}
with D+u(y(φ(t))) = [p0(φ(t)), p1(φ(t))], or {p0(φ(t)), p1(φ(t))} ∈ D∗u(y(φ(t))).

Therefore, there exists a unique λt ∈ [0, t] such that

p(t) = A(y(φ(t))){λt p0(φ(t)) + (1 − λt )p1(φ(t))}.
It follows that

φ′(t) = φ′(t){λ(φ(t)) + (1 − λ(φ(t)))) = λt + (1 − λt ) = 1.

Thus, φ(t) ≡ t and this completes the proof.

Remark 3.12 Observe that our results apply in particular to solutions of (HJs).
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Appendix A: Existence of strict singular characteristics

In this appendix, we prove the following result which ensures the existence of strict singular
characteristics mentioned in the Introduction.

We recall that

ẋ+(t) := lim
h↓0

x(t + h) − x(t)
h

(t ∈ [0, T ))

denotes the right derivative of x : [0, T ] → �, whenever such a derivative exists.

Theorem A.1 Let u be a semiconcave solution of (HJloc). If x0 ∈ Sing (u) satisfies

0 /∈ co Hp(x0, D
+u(x0)), (A.1)

then there exists a Lipschitz singular arc x : [0, T ] → � and a right-continuous selection
p(t) ∈ D+u(x(t)) such that{

ẋ+(t) = Hp(x(t), p(t)) ∀t ∈ [0, T ),

x(0) = x0.
(A.2)

and
H(x(t), p(t)) = min

p∈D+u(x(t))
H(x(t), p) ∀t ∈ [0, T ). (A.3)

Remark A.2 The existence of strict singular characteristics for time dependent Hamilton–
Jacobi equations was proved by Khanin and Sobolevski under the additional assumption that
the solution u can be locally represented as the minimum of a compact family of smooth
functions. Theorem A.1 adapts [13, Theorem 2] to stationary equations removing such an
extra assumption.

Proof The proof, which uses ideas from [13], requires several intermediate steps.
Let R0 > 0 be such that the closed ball B(x0, 2R0) is contained in �. Take any sequence

of smooth functions um : B(x0, 2R0) → R such that⎧⎪⎪⎨
⎪⎪⎩

(a) um
m→∞−→ u uniformly on B(x0, R0)

(b) max{‖Du‖∞, ‖Dum‖∞} ≤ C1

(c) D2um ≤ C2 I

for some constants C1,C2 > 0. A sequence with the above properties can be constructed in
several ways, for instance by using mollifiers like in [11,18]. In view of the above uniform
bounds, there exists T0 > 0 such that for any m ≥ 1 the Cauchy problem{

ẋ(t) = Hp(x(t), Dum(x(t))), t ∈ [0, T0]
x(0) = x0

(A.4)

has a unique solution xm : [0, T0] → B(x0, R0).Moreover, by possibly taking a subsequence,
we can assume that xm converges uniformly on [0, T0] to some Lipschitz arc x : [0, T0] →
B(x0, R0). We will show that, after possibly replacing T0 by a smaller T > 0, such a limiting
curve x has the required properties.
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Lemma A.3 For every t̄ ∈ [0, T0) and ε > 0 there exists and integer mε ≥ 1 and a real
number τε ∈ (0, T0 − t̄) such that

xm(t) − xm(t̄)

t − t̄
∈ co Hp

(
x(t̄), Du+(x(t̄))

) + εB ∀m ≥ mε , ∀t ∈ [t̄, t̄ + τε], (A.5)

where B denotes the closed unit ball of R2, centered at the origin.

Proof We begin by showing that for every t̄ ∈ [0, T0) and ε > 0 there exist mε ≥ 1 and
τε ∈ (0, T0 − t̄) satisfying

ẋm(t) ∈ Hp
(
x(t̄), Du+(x(t̄))

) + εB, t ∈ [t̄, t̄ + τε] a.e. (A.6)

for all m ≥ mε . We argue by contradiction: set �(t̄) = Hp
(
x(t̄), Du+(x(t̄))

)
and suppose

there exist t̄ ∈ [0, T0), ε > 0, and sequences mk → ∞ and tk ↓ t̄ such that{
(i) ẋmk (tk) /∈ �(t̄) + εB, ∀k ≥ 1

(i i) Dumk

(
xmk (tk)

) → p̄ (k → ∞)

where we have used bound (b) above to justify (i i). We claim that p̄ ∈ D+u
(
x(t̄)

)
. Indeed,

in view of (c) above we have that, for all k ≥ 1,

umk

(
xmk (tk) + y

) − umk

(
xmk (tk)

) − 〈
Dumk

(
xmk (tk)

)
, y

〉 ≤ C2|y|2, ∀|y| ≤ R0.

Hence, in the limit as k → ∞, we get

u(x(t̄) + y) − u(x(t̄)) − 〈 p̄, y〉 ≤ C2|y|2, ∀|y| ≤ R0,

which in turn proves our claim. Thus, we conclude that

ẋmk (tk) = Hp
(
xmk (tk), Dumk (xmk (tk))

) k→∞−→ Hp(x(t̄), p̄) ∈ �(t̄)

in contrast with (i). So, (A.6) is proved.
Finally, (A.5) can be derived from (A.6) by integration.

By appealing to the upper semi-continuity of D+u and assumption (A.1) we conclude
that there exists T ∈ (0, T0] such that

0 /∈ co Hp
(
x(t), Du+(x(t))

) ∀t ∈ [0, T ]. (A.7)

Now, fix any t̄ ∈ [0, T ) and let v̄ ∈ R
2 be any vector such that

lim
j→∞

x(t̄ + τ j ) − x(t̄)
τ j

= v̄ (A.8)

for some sequence τ j ↘ 0 ( j → ∞). Observe that v̄ ∈ co Hp
(
x(t̄), Du+(x(t̄))

)
in view of

Lemma A.3. So, v̄ 
= 0 owing to (A.7). Set x̄ = x(t̄) and define

p̄ ∈ R
2 by v̄ = Hp(x̄, p̄) (or p̄ = Lv(x̄, v̄))

Fv̄(x̄) = {
p∗ ∈ D+u(x̄) : 〈p∗, v̄〉 = min

p∈D+u(x̄)
〈p, v̄〉}.

Notice that Fv̄(x̄) is the exposed face of the convex set D+u(x̄) in the direction v̄ (see,
for instance, [10]). The following lemma identifies p̄ (hence v̄) uniquely.
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Lemma A.4 Suppose p̄ ∈ Fv̄(x̄). Then p̄ is the unique element in D+u(x̄) such that

H(x̄, p̄) = min
p∈D+u(x̄)

H(x̄, p). (A.9)

Proof Since p̄ ∈ Fv̄(x̄), we have that

〈 p̄, v̄〉 = 〈 p̄, Hp(x̄, p̄)〉 = min
p∈D+u(x̄)

〈p, Hp(x̄, p̄)〉.

Therefore, by convexity we conclude that

0 ≤ 〈Hp(x̄, p̄), p − p̄〉 ≤ H(x̄, p) − H(x̄, p̄), ∀p ∈ D+u(x̄).

Since H is strictly convex in p, p̄ is the unique element in D+u(x̄) satisfying (A.9).

Notice that the above lemma yields the existence of the right-derivative ẋ+(t̄) as soon as one
shows that p̄ ∈ Fv̄(x̄) for any v̄ satisfying (A.8).

Next, to show that p̄ ∈ Fv̄(x̄), we proceed by contradiction assuming that

p̄ /∈ Fv̄(x̄). (A.10)

Let us define functions α, β : D+u(x̄) → R by

α(p) = 〈p, v̄〉 − ∂u

∂v̄
(x̄), β(x, p) = 〈p − p̄, Hp(x, p) − Hp(x, p̄)〉 ∀p ∈ D+u(x̄)

where we have set ∂u
∂v̄

(x̄) = limλ→0+ u(x̄+λv̄)−u(x̄)
λ

. Recall that, since u is semiconcave,

∂u

∂v̄
(x̄) = min

p∈D+u(x̄)
〈p, v̄〉 (A.11)

(see, for instance, [10]). The following simple lemma is crucial for the proof.

Lemma A.5 If p̄ /∈ Fv̄(x̄), then

μ := min
p∈D+u(x̄)

{α(p) + β(x̄, p)} > 0.

Proof Observe first that β(x, p) ≥ 0 by convexity and α(p) ≥ 0 for all p ∈ D+u(x̄) by
(A.11). Since we suppose p̄ /∈ Fv̄(x̄), just two cases are possible.

(1) If p̄ /∈ D+u(x̄), then p 
= p̄ for all p ∈ D+u(x̄). So β(x̄, p) > 0 by strict convexity.
(2) If p̄ ∈ D+u(x̄) \ Fv̄(x̄), then α(p) > 0.

In conclusion,

M(p) := α(p) + β(x̄, p) > 0, ∀p ∈ D+u(x̄).

Since M is continuous and D+u(x̄) is compact, the conclusion follows.

For any ε > 0 set

Fε
v̄ (x̄) = Fv̄(x̄) + εB and Vε = D+u(x̄) + εB.

Now, let us fix ε = ε(v̄, μ) > 0 such that

p̄ /∈ Fε
v̄ (x̄) and min

p∈Vε

{α(p) + β(x̄, p)} ≥ 2

3
μ. (A.12)
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Let 0 < R ≤ R0 be such that

D+u(x) ⊂ Vε/2 ∀x ∈ B(x̄, R).

Consider the line segment

γ (t) := x̄ + (t − t̄)v̄ (t ∈ [t̄, T ])
and fix q ∈ (0, 1). After possible reducing T , we can assume that

|γ (t) − x̄ | ≤ qR and |x(t) − x̄ | ≤ qR ∀t ∈ [t̄, T ].
Consequently, there exists m̄ ∈ N such that for all m ≥ m̄ we have

(i) Dum(x) ∈ Vε for all x ∈ B(x̄, R);
(ii) xm(t) ∈ B(x̄, R) for all t ∈ [t̄, T ].
Moreover, by cutting T down to size, we can have the following property satisfied:

(iii) for any t ∈ [t̄, T ] there exists m(t) ≥ m̄ such that

dFv̄ (x̄)(Dum(γ (t))) < ε, ∀m ≥ m(t). (A.13)

We observe that (iii) is a consequence of Proposition 3.3.15 in [10] since v̄ 
= 0.
For 0 < δ to be chosen later on, we define

Kδ =
⋃

t̄≤t≤T

B(γ (t), δ(t − t̄))

= {x ∈ R
n : there exists t ∈ [t̄, T ] such that |x − γ (t)| ≤ δ(t − t̄)}.

Lemma A.6 Let ε > 0 and m(·) be fixed so that (A.12) and (A.13) hold true. If p̄ /∈ Fv̄(x̄),
then there exists δ > 0 such that for all j sufficiently large, xm(t) /∈ Kδ for all t ∈ (t̄+3τ j , T )

and m sufficiently large.

Proof Throughout this proof j ∈ N is supposed to be so large that τ j < (T − t̄)/3.Moreover,
in order to simplify the notation, abbreviate τ for τ j and we assume t̄ = 0.

For all t ∈ (3τ, T ) we have that

d

dt

(
um(xm(t)) − 〈 p̄, xm(t)〉)

= 〈
Dum(xm(t)) − p̄, ẋm(t)

〉 = 〈
Hp(xm(t), Dum(xm(t))), Dum(xm(t)) − p̄

〉
.

Therefore, by integrating on (τ, t),

um(xm(t)) − 〈 p̄, xm(t)〉 − um(xm(τ )) + 〈 p̄, xm(τ )〉
=

∫ t

τ

〈
Hp(xm(s), Dum(xm(s))), Dum(xm(s)) − p̄

〉
ds.

(A.14)

Similarly,

d

dt

(
um(γ (t))) − 〈 p̄, γ (t)〉) = 〈Dum(γ (t)) − p̄, v̄〉.

So, (iii) and Lebesgue’s theorem ensure that

um(γ (t)) − 〈 p̄, γ (t)〉 − um(γ (τ )) + 〈 p̄, γ (τ )〉
=

∫ t

τ

〈Dum(γ (s)) − p̄, v̄〉 ds ≤
(

∂u

∂v̄
(x̄) − 〈 p̄, v̄〉 + ε|v̄|

)
(t − τ).

(A.15)
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Therefore, by (A.14) and (A.15) we obtain

um(xm(t)) − 〈 p̄, xm(t)〉 − um(xm(τ )) + 〈 p̄, xm(τ )〉
− (

um(γ (t)) − 〈 p̄, γ (t)〉 − um(γ (τ )) + 〈 p̄, γ (τ )〉)
≥

∫ t

τ

{〈
Hp(xm(s), Dum(xm(s))), Dum(xm(s)) − p̄

〉 − (
∂u

∂v̄
(x̄) − 〈 p̄, v̄〉 + ε|v̄|

)}
ds

which can be rewritten as

um(xm(t)) − 〈 p̄, xm(t)〉 − um(xm(τ )) + 〈 p̄, xm(τ )〉
−(

um(γ (t)) − 〈 p̄, γ (t)〉 − um(γ (τ )) + 〈 p̄, γ (τ )〉)
≥

∫ t

τ

〈
Hp(xm(s), Dum(xm(s))) − v̄, Dum(xm(s)) − p̄

〉
ds

+
∫ t

τ

(
〈Dum(xm(s)), v̄〉 − ∂u

∂v̄
(x̄) − ε|v̄|

)
ds

=
∫ t

τ

〈
Hp(xm(s), Dum(xm(s))) − Hp(xm(s), p̄), Dum(xm(s)) − p̄

〉
ds

+
∫ t

τ

〈
Hp(xm(s), p̄) − Hp(x̄, p̄), Dum(xm(s)) − p̄

〉
ds

+
∫ t

τ

(
〈Dum(xm(s)), v̄〉 − ∂u

∂v̄
(x̄) − ε|v̄|

)
ds

≥
∫ t

τ

{
α(Dum(xm(s))) + β(xm(s), Dum(xm(s))) − ε|v̄|}ds

+
∫ t

τ

〈
Hp(xm(s), p̄) − Hp(x̄, p̄), Dum(xm(s)) − p̄

〉
ds. (A.16)

Now, observe the following:

|um(γ (t)) − 〈 p̄, γ (t)〉 − um(γ (τ )) + 〈 p̄, γ (τ )〉| ≤ (C1 + | p̄|)|γ (τ) − xm(τ )|
≤ (C1 + | p̄|)(|γ (τ) − x(τ )| + |x(τ ) − xm(τ )|)

where we recall that C1 ≥ ‖Dum‖∞.
Next, we fix τ = τ j with j large enough so that

|γ (τ) − x(τ )| ≤ δτ

2
and m � 1 so that |x(τ ) − xm(τ )| ≤ δτ

2
.

Then

|um(γ (τ )) − 〈 p̄, γ (τ )〉 − um(xm(τ )) + 〈 p̄, xm(τ )〉| ≤ (C1 + | p̄|)δτ. (A.17)

Since Dum(xm(s)) ∈ Vε for all s ∈ [0, τ ], by (A.12) we have that∫ t

τ

{
α(Dum(xm(s))) + β(xm(s), Dum(xm(s)))

}
ds ≥ 2

3
μ(t − τ). (A.18)

We also have that, after cutting down on T > 0,

〈Hp(xm(s), p̄) − Hp(x̄, p̄), Dum(xm(s)) − p̄〉
≥ −(C1 + | p̄|) · C ′

2|xm(s) − x̄ |
≥ −εC ′

2(C1 + | p̄|)
(A.19)
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So, by (A.16), (A.17), (A.18) and (A.19) we conclude that

um(xm(t)) − 〈 p̄, xm(t)〉 − um(γ (t)) + 〈 p̄, γ (t)〉
≥

(
2

3
μ − ε(|v̄| + C ′

2(C1 + | p̄|))
)

(t − τ) − δτ(C1 + | p̄|).

On the other hand,

|um(xm(t)) − 〈 p̄, xm(t)〉 − um(γ (t)) + 〈 p̄, γ (t)〉| ≤ (C1 + | p̄|)|xm(t) − γ (t)|.
Therefore,

|xm(t) − γ (t)| ≥ 2μ/3 − ε(|v̄| + C ′
2(C1 + | p̄|))

C1 + | p̄| (t − τ) − δτ. (A.20)

We now take 0 ≤ ε(|v̄| + C ′
2(C1 + | p̄|))| <

μ
3 to obtain

|xm(t) − γ (t)| ≥ μ(t − τ)

3(C1 + | p̄|) − δτ

and look for t < T such that
μ(t − τ)

3(C1 + | p̄|) − δτ ≥ 2δt, (A.21)

or

t ≥ 3(C1 + | p̄|)δ + μ

μ − 6(C1 + | p̄|)δ · τ.

So, taking 0 < δ ≤ μ
12(C1+| p̄|) , we have that

3(C1 + | p̄|)δ + μ

μ − 6δ(C1 + | p̄|) ≤ 3.

Finally, δ
μ

≤ 1
12(C1+| p̄|) gives that (A.21) holds for all t ∈ [3τ, T ]. ��

To complete the proof it suffices to note that Lemmas A.5 and A.6 ensure that assuming
(A.10) leads to a contradiction. Indeed,

|xm(t) − γ (t)| ≥ 2δt, ∀t ∈ [3τ j , T ],∀ j � 1

implies that x(t) /∈ Kδ for all t ∈ [3τ j , T ]. On the other hand, x(τi ) ∈ Kδ for i � 1 and, for
any fixed i , τi ∈ [3τ j , T ] for j sufficiently large.
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