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Abstract
Fix integers r ≥ 4 and i ≥ 2 (for r = 4 assume i ≥ 3 ). Assume that the rational number s 

defined by the equation 
(

i + 1

2

)

s + (i + 1) =

(

r + i

i

)

 is an integer. Fix an integer d ≥ s . 

Divide d − 1 = ms + � , 0 ≤ � ≤ s − 1 , and set G(r;d, i) ∶=
(

m

2

)

s + m� . As a number, 

G(r; d, i) is nothing but the Castelnuovo’s bound G(s + 1;d) for a curve of degree d in ℙs+1 . 
In the present paper we prove that G(r;  d,  i) is also an upper bound for the genus of a 
reduced and irreducible complex projective curve in ℙr , of degree d ≫ max{r, i} , not con-
tained in hypersurfaces of degree ≤ i . We prove that the bound G(r; d,  i) is sharp if and 
only if there exists an integral surface S ⊂ ℙ

r of degree s, not contained in hypersurfaces of 
degree ≤ i . Such a surface, if existing, is necessarily the isomorphic projection of a rational 
normal scroll surface of degree s in ℙs+1 . The existence of such a surface S is known for 
r ≥ 5 , and 2 ≤ i ≤ 3 . It follows that, when r ≥ 5 , and i = 2 or i = 3 , the bound G(r; d, i) is 
sharp, and the extremal curves are isomorphic projection in ℙr of Castelnuovo’s curves of 
degree d in ℙs+1 . We do not know whether the bound G(r; d, i) is sharp for i > 3.

Keywords  Projective curve · Castelnuovo-Halphen theory · Quadric and cubic 
hypersurfaces · Projection of a rational normal scroll surface · Maximal rank

Mathematical subject classification  Primary 14N15 · Secondary 14N25 · 14M05 · 14J26 · 
14J70

1  Introduction

A classical problem in the theory of projective curves is the classification of all their possi-
ble genera in terms of the degree and the dimension of the space where they are embedded 
[2, 10, 13]. Fixed integers r, d, s, Castelnuovo-Halphen’s theory states a sharp upper bound 
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for the genus of a complex, non-degenerate, reduced and irreducible curve of degree d in 
ℙ
r , under the condition of being not contained in a surface of degree < s [2, 10, 11].

This theory leads naturally to the consideration of a more general problem, namely 
the determination of a sharp upper bound for the genus of curves verifying flag condi-
tions. Fixed l + 1 integers r, d, s

(i2)

2
, s

(i3)

3
,… , s

(il)

l
 , with 2 ≤ l ≤ r − 1 , and 

2 ≤ i2 < i3 < ⋯ < il ≤ r − 1 , we say that a curve verifies the flag condition 
(

r;d, s
(i2)

2
, s

(i3)

3
,… , s

(il)

l

)

 if it is contained in ℙr , it has degree d, and it is not contained in a 
subvariety of ℙr of dimension ij and degree < s

(ij)

j
 for all j = 2,… , l . This problem can be 

posed not only for curves, but also for the study of the genus of varieties of dimension 
> 1 . We refer to [4, Introduction] and [6, Introduction] for a general discussion on this 
topic. In the case of curves, we refer to [3, 4, 7, 8] for some results, mostly asymptotic, 
when ij = j for all j = 2,… , l . In the same range, for varieties of dimension > 1 , we refer 
to [5, 6, 12, 14].

As far as we know, in the general case, i.e. without the restriction ij = j on the flag 
conditions, there are no results, except some remarks in the case l = 2 and i2 = r − 1 [4, 
p. 725, Remark 2.9], [6, p. 1130, Remark 2.6], [14, Section 5, p.179]. In this case, sim-
plifying the notation, we may state the problem as follows (compare with [2, Introduc-
tion, lines 18-23 from above]).

Fixed integers r, d, i, one may ask for the maximal genus of a curve of degree d in ℙr , 
not contained in a hypersurface of degree ≤ i . Apart from some rough estimates [4, p. 
726, (2.10)], this problem has remained completely open until our recent paper [9]. In 
this paper we determined sharp results for 4 ≤ r ≤ 5 , i = 2 and d ≫ 0 [9, Theorem 1.1 
and Theorem 1.2], and asymptotic sharp results for certain values of r ≥ 5 , and for i = 2 
and i = 3 [9, Proposition 1.3 and Proposition 1.4]. In these cases, we obtained also some 
initial information on the extremal curves, e.g. they should lie on surfaces of a certain 
degree s, depending on r and i (see definition (1) below), with sectional genus 0.

The aim of this note is to improve [9, Proposition 1.3 and Proposition 1.4], to say 
something more specific on the extremal curves, to simplify the proof of [9, Theo-
rem 1.2], and to add some information in the case i > 3 .  For a precise description of 
the results see the statement of Theorem 1.1 below. As well as the quoted results in [9], 
its proof relies on Castelnuovo-Halphen’s theory, in particular on [2, Main Theorem]. 
But also,and this is a little novelty, on Lemma 2.1 below, which, although elementary, 
seems to have escaped explicit notice. We think it may play a role in any subsequent 
developments.

From Theorem 1.1, taking into account [1, p. 478, Theorem 2], first we deduce sharp 
results (not only asymptotic sharp) for certain values of r ≥ 5 , and for i = 2 and i = 3 
(see Corollary 1.3 below, and compare with [9, Proposition 1.3 and Proposition 1.4]). In 
these cases, we are able to identify the extremal curves. In fact, they lie on isomorphic 
projections of smooth rational normal scrolls surfaces, and correspond to the Castel-
nuovo’s curves lying on such surfaces. Comparing with [9], this is completely new 
(although this phenomenon, in a certain sense, already appears for r = 4 and i = 2 in 
[9, Theorem 1.1]). Moreover, in the case r = 5 , the proof of Theorem 1.1 simplifies the 
proof of [9, Theorem 1.2], because, relying on Lemma 2.1, it does not require the analy-
sis of the arithmetic genus of a surface in ℙ5 . Theorem 1.1 states an upper bound also 
for i > 3 . Unfortunately, in this case we cannot apply [1, p. 478, Theorem 2], and so we 
do not know whether the bound is sharp (compare with Remark 1.2, (v), below), as we 
expect at least in some cases.
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For more specific comments on the claim of Theorem 1.1, we refer to Remark 1.2 
and Remark 2.2 below.

Theorem 1.1  Fix integers r ≥ 4 and i ≥ 2 (for r = 4 assume i ≥ 3 ). Assume that the rational 
number s defined by the equation

is an integer. Let C ⊂ ℙ
r be a reduced and irreducible complex curve, of degree d and arith-

metic genus pa(C) , not contained in a hypersurface of degree ≤ i . Assume d ≫ max{r, i} 
(for a precise inequality see Remark 1.2, (vi), below), and divide d − 1 = ms + � , 
0 ≤ � ≤ s − 1 . Then

Moreover, this bound G(r; d, i) is sharp if and only if there exists an integral surface in ℙr 
of degree s, not contained in hypersurfaces of degree ≤ i . In this case, every extremal curve 
D is not a.C.M., and it is contained in a flag S ⊂ T ⊂ ℙ

r , where S is a surface of degree s, 
uniquely determined by D, not contained in hypersurfaces of degree i, and T is a hypersur-
face of ℙr of degree i + 1 . Furthermore, S is the isomorphic projection in ℙr of a rational 
normal scroll surface S′ of degree s in ℙs+1 , and, via this isomorphism, D corresponds to a 
Castelnuovo’s curve of S′ of degree d.

Remark 1.2 

	 (i)	 For instance, if i = 2 , the number s defined by the equation (1) is an integer if and 
only if r is not divisible by 3 [1, p. 484, line 12 from below ]. If i = 3 , the number s 
is an integer if and only if r = 1, 2, 9, 10, 11, 18, 19, 27, 29 modulo 36. When r = 4 , 
the number s is an integer if and only if i = 1, 2, 5, 10 modulo 12. When r = 5 , the 
number s is an integer if and only if i = 1, 2, 7, 11, 13, 17, 22, 23, 26, 31, 37, 38, 41, 
43, 46, 47, 53, 58 modulo 60.

	 (ii)	 For the case r = 4 and i = 2 , we refer to [9, Theorem 1.1].
	 (iii)	 The number G(r; d, i) defined in (2) is nothing but the Castelnuovo’s bound G(s + 1;d) 

for the genus of a non-degenerate integral curve of degree d in ℙs+1 [10, p. 87, Theo-
rem (3.7)]. Therefore, the number G(r; d, i) is both an upper bound for the genus of 
a degree d non-degenerate curve in ℙs+1 , and for the genus of a degree d curve in ℙr 
not contained in hypersurfaces of degree ≤ i (recall that s is defined by (1)).

	 (iv)	 Recall that h0(ℙr,O
ℙr (i)) =

(

r + i

i

)

 , and that, if S� ⊆ ℙ
s+1 is a rational normal scroll 

surface of degree s, then h0(S�,OS� (i)) =

(

i + 1

2

)

s + (i + 1) . Moreover, notice that 

for an integral surface in ℙr ( r ≥ 4 ) of degree � , not contained in a hypersurface of 

degree ≤ i , one has 
(

i + 1

2

)

� + (i + 1) ≥

(

r + i

i

)

 [9, inequality (11)]. When the 

number s defined by (1) is not an integer, then one may define s differently as the 

minimal integer such that 
(

i + 1

2

)

s + (i + 1) ≥

(

r + i

i

)

 (compare with [9, inequal-

(1)
(

i + 1

2

)

s + (i + 1) =

(

r + i

i

)

(2)pa(C) ≤

(

m

2

)

s + m� =∶ G(r;d, i).
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ity (11)]). For instance, when i = 2 , we have 3s + 3 =

(

r + 2

2

)

 if r is not divisible 

by 3, and 3s + 1 =

(

r + 2

2

)

 otherwise. More generally, divide

Then one has s = � if � = 0 , and s = � + 1 if 𝛽 > 0 . We hope to give some informa-
tion in the case 𝛽 > 0 in a forthcoming paper.

	 (v)	  Let S be an integral surface in ℙr , not contained in hypersurfaces of degree ≤ i , 
of degree s given by the equation (1). In view of Lemma 2.1 (see below), S is the 
isomorphic projection in ℙr of a rational normal scroll surface S� ⊂ ℙ

s+1 of degree s. 
Therefore, since h0(ℙr, IS(i)) = 0 , the restriction map h0(ℙr,O

ℙr (i)) → h0(S,OS(i)) 
is bijective (compare with (iv) above). It follows that S is of maximal rank [1, p. 
482, line 14 from below]. We deduce that  the existence of an integral surface in ℙr

,not contained in hypersurfaces of degree ≤ i,of degree s given by the equation (1), 
is equivalent to the existence of a rational normal scroll surface of degree s in ℙs+1

which can be projected isomorphically into ℙras a surface of maximal rank. By [1, p. 
478, Theorem 2] one knows that, when r ≥ 5 , and for 2 ≤ i ≤ 3 , a general projection 
in ℙr of a smooth rational normal scroll surface of degree s is of maximal rank (our 
numbers r and s play the role of k and d in the claim of the quoted paper [1, p. 478, 
Theorem 2]). Therefore, at least for r ≥ 5 , and i = 2 or i = 3 , the bound (2) is sharp. 
We do not know whether there are other values of i for which this is true.

	 (vi)	 Taking into account the proof of Theorem 1.1 (see below), one may explicit the 
assumption d ≫ max{r, i} . In fact, an elementary computation, that we omit, proves 
that it suffices to assume d > 179 in the case i = 2 and r = 5 , and

       

otherwise (compare with [9, Section 2, (v), (vi), (vii)]). Observe that the number s defined 
in (1) depends on r and i. Also, notice that, for r ≥ 4 and i ≥ 2 , one has 4 s

r−2
(s + 1)3 ≥ is.

In view of previous Remark 1.2, (v), we have:

Corollary 1.3  When r ≥ 5 , and i = 2 or i = 3 , the bound (2) is sharp.

(

r + i

i

)

− (i + 1) = �

(

i + 1

2

)

+ �, 0 ≤ � ≤

(

i + 1

2

)

− 1.

d > max

{

2s

r − 2

r−2
∏

j=1

[(r − 1)!s]
1

r−1−j ,
4s

r − 2
(s + 1)3

}
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2 � The proof of Theorem 1.1

Lemma 2.1  Fix integers r ≥ 4 and i ≥ 2 (for r = 4 assume i ≥ 3 ). Assume that the rational 
number s defined by the equation (1) is an integer. Let S ⊂ ℙ

r be an integral surface of 
degree s, not contained in a hypersurface of ℙr of degree ≤ i . Then S is the isomorphic pro-
jection in ℙr of a rational normal scroll surface S� ⊂ ℙ

s+1 of degree s.

Proof  It suffices to prove that h0(S,OS(1)) = s + 2 (notice that s ≥ 5).
Let Σ ⊂ ℙ

r−1 be a general hyperplane section of S. For every j ≥ 1 one has 
h0(Σ,OΣ(j)) ≤ 1 + js [9, inequality (10)]. Hence, from the natural exact sequence 
0 → OS(j − 2) → OS(j − 1) → OΣ(j − 1) → 0 , we obtain h0(S,OS(1)) ≤ s + 2 , and:

We deduce that if h0(S,OS(i − 1)) = i +

(

i

2

)

s , then h0(S,OS(1)) = s + 2 . Therefore, it 

suffices to prove that h0(S,OS(i − 1)) = i +

(

i

2

)

s . Since h0(ℙr, IS(i − 1)) = 0 , from the 

natural exact sequence 0 → IS(i − 1) → O
ℙr (i − 1) → OS(i − 1) → 0 , we get:

Hence, it suffices to prove that

To this purpose notice that, since h0(ℙr, IS(i)) = 0 , from the natural exact sequence 
0 → IS(i − 1) → IS(i) → IΣ,ℙr−1 (i) → 0 , we have:

Now, from the natural exact sequence 0 → IΣ,ℙr−1 (i) → O
ℙr−1 (i) → OΣ(i) → 0 , we get:

and this number is equal to 0 in view of the equation (1). It follows that:

And so from (4) we obtain (3). 	�  ◻

h0(S,OS(i − 1)) ≤ h0(S,OS(1)) +

i−1
∑

j=2

[1 + js] ≤ i +

(

i

2

)

s.

h1(ℙr, IS(i − 1)) = h0(S,OS(i − 1)) −

(

r + i − 1

i − 1

)

≤ i +

(

i

2

)

s −

(

r + i − 1

i − 1

)

.

(3)h1(ℙr, IS(i − 1)) = i +

(

i

2

)

s −

(

r + i − 1

i − 1

)

.

(4)h0(ℙr−1, IΣ,ℙr−1 (i)) ≤ h1(ℙr, IS(i − 1)) ≤ i +

(

i

2

)

s −

(

r + i − 1

i − 1

)

.

h1(ℙr−1, IΣ,ℙr−1 (i)) = h0(ℙr−1, IΣ,ℙr−1 (i)) −

(

r + i − 1

r − 1

)

+ h0(Σ,OΣ(i))

≤ i +

(

i

2

)

s −

(

r + i − 1

i − 1

)

−

(

r + i − 1

r − 1

)

+ (1 + is),

h0(ℙr−1, IΣ,ℙr−1 (i)) = i +

(

i

2

)

s −

(

r + i − 1

i − 1

)

.
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Remark 2.2  Notice that the surface S in Lemma 2.1 is necessarily smooth. In fact, if 
S� ⊂ ℙ

s+1 is a singular rational normal scroll, then it is a cone, and so it can not be projected 
isomorphically into a space of lower dimension. It follows that if S� ⊂ ℙ

s+1is a singular 
rational normal scroll surface of degree s given by the equation (1), and S is the projection 
of S′into  ℙrfrom a ℙs−rdisjoint from S′and  ℙr,then S is contained in some hypersurface of 
degree i. This is completely in contrast with the smooth case [1, Theorem 2]. Another con-
sequence of previous remark is that, when i ≥ 3, every integral surface of degree s given 
by the equation (1) in ℙ4, is contained in some hypersurface of degree i. It follows that, in 
the case r = 4 and i ≥ 3 , the bound (2) is not sharp. Hence, when studying curves in ℙ4 in 
our setting, one only has to consider curves contained in surfaces of degree ≥ s + 1 . But we 
will not dwell further with the case r = 4 in this paper.

Proof of Theorem  1.1  First we notice that C cannot be contained in a surface of degree 
< s , because every such a surface is contained in a hypersurface of degree i [9, inequal-
ity (11)]. On the other hand, if  C is not contained in a surface of degree < s + 1 , since 
d ≫ max{r, i} , by [2, Main Theorem] we have [9, Section 2, (v), (vi), (vii)]:

Therefore, in order to prove Theorem 1.1, we may assume C is contained in a surface S of 
degree s, not contained in a hypersurface of degree ≤ i . By the previous Lemma 2.1, we know 
that S is an isomorphic projection of a rational normal scroll surface S� ⊂ ℙ

s+1 . Hence, C is 
isomorphic to a curve C′

⊆ S′ of degree d, in particular pa(C) = pa(C
�) . Since d ≫ max{r, i} , 

by Bezout’s theorem C′ is non-degenerate. Therefore, the bound (2) for pa(C) follows from 
Castelnuovo’s bound for pa(C�) [10, loc. cit.]. Observe that previous argument shows also that 
if the bound (2) is sharp, then every extremal curve D ⊂ ℙ

r is contained in a surface S ⊂ ℙ
r 

of of degree s, not contained in a hypersurface of degree ≤ i . Conversely, if such a surface S 
exists, with notations as before, let D′

⊂ S′ be a Castelnuovo’s curve of degree d. Let D ⊂ S be 
the projection of D′ in S. Then D is an extremal curve, and so the bound (2) is sharp. In fact, 
pa(D) = pa(D

�) . Moreover, since d > is , D cannot be contained in a hypersurface of degree i 
by Bezout’s theorem (compare with Remark 1.2, (vi)). Now, let D ⊂ ℙ

r be an extremal curve. 
We just proved that D is contained in a surface S of degree s, a fortiori not contained in a hyper-
surface of degree ≤ i . The surface S is an isomorphic projection of a rational normal scroll sur-
face S� ⊂ ℙ

s+1 , and, as before, via this isomorphism, D corresponds to a Castelnuovo’s curve of 
S′ . Since d ≫ max{r, i} , again by Bezout’s theorem, the surface S of degree s containing D is 
unique. By [9, inequality (11)] and the definition of  s, it follows that S is contained in a hyper-
surface T of degree i + 1 . Moreover, D cannot be a.C.M., since it is an isomorphic projection. 	
� ◻
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pa(C) ≤
d2

2(s + 1)
+ O(d) <

d2

2s
+ O(d) =

(

m

2

)

s + m𝜖.
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