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any e � 0, which arise as tautological embeddings of 
projectivization of very-ample vector bundles on Fe that are 
uniform in the sense of Brosius and Aprodu–Brinzanescu, cf. 
[10] and [3] respectively.
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r � 1 vector bundles which are Ulrich with respect to the 
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a slope-stable, indecomposable vector bundle. We moreover 
determine the dimension of such components, proving also 
that they are generically smooth. As a direct consequence of 
these facts, we also compute the Ulrich complexity of any such 
Xe and give an effective proof of the fact that these Xe’s turn 
out to be geometrically Ulrich wild.
At last, the machinery developed for 3–fold scrolls Xe allows 
us to deduce Ulrichness results on rank r � 1 vector bundles 
on Fe, for any e � 0, with respect to a naturally associated 
(very ample) polarization.
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Introduction

Let X be a smooth irreducible projective variety of dimension n � 1 and let H be a 
very ample divisor on X. A vector bundle U on X is said to be Ulrich with respect to H if 
it satisfies suitable cohomological conditions involving some multiples of the polarization 
induced by H (cf. Definition 1.1 below for precise statement and, e.g. [5, Thm. 2.3], for 
equivalent conditions).

Ulrich vector bundles first appeared in Commutative Algebra in the paper [30] by B. 
Ulrich from 1984, since these bundles enjoy suitable extremal cohomological properties. 
After that, the attention on Ulrich bundles entered in the realm of Algebraic Geometry 
with the paper [20] where, among other things, the authors compute the Chow form of 
a projective variety X using Ulrich vector bundles on X, under the assumption that X
supports Ulrich bundles.

In recent years there has been a huge amount of work on Ulrich bundles (for nice 
surveys the reader is referred to e.g. [15,17]), mainly investigating the following problems:

• Given any polarization H on a variety X, does there exist a vector bundle U which 
is Ulrich with respect to H?

• Or even more generally, given a variety X does there exist a very ample divisor H, 
inducing a polarization on X, and a vector bundle U on X which is Ulrich with 
respect to H?

• What is the smallest possible rank for an Ulrich bundle on a given polarized vari-
ety (X, H) (the so called Ulrich complexity of X w.r.t. H, denoted by ucH(X), cf. 
Remark 1.2-(i) below)?

• If Ulrich bundles on (X, H) do exist, are they stable bundles? If not empty, are their 
moduli spaces M either smooth or at least reduced?

• What is dim(M)?

Although something is known about these problems for some specific classes of vari-
eties (e.g. curves, Segre, Veronese, Grassmann varieties, rational normal scrolls, hyper-
surfaces, some classes of surfaces and threefolds, cf. e.g. [5,11,15,17] for overviews) the 
above questions are still open in their full generality even for surfaces.

In the present paper we investigate the case when X is a 3-fold scroll over a Hirzebruch 
surface Fe, with e � 0. More precisely we focus on 3-fold scrolls Xe arising as embed-
ding, via very-ample tautological line bundles OP(Ee)(1), of projective bundles P (Ee), 
where Ee are very-ample rank-2 vector bundles on Fe with Chern classes c1(Ee) numer-
ically equivalent to 3Ce + bef and c2(Ee) = ke, where Ce and f are the generators of 
Num(Fe) and where be and ke are integers satisfying some natural numerical conditions 
(cf. Assumption 1.8 and Remark 1.9 below).

In this set-up one gets 3-fold scrolls Xe ⊂ Pne , with ne = 4be − ke − 6e +4, which are 
non–degenerate and of degree deg(Xe) = 6be−9e −ke (cf. (2.2) below), whose hyperplane 
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section divisor we denote by ξ. The aim of this paper is to study the behavior of 3-fold 
scrolls (Xe, ξ) as above in terms of Ulrich bundles they can support.

A reason for such interest comes from the fact that the existence of Ulrich bundles on 
geometrically ruled surfaces has been considered in [4,2,12] while in [22] the existence of 
Ulrich bundles of rank one and two on low degree smooth 3–fold scrolls over a surface 
was investigated and among such 3–folds there are scrolls over Fe with e = 0, 1 (results 
for other polarizations are contained in [26]). Hence it is reasonable to explore what 
happens for 3-fold scrolls (Xe, ξ), for any e � 0. On the other hand in [8], [9], [23] the 
Hilbert schemes of 3–fold scrolls (Xe, ξ) were studied and so it is natural to understand 
how the Ulrich bundles would behave in the irreducible components constructed therein.

Our main result is the following:

Main Theorem For any integer e � 0, consider the Hirzebruch surface Fe and let 
OFe

(α, β) denote the line bundle αCe + βf on Fe, where Ce and f are the generators of 
Num(Fe).

Let (Xe, ξ) be a 3-fold scroll over Fe as above, where ϕ : Xe → Fe denote the scroll 
map. Then:

(a) Xe does not support any Ulrich line bundle w.r.t. ξ unless e = 0. In this latter 
case, the unique Ulrich line bundles on X0 are the following:

(i) L1 := ξ + ϕ∗OF0(2, −1) and L2 := ξ + ϕ∗OF0(−1, b0 − 1);
(ii) for any integer t � 1, M1 := 2ξ + ϕ∗OF0(−1, −t − 1) and M2 := ϕ∗OF0(2, 3t − 1), 

which only occur for b0 = 2t, k0 = 3t.

(b) Set e = 0 and let r � 2 be any integer. Then the moduli space of rank-r vector 
bundles Ur on X0 which are Ulrich w.r.t. ξ and with first Chern class

c1(Ur) =

⎧⎨
⎩rξ + ϕ∗OF0(3, b0 − 3) + ϕ∗OF0

(
r−3
2 , (r−3)

2 (b0 − 2)
)
, if r is odd,

rξ + ϕ∗OF0( r2 ,
r
2 (b0 − 2)), if r is even,

is not empty and it contains a generically smooth component M(r) of dimension

dim(M(r)) =
{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even.

The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle, of slope w.r.t. ξ
given by μ(Ur) = 8b0−k0−3. If moreover r = 2, then U2 is also special (cf. Definition 1.3
below).

(c) When e > 0, let r � 2 be any integer. Then the moduli space of rank-r vector 
bundles Ur on Xe which are Ulrich w.r.t. ξ and with first Chern class
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c1(Ur) =

⎧⎨
⎩rξ + ϕ∗OFe

(3, be − 3) + ϕ∗OFe

(
r−3
2 , (r−3)

2 (be − e− 2)
)
, if r is odd,

rξ + ϕ∗OFe

(
r
2 ,

r
2 (be − e− 2)

)
, if r is even,

is not empty and it contains a generically smooth component M(r) of dimension

dim(M(r)) =

⎧⎨
⎩
(

(r−3)2
4 + 2

)
(6be − 9e− 4) + 9

2 (r − 3)(2be − 3e), if r is odd,
r2

4 (6be − 9e− 4) + 1, if r is even.

The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle, of slope w.r.t. 
ξ given by μ(Ur) = 8be − ke − 12e − 3. If moreover r = 2, then U2 is also special.

The proof of the Main Theorem will be the collection of those of Theorems 2.1, 3.1, 3.4, 
4.9, 4.14 and 4.19.

We like to point out that our result is not covered by those in [26], since the very 
ample polarizations considered therein are of the form ξ+ϕ∗(A), where A is a very ample 
polarization on the base surface (cf. [26, Theorem B, Theorem 5.1, Corollary 5.17]).

Recall that for a given polarized variety X there is the notion of Ulrich wildness, as 
suggested by an analogous definition in [19]. To be more precise for a projective variety 
X ⊂ Pn the notion of being Ulrich wild can be defined both:
• algebraically, i.e. in terms of functorial behavior of suitable modules over the homoge-
neous coordinate ring of the variety X, we refer the reader to [21, Section 2.2] for more 
precise details,
• geometrically, namely if it possesses families of dimension r of pairwise non–isomorphic, 
indecomposable, Ulrich vector bundles for arbitrarily large r, cf. e.g. [19, Introduction].
Moreover, if X is Ulrich wild in the algebraic sense, then it is also Ulrich wild in the 
geometric sense (cf. [21, Rem. 2.6–(iii)]).

We must mention that the 3-fold scrolls (Xe, ξ) studied in this paper are algebraically 
Ulrich wild (and thus, from above, also geometrically Ulrich wild) and this follows from 
the results in [21]. In fact, when e = 0, the Ulrich line bundles L1 and L2 as in Main 
Theorem–(a) satisfy the conditions of [21, Theorem A, Corollary 3.1] as well as, when 
e > 0, two general Ulrich rank 2 vector bundles as in Theorem 3.4, which are not 
isomorphic, satisfy the same conditions in [21, Theorem A, Corollary 3.1]. These facts 
imply that Xe is (strictly) algebraically Ulrich wild for any e � 0, see [21, Def. 2.5] for 
precise definition.

In this perspective, Main Theorem not only computes the Ulrich complexity of the 
3-fold scrolls (Xe, ξ) that we are considering but it also gives a constructive proof of the 
fact that (Xe, ξ) is geometrically Ulrich wild, for any integer e � 0, explicitly describing 
families of pairwise non–isomorphic, indecomposable, Ulrich vector bundles of arbitrarily 
large dimension and rank, with further details concerning possible ranks that can actually 
occur. Indeed one has:
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Main Corollary For any e � 0, the moduli spaces M(r) constructed in Main Theorem, 
(a)-(b)-(c), give rise to explicit families of arbitrarily large dimension and rank of slope-
stable, pairwise non–isomorphic, indecomposable, Ulrich vector bundles on (Xe, ξ), which 
gives an effective proof of the geometric Ulrich wildness of such varieties. Moreover,

(a) when e = 0, the Ulrich complexity of X0 w.r.t. ξ is ucξ(X0) = 1 and X0 supports 
Ulrich vector bundles w.r.t. ξ of any rank r � 1, with no gaps on r;

(b) for e > 0, the Ulrich complexity of Xe w.r.t. ξ is ucξ(Xe) = 2 and Xe supports 
Ulrich vector bundles w.r.t. ξ of any rank r � 2, with no gaps (except for r = 1).

Notice that 3-fold scrolls (Xe, ξ) as above are varieties not of minimal degree in Pne , 
being de �= ne − 2 (see (2.2)), which are moreover (strictly) Ulrich wild as in [21, Def. 
2.5]. This observation in particular implies that, for any e � 0, 3-folds scrolls (Xe, ξ) as 
above give rise to a class of varieties satisfying [21, Conjecture 1.].

As a consequence of the previous results, we moreover deduce Ulrichness results for 
vector bundles on the base surface Fe with respect to a naturally associated very ample 
polarization, see Theorem 5.1, whose proof directly follows from Main Theorem, Main 
Corollary and a natural one-to-one correspondence among rank r vector bundles on Xe, 
of the form ξ⊗ϕ∗(F), which are Ulrich w.r.t. ξ on Xe, and rank r vector bundles on Fe, 
of the form F(c1(Ee)), which are Ulrich w.r.t. c1(Ee) = 3Ce + bef (cf. Theorem 1.7 and 
Section 5 below).

An open question is certainly concerned with irreducibility of moduli spaces of rank 
r vector bundles on Xe as in Main Theorem above.

The paper consists of five sections. In Section 1 we recall some generalities on Ulrich 
vector bundles on projective varieties, which will be used in the sequel, as well as pre-
liminaries from [1,9,10] to properly define 3-fold scrolls (Xe, ξ) which are the core of the 
paper. Sect. 2 deals with Ulrich line bundles on scrolls (Xe, ξ), cf. Theorem 2.1, whereas 
Sect. 3 focuses on the rank-2 case, using extensions suitably defined (cf. Theorem 3.1) 
as well as pull-back of appropriate bundles coming from the base (cf. Theorem 1.7 and 
Theorem 3.4). Section 4 deals with the general case of any rank r � 1, via inductive pro-
cesses, extensions, deformation and modular theory (cf. Theorems 4.9 and 4.19). Finally, 
in Section 5, we deal with the aforementioned Ulrichness result Theorem 5.1 dealing with 
rank r vector bundles on the base surface Fe which turn out to be Ulrich w.r.t. c1(Ee), 
deduced from Main Theorem and Main Corollary above.

Acknowledgments. We would like to thank Juan Pons–Llopis, for pointing out reference 
[21] and for useful conversation, Antonio Rapagnetta, for pointing out references [18], 
[29] together with precise explanations and advices concerning Claim 3.3 below. We are 
also grateful to Daniele Faenzi for some of his comments. Finally, we would like to deeply 
thank the anonymous referee for his/her enthusiastic report, full of encouragement and 
with important advices to improve the presentation.
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Notation and terminology

We work throughout over the field C of complex numbers. All schemes will be endowed 
with the Zariski topology. By variety we mean an integral algebraic scheme. We say 
that a property holds for a general point of a variety V if it holds for any point in 
a Zariski open non–empty subset of V . We will interchangeably use the terms rank-r
vector bundle on a variety V and rank-r locally free sheaf on V ; in particular for the case 
r = 1 of line bundles (equiv. invertible sheaves), to ease notation and if no confusion 
arises, we sometimes identify line bundles with Cartier divisors interchangeably using 
additive notation instead of multiplicative notation and tensor products. Thus, if L and 
M are line bundles on V , the dual of L will be denoted by either L∨, or L−1 or even 
−L, so that M ⊗ L∨ will be also denoted by either M ⊗ L−1 or just M − L. If P is 
either a parameter space of a flat family of geometric objects E defined on V (e.g. vector 
bundles, extensions, etc.) or a moduli space parametrizing geometric objects modulo a 
given equivalence relation, we will denote by [E] the parameter point (resp., the moduli 
point) corresponding to the geometric object E (resp., associated to the equivalence class 
of E). For further non-reminded terminology, we refer the reader to [25].

1. Preliminaries

We first remind some general definitions concerning Ulrich bundles on projective va-
rieties.

Definition 1.1. Let X ⊂ PN be a smooth variety of dimension n and let H be a hyperplane 
section of X. A vector bundle U on X is said to be Ulrich with respect to H if

Hi(X,U(−jH)) = 0 for i = 0, · · · , n and 1 � j � dimX.

Remark 1.2. (i) If X supports Ulrich bundles w.r.t. H then one sets ucH(X), called the 
Ulrich complexity of X w.r.t. H, to be the minimum rank among possible Ulrich vector 
bundles w.r.t. H on X.
(ii) If U1 is a vector bundle on X, which is Ulrich w.r.t. H, then U2 := U∨

1 (KX+(n +1)H)
is also Ulrich w.r.t. H. The vector bundle U2 is called the Ulrich dual of U1. From this 
we see that, if Ulrich bundles of some rank r on X do exist, then they come in pairs.

Definition 1.3. Let X ⊂ PN be a smooth variety of dimension n polarized by H, where 
H is a hyperplane section of X, and let U be a rank-2 Ulrich vector bundle on X. Then 
U is said to be special if c1(U) = KX + (n + 1)H.

Notice that, because U in Definition 1.3 is of rank-2, then U∨ ∼= U(−c1(U)) therefore 
being special is equivalent for U to be isomorphic to its Ulrich dual bundle.

We now remind facts concerning (semi)stability and slope-(semi)stability properties 
of these bundles (cf. [11, Def. 2.7]). Let E be a vector bundle on X; recall that E is 
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said to be semistable if for every non-zero coherent subsheaf F ⊂ E, with 0 < rk(F) :=
rank of F < rk(E), the inequality PF

rk(F) � PE

rk(E) holds true, where PF and PE are the 
Hilbert polynomials of the sheaves. Furthermore, E is stable if the strict inequality above 
holds.

Similarly, recall that the slope of a vector bundle E (w.r.t. OX(H)) is defined to be 

μ(E) := c1(E)·Hn−1

rk(E) ; the bundle E is said to be μ-semistable, or even slope-semistable, if for 
every non-zero coherent subsheaf F ⊂ E with 0 < rk(F) < rk(E), one has μ(F) � μ(E). 
The bundle E is μ-stable, or slope-stable, if the strict inequality holds.

The two definitions of (semi)stability are related as follows (cf. e.g. [11, §2]):

slope-stability ⇒ stability ⇒ semistability ⇒ slope-semistability.

When the bundle in question is in particular Ulrich, the following more precise situation 
holds:

Theorem 1.4. (cf. [11, Thm. 2.9]) Let X ⊂ PN be a smooth variety of dimension n and 
let H be a hyperplane section of X. Let U be a rank-r vector bundle on X which is Ulrich 
w.r.t. H. Then:
(a) U is semistable, so also slope-semistable;
(b) If 0 → F → U → G → 0 is an exact sequence of coherent sheaves with G torsion-free, 
and μ(F) = μ(U), then F and G are both Ulrich vector bundles.
(c) If U is stable then it is also slope-stable. In particular, the notions of stability and 
slope-stability coincide for Ulrich bundles.

We like to point out that the property of being Ulrich in a family of vector bundles 
is an open condition. Indeed if U is a deformation of an Ulrich bundle F then U is also 
Ulrich and this because the cohomology vanishing of F(−j), for 1 � j � dimX, implies 
the cohomology vanishing of U(−j), by semi–continuity.

We also like to remark that because Ulrich bundles are semistable, then any family of 
Ulrich bundles with given rank and Chern classes is bounded, see for instance A. Langer 
[28].

In particular, if the bundles in a bounded family are simple, then Casanellas and 
Hartshorne have proved

Proposition 1.5. (see [11, Proposition 2.10]) On a nonsingular projective variety X, any 
bounded family of simple bundles E with given rank and Chern classes satisfying H2(E ⊗
E∨) = 0 has a smooth modular family.

The existence of a smooth modular family of simple vector bundles along with the 
fact that the property of being Ulrich in a family of vector bundles is an open condition 
will help us in showing the existence of stable Ulrich bundles on the varieties we are 
dealing with.
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In the sequel, we will focus on n = dim(X) = 3; in such a case, the following notation 
will be used throughout this work.

X is a smooth, irreducible, projective variety of dimension 3 (or simply a 3-fold);
χ(F) =

∑3
i=0(−1)ihi(F), the Euler characteristic of F, where F is any vector bundle 

of rank r � 1 on X;
KX the canonical bundle of X. When the context is clear, X may be dropped, so 
KX = K;
ci = ci(X), the ith Chern class of X;
d = degX = L3, the degree of X in the embedding given by a very-ample line bundle 
L;
g = g(X), the sectional genus of (X, L) defined by 2g − 2 = (K + 2L)L2;
if S is a smooth surface, ≡ will denote the numerical equivalence of divisors on S.

For non-reminded terminology and notation, we basically follow [25].

Definition 1.6. A pair (X, L), where X is a 3-fold and L is an ample line bundle on X, is a 
scroll over a normal variety Y if there exist an ample line bundle M on Y and a surjective 
morphism ϕ : X → Y with connected fibers such that KX + (4 − dimY )L = ϕ∗(M).

In particular, if Y is a smooth surface and (X, L) is a scroll over Y , then (see [7, Prop. 
14.1.3]) X ∼= P (E), where E = ϕ∗(L) is a vector bundle on Y and L is the tautological 
line bundle on P (E). Moreover, if S ∈ |L| is a smooth divisor, then (see e.g. [7, Thm. 
11.1.2]) S is the blow up of Y at c2(E) points; therefore χ(OY ) = χ(OS) and

d := L3 = c21(E) − c2(E). (1.1)

For the reader convenience we recall that the proof of [22, Theorem 2.4] more precisely 
shows the following result.

Theorem 1.7. Let (Y, H) be a polarized surface with H very ample and let E be a rank 
two vector bundle on Y such that E is (very) ample and spanned. Let F be a rank 
r � 1 vector bundle on Y . Then on the 3-fold scroll X ∼= P (E) π−→ Y , the vector bundle 
U := ξ ⊗ π∗F is Ulrich with respect to ξ, where ξ denotes the tautological line bundle on 
X, with (X, ξ) ∼= (P (E), OP(E)(1)), if and only if F is such that

Hi(Y,F) = 0 and Hi(Y,F(−c1(E))) = 0, 0 � i � 2. (1.2)

In particular, if c1(E) is very ample on Y , then the rank r vector bundle on X, U =
ξ⊗π∗F, is Ulrich with respect to ξ if and only if the rank r vector bundle on Y , F(c1(E)), 
is Ulrich with respect to c1(E).
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Throughout this work, the base Y of the scroll X in Definition 1.6 will be the Hirze-
bruch surface Fe := P (OP1 ⊕ OP1(−e)), with e � 0 an integer.

Let πe : Fe → P 1 be the natural projection onto the base. Then Num(Fe) = Z[Ce] ⊕
Z[f ], where:
• f := π∗

e(p), for any p ∈ P 1, whereas
• Ce denotes either the unique section corresponding to the morphism of vector bundles 
on P 1 OP1 ⊕OP1(−e) →→ OP1(−e), when e > 0, or the fiber of the other ruling different 
from that induced by f , when otherwise e = 0.
In particular

C2
e = −e, f2 = 0, Cef = 1.

Let Ee be a rank-two vector bundle over Fe and let ci(Ee) be its ith-Chern class. Then 
c1(Ee) ≡ aCe + bf , for some a, b ∈ Z, and c2(Ee) ∈ Z. For the line bundle L ≡ αCe +βf

we will also use the notation OFe
(α, β).

From now on, we will consider the following:

Assumption 1.8. Let e � 0, be, ke be integers such that

be − e < ke < 2be − 4e, (1.3)

and let Ee be a rank-two vector bundle over Fe, with

c1(Ee) ≡ 3Ce + bef and c2(Ee) = ke,

which fits in the exact sequence

0 → Ae → Ee → Be → 0, (1.4)

where Ae and Be are line bundles on Fe such that

Ae ≡ 2Ce + (2be − ke − 2e)f and Be ≡ Ce + (ke − be + 2e)f (1.5)

From (1.4), in particular, one has c1(Ee) = Ae + Be and c2(Ee) = AeBe.

Remark 1.9. Here we explain the above assumptions and their consequences. First of all, 
notice that condition be − e < ke in (1.3) ensures that the line bundle Be is very ample 
(cf. [25, §V, Prop. 2.20]) and non–special, i.e. h1(Be) = 0 (cf. [23, Lemma 3.2], where 
computations hold true also for cases e = 0, 1). Similarly, condition ke < 2be − 4e in 
(1.3) implies that also Ae is very ample (cf. [25, §V, Prop. 2.20]) and non-special (cf. [23, 
Lemma 3.9], where computations hold true also for cases e = 0, 1). Notice further that 
(1.3) gives in particular

be � 3e + 1;
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on the other hand, if be = 3e + 1, then (1.3) would give

2e + 1 < ke < 2e + 2.

Thus it is clear that, in order to have integers be and ke satisfying (1.3), it is implicit 
from Assumption 1.8 that one must have

be � 3e + 2, (1.6)

which is in accordance with classification results by T. Fujita [24, (1.3) Lemma].
Moreover, from [6, Prop. 2.6, 4.2] and from the non-specialty of Ae, it follows that 

any vector bundle Ee fitting in the exact sequence (1.4) turns out to be very ample on 
Fe, namely the tautological line bundle OP(Ee)(1) is very ample on P (Ee). This is in 
accordance with the necessary numerical conditions for very–ampleness of Ee as in [1, 
Prop. 7.2].

At last we stress that the existence of the exact sequence (1.4), with Ae, Be as in 
(1.5), is a natural condition; indeed if one is concerned with very-ample rank-two vector 
bundles Ee, with c1(Ee) ≡ 3Ce + bef , one must have that the restriction of Ee at any 
fiber f is isomorphic to OP1(2) ⊕ OP1(1), i.e. Ee is uniform in the sense of [10] and [3], 
so Ee fits in an exact sequence as (1.4), with Ae and Be as in (1.5) (cf. [1, Prop. 7.2] and 
[10]).

2. Ulrich line bundles on 3-fold scrolls over Fe

In this section, we consider 3-dimensional scrolls over Fe, with e � 0, in projective 
spaces satisfying conditions as in Assumption 1.8.

Let therefore Ee be a very ample, rank-two vector bundle over Fe such that

c1(Ee) ≡ 3Ce + bef, c2(Ee) = ke,

with be and ke integers as in (1.3). Let (P (Ee), OP(Ee)(1)) be the associated 3-fold scroll 
over Fe, and let πe : Fe → P 1 and ϕ : P (Ee) → Fe be the usual projections. Then 
OP(Ee)(1) gives rise to the embedding

Φe := Φ|OP(Ee)(1)| : P (Ee) ↪→ Xe ⊂ Pne , (2.1)

where Xe = Φe(P (Ee)) is smooth, non-degenerate, of degree de and sectional genus ge, 
with

ne = 4be − ke − 6e + 4, de = 6be − 9e− ke and ge = 2be − 3e− 2. (2.2)

We set (Xe, ξ) ∼= (P (Ee), OP(Ee)(1)). Our aim in this section is to find out if there actually 
exist on Xe line bundles which are Ulrich w.r.t. ξ and, in the affirmative case, to classify 
them.
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Theorem 2.1. Let e � 0 be an integer and let (Xe, ξ) be a 3-fold scroll as above. Then Xe

does not support any Ulrich line bundle w.r.t. ξ unless e = 0, in which case the following 
are the unique Ulrich line bundles on X0:

(i) L1 := ξ+ϕ∗OF0(2, −1) and its Ulrich dual L2 := ξ+ϕ∗OF0(−1, b0−1), with b0 � 2, 
see (1.6);

(ii) for any integer t � 1, M1 := 2ξ + ϕ∗OF0(−1, −t − 1) and its Ulrich dual M2 :=
ϕ∗OF0(2, 3t − 1), which only occur for b0 = 2t, k0 = 3t.

Remark 2.2. We like to point out that, for any integer t � 1, if (b0, k0) = (2t, 3t) on F0
we have four distinct Ulrich line bundles on X0, for any fixed integer t � 1, precisely L1
and its Ulrich dual L2, M1 and its Ulrich dual M2. For other values of b0 � 2 not in 
the above mentioned range, we have only two Ulrich line bundles, L1 and its Ulrich dual 
L2. Moreover, in view of Theorem 1.7, we notice that the Ulrich line bundles L1 and L2
on X0 are associated to the line bundles OF0(5, b0 − 1) and OF0(2, 2b0 − 1), respectively, 
which are the only Ulrich line bundles on F0 with respect to the very ample polarization 
c1(E0) = OF0(3, b0) (cf. [12, Example 2.3], [2, Prop. 4.4]).

Proof. (of Theorem 2.1) Let L = aξ+ϕ∗OFe
(α, β) be an Ulrich line bundle on Xe. From 

[22, Corollary 2.2] we know that a = 0, 1, 2.
Case I: If a = 1 then, by Theorem 1.7, L = ξ + ϕ∗OFe

(α, β) is Ulrich with respect to ξ
if and only if

Hi(Fe,OFe
(α, β)) = Hi(Fe,OFe

(α, β) − c1(Ee)) = 0 for i = 0, 1, 2.

Thus χ(Fe, OFe
(α, β)) = χ(Fe, OFe

(α, β) − c1(Ee)) = 0. By Riemann-Roch we get, re-
spectively,

(α + 1)(eα− 2β − 2) = 0 (2.3)

and

(α− 2)(eα− 2β + 2be − 3e− 2) = 0 (2.4)

Thus either α = −1 which, along with (2.4), gives β = be − 2e − 1 or α = 2 which, along 
with (2.3), gives β = e −1. We need to check that Hi(Fe, OFe

(α, β)) = Hi(Fe, OFe
(α, β) −

c1(Ee)) = 0 for i � 0, with (α, β) = (−1, be − 2e − 1) or (α, β) = (2, e − 1).
If e = 0 then the vanishings follow by the Künneth formula, hence we get L = L2 in 

the first case whereas L = L1 in the latter case, where L1 and L2 are as in the statement.
If e > 0, the cohomology groups are not all zero therefore there are no Ulrich line 

bundles with a = 1 in these cases.
Case II: If a = 2 then, by [22, Corollary 2.2], L = 2ξ+ϕ∗OFe

(α, β) is Ulrich with respect 
to ξ if and only if
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Hi(Fe,OFe
(α, β)) = Hi(Fe,Ee(OFe

(α, β))) = 0 for i = 0, 1, 2.

Thus χ(Fe, OFe
(α, β)) = χ(Fe, Ee(OFe

(α, β)))) = 0. By Riemann-Roch we get (2.3) and

−eα2 + 2αβ + αbe − 4eα + 2α + 5β + 4be − 6e− ke + 5 = 0, (2.5)

respectively. From (2.3) either α = −1 or β = αe
2 − 1.

Case II-a: α = −1. Plugging such value in (2.5) we get β = −be + e + ke

3 − 1, which 
forces ke = 3t for some t ∈ Z, hence β = −be+e +t −1. We compute Hi(Fe, OFe

(α, β)) =
Hi(Fe, OFe

(−1, −be + e + t − 1)) and Hi(Fe, Ee(OFe
(−1, −be + e + t − 1))) for i = 0, 1, 2.

Now Riπe∗(OFe
(−1, −be + e + t − 1)) = 0, for i � 0, hence, from Leray’s isomorphism 

we have Hi(Fe, OFe
(−1, −be + e + t − 1)) ∼= Hi(P 1, 0) = 0, for i = 0, 1, 2.

To compute Hi(Fe, Ee(OFe
(−1, −be + e + t − 1))) we recall that the vector bundle Ee

sits in the exact sequence (1.4), where Ae ∈ |OFe
(2, 2be−ke− 2e)| and Be ∈ |OFe

(1, ke−
be + 2e)| and after twisting (1.4) with OFe

(−1, −be + e + t − 1) we have

0 → OFe
(1, be−2t−e−1) → Ee(OFe

(−1,−be+e+t−1)) → OFe
(0, 4t−2be+3e−1) → 0.

(2.6)
Now

Riπe∗OFe
(1, be − 2t− e− 1) = 0, for i > 0, and

πe∗OFe
(1, be − 2t− e− 1) ∼= (OP1 ⊕ OP1(−e)) ⊗ OP1(be − 2t− e− 1),

hence, from Leray’s isomorphism we have

Hi(Fe,OFe
(1, be − 2t− e− 1)) ∼= Hi(P 1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1)) (2.7)

= Hi(P 1,OP1(be − 2t− e− 1)) ⊕Hi(P 1,OP1(be − 2t− 2e− 1))

and similarly

Hi(Fe,OFe
(0, 4t− 2be + 3e− 1)) ∼= Hi(P 1,OP1(4t− 2be + 3e− 1)) (2.8)

We consider first the case e = 0 and then the case e � 1.
If e = 0, then (2.7) and (2.8) become

Hi(F0,OF0(1, b0 − 2t− 1)) = Hi(P 1,OP1(b0 − 2t− 1)⊕2)

Hi(F0,OF0(0, 4t− 2b0 − 1)) = Hi(P 1,OP1(4t− 2b0 − 1))

If b0 − 2t − 1 � 0 then

h0(P 1,OP1(b0 − 2t− 1)⊕2) = 2(b0 − 2t)

h1(P 1,OP1(b0 − 2t− 1)⊕2) = 0, by Serre’s duality on P 1.
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Note that if b0 − 2t − 1 � 0 then 4t − 2b0 − 1 � −3 hence h0(P 1, OP1(4t − 2b0 − 1)) = 0
and, by Serre duality, h1(P 1, OP1(4t − 2b0 − 1)) ∼= h0(P 1, OP1(2b0 − 4t − 1)) = 2b0 − 4t.

These computations, along with the cohomology sequence associated to (2.6), give

hi(E0(OF0(−1,−b0 + t− 1))) = 2b0 − 4t � 2 (by assumption), for i = 0, 1,

h2(E0(OF0(−1,−b0 + t− 1))) = 0, trivially.

If b0 − 2t − 1 < 0 then

h0(P 1,OP1(b0 − 2t− 1)⊕2) = 0

h1(P 1,OP1(b0 − 2t− 1)⊕2) ∼= 2h0(P 1,OP1(2t− b0 − 1)), by Serre’s duality on P 1.

Note that

h0(P 1,OP1(2t− b0 − 1)) =
{

0 if b0 = 2t
2t− b0 if 2t− b0 − 1 � 0.

Note also that b0 − 2t − 1 < 0 implies that 4t − 2b0 − 1 � −2, hence
if 4t −2b0−1 � 0, h0(P 1, OP1(4t −2b0−1)) = 4t −2b0 and h1(P 1, OP1(4t −2b0−1)) = 0;
if 4t − 2b0 − 1 = −1, h0(P 1, OP1(4t − 2b0 − 1)) = h1(P 1, OP1(4t − 2b0 − 1)) = 0;
if 4t − 2b0 − 1 = −2, h0(P 1, OP1(4t − 2b0 − 1)) = 0 and h1(P 1, OP1(4t − 2b0 − 1)) = 1.
These facts, along with (2.6), give that

hi(E0(OF0(−1,−b0 + t− 1))) = 0, for i = 0, 1, 2, if b0 = 2t,

h0(E0(OF0(−1,−b0 + t− 1))) �= 0, in the remaining two cases,

the latter case holds because otherwise from the cohomology sequence associated to (2.6)
it would follow that h1(E0(OF0(−1, −b0 + t − 1))) < 0, which is impossible. Thus we are 
left with the cases b0 = 2t, k0 = 3t, where t � 1, as it follows from (1.3) and (1.6). Hence 
in this case we get L = M1 is Ulrich and its Ulrich dual is M2.

If e � 1 in order to compute the cohomology groups in (2.7) and (2.8) we consider 
first the case in which be − 2t − 2e − 1 � 0. Note that in this case also be − 2t − e − 1 � 0
and thus in (2.7) we have

h0(Fe,OFe
(1, be − 2t− e− 1)) = h0(P 1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1))

= 2be − 4t− 3e,

h1(Fe,OFe
(1, be − 2t− e− 1)) = h1(P 1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1)) = 0.

As for (2.8) note that 4t − 2be + 3e − 1 � −3 − e, by assumption, and thus

H0(Fe,OFe
(0, 4t− 2be + 3e− 1)) ∼= H0(P 1,OP1(4t− 2be + 3e− 1)) = 0 and

h1(P 1,OP1(4t− 2be + 3e− 1))) = h0(P 1,OP1(2be − 4t− 3e− 1))) = 2be − 4t− 3e.
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From the cohomology sequence associated to (2.6) it follows that

h0(Ee(OFe
(−1,−be + e + t− 1))) = h1(Ee(OFe

(−1,−be + e + t− 1)))

= 2be − 4t− 3e � 2 + e,

because 4t − 2be + 3e − 1 � −3 − e.
If be − 2t − e − 1 � 0 and be − 2t − 2e − 1 < 0 (the case be − 2t − 2e − 1 � 0 was just 

treated), then

h0(Fe,OFe
(1, be − 2t− e− 1)) = h0(P 1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1))

= be − 2t− e � 1.

Thus h0(Ee(OFe
(−1, −be + e + t − 1)) � h0(Fe, OFe

(1, be − 2t − e − 1)) = be − 2t − e � 1.
Case II-b: β = αe

2 − 1. Plugging such value in (2.5) we get

α = −8be + 12e + 2ke
2be − 3e (2.9)

which implies that

(α + 4)(2be − 3e) = 2ke.

By (1.3) and (1.6), we get 2be−3e � 3e +4 � 2 and ke > be−e � 2e +2. Thus α+4 > 0, 
that is α � −3. Notice that if α = −3 then (2.9) gives be = 3

2e +ke = 1
2e +e +ke >

1
2e +be

by (1.3), which is a contradiction. Hence α � −2 and therefore from (2.9) it follows that 
ke � 2be − 3e which contradicts the condition ke < 2be − 4e in (1.3).

The proof is complete since the case a = 0 is the Ulrich dual of the case a = 2. �
3. Rank-2 Ulrich vector bundles on 3-fold scrolls over Fe

As in the previous section, we consider 3-fold scrolls (Xe, ξ), with e � 0, satisfying 
conditions as in Assumption 1.8. Our aim is to prove the existence of some moduli spaces 
of rank-2 Ulrich vector bundles on such 3-fold scrolls and to study their basic properties. 
As a matter of notation, in the sequel F will always denote the fiber of the natural scroll 
map ϕ : Xe

∼= P (Ee) → Fe.

3.1. Rank-2 Ulrich vector bundles on 3-fold scrolls over F0

From Theorem 2.1 we know that on X0 there exist Ulrich line bundles. Using these 
line bundles, we will construct rank two Ulrich vector bundles arising as non-trivial 
extensions of them.
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Case L: Let L1 and L2 be line bundles on X0 as in Theorem 2.1-(i). Notice that

Ext1(L2, L1) ∼= H1(X0, L1 − L2) = H1(X0, ϕ
∗OF0(3,−b0)) ∼= H1(F0,OF0(3,−b0))

∼= H1(P 1, S3(OP1 ⊕ OP1)(−b0)) ∼= H1(P 1,O⊕4
P1 (−b0))

∼= H0(P 1,O⊕4
P1 (b0 − 2)).

Hence dim Ext1(L2, L1) = 4b0−4 � 4, being b0 � 2 (see (1.6)). Thus there are non-trivial 
extensions F1

0 → L1 → F1 → L2 → 0 (3.1)

of L2 by L1. Similarly

Ext1(L1, L2) ∼= H1(X0, L2 − L1) = H1(X0, ϕ
∗OF0(−3, b0)) ∼= H1(F0,OF0(−3, b0))

∼= H1(F0,OF0(1,−2 − b0)) ∼= H1(P 1, (OP1 ⊕ OP1)(−2 − b0))
∼= H0(P 1,O⊕2

P1 (b0)).

Hence dim Ext1(L1, L2) = 2b0 + 2 � 6 and thus there are non-trivial extensions F′
1

0 → L2 → F′
1 → L1 → 0 (3.2)

of L1 by L2. Notice that the vector bundles F1 and F′
1 are both rank two vector bundles 

which are Ulrich w.r.t. ξ with

c1(F1) = c1(F′
1) = 2ξ + ϕ∗OF0(1, b0 − 2) and

c2(F1) = c2(F′
1) = ξ · ϕ∗OF0(4, 2b0 − 2) + (2b0 − k0 − 1)F.

Moreover, since L1 and L2 are non-isomorphic line bundles with the same slope

μ(L1) = μ(L2) = 8b0 − k0 − 3

with respect to ξ then, by [11, Lemma 4.2], F1 and F′
1 are simple vector bundles, in 

particular indecomposable.
The family of extensions (3.1) is of dimension 4b0 − 4 while the one as in (3.2) is of 

dimension 2b0 + 2, which are different positive integers unless b0 = 3.
Case M: Let M1 and M2 be line bundles on X0 as in Theorem 2.1-(ii). As above one 
computes

Ext1(M2,M1) ∼= H1(X0,M1 −M2) = H1(X0, 2ξ + ϕ∗OF0(−3,−4t))
∼= H1(F0, S

2(E0)(−3,−4t)),
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hence we need to compute H1(F0, S2(E0)(−3, −4t)), where S2(E0) denotes the second 
symmetric power of E0. The vector bundle E0 fits in the exact sequence (1.4), with A0
and B0 as in (1.5) and with b0 = 2t and k0 = 3t, t � 1. By [25, 5.16.(c), p. 127], there is 
a finite filtration of S2(E0),

S2(E0) = F 0 ⊇ F 1 ⊇ F 2 ⊇ F 3 = 0

with quotients

F p/F p+1 ∼= Sp(A0) ⊗ S2−p(B0),

for each 0 � p � 2. Hence

F 0/F 1 ∼= S0(Ae) ⊗ S2(B0) = 2B0

F 1/F 2 ∼= S1(A0) ⊗ S1(B0) = A0 + B0

F 2/F 3 ∼= S2(A0) ⊗ S0(B0) = 2A0, that is F 2 = 2A0,

since F 3 = 0. Thus, we get the following exact sequences

0 → F 1 → S2(E0) → 2B0 → 0 (3.3)

0 → F 2 → F 1 → A0 + B0 → 0 (3.4)

F 2 = 2A0 (3.5)

Twisting (3.3), (3.4) with OF0(−3, −4t) and using (3.5) we get

0 → F 1(−3,−4t) → S2(E0) ⊗ OF0(−3,−4t) → OF0(−1,−2t) → 0 (3.6)

0 → OF0(1,−2t) → F 1 ⊗ OF0(−3,−4t) → OF0(0,−2t) → 0 (3.7)

First we focus on (3.7); one has hi(OF0(1, −2t)) = hi(P 1, OP1(−2t)⊕2), so, for dimen-
sion reasons, hi(OF0(1, −2t)) = 0, for any i � 2. Since t � 1, h0(OF0(1, −2t)) = 0 and 
h1(OF0(1, −2t)) = 4t − 2. Similarly

hi(OF0(0,−2t)) = hi(P 1,OP1(−2t))

so, hi(OF0(0, −2t)) = 0, for any i � 2, h0(OF0(0, −2t)) = 0 and h1(OF0(0, −2t)) = 2t − 1
then (3.7) gives

h1(F 1(−3,−4t)) = 6t− 3, hi(F 1(−3,−4t)) = 0, for i = 0, 2. (3.8)

Passing to (3.6) observe that, hi(OF0(−1, −2t)) = 0, for any i � 0. This, along with 
(3.8) and (3.6) gives
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h1(2ξ + ϕ∗OF0(−3,−4t)) = h1(F0, S
2(E0(−3,−4t)) = 6t− 3 = 3b0 − 3,

hi(2ξ + ϕ∗OF0(−3,−4t)) = hi(F0, S
2(E0)(−3,−4t)) = 0, for i = 0, 2, 3.

Hence dim(Ext1(M2, M1)) = 3b0 − 3 � 3 because b0 � 2 (see (1.6)). Thus there are 
non-trivial extensions F2

0 → M1 → F2 → M2 → 0 (3.9)

of M2 by M1. Similarly,

Ext1(M1,M2) ∼= H1(P (E0),M2 −M1) = H1(−2ξ + ϕ∗OF0(3, 4t))
∼= H2(ϕ∗OF0(−2,−b0 − 2)) ∼= H2(F0,OF0(−2,−b0 − 2))
∼= H0(F0,OF0(0, b0)) ∼= H0(P 1,OP1(b0)).

Hence dim(Ext1(M1, M2)) = b0 + 1 � 3 and thus there are non-trivial extensions F′
2

0 → M2 → F′
2 → M1 → 0 (3.10)

of M1 by M2. Notice that the vector bundles F2 and F′
2 are both Ulrich rank two vector 

bundles with

c1(F2) = c1(F′
2) = 2ξ + ϕ∗OF0(1, 2t− 2) and

c2(F2) = c2(F′
2) = ξϕ∗OF0(4, 6t− 2) − (5t + 1)F.

Moreover, since M1 and M2 are non-isomorphic line bundles with the same slope w.r.t. 
ξ

μ(M1) = μ(M2) = 13t− 3,

then, by [11, Lemma 4.2], F2 and F′
2 are simple vector bundles, in particular indecom-

posable. The family of extensions (3.1) is of dimension 3b0 − 3 while the one as in (3.2)
has dimension b0 + 1, which are different positive integers unless b0 = 2.
Case L-M: If we consider extensions using both line bundles of type Li and Mj , with 
i, j = 1, 2, one can easily see that for some of them we get only trivial extensions, 
precisely:
Ext1(M1, L1) ∼= H1(X0, L1 −M1) = H1(X0, −ξ + ϕ∗OF0(3, t)) ∼= H1(F0, 0) = 0,
Ext1(L1, M2) ∼= H1(X0, M2 − L1) = H1(X0, −ξ + ϕ∗OF0(0, 3t)) ∼= H1(F0, 0) = 0,
Ext1(M1, L2) ∼= H1(X0, L2 −M1) = H1(X0, −ξ + ϕ∗OF0(0, 3t)) ∼= H ∼= H1(F0, 0) = 0,
Ext1(L2, M2) ∼= H1(X0, M2 − L2) = H1(X0, −ξ + ϕ∗OF0(3, 3t − b0) ∼= H1(F0, 0) = 0.
On the contrary, in the remaining possibilities we get non-trivial extensions and precisely:

Ext1(L1,M1) ∼= H1(X0,M1 − L1) = H1(X0, ξ + ϕ∗OF0(−3,−t)) ∼= H1(F0,E0(−3,−t));
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an easy computation gives that dim(Ext1(L1, M1)) = 1 and thus there are non-trivial 
extensions F3 such that c1(F3) = 3ξ +ϕ∗OF0(1, −t − 2) and c2(F3) = ξϕ∗OF09, 3t − 3) −
(8t + 1)F .

Ext1(M2, L1) ∼= H1(X0, L1 −M2) = H1(X0, ξ + ϕ∗OF0(0,−3t)) ∼= H1(F0,E0(0,−t));

in this case dim(Ext1(M2, L1)) = 5b0 − 5 � 5 and so there are non-trivial extensions 
F4 (because b0 � 2, by (1.6)) such that c1(F4) = ξ + ϕ∗OF0(4, 3t − 2) and c2(F4) =
ξϕ∗OF0(2, 3t − 1) + (6t − 4)F .

Ext1(L2,M1) ∼= H1(X0,M1 − L2) = H1(X0, ξ + ϕ∗OF0(0,−3t)) ∼= H1(F0,E0(0,−t)),

thus dim(Ext1(L2, M1)) = 5b0 − 5 � 5 and thus there are non-trivial extensions F5 with 
c1(F5) = 3ξ + ϕ∗OF0(−2, t − 2) and c2(F5) = ξϕ∗OF0(3, 7t − 3) + (2 − 7t)F .

Ext1(M2, L2) ∼= H1(X0, L2 −M2) = H1(X0, ξ + ϕ∗OF0(−3,−t)) ∼= H1(F0,E0(−3,−t))
∼= C;

thus there are non-trivial extensions F6 with c1(F6) = ξ+ϕ∗OF0(1, 5t − 2) and c2(F6) =
ξϕ∗OF0(2, 3t − 1) + (t − 1)F .

Previous computations show that there are Ulrich rank-2 vector bundles belonging to 
different moduli spaces, since their Chern classes are different.

As explained in Introduction, the aim of this paper is to give effective proofs for the 
Ulrich wildness of 3–fold scrolls (Xe, ξ) as above, for any e � 0, explicitly exhibiting 
irreducible components of moduli spaces of indecomposable Ulrich vector bundles of 
infinitely many ranks, together with all details as in Main Theorem and Main Corollary, 
namely Ulrich complexity of the Xe’s, generic smoothness and dimension of the modular 
components, etcetera. For these reasons, in the sequel we will focus only on extensions 
of type (3.1). In particular, here we prove the following theorem.

Theorem 3.1. Let (X0, ξ) ∼= (P (E0), OP(E0)(1)) be a 3-fold scroll over F0, with E0 as in 
Assumption 1.8. Let ϕ : X0 → F0 be the scroll map and F be the ϕ-fiber. Then the 
moduli space of rank-2 vector bundles U on X0 which are Ulrich w.r.t. ξ and with Chern 
classes

c1(U) = 2ξ+ϕ∗OF0(1, b0−2) and c2(U) = ξ ·ϕ∗OF0(4, 2b0−2)+(2b0−k0−1)F, (3.11)

is not empty and it contains a generically smooth component M of dimension

dim(M) = 6b0 − 3,

whose general point [U] corresponds to a special and slope-stable vector bundle, of slope
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μ(U) = 8b0 − k0 − 3, (3.12)

w.r.t. ξ and where b0 � 2 by (1.6).

Proof. We consider non–trivial extensions (3.1) as in Case L; recall that dim Ext1(L2,

L1) = 4b0 − 4 � 4, being b0 � 2, and moreover that a general vector bundle F1 arising 
from a general extension as in (3.1) is Ulrich w.r.t. ξ.

Moreover, since μ(L1) = μ(L2) = 8b0 − k0 − 3, as computed in §3.1-Case L, one 
has μ(F1) = 8b0 − k0 − 3 and furthermore, since L1 and L2 are slope–stable, of the 
same slope and non–isomorphic line bundles, by [11, Lemma 4.2], F1 is simple, that is 
h0(F1 ⊗ F∨

1 ) = 1, in particular it is indecomposable.
We now want to show that h2(F1 ⊗ F∨

1 ) = 0 = h3(F1 ⊗ F∨
1 ) and that χ(F1 ⊗ F∨

1 ) =
−6b0 + 3. Tensoring (3.1) with F∨

1 we get

0 → L1 ⊗ F∨
1 → F1 ⊗ F∨

1 → L2 ⊗ F∨
1 → 0. (3.13)

Dualizing (3.1) gives the following exact sequence

0 → L∨
2 → F∨

1 → L∨
1 → 0 (3.14)

Tensoring (3.14) with L1 and L2, respectively, gives

0 → L∨
2 ⊗ L1(= ϕ∗OF0(3,−b0)) → L1 ⊗ F∨

1 → OX0 → 0 (3.15)

0 → OX0 → L2 ⊗ F∨
1 → L2 ⊗ L∨

1 (= ϕ∗OF0(−3, b0)) → 0 (3.16)

Because F1 is simple, then h0(X, F1 ⊗ F∨
1 ) = 1. The remaining cohomology 

Hi(X, F1 ⊗ F∨
1 ) can be easily computed from the cohomology sequence associated to 

(3.15) and (3.16). Clearly hi(OX0) = 0 if i � 1 and h0(OX0) = 1. It remains to compute 
Hi(ϕ∗OF0(3, −b0)) and Hi(ϕ∗OF0(−3, b0)).

Hi(X0, ϕ
∗OF0(3,−b0)) ∼= Hi(F0,OF0(3,−b0)) ∼= Hi(P 1, S3(OP1 ⊕ OP1)(−b0)) (3.17)

Hi(P 1,O⊕4(−b0)) =
{

0 if i = 0, 2, 3
4b0 − 4 if i = 1

Similarly

Hi(X,ϕ∗OF0(−3, b0)) ∼= Hi(F0,OF0(−3, b0)) ∼= H2−i((F0,OF0(1,−2 − b0)) (3.18)

H2−i(P 1,O⊕2
P1 (−2 − b0)) =

{
0 if i = 0, 2, 3
2b0 + 2 if i = 1

It thus follows that h2(F1 ⊗ F∨
1 ) = 0 = h3(F1 ⊗ F∨

1 ). From (3.13) we have that
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χ(F1 ⊗ F∨
1 ) = χ(L1 ⊗ F∨

1 ) + χ(L2 ⊗ F∨
1 ) = −6b0 + 4.

Since F1 is simple with h2(F1 ⊗ F∨
1 ) = 0, by [11, Proposition 2.10] there exists a 

smooth modular family containing the point [F1]. Furthermore, since F1 is Ulrich, with 
Chern classes

c1(F1) = 2ξ + ϕ∗OF0(1, b0 − 2) and c2(F1) = ξ · ϕ∗OF0(4, 2b0 − 2) + (2b0 − k0 − 1)F,

as computed in §3.1–Case L, the general point [U] of the smooth modular family to which 
[F1] belongs corresponds to an Ulrich rank two vector bundles with same Chern classes 
as above, i.e. as in (3.11), as it follows from the facts that Ulrichness is an open condition 
(by semi-continuity) and that Chern classes are invariants on irreducible families.

We want to show that U is also slope–stable w.r.t. ξ. By Theorem 1.4–(b) (cf. also 
[5, Sect 3, (3.2)]), if U were not a stable bundle, it would be presented as an extension 
of Ulrich line bundles on X0. In such a case, by the classification of Ulrich line bundles 
given in Theorem 2.1 and all the possible extensions computed in §3.1-Case M or Case 
L-M, we see that the only possibilities for U to arise as an extension of Ulrich line bundles 
should be extensions either (3.1) or (3.2), by Chern classes reasons. In both cases the 
dimension of (the projectivization) of the corresponding families of extensions is either 
4b0 −5 or 2b0 +1. On the other hand, by semi-continuity on the smooth modular family, 
one has

hj(U⊗ U∨) = hj(F1 ⊗ F∨
1 ) = 0, 2 � j � 3, and h0(U⊗ U∨) = h0(F1 ⊗ F∨

1 ) = 1,

thus

h1(U⊗ U∨) = 1 − χ(U⊗ U∨) = 1 − χ(F1 ⊗ F∨
1 ) = h1(F1 ⊗ F∨

1 ) = 6b0 − 3,

as computed above. In other words, the smooth modular family whose general point is 
[U] is of dimension 6b0 − 3, which is bigger than 4b0 − 5 and 2b0 + 1, for any b0 � 2. 
This shows that [U] general corresponds to a stable, and so also slope-stable bundle (cf. 
Theorem 1.4-(c) above).

By slope-stability of U, we deduce that the moduli space of rank two Ulrich bundles 
with Chern classes as in (3.11) is not empty and it contains a generically smooth com-
ponent M, of dimension 6b0 − 3 whose general point [U] ∈ M is also slope-stable, whose 

slope w.r.t. ξ is μ(U) = c1(U)·ξ2

2 = 8b0 − k0 − 3, as c1(U) = c1(F1).
Finally, note that

KX0 + 4ξ = −2ξ + ϕ∗OF0(−2,−2) + ϕ∗OF0(3, b0) + 4ξ = 2ξ + ϕ∗OF0(1, b0 − 2)

= c1(F1) = c1(U).

This, together with the fact that U is of rank two, gives
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U∨ ∼= U(−c1(U)) = U(−KX0 − 4ξ),

i.e. that U∨(KX0 +4ξ) ∼= U in other words U is isomorphic to its Ulrich dual bundle, i.e. 
U is special, as stated. �

If in particular we set b0 = 3 then, from Theorem 3.1, one gets

c1(U) = 2ξ + ϕ∗OF0(1, 1), dim(M) = 15 and μ(U) = 21 − k0,

which is what was obtained in [22, Proposition 5.7] for k0 = 7, 8, 9, 10.

Remark 3.2. Besides the reasons stated before Theorem 3.1, other motivations which 
explain why the previous result focuses on rank two Ulrich bundles arising from (defor-
mations of) extensions as in (3.1), are the following.
(i) First of all, Theorem 2.1 shows that Ulrich line bundles M1 and M2 are sporadic, i.e. 
they exist only when (b0, k0) = (2t, 3t), for some integer t � 1; the same sporadic behavior 
occurs therefore for extensions in Case M and in Case L-M as in §3.1. Furthermore, such 
extensions give rise to components of different moduli spaces, since in any case Chern 
classes are different from those in (3.11).
(ii) Concerning extensions (3.1) and (3.2) in Case L, we have the following:

Claim 3.3. Deformations of bundles F1, arising as non trivial extensions in (3.1), and 
of bundles F′

1, arising as non trivial extensions in (3.2), give rise to the same modular 
component M as in Theorem 3.1.

To prove the Claim, we have benefited of useful discussions and reference advices 
given to us by A. Rapagnetta and we thank him for this.

As a general fact, recall that the moduli space M of semistable bundles with given rank 
and Chern classes on a smooth projective variety X is constructed as a GIT quotient 
of an open subscheme R of a suitable Quot-scheme Q, modulo the action of a group 
G = PGL(k, C) for a suitable integer k >> 0 (cf. e.g. [27, Section 4.3]). Here we focus 
on the rank two case.

If we denote by π : R → M the quotient map and if ρ ∈ R is a closed point, then 
π(ρ) ∈ M is a closed point iff the G-orbit G · ρ (with notation of left action of G as in 
[18]) is closed in R iff the corresponding quotient bundle Fρ on X is polystable, namely 
it is either stable (in such a case Aut(Fρ) ∼= C∗) or it is (strictly) polystable of the 
form Fρ = L1 ⊕ L2, i.e. Fρ decomposable and the two line bundles L1 and L2 are not 
isomorphic with the same Hilbert polynomial (in such a case Aut(Fρ) ∼= C∗ ×C∗) or it 
is (strictly) polystable of the form Fρ = L⊕2 (in which case Aut(Fρ) ∼= GL(2, C)).

If instead Fρ is semistable but not polystable (e.g. as any non trivial extension as 
in (3.1)) then Fρ arises as a non trivial extension of two line bundles L1 and L2 with 
same Hilbert polynomial and the Jordan-Hölder graded object of Fρ is grJH(Fρ) =
L1 ⊕ L2 which is therefore (strictly) polystable and the corresponding point π(ρ) ∈ M
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is represented by the class [L1 ⊕ L2], namely closed points in M are in bijection with 
S-equivalence classes of semistable bundles (cf. [27, Def. 1.5.3 and Lemma 4.1.2]).

If ρ ∈ R is a point for which the corresponding bundle Fρ on X is polystable, namely 
the orbit G · ρ is closed in R, and if R is locally (in the analytic topology) irreducible 
around ρ ∈ R, then also M is locally (in the analytic topology) irreducible around 
π(ρ) ∈ M. Indeed, since G is a connected group, the action of G preserves the irreducible 
components of R and, moreover, by the GIT action if a point ρ′ ∈ R belongs to the closure 
G · ρ′′ in R of the G-orbit G · ρ′′ of a point ρ′′ ∈ R then G · ρ′ ⊆ G · ρ′′.

Proof of Claim 3.3. With preliminaries as above, take X = X0 and denote by ρ1,2 ∈ R

the point corresponding to the bundle L1⊕L2 as in §3.1-Case L, which is the same Jordan-
Hölder graded object of the bundles F1 and F′

1 arising as non trivial extensions in (3.1)
and (3.2), respectively. Since ρ1,2 corresponds to a (strictly) polystable bundle on X0, 
then G ·ρ1,2 is a closed G-orbit and we can apply the same reasoning as above. Therefore, 
if we show that ρ1,2 is a smooth point of R, then R is locally (in the analytic topology) 
irreducible around ρ1,2 and therefore the same occurs for M around the point π(ρ1,2)
which implies that the modular component arising from (deformations of) extensions F1

as in (3.1) is the same component arising from (deformations of) extensions F′
1 as in 

(3.2).
Therefore, we need to show that R is smooth at the point ρ1,2. To do this, notice first 

that certainly it exists an irreducible component, say R1,2, of R passing through the point 
ρ1,2 whose dimension is dim(G) + h1(F1 ⊗F∨

1 ), where F1 is a non-trivial extension as in 
(3.1). Indeed, as in the proof of Theorem 3.1, F1 admits an irreducible smooth modular 
family of dimension h1(F1⊗F∨

1 ) which gives rise to an irreducible parameter space P ⊂ R, 
parametrizing all quotients which are isomorphic to the bundles of such an irreducible 
smooth modular family, which is therefore of dimension dim(P) = dim(G) +h1(F1⊗F∨

1 )
and whose closure P in R contains the point ρ1,2; thus ρ1,2 ∈ P ⊆ R1,2 so one has

dim(R1,2) � dim(P) = dim(G) + h1(F1 ⊗ F∨
1 ). (3.19)

Since ρ1,2 ∈ R corresponds to a (strictly) polystable bundle, from above, its G-orbit 
G ·ρ1,2 is closed in R; thus by Luna’s étale slice theorem (cf. e.g. [27, Thm. 4.2.12]) there 
exists a locally closed subscheme S ⊂ R passing through ρ1,2 which is Gρ1,2 -invariant, 
where Gρ1,2 denotes the stabilizer in G of the point ρ1,2, and such that the multiplication 
map G × S → R induces a G-equivariant étale morphism ψ : G ×Gρ1,2

S → R, where

G×Gρ1,2
S := (G× S)//Gρ1,2

as in [18, Sect. 1.1]. Because G = PGL(k, C), then one has

Gρ1,2
∼= AutR(ρ1,2) ∼= Aut(L1 ⊕ L2) = H0((L1 ⊕ L2) ⊗ (L1 ⊕ L2)∨) ∼= C∗ ×C∗

∼= C∗,

C∗ C∗ C∗ C∗
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since h0(L1 − L2) = h0(L2 − L1) = 0 as it follows from (3.15), (3.16), (3.17), (3.18). 
Therefore, we have an isomorphism of tangent spaces

Tρ1,2(R) ∼= T(IdG,ρ1,2)(G×Gρ1,2
S),

the latter of dimension

dim
(
T(IdG,ρ1,2)(G×Gρ1,2

S)
)

= dim
(
Tρ1,2(S)

)
+ dim(G) − dim(C∗)

as it follows from [18, Proposition 4.9-(6)] and the facts dim (TIdG
(G)) = dim(G) and 

dim
(
TIdG

(Gρ1,2)
)

= dim(C∗). In particular,

dim
(
Tρ1,2(R)

)
= dim(

(
Tρ1,2(S)

)
+ dim(G) − 1. (3.20)

On the other hand, from the proof of [29, Proposition 1.2.3], one has

dim
(
Tρ1,2(S)

)
= Ext1(L1 ⊕ L2, L1 ⊕ L2) = H1((L1 ⊕ L2) ⊗ (L1 ⊕ L2)∨). (3.21)

Using (3.15), (3.16) and the cohomological computations as in (3.17), (3.18) and the fact 
that L1 −L1 = L2 −L2 = OX0 , from (3.21) we have dim

(
Tρ1,2(S)

)
= 6b0 − 2 thus, from 

(3.20), we get dim
(
Tρ1,2(R)

)
= 6b0 − 3 + dim(G). On the other hand, from the proof 

of Theorem 3.1, one has h1(F1 ⊗ F∨
1 ) = 6b0 − 3, where F1 a non trivial extension as 

in (3.1). Therefore, from above dim
(
Tρ1,2(R)

)
= h1(F1 ⊗ F∨

1 ) + dim(G) which, together 
with (3.19), implies that

dim(R1,2) = dim
(
Tρ1,2(R)

)
,

i.e. that R is smooth at ρ1,2 and so that R1,2 is the unique irreducible component of R
passing through ρ1,2, which completes the proof of the claim. �
3.2. Rank-2 Ulrich vector bundles on 3-fold scrolls over Fe, e > 0

In this section, we will focus on the case e > 0.

Theorem 3.4. Let (Xe, ξ) ∼= (P (Ee), OP(Ee)(1)) be a 3-fold scroll over Fe, with e > 0, and 
Ee be as in Assumption 1.8. Let ϕ : Xe → Fe be the scroll map and F be the ϕ-fiber. 
Then the moduli space of rank two vector bundles U on Xe, which are Ulrich w.r.t. ξ, 
with Chern classes

c1(U) = 2ξ+ϕ∗OFe
(1, be−e−2) and c2(U) = ξϕ∗OFe

(4, 2be−e−2)+(2be−3e−ke−1)F,
(3.22)

is not empty and it contains a generically smooth component M of dimension
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dim(M) = 6be − 9e− 3,

whose general point [U] corresponds to a special and slope-stable vector bundle of slope 
w.r.t. ξ

μ(U) = 8be − ke − 12e− 3. (3.23)

Proof. By [4, Theorem 3.4], we know that there exist rank two vector bundles H1 on 
Fe, which are Ulrich with respect to c1(Ee) = OFe

(3, be), given by extensions

0 → OFe
(3, be − 1) → H1 → IZ ⊗ OFe

(4, 2be − 1 − e) → 0, (3.24)

where Z is a general zero-dimensional subscheme of Fe of length �(Z) = 2be − 3e. Such 
a bundle H1 is stable, cf. [4, Remark 3.7], hence simple, that is h0(H1 ⊗H∨

1 ) = 1, and 
indecomposable.

Set H := H1(−c1(Ee)), which is stable being a twist of a stable vector bundle, so it 
is also simple, i.e. h0(H ⊗H∨) = 1. By Theorem 1.7 the vector bundle V := ξ ⊗ ϕ∗(H)
is a rank two vector bundle on Xe which is Ulrich with respect to ξ.

From (3.24) we see that c1(H) = OFe
(1, be − e − 2) and c2(H) = 2be − 3e − 1. Easy 

Chern classes computations give that

c1(V) = 2ξ + ϕ∗OFe
(1, be − e− 2) and

c2(V) = ξϕ∗OFe
(4, 2be − e− 2) + (2be − 3e− ke − 1)F.

Moreover by Theorem 1.4–(b) (cf. also [5, Sect 3, (3.2)]) such a bundle V is stable, so 
also slope-stable by Theorem 1.4-(c), since there are no Ulrich line bundles on (Xe, ξ) as 
it follows from Theorem 2.1.

Our next step is to compute the cohomology groups Hi(Xe, V ⊗ V∨) for i = 0, 1, 2, 3. 
Because Hi(Xe, V ⊗ V∨) = Hi(Xe, ϕ∗(H ⊗ H∨)) ∼= Hi(Fe, H ⊗ H∨) we will focus on 
computations of Hi(Fe, H ⊗H∨), i = 0, 1, 2, 3.

First of all h3(Fe, H ⊗H∨) = 0, as Fe is a surface, and h0(Fe, H ⊗H∨) = 1, as H is 
simple. For the other cohomology groups, we tensor (3.24) with −c1(Ee) = OFe

(−3, −be)
and we get

0 → OFe
(0,−1) → H → IZ ⊗ OFe

(1, be − 1 − e) → 0. (3.25)

Because H is of rank 2 and c1(H) = OFe
(1, be − 2 − e), we have that H∨ ∼= H ⊗

OFe
(−1, −be + 2 + e) and thus after tensoring (3.25) with H∨ we get

0 → H ⊗ OFe
(−1, 1 + e− be) → H ⊗H∨ → IZ ⊗H ⊗ OFe

(0, 1) → 0. (3.26)

In order to compute the cohomology groups of H ⊗ OFe
(−1, 1 + e − be) we will use the 

short exact sequence (3.25) twisted with OFe
(−1, 1 + e − be) which gives



M.L. Fania, F. Flamini / Advances in Mathematics 436 (2024) 109409 25
0 → OFe
(−1, e− be) → H ⊗ OFe

(−1, 1 + e− be) → IZ → 0. (3.27)

From this we can easily see that H0(F⊗OFe
(−1, 1 + e − be)) = 0 = H2(F⊗OFe

(−1, 1 +
e − be)) and h1(F ⊗ OFe

(−1, 1 + e − be)) = 2be − 3e − 1.
Our next task is to compute the cohomology groups of IZ ⊗H⊗OFe

(0, 1). We tensor 
the sequence

0 → IZ → OFe
→ OZ → 0

with H ⊗ OFe
(0, 1) and OFe

(1, be − e), respectively, and we get

0 → IZ ⊗H ⊗ OFe
(0, 1) → H ⊗ OFe

(0, 1) → (H ⊗ OFe
(0, 1))|Z → 0 (3.28)

0 → IZ ⊗ OFe
(1, be − e) → OFe

(1, be − e) → OZ → 0. (3.29)

We tensor (3.25) with OFe
(0, 1) and we get

0 → OFe
→ H ⊗ OFe

(0, 1) → IZ ⊗ OFe
(1, be − e) → 0. (3.30)

Now use the cohomology sequence associated to the short exact sequences (3.28), (3.29)
and (3.30). Note that

h0(Fe,OFe
(1, be − e)) ∼= h0(P 1,OP1(be − e) ⊕ OP1(be − 2e)) = 2be − 3e + 2,

and

hi(Fe,OFe
(1, be − e)) ∼= hi(P 1,OP1(be − e) ⊕ OP1(be − 2e)) = 0 for i = 1, 2

because Assumption 1.8 forces be � 3e +2. Notice that dim(|OFe
(1, be−e)|) = 2be−3e +1, 

so h0(IZ ⊗ OFe
(1, be − e)) = 2, being Z general of length �(Z) = 2be − 3e. Therefore 

from (3.29) it follows that hi(IZ ⊗ OFe
(1, be − e)) = 0 for i = 1, 2. Now using (3.30) it 

follows that h0(Fe, H ⊗ OFe
(0, 1)) = 3 and hi(Fe, H ⊗ OFe

(0, 1)) = 0 for i = 1, 2. Thus 
h2(IZ ⊗H⊗OFe

(0, 1)) = 0 and this, combined with the cohomology sequence associated 
to (3.26), gives that h2(H ⊗H∨) = 0.

Thus from (3.28), since h0(Fe, (H ⊗ OFe
(0, 1))|Z) = 2(2b2 − 3e) and hi(Fe, H ⊗

OFe
(0, 1)|Z) = 0 for i = 1, 2, it follows that χ(IZ ⊗H⊗OFe

(0, 1)) = χ(H⊗OFe
(0, 1)) −

χ(H ⊗ OFe
(0, 1)|Z) = 3 − 4be + 6e. From the cohomology sequence associated to (3.26)

it follows that χ(H ⊗ H∨) = χ(IZ ⊗ H ⊗ OFe
(0, 1)) + χ(H ⊗ OFe

(−1, 1 + e − be)) =
3 −4be+6e −2b2+3e +1 = 4 −6be+9e and thus h1(H⊗H∨) = 1 −χ(H⊗H∨) = 6be−9e −3.

As already observed, Hi(Xe, V ⊗ V∨) ∼= Hi(Fe, H ⊗ H∨), i = 0, 1, 2, 3, hence the 
above computations give us the dimensions of all the cohomology groups Hi(Xe, V ⊗V∨), 
i = 0, 1, 2, 3.

By [11, Proposition 2.10], since h2(V ⊗ V∨) = 0 and V is simple, it follows that V
admits a smooth modular family giving rise to a component M of the moduli space of 
rank two Ulrich vector bundles with Chern classes
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c1(V) = 2ξ+ϕ∗OFe
(1, be−2−e) and c2(V) = ξϕ∗OFe

(4, be−2−e)+(2be−3e−ke−1)F.

Moreover, since V is slope-stable, it corresponds to a smooth point [V] of such a compo-
nent M such that, dim(M) = h1(V ⊗ V∨) = 6be − 9e − 3, as stated.

Since Ulrichness, slope-stability, simplicity are open conditions as well as Chern classes 
are constant for vector bundles varying in M, it follows that all the properties satisfied by 
V hold true for the general member [U] ∈ M, in particular M is also generically smooth.

Note further that KXe
+ 4ξ = −2ξ + ϕ∗OFe

(−2, −2 − e) + ϕ∗OFe
(3, be) + 4ξ = 2ξ +

ϕ∗OF0(1, be − e − 2) = c1(V), thus U is a special Ulrich bundle. Finally, the slope of U
with respect to ξ is

μ(U) = c1(U) · ξ2

2 = (2ξ + ϕ∗OFe
(1, be − e− 2)) · ξ2

2 = 8be − ke − 12e− 3. �
Remark 3.5. (i) In view of Theorem 1.7, together with the fact that c1(Ee) = 3Ce+bef is 
very ample on Fe (cf. (1.6)), the bundle H1 is the rank two bundle on Fe which is Ulrich 
w.r.t. c1(Ee) and which gives rise to the rank two vector bundle V = ξ⊗ϕ∗(H1(−c1(Ee)))
as in the proof of Theorem 3.4, which is Ulrich w.r.t. ξ on Xe.
(ii) In [22, Theorems 5.8, 5.9] it was shown the existence of stable rank two Ulrich vector 
bundle w.r.t. ξ on X0 and X1 of low degree. In [26, Corollary 5.17] it was shown the 
existence of rank two Ulrich vector bundle on P (E) → Fe w.r.t. different very ample 
polarizations D = π∗(A) + ξ with A such that rk(E)A + c1(E) is also very ample, 
rk(E) � 2 and π : P (E) → Fe the natural projection. But nothing was said about their 
moduli spaces.
(iii) If we set e = 1, be = 5 and k1 = 10, 11 we get 3-fold scrolls X1 of degree either 11
or 10, as deg(X1) = 21 − k1. Applying Theorem 3.4 to such 3-folds, one gets

c1(U) = 2ξ + ϕ∗OF1(1, 2), dim(M) = 18 and μ(U) = 40 − k1 − 12 − 3 = 25 − k1.

These scrolls have been considered in [22, Theorem 5.9] where it was only shown the 
existence of rank two Ulrich bundles on them, but nothing was said about their moduli 
space.

4. Higher rank Ulrich vector bundles on 3-fold scrolls over Fe

In this section we will construct higher rank slope-stable Ulrich vector bundles on 
Xe, where e � 0. We will moreover compute the dimensions of the modular components 
arising from the constructed bundles, completely proving the Main Theorem and the
Main Corollary stated in the Introduction.

To do so, we will use Theorems 2.1, 3.1, 3.4, as well as inductive procedures and 
deformation arguments.
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4.1. Higher rank Ulrich vector bundles on 3-fold scrolls over F0

We will first concentrate on the case e = 0. From Theorem 2.1 we know that, under 
Assumption 1.8, the case e = 0 is the only case where Ulrich line bundles on (X0, ξ)
actually exist. We will focus on line bundles

L1 = ξ + ϕ∗OF0(2,−1) and its Ulrich dual L2 = ξ + ϕ∗OF0(−1, b0 − 1), (4.1)

as in Theorem 2.1-(i), which are Ulrich w.r.t. ξ on X0.
Recalling computations in §3.1-Case L and the fact that b0 � 2 by (1.6), we have that:

dim(Ext1(L2, L1)) = h1(L1 − L2) = 4(b0 − 1) � 4, whereas (4.2)

dim(Ext1(L1, L2)) = h1(L2 − L1) = 2(b0 + 1) � 6.

In Theorem 3.1 we used such extensions to construct rank-2 Ulrich vector bundles; 
to construct higher rank Ulrich bundles on X0 we proceed with an iterative strategy as 
follows.

Set G1 := L1; from (4.2) the general [G2] ∈ Ext1(L2, G1) = Ext1(L2, L1) is associated 
to a non-splitting extension

0 → G1 = L1 → G2 → L2 → 0, (4.3)

where G2 is a rank-2 Ulrich and simple vector bundle on X0 with

c1(G2) = 2ξ + ϕ∗OF0(1, b0 − 2)

(cf. (3.1), where G2 := F1 therein, and see the proof of Theorem 3.1). If, in the next 
step, we considered further extensions Ext1(L2, G2), it is easy to see that the dimension 
of such an extension space drops by one with respect to that of Ext1(L2, G1). Therefore, 
proceeding in this way, after finitely many steps we would have only splitting bundles in 
Ext1(L2, Gr) for any r � r0, for some positive integer r0.

To avoid this, similarly as in [13, §4], we proceed by taking extensions

0 → G2 → G3 → L1 → 0, 0 → G3 → G4 → L2 → 0, . . . ,

and so on, that is, defining

εr :=
{

1, if r is odd,
2, if r is even,

(4.4)

we take successive extensions [Gr] ∈ Ext1(Lεr , Gr−1) for all r � 2:

0 → Gr−1 → Gr → Lεr → 0. (4.5)
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The fact that we can always take non–trivial such extensions will be proved in a 
moment in Corollary 4.2 below. In any case all vector bundles Gr, recursively defined as 
in (4.5), are of rank r and Ulrich w.r.t. ξ, since extensions of Ulrich bundles w.r.t. ξ are 
again Ulrich w.r.t. ξ. The first Chern class of Gr is given by

c1(Gr) :=

⎧⎨
⎩rξ + ϕ∗OF0(3, b0 − 3) + ϕ∗OF0

(
r−3
2 , (r−3)

2 (b0 − 2)
)
, if r is odd,

rξ + ϕ∗OF0

(
r
2 ,

r
2(b0 − 2)

)
, if r is even.

(4.6)

Thus, for any r � 1, its slope w.r.t. ξ is

μ(Gr) = 8b0 − k0 − 3, (4.7)

as in §3.1-Case L and in (3.12). Moreover, from Theorem 1.4-(a), any such Gr is strictly 
semistable and slope-semistable, being an extension of Ulrich bundles of the same slope 
μ(Gr−1) = μ(Lεr ) = 8b0 − k0 − 3.

Lemma 4.1. Let L denote any of the two line bundles L1 and L2 as in (4.1). Then, for 
all integers r � 1, we have

(i) h2(Gr ⊗ L∨) = h3(Gr ⊗ L∨) = 0,
(ii) h2(G∨

r ⊗ L) = h3(G∨
r ⊗ L) = 0,

(iii) h1(Gr ⊗ L∨
εr+1

) � min{4b0 − 4, 2b0 + 2} � 4.

Proof. For r = 1 we have G1 = L1; therefore G1 ⊗ L∨ and G∨
1 ⊗ L are either equal to 

OX0 , if L = L1, or equal to L1 − L2 and L2 − L1, respectively, if L = L2. Therefore (i) 
and (ii) hold true by computations as in §3.1-Case L. As for (iii), by (4.4) we have that 
Lε2 = L2 thus h1(G1 ⊗ L∨

2 ) = h1(L1 − L2) = 4b0 − 4, as is §3.1-Case L, the latter being 
always greater than or equal to min{4b0 − 4, 2b0 + 2} � 4 since b0 � 2 by (1.6).

Therefore, we will assume r � 2 and proceed by induction. Regarding (i), since it 
holds for r = 1, assuming it holds for r − 1 then by tensoring (4.5) with L∨ we get that

hj(Gr ⊗ L∨) = 0, j = 2, 3,

because hj(Gr−1⊗L∨) = 0, for j = 2, 3, by inductive hypothesis whereas hj(Lεr ⊗L∨) =
0, for j = 2, 3, since Lεr ⊗ L∨ is either OX0 , or L2 − L1, or L1 − L2.

A similar reasoning, tensoring the dual of (4.5) by L, proves (ii).
To prove (iii), tensor (4.5) by L∨

εr+1
and use that h2(Gr−1 ⊗ L∨

εr+1
) = 0 by (i). Thus 

we have the surjection

H1(Gr ⊗ L∨
ε ) � H1(Lεr ⊗ L∨

ε ),

r+1 r+1
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which implies that h1(Gr ⊗ L∨
εr+1

) � h1(Lεr ⊗ L∨
εr+1

). According to the parity of r, we 
have that Lεr⊗L∨

εr+1
equals either L1−L2 or L2−L1. From computations as in §3.1-Case 

L, h1(L1 − L2) = 4b0 − 4 whereas h1(L2 − L1) = 2b0 + 2. Notice that

min{4b0 − 4, 2b0 + 2} :=

⎧⎪⎪⎨
⎪⎪⎩

4b0 − 4 = 4, if b0 = 2,
4b0 − 4 = 2b0 + 2 = 8, if b0 = 3,
2b0 + 2 � 10, if b0 � 4.

Therefore one concludes. �
Corollary 4.2. For any integer r � 1 there exist on X0 rank-r vector bundles Gr, which 
are Ulrich w.r.t. ξ, with first Chern class c1(Gr) as in (4.6), of slope μ(Gr) = 8b0−k0−3
w.r.t. ξ and which arise as non-trivial extensions as in (4.5) if r � 2.

Proof. For r = 1, we have G1 = L1 and the statement holds true from Theorem 2.1 and 
computations in §3.1-Case L.

For any r � 2, notice that

Ext1(Lεr ,Gr−1) ∼= H1(Gr−1 ⊗ L∨
εr ).

Therefore, from Lemma 4.1-(iii) there exist non–trivial extensions as in (4.5), which are 
therefore Ulrich with respect to ξ and whose Chern class c1(Gr) is exactly as in (4.6).

By induction μ(Gr−1) = μ(Lεr) = 8b0 − k0 − 3; then Gr has the same slope w.r.t. 
ξ. �

From Corollary 4.2, at any step we can always pick non–trivial extensions of the form 
(4.5) and we will henceforth do so.

Lemma 4.3. Let r � 1 be an integer. Then we have

(i) h1(Gr+1 ⊗ L∨
εr+1

) = h1(Gr ⊗ L∨
εr+1

) − 1,

(ii) h1(Gr ⊗ L∨
εr+1

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(r+1)
2 h1(L1 − L2) − (r−1)

2 = 2(r + 1)(b0 − 1) − (r−1)
2 ,

if r is odd,
r
2h

1(L2 − L1) − (r−2)
2 = r(b0 + 1) − (r−2)

2 ,

if r is even.
(iii) h2(Gr ⊗ G∨

r ) = h3(Gr ⊗ G∨
r ) = 0,

(iv) χ(Gr ⊗ L∨
εr+1

) =
{

(r+1)
2 (1 − h1(L1 − L2)) − 1 = (r+1)

2 (5 − 4b0) − 1, if r is odd,
r
2 (1 − h1(L2 − L1)) = r

2(−1 − 2b0), if r is even.

(v) χ(Lεr ⊗ G∨
r ) =

{
(r−1)

2 (1 − h1(L1 − L2)) + 1 = (r−1)
2 (5 − 4b0) + 1, if r is odd,

r (1 − h1(L − L )) = r (−1 − 2b ), if r is even.
2 2 1 2 0
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(vi) χ(Gr ⊗ G∨
r ) =

{
(r2−1)

4 (2−h1(L1−L2)−h1(L2−L1))+1= (r2−1)
4 (4−6b0)+1, if r is odd,

r2

4 (2 − h1(L1 − L2) − h1(L2 − L1)) = r2

4 (4 − 6b0), if r is even.

Proof. (i) Consider the exact sequence (4.5), where r is replaced by r + 1. From 
Ext1(Lεr+1 , Gr) ∼= H1(Gr ⊗ L∨

εr+1
) and the fact that the exact sequence defining Gr+1

is constructed by taking a non–zero vector [Gr+1] in Ext1(Lεr+1 , Gr), it follows that the 
coboundary map

H0(OX0)
∂−→ H1(Gr ⊗ L∨

εr+1
)

of the exact sequence

0 → Gr ⊗ L∨
εr+1

→ Gr+1 ⊗ L∨
εr+1

→ OX0 → 0, (4.8)

is non–zero so it is injective. Thus, (i) follows from the cohomology of (4.8).
(ii) We use induction on r. For r = 1, the right hand side of the formula yields 4(b0 − 1)
which is exactly h1(G1 ⊗ L∨

2 ) = h1(L1 − L2) as in §3.1-Case L.
When r = 2, the right hand side of the formula is 2(b0 + 1) which is h1(G2 ⊗ L∨

1 ) =
h1(L2 − L1) = 2b0 + 2, as it follows from computations in §3.1-Case L, from the exact 
sequence

0 → OX0 → G2 ⊗ L∨
1 → L2 − L1 → 0,

obtained by (4.5) with r = 2 and tensored with L∨
1 , and the fact that hj(OX0) = 0, for 

j = 1, 2.
Assume now that the formula holds true up to some integer r � 2; we have to show 

that it holds also for r + 1. Consider the exact sequence (4.5), with r replaced by r + 1, 
and tensor it by L∨

εr+2
. We thus obtain

0 → Gr ⊗ L∨
εr+2

→ Gr+1 ⊗ L∨
εr+2

→ Lεr+1 ⊗ L∨
εr+2

→ 0 (4.9)

If r is even, then Lεr+2 = L2 whereas Lεr+1 = L1. Thus h0(Lεr+1 ⊗ L∨
εr+2

) = h0(L1 −
L2) = 0 and h1(Lεr+1 ⊗ L∨

εr+2
) = h1(L1 − L2) = 4b0 − 4. On the other hand, by 

Lemma 4.1-(i), h2(Gr ⊗ L∨
εr+2

) = 0. Thus, from (4.9), we get:

h1(Gr+1 ⊗ L∨
εr+2

) = (4b0 − 4) + h1(Gr ⊗ L∨
εr+2

) = (4b0 − 4) + h1(Gr ⊗ L∨
εr ),

as r and r+2 have the same parity. Using (i), we have h1(Gr⊗L∨
εr ) = h1(Gr−1⊗L∨

εr ) −1
therefore, by inductive hypothesis with r − 1 odd, we have h1(Gr−1 ⊗ L∨

εr ) =
r
2 (4b0 −

4) − (r−2)
2 . Summing up, we have

h1(Gr+1 ⊗ L∨
ε ) = (4b0 − 4) + r (4b0 − 4) − (r − 2) − 1,

r+2 2 2
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which is easily seen to be equal to the right hand side expression in (ii), when r is replaced 
by r + 1.

If r is odd, the same holds for r + 2 whereas r + 1 is even. In this case Lεr+2 = L1, 
Lεr+1 = L2 so h1(Lεr+1 ⊗ L∨

εr+2
) = h1(L2 − L1) = 2b0 + 2 and one applies the same 

procedure as in the previous case.
(iii) We again use induction on r. For r = 1, formula (iii) states that hj(L1 − L1) =
hj(OX0) = 0, for j = 2, 3, which is certainly true.

Assume now that (iii) holds up to some integer r � 1; we have to prove that it holds 
also for r+1. Consider the exact sequence (4.5), where r is replaced by r+1, and tensor 
it by G∨

r+1. From this we get that, for j = 2, 3,

hj(Gr+1 ⊗ G∨
r+1) � hj(Gr ⊗ G∨

r+1) + hj(Lεr+1 ⊗ G∨
r+1) = hj(Gr ⊗ G∨

r+1), (4.10)

the latter equality follows from hj(Lεr+1 ⊗ G∨
r+1) = 0, j = 2, 3, as in Lemma 4.1-(ii).

Consider the dual exact sequence of (4.5), where r is replaced by r + 1, and tensor it 
by Gr. Thus, Lemma 4.1-(i) yields that, for j = 2, 3, one has

hj(Gr ⊗ G∨
r+1) � hj(Gr ⊗ L∨

εr+1
) + hj(Gr ⊗ G∨

r ) = hj(Gr ⊗ G∨
r ). (4.11)

Now (4.10)–(4.11) and the inductive hypothesis yield hj(Gr+1 ⊗ G∨
r+1) = 0, for j = 2, 3, 

as desired.
(iv) For r = 1, (iv) reads χ(L1 − L2) = −h1(L1 − L2) = 4 − 4b0, which is true since 
hj(L1 − L2) = 0 for j = 0, 2, 3.

For r = 2, (iv) reads χ(G2 ⊗ L∨
1 ) = 1 − h1(L2 − L1) = −1 − 2b0 and this holds true 

because if we take the exact sequence (4.5), with r = 2, tensored by L∨
1 then

χ(G2 ⊗ L∨
1 ) = χ(OX0) + χ(L2 − L1) = 1 − h1(L2 − L1) = 1 − (2b0 + 2),

as hj(L2 − L1) = 0 for j = 0, 2, 3.
Assume now that the formula holds up to a certain integer r � 2, we have to prove 

that it also holds for r + 1. From (4.9) we get

χ(Gr+1 ⊗ L∨
εr+2

) = χ(Gr ⊗ L∨
εr+2

) + χ(Lεr+1 ⊗ L∨
εr+2

).

If r is even, the same is true for r + 2 whereas r + 1 is odd. Therefore,

χ(Gr+1 ⊗ L∨
εr+2

) = χ(Gr ⊗ L∨
2 ) + χ(L1 − L2) = χ(Gr ⊗ L∨

2 ) − h1(L1 − L2). (4.12)

Then (4.8), with r replaced by r − 1, yields

χ(Gr ⊗ L∨
2 ) = χ(Gr−1 ⊗ L∨

2 ) + χ(OX0) = χ(Gr−1 ⊗ L∨
2 ) + 1. (4.13)

Substituting (4.13) into (4.12) and using the inductive hypothesis with r−1 odd, we get
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χ(Gr+1 ⊗ L∨
2 ) = χ(Gr−1 ⊗ L∨

2 ) + 1 − h1(L1 − L2)

= (r)
2 (1 − h1(L1 − L2)) − h1(L1 − L2)

= (r + 2)
2 (1 − h1(L2 − L1)) − 1,

proving that the formula holds also for r + 1 odd.
Similar procedure can be used to treat the case when r is odd. In this case, Lεr+1 = L2

whereas Lεr+2 = L1. Thus, from the above computations,

χ(Gr+1 ⊗ L∨
1 ) = χ(Gr ⊗ L∨

1 ) + χ(L2 − L1) = χ(Gr ⊗ L∨
1 ) − h1(L2 − L1).

As in the previous case, χ(Gr⊗L∨
1 ) = 1 +χ(Gr−1⊗L∨

1 ) so, applying inductive hypothesis 
with r − 1 even, we get χ(Gr ⊗ L∨

1 ) = 1 + (r−1)
2 (1 − h1(L2 − L1)). Adding up all these 

quantities, we get

χ(Gr+1 ⊗ L∨
εr+2

) = χ(Gr+1 ⊗ L∨
1 ) = r + 1

2 (1 − h1(L2 − L1)),

so formula (iv) holds true also for r + 1 even.
(v) For r = 1, (v) reads χ(L1 −L1) = χ(OX0) = 1, which is correct. For r = 2, (v) reads 
χ(L2 ⊗ G∨

2 ) = 1 − h1(L2 −L1), which is once again correct as it follows from the dual of 
sequence (4.5) tensored by L2.

Assume now that the formula holds up to a certain integer r � 2 and we need to 
prove it for r + 1. Dualizing (4.5), replacing r by r + 1 and tensoring it by Lεr+1 we find 
that

χ(Lεr+1 ⊗ G∨
r+1) = χ(Lεr+1 ⊗ L∨

εr+1
) + χ(Lεr+1 ⊗ G∨

r ) (4.14)

= χ(OXn
) + χ(Lεr+1 ⊗ G∨

r ) = 1 + χ(Lεr+1 ⊗ G∨
r ).

The dual of sequence (4.5), with r replaced by r − 1, tensored by Lεr+1 yields

χ(Lεr+1 ⊗ G∨
r ) = χ(Lεr+1 ⊗ L∨

εr) + χ(Lεr+1 ⊗ G∨
r−1). (4.15)

Substituting (4.15) into (4.14) and using the fact that r + 1 and r − 1 have the same 
parity, we get

χ(Lεr+1 ⊗ G∨
r+1) = 1 + χ(Lεr+1 ⊗ L∨

εr) + χ(Lεr−1 ⊗ G∨
r−1).

If r is even, then χ(Lεr+1 ⊗ L∨
εr ) = χ(L1 − L2) = −h1(L1 − L2) whereas, from the 

inductive hypothesis with r−1 odd, χ(Lεr−1 ⊗G∨
r−1) = 1 + (r−2)

2 (1 −h1(L1 −L2)). Thus

χ(Lεr+1 ⊗ G∨
r+1) = 1 − h1(L1 − L2) + 1 + (r − 2)(1 − h1(L1 − L2)),
2
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the latter equals 1 + r
2 (1 − h1(L1 − L2)), proving that the formula holds also for r + 1

odd.
If r is odd, the strategy is similar; in this case one has χ(Lεr+1 ⊗L∨

εr ) = χ(L2 −L1) =
−h1(L2 − L1) and, by the inductive hypothesis with r − 1 even, χ(Lεr−1 ⊗ G∨

r−1) =
(r−1)

2 (1 − h1(L2 − L1)) so one can conclude.
(vi) We first check the given formula for r = 1, 2. We have χ(G1 ⊗ G∨

1 ) = χ(L1 − L1) =
χ(OX0) = 1, which fits with the given formula for r = 1. From (4.5), with r = 2, tensored 
by G∨

2 we get

χ(G2 ⊗ G∨
2 ) = χ(L1 ⊗ G∨

2 ) + χ(L2 ⊗ G∨
2 ) (v)= χ(L1 ⊗ G∨

2 ) + 1 − h1(L2 − L1). (4.16)

From the dual of (4.5), with r = 2, tensored by L1 we get

χ(L1⊗G∨
2 ) = χ(L1−L1)+χ(L1−L2) = χ(OX0)−h1(L1−L2) = 1−h1(L1−L2). (4.17)

Combining (4.16) and (4.17), we get

χ(G2 ⊗ G∨
2 ) = 2 − h1(L1 − L2) − h1(L2 − L1),

which again fits with the given formula for r = 2.
Assume now that the given formula is valid up to a certain integer r � 2; we need to 

prove it holds for r + 1. From (4.5), in which r is replaced by r + 1, tensored by G∨
r+1

and successively the dual of (4.5), with r replaced by r + 1, tensored by Gr we get

χ(Gr+1 ⊗ G∨
r+1) = χ(Gr ⊗ G∨

r ) + χ(Gr ⊗ L∨
εr+1

) + χ(Lεr+1 ⊗ G∨
r+1).

If r is even, then r + 1 is odd and Lεr+1 = L1. From (v) with (r + 1) odd, we get 
χ(Lεr+1 ⊗G∨

r+1) = 1 + r
2 (1 −h1(L1−L2)), whereas from (iv) with r even χ(Gr⊗L∨

εr+1
) =

r
2(1 − h1(L2 − L1)). Finally, by the inductive hypothesis with r even, χ(Gr ⊗ G∨

r ) =
r2

4 (2 − h1(L1 − L2) − h1(L2 − L1)). Summing–up the three quantities, one gets

χ(Gr+1 ⊗ G∨
r+1) = 1 + (r + 1)2 − 1

4 (2 − h1(L1 − L2) − h1(L2 − L1)),

proving that the formula holds for r + 1 odd.
If r is odd, then χ(Lεr+1 ⊗ G∨

r+1) = r+1
2 (1 − h1(L2 − L1)), as it follows from (v) with 

(r + 1) even, whereas χ(Gr ⊗ L∨
εr+1

) = (r+1)
2 (1 − h1(L1 − L2)) − 1, as predicted by (iv) 

with r odd. Finally, form the inductive hypothesis with r odd, we have χ(Gr ⊗ G∨
r ) =

1 + (r2−1)
4 (2 − h1(L1 − L2) − h1(L2 − L1)). If we add up the three quantities, we get

χ(Gr+1 ⊗ G∨
r+1) = (r + 1)2

4 (2 − h1(L1 − L2) − h1(L2 − L1)),

finishing the proof. �
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Notice some fundamental properties arising from the first step of the previous iterative 
construction in (4.5). We set G1 = L1, which is a Ulrich line bundle of slope μ =
8b0 − k0 − 3; by considering non–trivial extensions (4.3), G2 turned out to be a simple 
bundle, as it follows from [11, Lemma 4.2] and from the fact that G1 = L1 and Lε2 = L2
are slope–stable, of the same slope μ = 8b0 − k0 − 3, non-isomorphic line bundles. 
Moreover, by construction, G2 turned out to be Ulrich, strictly semistable and of slope 
μ = 8b0 − k0 − 3; on the other hand, in the proof of Theorem 3.1 we showed that 
G2 deforms in a smooth, irreducible modular family to a slope-stable Ulrich bundle 
U2 := U, of same slope and Chern classes as G2, which gives rise to a general point [U2]
of the generically smooth component M(2) := M of the moduli space of Ulrich bundles 
described in Theorem 3.1.

In this way, by induction, we can assume that up to a given integer r � 3 we have 
constructed a generically smooth irreducible component M(r− 1) of the moduli space of 
Ulrich bundles of rank (r−1), with Chern class c1 = c1(Gr−1) and slope μ = 8b0−k0−3, 
whose general point [Ur−1] ∈ M(r − 1) is slope-stable.

Consider now extensions

0 → Ur−1 → Fr → Lεr → 0, (4.18)

with [Ur−1] ∈ M(r − 1) general and with Lεr defined as in (4.4), (4.5), according to the 
parity of r. Notice that

Ext1(Lεr ,Ur−1) ∼= H1(Ur−1 ⊗ L∨
εr ).

Lemma 4.4. In the above set-up, one has

h1(Ur−1 ⊗ L∨
εr ) � min{4b0 − 5, 2b0 + 1} � 3.

In particular, Ext1(Lεr , Ur−1) contains non-trivial extensions as in (4.18).

Proof. By inductive assumption, Ur−1 specializes to Gr−1 in the smooth modular family 
thus, by semi-continuity and by Lemma 4.1-(i), one has

hj(Ur−1 ⊗ L∨
εr) = hj(Gr−1 ⊗ L∨

εr) = 0, j = 2, 3. (4.19)

For the same reason

χ(Ur−1 ⊗ L∨
εr ) = χ(Gr−1 ⊗ L∨

εr ), (4.20)

where the latter is as in Lemma 4.3-(iv).
Thus, equality in (4.20), together with (4.19), reads

h0(Ur−1 ⊗ L∨
ε ) − h1(Ur−1 ⊗ L∨

ε ) = h0(Gr−1 ⊗ L∨
ε ) − h1(Gr−1 ⊗ L∨

ε ),

r r r r
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namely

h1(Ur−1 ⊗ L∨
εr ) = h1(Gr−1 ⊗ L∨

εr) −
(
h0(Gr−1 ⊗ L∨

εr) − h0(Ur−1 ⊗ L∨
εr )

)
, (4.21)

where h1(Gr−1 ⊗ L∨
εr) � min{4b0 − 4, 2b0 + 2} � 4, as from Lemma 4.1-(iii) where r is 

replaced by r − 1. We claim that the following equality

h0(Gr−1 ⊗ L∨
εr ) =

{
0 if r even
1 if r odd

(4.22)

holds true.
Assume for a moment that (4.22) has been proved; since Ur−1 is slope-stable, of the 

same slope as Lεr , and Ur−1 is not isomorphic to Lεr , then h0(Ur−1 ⊗ L∨
εr ) = 0 as any 

non-zero homomorphism Lεr → Ur−1 should be an isomorphism. Thus, using (4.21), for 
any r � 2 one gets therefore

h1(Ur−1 ⊗ L∨
εr ) � h1(Gr−1 ⊗ L∨

εr ) − 1

which, together with Lemma 4.1-(iii), proves the statement.
Thus, we are left with the proof of (4.22). To prove it, we will use induction on r.
If r = 2, then G1 = L1, Lε2 = L2, thus h0(G1 ⊗ L∨

2 ) = h0(L1 − L2) = 0, as it follows 
from (3.15) and from (3.17). If otherwise r = 3, then Gr−1 = G2 as in (4.3) whereas 
Lε3 = L1, as in (4.4). Thus, tensoring (4.3) by L∨

1 , one gets

0 → OX0 → G2 ⊗ L∨
1 → L2 − L1 → 0;

since h0(L2 − L1) = 0, from (3.16) and from (3.18), then h0(G2 ⊗ L∨
1 ) = h0(OX0) = 1.

Assume therefore that, up to some integer r− 2 � 2, (4.22) holds true and take Gr−1
a non-trivial extension as in (4.5), with r replaced by r − 1, namely

0 → Gr−2 → Gr−1 → Lεr−1 → 0. (4.23)

If r is even, then r−2 is even and r−1 is odd, in particular Lεr−1 = L1 and Lεr = L2. 
Thus, tensoring (4.23) with L∨

εr = L∨
2 gives

0 → Gr−2 ⊗ L∨
2 → Gr−1 ⊗ L∨

2 → L1 − L2 → 0.

Since h0(L1 − L2) = 0 then

h0(Gr−1 ⊗ L∨
εr ) = h0(Gr−1 ⊗ L∨

2 ) = h0(Gr−2 ⊗ L∨
2 ).

On the other hand, by (4.5), with r replaced by r − 2, namely

0 → Gr−3 → Gr−2 → Lεr−2 → 0, (4.24)
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we have Lεr−2 = L2, since r − 2 is even as r is. Thus, tensoring (4.24) with L∨
εr and 

taking into account that r is even, one gets

0 → Gr−3 ⊗ L∨
2 → Gr−2 ⊗ L∨

2 → OX0 → 0.

Notice that Gr−3 ⊗ L∨
2 = Gr−3 ⊗ L∨

εr−2
thus, since r − 3 is odd, h0(Gr−3 ⊗ L∨

2 ) = 0 by 
induction and by (4.22). On the other hand, the coboundary map

H0(OX0) ∼= C
∂−→ H1(Gr−3 ⊗ L∨

2 ) = H1(Gr−3 ⊗ L∨
εr−2

) ∼= Ext1(Lεr−2 ,Gr−3)

is non-zero since, by iterative construction, Gr−2 is taken to be a non-trivial extension; 
therefore ∂ is injective which implies h0(Gr−2 ⊗ L∨

2 ) = 0 and so h0(Gr−1 ⊗ L∨
εr ) = 0, as 

desired.
Assume now r to be odd thus, Lεr = L1 whereas Lεr−1 = L2. Tensoring (4.23) with 

L∨
1 gives

0 → Gr−2 ⊗ L∨
1 → Gr−1 ⊗ L∨

1 → L2 − L1 → 0.

As h0(L2 − L1) = 0, then

h0(Gr−1 ⊗ L∨
εr ) = h0(Gr−1 ⊗ L∨

1 ) = h0(Gr−2 ⊗ L∨
1 ).

Since r is odd, then also r − 2 is odd and one gets

0 → Gr−3 ⊗ L∨
1 → Gr−2 ⊗ L∨

1 → OX0 → 0.

Notice that h0(Gr−3 ⊗ L∨
1 ) = h0(Gr−3 ⊗ L∨

εr−2
) = 1, as it follows from (4.22) with r

replaced by r − 2 which is odd since r is. On the other hand, the fact that Gr−2 arises 
from a non–trivial extension implies as before that the coboundary map

H0(OX0) ∼= C
∂−→ H1(Gr−3 ⊗ L∨

1 ) = H1(Gr−3 ⊗ L∨
εr−2

) ∼= Ext1(Lεr−2 ,Gr−3)

is once again injective. This gives h0(Gr−2 ⊗ L∨
1 ) = h0(Gr−3 ⊗ L∨

1 ) = 1, which implies 
h0(Gr−1 ⊗ L∨

εr ) = 1. This concludes the proof of the Lemma. �
Lemma 4.4 ensures that there exist non-trivial extensions arising from (4.18). Since 

[Ur−1] ∈ M(r − 1) general is slope-stable, with Ur−1 not isomorphic to Lεr (if r > 2, 
rk(Ur−1) > 1 = rk(Lεr ), if otherwise r = 2, U1 = L1 and Lε2 = L2 are not isomorphic), 
moreover Ur−1 and Lεr have the same slope μ = 8b0 − k0 − 3 then, by [11, Lemma 
4.2], the general bundle Fr as in (4.18) is simple, of rank r, Ulrich w.r.t. ξ and with 
c1(Fr) = c1(Ur−1) + Lεr as in (4.6).
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Moreover, as Ur−1 specializes to Gr−1 in the smooth modular family, Fr specializes 
to Gr thus, by semi-continuity h2(Fr ⊗ F∨

r ) = 0 as h2(Gr ⊗ G∨
r ) = 0 (cf. Lemma 4.3-

(iii)). Therefore, by [11, Proposition 10.2], Fr admits a smooth modular family, which 
we denote by M(r).

For r � 2, the scheme M(r) contains a subscheme, denoted by M(r)ext, which 
parametrizes bundles Fr that are non–trivial extensions as in (4.18).

Lemma 4.5. Let r � 2 be an integer and let [Ur] ∈ M(r) be a general point. Then Ur is 
a vector bundle of rank r, which is Ulrich with respect to ξ, with slope w.r.t. ξ given by 
μ := 8b0 − k0 − 3, and with first Chern class

c1(Ur) :=

⎧⎨
⎩rξ + ϕ∗OF0(3, b0 − 3) + ϕ∗OF0

(
r−3
2 , (r−3)

2 (b0 − 2)
)
, if r is odd,

rξ + ϕ∗OF0

(
r
2 ,

r
2 (b0 − 2)

)
, if r is even.

Moreover Ur is simple, in particular indecomposable, with

(i) χ(Ur ⊗ U∨
r ) =

{
(r2−1)

4 (2−h1(L1−L2)−h1(L2−L1))+1= (r2−1)
4 (4−6b0)+1, if r is odd,

r2
4 (2−h1(L1−L2)−h1(L2−L1))= r2

4 (4−6b0), if r is even.
(ii) hj(Ur ⊗ U∨

r ) = 0, for j = 2, 3.

Proof. Since Fr is of rank r and Ulrich w.r.t. ξ, the same holds for the general member 
[Ur] ∈ M(r), since Ulrichness is an open property in irreducible families as M(r). For 
the same reasons c1(Ur) = c1(Fr) = c1(Gr), as in (4.6), and μ(Ur) = μ(Fr) = μ(Ur−1).

Since Fr is simple, as observed above, by semi-continuity h0(Ur ⊗ U∨
r ) = 1, i.e. Ur is 

simple, in particular it is indecomposable.
Property (ii) follows by specializing Fr to a vector bundle Gr constructed above, and 

using semi-continuity and Lemma 4.3-(iii) and (ii), respectively. Property (i) follows by 
Lemma 4.3-(vi), since the given χ depends only on the Chern classes of the two factors 
and on X0, which are constant in the irreducible family M(r). �

We want to prove that the general member [Ur] ∈ M(r) corresponds also to a slope–
stable bundle Ur. To this aim we will first need the following auxiliary results.

Lemma 4.6. Let r � 2 be an integer and assume that [Fr] ∈ M(r)ext sits in a non–
splitting sequence like (4.18) with [Ur−1] ∈ M(r− 1) being slope–stable w.r.t. ξ. Then, if 
D is a destabilizing subsheaf of Fr, then D∨ ∼= U∨

r−1 and (Fr/D)∨ ∼= L∨
εr ; if furthermore 

Fr/D is torsion–free, then D ∼= Ur−1 and Fr/D ∼= Lεr .

Proof. The reasoning is similar to [13, Lemma 4.5], we will describe it for reader’s conve-
nience. Assume that D is a destabilizing subsheaf of Fr, that is 0 < rk(D) < rk(Fr) = r

and μ(D) � μ = μ(Fr). Define the sheaves
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Q := Im{D ⊂ Ur → Lεr} and K := Ker{D → Q}

so that (4.18) may be put into the following commutative diagram with exact rows and 
columns:

0 0 0
↓ ↓ ↓

0 → K → D → Q → 0
↓ ↓ ↓

0 → Ur−1 → Fr → Lεr → 0
↓ ↓ ↓

0 → K′ → Fr/D → Q′ → 0
↓ ↓ ↓
0 0 0

defining the sheaves K′ and Q′. We have rk(Q) � 1.
Assume that rk(Q) = 0. Then Q = 0, whence K ∼= D and Q′ ∼= Lεr . Since μ(K) =

μ(D) � μ = μ(Ur−1) and Ur−1 is slope–stable, we must have rk(K) = rk(Ur−1) = r− 1. 
It follows that rk(K′) = 0. As

c1(K) = c1(Ur−1) − c1(K′) = c1(Ur−1) −D′,

where D′ is an effective divisor supported on the codimension one locus of the support 
of K′, we have

μ � μ(K) = (c1(Ur−1) −D′) · ξ2

r − 1 = c1(Ur−1) · ξ2

r − 1 − D′ · ξ2

r − 1 = μ− D′ · ξ2

r − 1 .

Hence D′ = 0, which means that K′ is supported in codimension at least two. Thus, the 
sheaves exti(K′, OX0) are zero, for i � 1, and it follows that

D∨ ∼= K∨ ∼= U∨
r−1 and (Fr/D)∨ ∼= Q′∨ ∼= L∨

εr ,

as desired. If furthermore Fr/D is torsion–free, then we must have K′ = 0, whence 
D ∼= Ur−1 and Fr/D ∼= Lεr .

Next we prove that rk(Q) = 1 cannot happen. Indeed, if rk(Q) = 1, then rk(K) =
rk(D) − 1 � r− 2 < r− 1 = rk(Ur−1) and rk(Q′) = 0; in particular Q′ is a torsion sheaf. 
Since

c1(K) = c1(D) − c1(Q) = c1(D) − c1(Lεr ) + c1(Q′) = c1(D) − c1(Lεr ) + D,

where D is either an effective divisor supported on the codimension-one locus of the 
support of Q′ or it is D = 0 if codim(Supp(Q′)) � 2. Then, we have



M.L. Fania, F. Flamini / Advances in Mathematics 436 (2024) 109409 39
μ(K) =

(
c1(D) − c1(Lεr ) + D

)
· ξ2

rk(K) �

(
c1(D) − c1(Lεr )

)
· ξ2

rk(K)

= μ(D)rk(D) − c1(Lεr ) · ξ2

rk(K) = μ(D)rk(D) − μ

rk(D) − 1 ≥ μrk(D) − μ

rk(D) − 1 = μ

This contradicts the slope–stability of Ur−1. �
Lemma 4.7. Let r � 2 be an integer. Assume that the general member [Ur−1] ∈ M(r− 1)
corresponds to a slope–stable bundle Ur−1. Then the scheme M(r) is generically smooth 
of dimension

dim(M(r)) =
{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even.

Furthermore M(r) properly contains the locally closed subscheme M(r)ext, namely 
dim(M(r)ext) < dim(M(r)).

Proof. Consider the general member [Ur] ∈ M(r); then it satisfies h0(Ur ⊗U∨
r ) = 1 and 

hj(Ur ⊗ U∨
r ) = 0 for j = 2, 3, by Lemma 4.5.

From the fact that h2(Ur ⊗ U∨
r ) = 0, it follows that M(r) is generically smooth of 

dimension dim(M(r)) = h1(Ur ⊗U∨
r ) (cf. e.g. [11, Prop. 2.10]). On the other hand, since 

h3(Ur ⊗ U∨
r ) = 0 and h0(Ur ⊗ U∨

r ) = 1, we have h1(Ur ⊗ U∨
r ) = −χ(Ur ⊗ U∨

r ) + 1. 
Therefore, the formula concerning dim(M(r)) directly follows from Lemma 4.5-(i).

Similarly, being slope-stable by assumptions, also the general member Ur−1 of M(r−1)
satisfies h0(Ur−1 ⊗U∨

r−1) = 1. Thus, using Lemma 4.5-(ii), the same reasoning as above 
shows that

dim(M(r − 1)) = h1(Ur−1 ⊗ U∨
r−1) = −χ(Ur−1 ⊗ U∨

r−1) + 1, (4.25)

where χ(Ur−1 ⊗ U∨
r−1) as in Lemma 4.5-(i) (with r replaced by r − 1). Moreover, by 

specialization of Ur−1 to Gr−1 and semi-continuity, we have

dim(Ext1(Lεr ,Ur−1)) = h1(Ur−1 ⊗ L∨
εr ) � h1(Gr−1 ⊗ L∨

εr ), (4.26)

where the latter is as in Lemma 4.3-(ii) (with r replaced by r − 1). Therefore, by the 
very definition of M(r)ext and by (4.25)-(4.26), we have

dim(M(r)ext) � dim(M(r − 1)) + dim(P (Ext1(Lεr ,Ur−1))

= −χ(Ur−1 ⊗ U∨
r−1) + 1 + h1(Ur−1 ⊗ L∨

εr ) − 1

� −χ(Ur−1 ⊗ U∨
r−1) + h1(Gr−1 ⊗ L∨

εr ).

On the other hand, from the above discussion,
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dim(M(r)) = −χ(Ur ⊗ U∨
r ) + 1.

Therefore to prove that dim(M(r)ext) < dim(M(r)) it is enough to show that for any 
integer r � 2 the following inequality

−χ(Ur−1 ⊗ U∨
r−1) + h1(Gr−1 ⊗ L∨

εr) < −χ(Ur ⊗ U∨
r ) + 1

holds true. Notice that the previous inequality reads also

−χ(Ur ⊗ U∨
r ) + 1 + χ(Ur−1 ⊗ U∨

r−1) − h1(Gr−1 ⊗ L∨
εr ) > 0, (4.27)

which is satisfied for any r � 2, as we can easily see.
Indeed use Lemmas 4.5-(i) and 4.3-(ii): if r is even, the left hand side of (4.27) reads 

rb0 + 2 + (r−2)
2 which obviously is positive since r, b0 � 2; if r is odd, then r � 3 and the 

left hand side of (4.27) reads (r − 1)(2b0 − 3) + (r−3)
2 which obviously is positive under 

the assumptions r � 3, b0 � 2. �
We can now prove slope–stability of the general member of M(r).

Proposition 4.8. Let r � 1 be an integer. The general member [Ur] ∈ M(r) corresponds 
to a slope–stable bundle.

Proof. We use induction on r, the result being obviously true for r = 1, where U1 = L1, 
M(1) = {L1} is a singleton, and M(1)ext = ∅.

Assume therefore r � 2 and that the general member of M(r) is not slope–stable, 
whereas the general member of M(r−1) is. Then, similarly as in [13, Prop. 4.7], we may 
find a one-parameter family of bundles {U(t)

r } over the unit disc Δ such that U(t)
r is a 

general member of M(r) for t �= 0 and U(0)
r lies in M(r)ext, and such that we have a 

destabilizing sequence

0 → D(t) → U(t)
r → Q(t) → 0 (4.28)

for t �= 0, which we can take to be saturated, that is, such that Q(t) is torsion free, whence 
so that D(t) and Q(t) are (Ulrich) vector bundles (see [11, Thm. 2.9] or [5, (3.2)]).

The limit of P (Q(t)) ⊂ P (U(t)
r ) defines a subvariety of P (U(0)

r ) of the same dimension 
as P (Q(t)), whence a coherent sheaf Q(0) of rank rk(Q(t)) with a surjection U(0)

r → Q(0). 
Denoting by D(0) its kernel, we have rk(D(0)) = rk(D(t)) and c1(D(0)) = c1(D(t)). 
Hence, (4.28) specializes to a destabilizing sequence for t = 0. Lemma 4.6 yields that 
D(0)∨ (respectively, Q(0)∨) is the dual of a member of M(r− 1) (resp., the dual of Lεr). 
It follows that D(t)∨ (resp., Q(t)∨) is a deformation of the dual of a member of U(r− 1)
(resp., a deformation of L∨

εr), whence that D(t) is a deformation of a member of M(r−1), 
as both are locally free, and Q(t) ∼= Lεr , for the same reason.

In other words, the general member of M(r) is an extension of Lεr by a member of 
M(r − 1). Hence M(r) = M(r)ext, contradicting Lemma 4.7. �
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The collection of the previous results gives the following

Theorem 4.9. Let (X0, ξ) ∼= (P (E0), OP(E0)(1)) be a 3-fold scroll over F0, with E0 as in 
Assumption 1.8 Let ϕ : X0 → F0 be the scroll map and F be the ϕ-fiber. Let r � 2 be 
any integer. Then the moduli space of rank-r vector bundles Ur on X0 which are Ulrich 
w.r.t. ξ and with first Chern class

c1(Ur) =

⎧⎨
⎩rξ + ϕ∗OF0(3, b0 − 3) + ϕ∗OF0

(
r−3
2 , (r−3)

2 (b0 − 2)
)
, if r is odd,

rξ + ϕ∗OF0

(
r
2 ,

r
2 (b0 − 2)

)
, if r is even,

is not empty and it contains a generically smooth component M(r) of dimension

dim(M(r)) =
{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even,

with b0 � 2 by (1.6). Moreover the general point [Ur] ∈ M(r) corresponds to a slope-stable 
vector bundle, of slope w.r.t. ξ given by μ(Ur) = 8b0 − k0 − 3.

Proof. It directly follows from Theorem 3.1, (4.6), (4.7) and from Lemmas 4.5, 4.7 and 
Proposition 4.8, where by abuse of notation we have used the same symbol M(r) for the 
smooth modular family which gives rise to the generically smooth irreducible component 
of the corresponding moduli space. �
4.2. Higher rank Ulrich vector bundles on 3-fold scrolls over Fe, e > 0

Here we focus on the case e > 0. The strategy we will use is slightly different from 
that used in §4.1. More precisely, as before we will inductively define irreducible families 
of vector bundles on (Xe, ξ) whose general members will be slope–stable Ulrich bundles 
obtained, by induction, as deformations of extensions of lower ranks Ulrich bundles. The 
main difference with respect to the case e = 0 is that there are no Ulrich line bundles 
w.r.t. ξ on (Xe, ξ) when e > 0, as it follows from Theorem 2.1 (cf. Main Theorem-(a)).

Therefore, in the even rank case, our starting point for the inductive process will be 
given by the use of rank-2 Ulrich vector bundles as in Theorem 3.4. Extensions, recursive 
procedures, deformations and moduli theory, will then allow us to construct slope-stable 
Ulrich vector bundles on (Xe, ξ) of even ranks r = 2h, for any h � 2, and to study their 
modular components.

For odd ranks, instead, we will use some results in [2] concerning rank-3 vector bundles 
over Fe which turn out to be Ulrich w.r.t. c1(Ee) = 3Ce + bef = OFe

(3, be), for any 
e > 0, and then we will apply Theorem 1.7 to obtain rank-3 vector bundles on (Xe, ξ), 
e > 0, which are Ulrich w.r.t. ξ (cf. Theorem 4.14). Then such rank-3 bundles along 
with [U2] ∈ M general as in Theorem 3.4, will allow us to apply an inductive process on 
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Xe also for odd ranks r = 2h + 1, for any h � 1. In order to avoid confusion, we will 
separately treat even ranks r = 2h and odd ranks r = 2h + 1, for any h � 1.

Even ranks: in the even rank cases, set r = 2h, for h � 1 an integer. We start by defining 
the irreducible scheme M(2) to be the component M as in Theorem 3.4. Recall that 
M(2) = M is generically smooth, of dimension dim(M(2)) = 6be − 9e − 3 and that 
the general member [U2] ∈ M(2) is a rank-2 vector bundle on Xe which is Ulrich and 
slope-stable w.r.t. ξ, of slope μ(U2) = 8be − ke − 12e − 3, whose first Chern class is 
c1(U2) = 2ξ + ϕ∗OFe

(1, be − e − 2).
Assume by induction we have constructed an irreducible scheme M(2h − 2), for some 

h � 2; similarly as in [14] we define M(2h) to be the (possibly empty a priori) component 
of the moduli space of Ulrich bundles on (Xe, ξ) containing bundles F2h that are non–
trivial extensions of the form

0 → U′
2 → F2h → U2h−2 → 0, (4.29)

with [U′
2] ∈ M(2), [U2h−2] ∈ M(2h −2) and such that U′

2 � U2h−2 when h = 2. Similarly 
as in the case e = 0 in §4.1, we let M(2h)ext denote the locus in M(2h) of bundles that 
are non-trivial extensions of the form (4.29).

In the next results we will prove that non-trivial extensions as in (4.29) always exist 
and that M(2h)ext �= ∅, so in particular M(2h) �= ∅, for any h � 2. In statements and 
proofs below we will use the following notation: U′

2 will correspond to a general member 
of M(2) and U2h−2 to a general member of M(2h − 2), with U′

2 � U2h−2 when h = 2. 
We will denote by F2h a general member of M(2h)ext and, in bounding cohomologies, 
we will use the fact that U2h specializes to F2h in an irreducible flat family.

All vector bundles F2h, h � 2, recursively defined as in (4.29) are of rank 2h and 
Ulrich w.r.t. ξ, since extensions of bundles which are Ulrich w.r.t. ξ are again Ulrich 
w.r.t. ξ. Their first Chern class is given by

c1(F2h) := 2hξ + ϕ∗OFe
(h, h(be − e− 2)) = h c1(U2), (4.30)

where h = r
2 , whose slope w.r.t. ξ is

μ(F2h) = 8be − ke − 12e− 3. (4.31)

From Theorem 1.4-(a), any such bundle F2h is strictly semistable and slope-semistable, 
being extensions of Ulrich bundles of the same slope.

Lemma 4.10. Let h � 1 be an integer and assume M(2k) �= ∅ for all 1 � k � h. Then

(i) hj(U2h ⊗ U′
2
∨) = hj(U′

2 ⊗ U∨
2h) = 0 for j = 2, 3,

(ii) χ(U2h ⊗ U′
2
∨) = χ(U′

2 ⊗ U∨
2h) = h(4 + 9e − 6be),

(iii) hj(U2h ⊗ U∨
2h) = 0 for j = 2, 3,
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(iv) χ(U2h ⊗ U∨
2h) = h2(4 + 9e − 6be).

Proof. For h = 1, (iii) and (iv) follow from the proof of Theorem 3.4. As for (i), the 
vanishings hold when U′

2 = U2 once again by the proof of Theorem 3.4, and thus, by 
semi-continuity, they also hold for a general pair ([U′

2], [U2]) ∈ M(2) ×M(2). Similarly, 
(ii) follows from the proof of Theorem 3.4, since the given χ is constant as U2 and U′

2
vary in M(2).

We now prove the statements for any integer h � 2 by induction. Assume therefore 
that they are satisfied for all positive integers k less than h.

(i) Let j ∈ {2, 3}. By specialization and (4.29) we have

hj(U2h ⊗ U′
2
∨) � hj(F2h ⊗ U′

2
∨) � hj(U′

2 ⊗ U′
2
∨) + hj(U2h−2 ⊗ U′

2
∨),

and the latter are 0 by induction. Similarly, by specialization and the dual of (4.29) we 
have

hj(U′
2 ⊗ U2h

∨) � hj(U′
2 ⊗ F2h

∨) � hj(U′
2 ⊗ U′

2
∨) + hj(U′

2 ⊗ U2h−2
∨),

which are again 0 by induction.
(ii) By specialization, (4.29) and induction we have

χ(U2h ⊗ U′
2
∨) = χ(F2h ⊗ U′

2
∨) = χ(U′

2 ⊗ U′
2
∨) + χ(U2h−2 ⊗ U′

2
∨)

= (4 + 9e− 6be) + (h− 1)(4 + 9e− 6be) = h(4 + 9e− 6be).

Likewise, by specialization, the dual of (4.29) and induction, the same holds for χ(U′
2 ⊗

U2h
∨).

(iii) Let j = 2, 3; by specialization, (4.29) and its dual we have

hj(U2h ⊗ U∨
2h) � hj(F2h ⊗ F∨

2h) � hj(U′
2 ⊗ F∨

2h) + hj(U2h−2 ⊗ F∨
2h)

� hj(U′
2 ⊗ U′

2
∨) + hj(U′

2 ⊗ U∨
2h−2) + hj(U2h−2 ⊗ U′

2
∨)

+ hj(U2h−2 ⊗ U∨
2h−2),

which are all 0 by induction.
(iv) By specialization, (4.29) and its dual we have

χ(U2h ⊗ U∨
2h) = χ(F2h ⊗ F∨

2h) = χ(U′
2 ⊗ F∨

2h) + χ(U2h−2 ⊗ F∨
2h)

= χ(U′
2 ⊗ U′

2
∨) + χ(U′

2 ⊗ U∨
2h−2) + χ(U2h−2 ⊗ U′

2
∨) + χ(U2h−2 ⊗ U∨

2h−2).

By induction, this equals (4 +9e −6be) +2(h −1)(4 +9e −6be) +(h −1)2(4 +9e −6be) =
h2(4 + 9e − 6be). �
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Proposition 4.11. For all integers h � 1 the scheme M(2h) is not empty and its general 
member [U2h] ∈ M(2h) corresponds to a rank-2h vector bundle U2h which is Ulrich w.r.t. 
ξ and which satisfies

c1(U2h) = 2hξ + ϕ∗OFe
(h, h(be − e− 2)) and hj(U2h ⊗ U∨

2h) = 0, j = 2, 3.

Proof. We prove this by induction on h, the case h = 1 being satisfied by the choice of 
M(2). Therefore, let h � 2; for general [U2h−2] ∈ M(2h − 2) and [U′

2] ∈ M(2), one has

dim(Ext1(U2h−2,U
′
2)) = h1(U′

2 ⊗ U∨
2h−2).

By Lemma 4.10-(i) we have that hj(U′
2 ⊗ U∨

2h−2) = 0, for j = 2, 3. Therefore

χ(U′
2 ⊗ U∨

2h−2) = h0(U′
2 ⊗ U∨

2h−2) − h1(U′
2 ⊗ U∨

2h−2)

so, by specialization and invariance of χ in irreducible families, we have

dim(Ext1(U2h−2,U
′
2)) = h1(U′

2 ⊗ U∨
2h−2) (4.32)

= −χ(U′
2 ⊗ U∨

2h−2) + h0(U′
2 ⊗ U∨

2h−2)

� −χ(U′
2 ⊗ U∨

2h−2) = −χ(U′
2 ⊗ F∨

2h−2) =

= (h− 1)(6be − 9e− 4) > 0

the latter equality following from Lemma 4.10-(ii) (with h replaced by h − 1) whereas 
the last strict inequality following from h � 2. Hence, by its very definition, one has that 
M(2h)ext, and so also M(2h), is not empty.

The members of M(2h) have rank 2h and first Chern class 2hξ+ϕ∗OFe
(h, h(be−e −2))

as in (4.30), since c1(U2h) = c1(F2h) being constant in M(2h). It is immediate that 
extensions of Ulrich bundles are still Ulrich, so the general member U2h of M(2h) is an 
Ulrich bundle. It also satisfies hj(U2h ⊗ U∨

2h) = 0 for j = 2, 3 by Lemma 4.10-(iii). �
We need to prove that the general member of M(2h) corresponds to a slope–stable 

vector bundle, that M(2h) is generically smooth and we need to compute the dimension 
at its general point [U2h]. We will again prove all these facts by induction on h. Similarly 
as in the case e = 0, we need the following auxiliary result.

Lemma 4.12. Let F2h correspond to a general member of M(2h)ext, sitting in an exten-
sion like (4.29). Assume furthermore that U′

2 and U2h−2 are slope–stable. Let D be a 
destabilizing subsheaf of F2h. Then D∨ ∼= U′

2
∨ and (F2h/D)∨ ∼= U∨

2h−2.

Proof. The proof is almost identical to that of Lemma 4.6, so the reader is referred 
therein. �
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Proposition 4.13. For all integers h � 1 the scheme M(2h) is not empty, generically 
smooth of dimension

dim(M(2h)) = h2(6be − 9e− 4) + 1.

Its general member corresponds to a slope-stable bundle U2h whose slope w.r.t. ξ is 
μ(U2h) = 8be − ke − 12e − 3. Furthermore, M(2h) properly contains the locally closed 
subscheme M(2h)ext, namely dim(M(2h)ext) < dim(M(2h)).

Proof. We prove this by induction on h, the case h = 1 being satisfied by M(2) as in 
Theorem 3.4.

Let therefore h � 2 and assume that we have proved the lemma for all positive integers 
k � h − 1; we will prove it for h.

The slope of the members of M(2) and M(2h −2) are both equal to 8be−ke−12e −3 as 
in (4.31). Thus, by [11, Lemma 4.2], the general member [F2h] ∈ M(2h)ext corresponds 
to a simple bundle. Hence, by semi-continuity, also the general member [U2h] ∈ M(2h)
corresponds to a simple bundle which also satisfies hj(U2h ⊗ U∨

2h) = 0, j = 2, 3, by 
Lemma 4.10-(iii).

Therefore M(2h) is smooth at [U2h] (see, e.g., [11, Prop. 2.10]) with

dim(M(2h)) = h1(U2h ⊗ U∨
2h) = −χ(U2h ⊗ U∨

2h) + h0(U2h ⊗ U∨
2h) (4.33)

= h2(6be − 9e− 4) + 1,

using the facts that h0(U2h ⊗ U∨
2h) = 1 as U2h is simple, and that χ(U2h ⊗ U∨

2h) =
h2(4 + 9e − 6be) by Lemma 4.10-(iv). This proves that M(2h) is generically smooth of 
the stated dimension.

Finally, we prove that U2h general is slope–stable and that dim(M(2h)ext) <

dim(M(2h)). If U2h general were not slope-stable then, as in the proof of Proposition 4.8, 
we could find a one-parameter family of bundles {U(t)

2h} over the disc Δ such that U(t)
2h is 

a general member of M(2h) for t �= 0 and U(0)
2h lies in M(2h)ext, and such that we have 

a destabilizing sequence

0 → D(t) → U
(t)
2h → G(t) → 0 (4.34)

for t �= 0, which we can take to be saturated, that is, such that G(t) is torsion free, 
whence so that D(t) and G(t) are (Ulrich) vector bundles (see [11, Thm. 2.9] or [5, (3.2)]). 
The limit of P (G(t)) ⊂ P (U(t)

2h) defines a subvariety of P (U(0)
2h ) of the same dimension 

as P (G(t)), whence a coherent sheaf G(0) of rank rk(G(t)) with a surjection U(0)
2h � G(0). 

Denoting by D(0) its kernel, we have rk(D(0)) = rk(D(t)) and c1(D(0)) = c1(D(t)). Hence, 
(4.34) specializes to a destabilizing sequence for t = 0.

Lemma 4.12 yields that D(0)∨ (resp., G(0)∨) is the dual of a member of M(2) (resp., of 
M(2h)). It follows that D(t)∨ (resp., G(t)∨) is a deformation of the dual of a member of 
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M(2)) (resp., of M(2h)), whence that D(t) (resp., G(t)) is a deformation of a member of 
M(2) (resp., M(2h)), as both are locally free. It follows that [U(t)

2h ] ∈ M(2h)ext for t �= 0. 
Thus,

M(2h)ext = M(2h). (4.35)

On the other hand we have

dim(M(2h)ext) � dim(P (Ext1(U2h−2,U
′
2))) + dim(M(2h− 2)) + dim(M(2)), (4.36)

for general [U2h−2] ∈ M(2h − 2) and [U′
2] ∈ M(2). As U2h−2 and U′

2 are slope–stable by 
induction, of the same slope, we have h0(U′

2 ⊗U∨
2h−2) = 0. Lemma 4.10-(i), (ii) and (iii) 

thus yield

h1(U′
2 ⊗ U∨

2h−2) = −χ(U′
2 ⊗ U∨

2h−2) = (h− 1)(6be − 9e− 4).

Hence, by (4.36) and (4.33) we have

dim(M(2h)ext) � (h− 1)(6be − 9e− 4) − 1 +
[
(h− 1)2(6be − 9e− 4) + 1

]
+ (6be − 9e− 3)

= (h2 − h + 1)(6be − 9e− 4) + 1 < h2(6be − 9e− 4) + 1 = dim(M(2h)),

as it easily follows from the fact that h � 2. The previous inequality shows that 
dim(M(2h)ext) < dim(M(2h)), as stated; in particular (4.35) is a contradiction, which 
forces also U2h general to be slope-stable. �
Odd ranks: in odd ranks, set r = 2h + 1, for h � 1 an integer. The first step is given by 
the following result.

Theorem 4.14. Let (Xe, ξ) ∼= (P (Ee), OP(Ee)(1)) be a 3-fold scroll over Fe, with e > 0, 
and Ee be as in Assumption 1.8. Let ϕ : Xe → Fe be the scroll map and F be the ϕ-fiber. 
Then the moduli space of rank-3 vector bundles on Xe, which are Ulrich w.r.t. ξ, with 
first Chern class

c1 = 3ξ + ϕ∗OFe
(3, be − 3) (4.37)

is not empty and it contains a generically smooth component M(3) of dimension

dim(M(3)) = 2(6be − 9e− 4),

whose general point [U3] corresponds to a slope-stable vector bundle U3 of slope w.r.t. ξ

μ(U3) = 8be − ke − 12e− 3. (4.38)
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Recalling the expression of the first Chern class in Main Theorem-(c) for r = 3, this 
coincides with that in (4.37) since r−3

2 = 0 in this case.

Proof of Theorem 4.14. Similarly as in the proof of Theorem 3.4, we consider a rank-3 
vector bundle A3 on Fe which is Ulrich w.r.t. c1(Ee) = 3Ce + bef = OFe

(3, be), for any 
e > 0.

Such a bundle certainly exists, as it follows from [2, Prop. 5.3, Thm. 6.2]; indeed, using 
same notation therein, we let r = 3, D ∈ |OFe

(α, β)| be any divisor on Fe, polarization 
c1(Ee) = 3Ce + bef = OFe

(3, be) (in [2] the polarization is denoted by h), it follows that 
any pair (3, D), satisfying

T = 24e + be
3 (α + 3) ∈ Z and 6 + 9e

be
� α � 15 − 9e

be

and such that

D(3Ce + bef) = 3
2
(
2(3Ce + bef)2 + (3Ce + bef)KFe

)
,

is an admissible Ulrich pair on Fe w.r.t. the polarization OFe
(3, be) (cf. [2, Def. 5.1, Prop. 

5.3]).
Because be � 3e + 2 from (1.6), then one has 7 � α � 14. If we therefore take e.g. 

α = 12 and β = 4be − 3, an easy check shows that the previous relations hold true. 
Hence the pair (3, OFe

(12, 4be − 3)) = (3, 12Ce + (4be − 3)f) is an admissible Ulrich 
pair, thus Fe certainly supports rank-3 vector bundles, say A3, which are Ulrich w.r.t. 
c1(Ee) = 3Ce + bef , such that c1(A3) = 12Ce + (4be − 3)f = OFe

(12, 4be − 3) and which 
are given as cokernels of appropriate injective vector bundle maps, (see [2, Thm. 4.1, 
(4.1) and Thm. 6.2]). They moreover satisfies Ext2(A3, A3) = h2(A3 ⊗ A∨

3 ) = 0 (cf. [2, 
Lemma 6.3]). From [2, Prop. 6.4], any such bundle A3 is slope-stable, hence simple i.e. 
h0(A3 ⊗A∨

3 ) = 1. These bundles belong to the moduli space MU
c1(Ee)(3, c1, c2) of rank-3 

vector bundles of given Chern classes c1, c2, which are Ulrich w.r.t. c1(Ee), which is 
smooth, irreducible, of dimension

dim(MU
c1(Ee)(3, c1, c2)) = h1(A3 ⊗A∨

3 ) = 1 − χ(A3 ⊗A∨
3 ) = 2(6be − 9e− 4)

(cf. [2, Prop. 6.4]). All points of MU
c1(Ee)(3, c1, c2) correspond to slope–stable Ulrich bun-

dles, since on Fe there are no Ulrich line bundles w.r.t. c1(Ee) = 3Ce + bef = OFe
(3, be)

from [4, Thm. 2.1] (cf. Theorem 1.4-(b) or [5, Sect. 3, (3.2)]).
Using Theorem 1.7, we therefore first consider on Fe bundles H3 := A3(−c1(Ee)), 

which are of rank 3, with first Chen class

c1(H3) = c1(A3) − 3c1(Ee) = 3Ce + (be − 3)f = OFe
(3, be − 3),

and then, on Xe, we take
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V3 = ξ ⊗ ϕ∗(H3), (4.39)

which are rank-3 vector bundles on Xe which are Ulrich w.r.t. ξ, as it follows from The-
orem 1.7, whose first Chern class c1 := c1(V3) is as in (4.37). From Main Theorem–(a), 
when e > 0, there are no Ulrich line bundles w.r.t. ξ thus, once again by Theorem 1.4-
(b) or [5, Sect. 3, (3.2)], V3 is also slope-stable w.r.t. ξ, whose slope is as in (4.38); in 
particular it is also simple. Moreover, by Leray’s isomorphism, projection formula and 
independence on the twists, one has

hj(Xe,V3 ⊗ V∨
3 ) = hj(Fe,H3 ⊗H∨

3 ) = hj(Fe,A3 ⊗A∨
3 ), 0 � j � 3, (4.40)

which implies that bundles V3 fill–up a smooth modular component M(3) of the moduli 
space of rank-3 vector bundles on Xe, which are Ulrich w.r.t. ξ, whose first Chern class 
and slope w.r.t. ξ are as in (4.37), (4.38), respectively, and whose dimension is

dim(M(3)) = dim(MU
c1(Ee)(3, c1, c2)) = 2(6be − 9e− 4)

as in [2, Prop. 6.4]. �
Together with M(3) as in Theorem 4.14, consider also the irreducible scheme M(2)

to be the component M as in Theorem 3.4. Recall that M(2) is generically smooth, 
of dimension dim(M(2)) = 6be − 9e − 3 and that the general member [U2] ∈ M(2)
corresponds to a rank-2 vector bundle on Xe which is Ulrich and slope-stable w.r.t. ξ, of 
slope μ(U2) = 8be−ke−12e −3 and whose first Chern class is c1(U2) = 2ξ+ϕ∗OFe

(1, be−
e − 2).

As done in the even rank case, if we assume by induction that we have constructed, 
for some integer h � 2, an irreducible scheme M(2h − 1) which is a generically smooth 
modular component of the moduli space of vector bundles of rank r = 2h − 1 on Xe, 
which are Ulrich w.r.t. ξ, whose first Chern class is as in Main Theorem–(c) and whose 
general point [U2h−1] ∈ M(2h −1) is slope-stable, with slope μ(U2h−1) = 8be−ke−12e −3
w.r.t. ξ, we may therefore inductively define M(2h +1) to be the (possibly empty a priori) 
component of the moduli space of Ulrich bundles on (Xe, ξ) containing bundles F2h+1
that are non–trivial extensions of the form

0 → U2 → F2h+1 → U2h−1 → 0, (4.41)

with [U2] ∈ M(2), [U2h−1] ∈ M(2h −1) general, and we let M(2h +1)ext denote the locus 
in M(2h + 1) of bundles that are non-trivial extensions of the form (4.41).

In the next results we will prove that non-trivial extensions as in (4.41) always exist (cf. 
the proof of Proposition 4.16) and that M(2h +1)ext �= ∅, so in particular M(2h +1) �= ∅, 
for any h � 2.

All vector bundles F2h+1, h � 2, recursively defined as in (4.41) are of rank 2h + 1
and Ulrich w.r.t. ξ, since extensions of bundles which are Ulrich w.r.t. ξ are again Ulrich 
w.r.t. ξ. Their first Chern class is given by
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c1(F2h+1) = c1(U2) + c1(U2h−1) = c1(U3) + (h− 1)c1(U2),

i.e.

c1(F2h+1) := (2h + 1)ξ + ϕ∗OFe
(3, be − 3) + ϕ∗OFe

(h− 1, (h− 1)(be − e− 2)), (4.42)

where h = r−1
2 , whose slope w.r.t. ξ is

μ(F2h+1) = 8be − ke − 12e− 3. (4.43)

From Theorem 1.4-(a), any such bundle F2h+1 is strictly semistable and slope-semistable, 
being extension of Ulrich bundles of the same slope w.r.t. ξ.

Lemma 4.15. Let h � 1 be an integer and assume M(2k+1) �= ∅ for all 1 � k � h. Then

(i) hj(U2h+1 ⊗ U2
∨) = hj(U2 ⊗ U∨

2h+1) = 0 for j = 2, 3,
(ii) χ(U2h+1 ⊗U2

∨) = (h −1)(4 +9e −6be) +(15e −10be +3) whereas χ(U2 ⊗U∨
2h+1) =

(h − 1)(4 + 9e − 6be) + (12e − 8be − 3),
(iii) hj(U2h+1 ⊗ U∨

2h+1) = 0 for j = 2, 3,
(iv) χ(U2h+1 ⊗ U∨

2h+1) = 1 + 9(h − 1)(3e − 2be) + ((h − 1)2 + 2)(4 + 9e − 6be).

Proof. We prove it by induction on h. We start with h = 1, namely r = 3. In this case, 
(iii) and (iv) follow from Theorem 4.14. Indeed, take V3 = ξ ⊗ϕ∗(H3) so, by (4.40) and 
semi–continuity, one has

hj(Xe,U3 ⊗ U∨
3 ) = hj(Xe,V3 ⊗ V∨

3 ) = hj(Fe,A3 ⊗A∨
3 ) = 0, 2 � j � 3,

which proves (iii) for h = 1; moreover, by stability and semi–continuity, one has 
h0(Xe, U3 ⊗ U∨

3 ) = h0(Xe, V3 ⊗ V∨
3 ) = 1, therefore from the vanishings above one has

χ(Xe,U3 ⊗ U∨
3 ) = 1 − h1(Xe,U3 ⊗ U∨

3 ) = 1 − dim(M(3)) = 1 − 2(6be − 9e− 4)

= 1 + 2(4 + 9e− 6be),

which also proves (iv) for h = 1.
As for (i), by semi–continuity, one has

hj(Xe,U3 ⊗ U∨
2 ) � hj(Xe,V3 ⊗ V∨

2 ) and hj(Xe,U2 ⊗ U∨
3 ) � hj(Xe,V2 ⊗ V∨

3 ),

for any 0 � j � 3, where V2 = V as in the proof of Theorem 3.4, i.e. V2 = ξ ⊗ ϕ∗(H), 
where c1(H) = Ce + (be − e − 2)f = OFe

(1, be − e − 2). From Leray’s isomorphism, 
projection formula and invariance under twists, it follows that, for any 0 � j � 3, one 
has
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hj(Xe,V3 ⊗ V∨
2 ) = hj(Fe,H3 ⊗H∨) = hj(Fe,A3 ⊗H∨

1 )

and

hj(Xe,V2 ⊗ V∨
3 ) = hj(Fe,H ⊗H∨

3 ) = hj(Fe,H1 ⊗A∨
3 ),

where A3 = H3(c1(Ee)) is the rank-3 vector bundle on Fe as in the proof of Theorem 4.14
whereas H1 = H(c1(Ee)) is the rank-2 vector bundle on Fe as in (3.24), which are both 
Ulrich w.r.t. c1(Ee) = OFe

(3, be). Therefore, for dimension reasons, h3(Fe, A3 ⊗ H∨
1 ) =

h3(Fe, H1 ⊗ A∨
3 ) = 0, which implies therefore h3(Xe, U3 ⊗ U∨

2 ) = h3(Xe, U2 ⊗ U∨
3 ) = 0, 

as desired.
To prove that h2(Fe, A3 ⊗H∨

1 ) = 0 recall that, from [2, Prop. 6.4], A3 arises as the 
cokernel of a general injective vector bundle map of the form

0 → OFe
(2, be − e− 1)⊕γ → OFe

(2, be − e)⊕δ ⊕ OFe
(3, be − 1)⊕τ → A3 → 0, (4.44)

for suitable positive integers γ, δ, τ as in [2, Thm. 4.1], in our situation one can see that 
γ = be − 3e + 3, δ = b − 3e, τ = 6. Tensoring (4.44) by H∨

1 gives that

h2(Fe,A3 ⊗H∨
1 ) � δ h2(Fe,H

∨
1 ⊗ OFe

(2, be − e)) + τ h2(Fe,H
∨
1 ⊗ OFe

(3, be − 1)),

therefore to prove that h2(Fe, A3 ⊗H∨
1 ) = 0 it is enough to show that

h2(Fe,H
∨
1 ⊗ OFe

(2, be − e)) = h2(Fe,H
∨
1 ⊗ OFe

(3, be − 1)) = 0. (4.45)

Taking into account that H1 is of rank 2, i.e. H∨
1

∼= H1(−c1(H1)), where c1(H1) =
Ce + (be − e − 2)f = OFe

(1, be − e − 2), from (3.24) one has that H1(−c1(H1)) fits in

0 → OFe
(2, e + 1) → H1(−c1(H1)) → IZ ⊗ OFe

(3, be + 1) → 0, (4.46)

where Z ⊂ Fe is a general zero-dimensional subscheme of Fe of length �(Z) = 2be − 3e. 
Thus, from (4.46), to prove (4.45) it is enough to prove that

h2(OFe
(4, be + 1)) = h2(OFe

(5, be + e)) = h2(IZ ⊗ OFe
(5, 2be − e + 1))

= h2(IZ ⊗ OFe
(6, 2be)) = 0,

which trivially hold true from either Serre duality on Fe or from the use of the exact 
sequence 0 → IZ → OFe

→ OZ → 0. This shows that h2(Fe, A3 ⊗H∨
1 ) = 0.

To prove instead that h2(Fe, H1 ⊗A∨
3 ) = 0, one considers the dual exact sequence of 

(4.44), i.e.

0 → A∨
3 → OFe

(−2,−be + e)⊕δ ⊕ OFe
(−3,−be + 1)⊕τ → OFe

(−2,−be + e + 1)⊕γ → 0,
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and tensor it by H1, which gives

h2(Fe,H1 ⊗A∨
3 ) � δ h2(H1 ⊗ OFe

(−2,−be + e)) + τ h2(H1 ⊗ OFe
(−3,−be + 1)) +

γ h1(H1 ⊗ OFe
(−2,−be + e + 1)).

From (3.24), it is enough to prove

h2(OFe
(1, e− 1)) = h2(OFe

) = h1(OFe
(1, e)) = 0,

and

h2(IZ ⊗ OFe
(2, be − 1)) = h2(IZ ⊗ OFe

(1, be − e)) = h1(IZ ⊗ OFe
(2, be)) = 0.

The vanishings of the h2’s easily follow from the same reasoning as above; by Leray’s 
isomorphism and projection formula one gets h1(OFe

(1, e)) = h1(P 1, OP1(e) ⊕OP1) = 0. 
At last, if we take into account that Z is a zero-dimensional subscheme of length �(Z) =
2be − 3e of general points on Fe, then Z imposes independent conditions on the linear 
system |OFe

(2, be)| on Fe, which is of dimension 3be − 3e + 2 > �(Z) = 2be − 3e since 
be � 3e + 2 by (1.6); this means that h1(IZ ⊗OFe

(2, be)) = h1(OFe
(2, be)) and the latter 

is zero by standard computations. This shows that h2(Fe, H1⊗A∨
3 ) = 0, which concludes 

the proof of (i) for h = 1.
Finally, to prove (ii) for h = 1, from invariance of χ in irreducible families and from 

above one has

χ(Xe,U3 ⊗ U∨
2 ) = χ(Xe,V3 ⊗ V∨

2 ) = χ(Fe,H3 ⊗H∨) = χ(Fe,A3 ⊗H∨
1 )

and

χ(Xe,U2 ⊗ U∨
3 ) = χ(Xe,V3 ⊗ V∨

2 ) = χ(Fe,H ⊗H∨
3 ) = χ(Fe,H1 ⊗A∨

3 ).

Since A3 and H1 are both Ulrich bundles w.r.t. c1(Ee) = 3Ce + bef = OFe
(3, be) on 

Fe, let us consider the smooth projective model (S, OS(1)) ∼= (Fe, OFe
(3, be)), which is 

a surface, in a suitable projective space, of degree d := deg(S) = (c1(Ee))2 = 6be − 9e. 
Thus, from [11, Prop. 2.12], one has

χ(Fe,A3 ⊗H∨
1 ) = 3c1(H1) ·KS − c1(A3) · c1(H1) + 6(2d− 2)

and

χ(Fe,H1 ⊗A∨
3 ) = 2c1(A3) ·KS − c1(A3) · c1(H1) + 6(2d− 2),

where pa(S) = 1 and KS = −2Ce − (e + 2)f . Using that c1(H1) = 7Ce + (3be − e − 2)f
and c1(A3) = 12Ce + (4be − 3)f , one gets
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c1(A3) · c1(H1) = 64be − 96e− 45, c1(A3) ·KS = 12e− 8be − 18,

c1(H1) ·KS = 9e− 6be − 10, 6(2d− 2) = 12(d− 1) = 72be − 108e− 12;

plugging these computations in the previous formulas, one gets

χ(Fe,A3 ⊗H∨
1 ) = 15e− 10be + 3 and χ(Fe,H1 ⊗A∨

3 ) = 12e− 8be − 3,

which concludes the proof of (ii) for h = 1.
We now prove by induction that all statements hold true also for any integer h � 2. 

Assume therefore that they are satisfied for all positive integers k such that 1 � k � h −1.
(i) Let j ∈ {2, 3}. By specialization and (4.41) tensored with U2

∨, we have

hj(U2h+1 ⊗ U2
∨) � hj(F2h+1 ⊗ U2

∨) � hj(U2 ⊗ U2
∨) + hj(U2h−1 ⊗ U2

∨),

and the latter are 0 by induction. Similarly, by specialization and using the dual of (4.41)
tensored with U2 we have

hj(U2 ⊗ U∨
2h+1) � hj(U2 ⊗ F∨

2h+1) � hj(U2 ⊗ U2
∨) + hj(U2 ⊗ U∨

2h−1),

which are again 0 by induction.
(ii) By specialization, (4.41) tensored with U2

∨ and induction we have

χ(U2h+1 ⊗ U2
∨) = χ(F2h+1 ⊗ U2

∨) = χ(U2 ⊗ U2
∨) + χ(U2h−1 ⊗ U2

∨)

= (4 + 9e− 6be) + (h− 2)(4 + 9e− 6be) + (15e− 10be + 3).

Likewise, by specialization, the dual of (4.41) and induction, we have

χ(U2 ⊗ U∨
2h+1) = χ(U2 ⊗ F∨

2h+1) = χ(U2 ⊗ U2
∨) + χ(U2 ⊗ U∨

2h−1)

= (4 + 9e− 6be) + (h− 2)(4 + 9e− 6be) + (12e− 8be − 3).

(iii) Let j = 2, 3; by specialization, (4.41) and its dual we have

hj(U2h+1 ⊗ U∨
2h+1) � hj(F2h+1 ⊗ F∨

2h+1) �

� hj(U2 ⊗ F∨
2h+1) + hj(U2h−1 ⊗ F∨

2h+1)

� hj(U2 ⊗ U2
∨) + hj(U2 ⊗ U∨

2h−1) +

+hj(U2h−1 ⊗ U2
∨) + hj(U2h−1 ⊗ U∨

2h−1),

which are all 0 by induction.
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(iv) By specialization, (4.41) and its dual we have

χ(U2h+1 ⊗ U∨
2h+1) = χ(F2h+1 ⊗ F∨

2h+1) = χ(U2 ⊗ F∨
2h+1) + χ(U2h−1 ⊗ F∨

2h+1)

= χ(U2 ⊗ U2
∨) + χ(U2 ⊗ U∨

2h−1) + χ(U2h−1 ⊗ U2
∨)

+ χ(U2h−1 ⊗ U∨
2h−1).

By induction, this equals

(4 + 9e− 6be) + (h− 2)(4 + 9e− 6be) + (h− 2)(4 + 9e− 6be) + (27e− 18be) + 1 +

+9(h− 2)(3e− 2be) + ((h− 2)2 + 2)(4 + 9e− 6be) =

= 1 + 9(h− 1)(3e− 2be) + (4 + 9e− 6be)(1 + h− 2 + h− 2 + (h− 2)2 + 2) =

= 1 + 9(h− 1)(3e− 2be) + ((h− 1)2 + 2)(4 + 9e− 6be). �
Proposition 4.16. For all integers h � 1 the scheme M(2h + 1) is not empty and its 
general member [U2h+1] ∈ M(2h +1) corresponds to a rank-(2h +1) vector bundle U2h+1
which is Ulrich w.r.t. ξ and which satisfies

c1(U2h+1) = (2h + 1)ξ + ϕ∗OFe
(3, be − 3)) + ϕ∗OFe

(h− 1, (h− 1)(be − e− 2))

and hj(U2h+1 ⊗ U∨
2h+1) = 0, j = 2, 3.

Proof. We prove this by induction on h, the case h = 1 being satisfied by the choice of 
M(3) as in Theorem 4.14. Therefore, let h � 2; for general [U2h−1] ∈ M(2h − 1) and 
[U2] ∈ M(2), one has

dim(Ext1(U2h−1,U2)) = h1(U2 ⊗ U∨
2h−1).

By Lemma 4.15-(i) we have that hj(U2 ⊗ U∨
2h−1) = 0, for j = 2, 3. Therefore

χ(U2 ⊗ U∨
2h−1) = h0(U2 ⊗ U∨

2h−1) − h1(U2 ⊗ U∨
2h−1)

so, by specialization and invariance of χ in irreducible families, we have

dim(Ext1(U2h−1,U2)) = h1(U2 ⊗ U∨
2h−1) (4.47)

= −χ(U2 ⊗ U∨
2h−1) + h0(U2 ⊗ U∨

2h−1)

� −χ(U2 ⊗ U∨
2h−1) = −χ(U2 ⊗ F∨

2h−1)

= (h− 2)(6be − 9e− 4) + (8be − 12e + 3) > 0,

the latter equality following from Lemma 4.15-(ii) (with h replaced by h − 1) whereas 
the last strict inequality following from h � 2 and be � 3e + 2 by (1.6).
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The above computations prove that dim(Ext1(U2h−1, U2)) > 0, i.e. there exist non-
trivial extensions as in (4.41), and that the scheme M(2h +1)ext, and so also M(2h +1), 
is not empty.

The members of M(2h + 1) have rank 2h + 1 and first Chern class as in (4.42), since 
c1(U2h+1) = c1(F2h+1) being constant in M(2h + 1). It is immediate that extensions of 
Ulrich bundles are still Ulrich, so the general member [U2h+1] ∈ M(2h + 1) corresponds 
to an Ulrich bundle w.r.t. ξ. It also satisfies hj(U2h+1 ⊗ U∨

2h+1) = 0 for j = 2, 3 by 
Lemma 4.15-(iii). �

We need to prove that the general member of M(2h + 1) corresponds to a vector 
bundle which is slope–stable w.r.t. ξ, that M(2h + 1) is generically smooth and we need 
to compute the dimension at its general point [U2h+1]. We will again prove all these facts 
by induction on h. Similarly as in the previous cases, we need the following auxiliary 
result.

Lemma 4.17. Let F2h+1 correspond to a general member of M(2h + 1)ext, sitting in an 
extension like (4.41). Assume furthermore that U2 and U2h−1 are slope–stable. Let D be 
a destabilizing subsheaf of F2h+1. Then D∨ ∼= U2

∨ and (F2h+1/D)∨ ∼= U∨
2h−1.

Proof. The proof is identical to that of Lemma 4.12, so the reader is referred therein. �
Proposition 4.18. For all integers h � 1 the scheme M(2h + 1) is not empty, generically 
smooth of dimension

dim(M(2h + 1)) = ((h− 1)2 + 2)(6be − 9e− 4) + 9(h− 1)(2be − 3e).

Its general member corresponds to a slope-stable bundle U2h+1 whose slope w.r.t. ξ is

μ(U2h+1) = 8be − ke − 12e− 3.

Furthermore, M(2h + 1) properly contains the locally closed subscheme M(2h + 1)ext, 
namely dim(M(2h + 1)ext) < dim(M(2h + 1)).

Proof. We prove this by induction on h, the case h = 1 being satisfied by M(3) as in 
Theorem 4.14, where in such a case M(3)ext = ∅.

Let therefore h � 2 and assume that we have proved the statement for all positive 
integers k � h − 1; we will prove it for h.

The slope of the members of M(2) and M(2h − 1) are both equal to 8be−ke− 12e − 3
as in (4.43). Thus, by [11, Lemma 4.2], the general member [F2h+1] ∈ M(2h + 1)ext

(which is not empty by Proposition 4.16) corresponds to a simple bundle. Hence, by 
semi-continuity, also the general member [U2h+1] ∈ M(2h + 1) corresponds to a simple 
bundle which also satisfies hj(U2h+1 ⊗ U∨

2h+1) = 0, j = 2, 3, by Lemma 4.15-(iii).
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Therefore M(2h + 1) is smooth at [U2h+1] (see, e.g., [11, Prop. 2.10]) with

dim(M(2h + 1)) = h1(U2h+1 ⊗ U∨
2h+1) (4.48)

= −χ(U2h+1 ⊗ U∨
2h+1) + h0(U2h+1 ⊗ U∨

2h+1)

= ((h− 1)2 + 2)(6be − 9e− 4) + 9(h− 1)(2be − 3e),

using the facts that h0(U2h+1 ⊗ U∨
2h) = 1 as U2h+1 is simple, and the computation of 

χ(U2h+1 ⊗U∨
2h+1) in Lemma 4.15-(iv). This proves that M(2h +1) is generically smooth 

of the stated dimension.
Finally, we prove that U2h+1 general is slope–stable and that dim(M(2h + 1)ext) <

dim(M(2h + 1)). If U2h+1 general were not slope-stable then we could find a one-
parameter family of bundles {U(t)

2h+1} over the disc Δ such that U(t)
2h+1 is a general 

member of M(2h + 1) for t �= 0 and U(0)
2h+1 lies in M(2h + 1)ext, and such that we have a 

destabilizing sequence

0 → D(t) → U
(t)
2h+1 → G(t) → 0 (4.49)

for t �= 0, which we can take to be saturated, that is, such that G(t) is torsion free, whence 
so that D(t) and G(t) are (Ulrich) vector bundles (see [11, Thm. 2.9] or [5, (3.2)]). The 
limit of P (G(t)) ⊂ P (U(t)

2h+1) defines a subvariety of P (U(0)
2h+1) of the same dimension as 

P (G(t)), whence a coherent sheaf G(0) of rank rk(G(t)) with a surjection U(0)
2h+1 � G(0). 

Denoting by D(0) its kernel, we have rk(D(0)) = rk(D(t)) and c1(D(0)) = c1(D(t)). Hence, 
(4.49) specializes to a destabilizing sequence for t = 0.

Lemma 4.17 yields that D(0)∨ (resp., G(0)∨) is the dual of a member of M(3) (resp., of 
M(2h +1)). It follows that D(t)∨ (resp., G(t)∨) is a deformation of the dual of a member of 
M(2)) (resp., of M(2h +1)), whence that D(t) (resp., G(t)) is a deformation of a member 
of M(2) (resp., M(2h +1)), as both are locally free. It follows that [U(t)

2h+1] ∈ M(2h +1)ext

for t �= 0. Thus,

M(2h + 1)ext = M(2h + 1). (4.50)

On the other hand we have

dim(M(2h+1)ext) � dim(P (Ext1(U2h−1,U2)))+dim(M(2h−1))+dim(M(2)), (4.51)

for [U2h−1] ∈ M(2h − 1) and [U2] ∈ M(2) general. Because U2 is slope–stable and also 
U2h−1 is slope–stable by induction, of the same slope, we have h0(U2 ⊗ U∨

2h−1) = 0. 
Thus, (4.47) gives

h1(U2 ⊗ U∨
2h−1) = −χ(U2 ⊗ U∨

2h−1) = (h− 2)(6be − 9e− 4) + (8be − 12e + 3).

Hence, from (4.51), using also (4.48) and the fact that dim(M(2)) = (6be − 9e − 3) from 
Theorem 3.4, one has



56 M.L. Fania, F. Flamini / Advances in Mathematics 436 (2024) 109409
dim(M(2h + 1)ext) � (h− 2)(6be − 9e− 4) + (8be − 12e + 3) − 1 +

+ ((h− 2)2 + 2)(6be − 9e− 4) + 9(h− 2)(2be − 3e)

+ (6be − 9e− 3)

< ((h− 1)2 + 2)(6be − 9e− 4) + 9(h− 1)(2be − 3e)

= dim(M(2h + 1)),

as h � 2. The previous inequality shows that dim(M(2h + 1)ext) < dim(M(2h + 1)), 
as stated; in particular (4.50) is a contradiction, which forces also U2h+1 general to be 
slope-stable. �

The collection of the previous results in even and in odd ranks, respectively, gives the 
following:

Theorem 4.19. Let (Xe, ξ) ∼= (P (Ee), OP(Ee)(1)) be a 3-fold scroll over Fe, with e > 0
and Ee as in Assumption 1.8. Let ϕ : Xe → Fe be the scroll map and F be the ϕ-fiber. 
Let r � 2 be any integer.

Then the moduli space of rank-r vector bundles Ur on Xe which are Ulrich w.r.t. ξ
and with first Chern class

c1(Ur) =

⎧⎨
⎩rξ + ϕ∗OFe

(3, be − 3) + ϕ∗OFe

(
r−3
2 , (r−3)

2 (be − e− 2
)
, if r is odd,

rξ + ϕ∗OFe

(
r
2 ,

r
2 (be − e− 2)

)
, if r is even,

is not empty and it contains a generically smooth component M(r) of dimension

dim(M(r)) =

⎧⎨
⎩
(

(r−3)2
4 + 2

)
(6be − 9e− 4) + 9

2 (r − 3)(2be − 3e), if r is odd,
r2

4 (6be − 9e− 4) + 1, if r is even.

The general member [Ur] ∈ M(r) corresponds to a slope-stable vector bundle, of slope 
w.r.t. ξ given by μ(Ur) = 8be − ke − 12e − 3.

Proof. In the even case, the statement directly follows from Theorem 3.4, (4.30), (4.31)
and from Propositions 4.11, 4.13. For odd cases, the statement follows from Theo-
rem 4.14, (4.42), (4.43) and from Propositions 4.16, 4.18 �
5. Final remarks on Ulrichness over Fe, e � 0

As a direct consequence of Main Theorem, Main Corollary, Theorem 1.7 and the one–
to–one correspondence in [22, Proposition 6.2], one has the following result concerning 
moduli spaces of rank-r vector bundles on Hirzebruch surfaces Fe, for any r � 1 and 
any e � 0, which are Ulrich w.r.t. the very ample line bundle c1(Ee) = 3Ce + bef , with 
be � 3e + 2 as in (1.6) (the case r = 1, 2, 3 already known by [4,12,2]).
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Theorem 5.1. For any integer e � 0, consider the Hirzebruch surface Fe and let OFe
(α, β)

denote the line bundle αCe + βf on Fe, where Ce and f are the generators of Num(Fe).
Consider the very ample polarization c1(Ee) = 3Ce + bef , where be � 3e + 2. Then:

(a) Fe does not support any Ulrich line bundle w.r.t. c1(Ee) unless e = 0. In this latter 
case, the unique line bundles on F0 which are Ulrich w.r.t. c1(Ee) are

L1 := OF0(5, b0 − 1) and L2 := OF0(2, 2b0 − 1).

(b) Set e = 0 and let r � 2 be any integer. Then the moduli space of rank-r vector bundles 
Hr on F0 which are Ulrich w.r.t. c1(E0) and with first Chern class

c1(Hr) =

⎧⎨
⎩OF0(3(r + 1), (r + 1)b0 − 3) ⊗ OF0

(
r−3
2 , (r−3)

2 (b0 − 2)
)
, if r is odd,

OF0(3r, rb0) ⊗ OF0

(
r
2 ,

r
2(b0 − 2)

)
, if r is even,

is not empty and it contains a generically smooth component MF0(r) of dimension

dim(MF0(r)) =
{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even.

The general point [Hr] ∈ MF0(r) corresponds to a slope-stable vector bundle.
(c) When e > 0, let r � 2 be any integer. Then the moduli space of rank-r vector bundles 
Hr on Xe which are Ulrich w.r.t. c1(Ee) and with first Chern class

c1(Hr) =

⎧⎨
⎩OFe

(3(r + 1), (r + 1)be − 3) ⊗ OFe

(
r−3
2 , (r−3)

2 (be − e− 2)
)
, if r is odd,

OFe
(3r, rbe) ⊗ OFe

(
r
2 ,

r
2 (be − e− 2)

)
, if r is even,

is not empty and it contains a generically smooth component MFe
(r) of dimension

dim(MFe
(r)) =

⎧⎨
⎩
(

(r−3)2
4 + 2

)
(6be − 9e− 4) + 9

2 (r − 3)(2be − 3e), if r is odd,
r2

4 (6be − 9e− 4) + 1, if r is even.

The general point [Hr] ∈ MFe
(r) corresponds to a slope-stable vector bundle.

Proof. (a) When e > 0, the fact that Fe does not support line bundles which are Ulrich 
w.r.t. c1(Ee) = 3Ce + bef is proved in [4, Thm. 2.1]; however, this fact is also a direct 
consequence of Main Theorem–(a) and Theorem 1.7.

For e = 0 observe that the line bundles L1 and L2 as in Main Theorem–(a), which 
are Ulrich w.r.t. ξ on X0, give rise, by push forward and by Theorem 1.7, to Ulrich line 
bundles w.r.t. c1(E0) = 3C0 + b0f on F0. Indeed

L1 ⊗ ξ∨ = ϕ∗OF0(2,−1) and L2 ⊗ ξ∨ = ϕ∗OF0(−1, b0 − 1),
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thus

ϕ∗(L1 ⊗ ξ∨) = OF0(2,−1) and ϕ∗(L2 ⊗ ξ∨) = OF0(−1, b0 − 1),

which give

L1 := ϕ∗(L1 ⊗ ξ∨) ⊗ OF0(c1(E0)) = OF0(5, b0 − 1)

L2 := ϕ∗(L2 ⊗ ξ∨) ⊗ OF0(c1(E0)) = OF0(2, 2b0 − 1)

that are the only Ulrich line bundles on F0 w.r.t. c1(Ee) = 3C0 + b0f , according to [12, 
Example 2.3] and [2, Proposition 4.4].
(b) As for any rank r � 2 in the case e = 0, observe that vector bundles Ur on X0 as in
Main Theorem–(b) when restricted to a general fiber F of ϕ : X0 → F0 are such that 
Ur|F ∼= OP1(1)⊕r. To see this, one proceeds by induction. By (3.1), L1|F ∼= OP1(1) ∼=
L2|F , thus F1|F ∈ Ext1(OP1(1), OP1(1)) = H1(OP1) = (0), hence F1|F ∼= OP1(1)⊕2, 
which is the most balanced splitting. Since U2 = U as in Theorem 3.1 is a deformation of 
F1 then U2|F ∼= OP1(1)⊕2. Assume by induction, that for some r � 3 one has Ur−1|F ∼=
OP1(1)⊕r−1 for [Ur−1] ∈ M(r − 1) general. Then by (4.18), one has

0 → Ur−1|F = OP1(1)⊕r−1 → Fr|F → Lεr |F = OP1(1) → 0

and, once again, since Ext1(OP1(1), OP1(1)⊕r−1) = 0 then Fr|F ∼= OP1(1)⊕r.
Thus by [22, Theorem 6.1], using the diagram

S̃
i

ϕ′

X0

ϕ

F0

therein, where ϕ′ : S̃ → F0 is the blow-up at c2(E0) points on F0 and where 
∑

Ei is the 
ϕ′-exceptional divisor, one has that ϕ∗(Ur ⊗ i∗(OS̃(

∑
Ei))) is a rank r vector bundle on 

F0 which is Ulrich w.r.t. c1(E0) = 3C0 + b0f . More precisely [22, Proposition 6.2] gives 
rise to a component of the moduli space of Ulrich bundles of rank r on F0, which are 
Ulrich w.r.t. c1(E0) = 3C0 + b0f , of first Chern class

c1(ϕ∗(Ur ⊗ i∗(OS̃(
∑

Ei)))).

On the other hand, if we set Hr := ϕ∗(Ur⊗i∗(OS̃(
∑

Ei))), the one-to-one correspondence 
in [22, Proposition 6.2] asserts that Ur

∼= ξ⊗ϕ∗(Hr(−c1(E0))). From Main Theorem-(b) 
one knows c1(Ur ⊗ ξ∨) and, since c1(Ur ⊗ ξ∨) = c1(Hr(−c1(E0))) = c1(Hr) − rc1(E0), 
it follows that c1(Hr) is as stated; pairs (r, c1(Hr)) are Ulrich admissible pairs w.r.t. 
3C0 + b0f in the sense of [2, Def. 5.1].
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By the one-to-one correspondence in [22, Proposition 6.2] and Main Theorem-(b), 
we have therefore the existence of moduli spaces MF0(r) of Ulrich bundles on F0 w.r.t. 
3C0 + b0f , of any rank r � 2, of first Chern class and dimension as stated. Moreover 
since Ur

∼= ξ ⊗ ϕ∗(Hr(−c1(E0))) then

hj(X0,Ur ⊗ U∨
r ) = hj(X0, ϕ

∗(Hr(−c1(E0))) ⊗ ϕ∗(Hr(−c1(E0)))∨)

= hj(X0, ϕ
∗(Hr ⊗H∨

r )) = hj(F0,Hr ⊗H∨
r ),

i.e. h2(F0, Hr⊗H∨
r ) = 0 and h0(F0, Hr⊗H∨

r ) = 1, namely the component MF0(r) is also 
generically smooth and its general point [Hr] ∈ MF0(r) corresponds to a simple bundle.

It is also clear that Hr is slope-stable w.r.t. 3C0 + b0f : if not, by the one-to-one 
correspondence given by [22, Proposition 6.2], any destabilizing rank-k Ulrich sub-bundle 
Dk of Hr general, for some 1 � k � r − 1, would give rise to a rank-k vector bundle 
ξ⊗ϕ∗(Dk(−c1(E0)) which is Ulrich on X0 w.r.t. ξ, by Theorem 1.7, and which would be a 
destabilizing sub-bundle on Ur general in M(r) on X0, contradicting Main Theorem–(b).

When r = 2, 3, the previous arguments are in accordance with [2, Prop. 6.4], for the 
polarization 3C0 + b0f , and c1 as stated.
(c) Similar arguments as in (b), but for the case for e > 0, are obtained by using
Main Theorem–(c), Theorem 1.7 and the one-to-one correspondence in [22, Proposition 
6.2]. �

From Theorem 5.1 it follows that the pairs (Fe, 3Ce + bef) are Ulrich wild and this is 
in accordance with [12, Lemma 5.2].

We want to stress that, when r = 2, 3, we cannot deduce the irreducibility of the 
moduli spaces of bundles Ur as in Main Theorem–(b) or (c) from the correspondence in 
[22, Proposition 6.2] and irreducibility results on Fe, e � 0, given by [16, Theorem 4.7] (cf. 
also [2, Propositions 6.1, 6.4]). Indeed, in principle, there could exist other components, 
different from ours M(r), r = 2, 3, where the general Ulrich bundle therein does not split 
as OP1(1)⊕r on the general ϕ–fiber.
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