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1 Introduction and definitions

Let Λ be a two-dimensional 2L×2L square box centered in the origin in Z2 and BΛ denotes

the set of all nearest neighbours in Λ, i.e. {〈x, y〉 : x, y ∈ Λ, |x−y| = 1} with |x−y| being

the usual lattice distance in Zd, plus the pairs of sites at opposite faces of the square Λ,

so that the pair (Λ,BΛ) is homeomorphic to the two-dimensional discrete torus (Z/LZ)2.

We denote by XΛ the set of spin configurations in Λ., i.e., XΛ = {−1, 1}Λ. On this spin

configuration space we can consider the simplest Ising Hamiltonian

H(σ) = −
∑

〈x,y〉∈BΛ

Jσxσy (1)

with J > 0, and the associated Gibbs measure

πG(σ, τ) :=
1

ZG
e−H(σ) with ZG =

∑
σ∈XΛ

e−H(σ). (2)

Looking for efficient algorithm for sampling from this measure, we introduced in [5] an ap-

proximate sampling by means of a pair Hamiltonian, adaptable to general pair interaction.

The main idea was indeed to define a parallel dynamics, i.e., a Markov chain updating all

the spin at each time, with an invariant measure strictly related to πG. In a second paper

[6], following these ideas, we defined a non reversible parallel dynamics with polynomial

mixing time in the size of the system. The main ingredient was the combination of parallel

updating and non symmetric interaction.

Goal of the present paper is to study pair Hamiltonians from a static point of view.

Actually pair Hamiltonians turn out to be an important tool to relate Ising models on

different lattices. Using the standard coupling between Ising model and Random Cluster

Model (RCM) we can compare the correlations on different lattices and discuss the efficacy

of the approach with pair Hamiltonian.

Define the space of pairs of configurations

X 2
Λ = XΛ ×XΛ.

For each pair (σ, τ) ∈ X 2
Λ we define the Hamiltonian with asymmetric interaction
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H(σ, τ) = −
∑
x∈Λ

[Jσx(τx↑ + τx→) + qσxτx] = −
∑
x∈Λ

[Jτx(σx↓ + σx←) + qτxσx] (3)

where x↑, x→, x↓, x← are respectively the up, right, down, left neighbours of the site x

on the torus (Λ,BperΛ ), J > 0 is the ferromagnetic interaction and q > 0 is an inertial

constant. We have H(σ, σ) = H(σ) − q|Λ| where H(σ) is the Ising Hamiltonian given in

(1). Note also that H(σ, τ) 6= H(τ, σ).

On the configuration space XΛ we define the following measure

π(σ) =
1

Z

∑
τ∈XΛ

e−H(σ,τ) with Z =
∑

(σ,τ)∈X 2
Λ

e−H(σ,τ). (4)

This measure has been considered in the previous papers [5], [6], [15] and turns out to

be the invariant measure of parallel irreversible dynamics defined in that papers. In a

more recent paper [?] the measure π(σ) is the invariant measure of a reversible parallel

dynamics, the “shaken dynamics”, modelling geological dynamics related to earthquakes.

The usual Gibbs measure (2) and the measure π(σ) defined above are connected by the

following result obtained in [5], [15] (Actually this is an extension of Theorem 1.2 in

[15]****):

Theorem 1.1 Define the total variation distance, or L1 distance, between π and πG as

‖π − πG‖TV =
1

2

∑
σ∈XΛ

|π(σ)− πG(σ)|. (5)

Set δ = e−2q, and let δ be such that

lim
|Λ|→∞

δ2|Λ| = 0, (6)

then there exists J̄ such that for any J > J̄

lim
|Λ|→∞

‖π − πG‖TV = 0 (7)

Let us observe that the pair Hamiltonian (1), considering only half of the interactions
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Figure 1: Interaction in the pair Hamiltonian

(down-left), allows to interpolate between different lattices. Indeed, as already shown

in [ADSST], the space of pairs of configurations with interaction given by H(σ, τ) can

be represented as the configuration space XH for the Ising model on an hexagonal lattice

H = (V,E). Since H is a bipartite graph, the vertex set V of H can be decomposed into two

layers V = Λ1∪Λ2, with |Λi| = |Λ|, i = 1, 2 and each σ∈ XH can be written as σ= (σ1, σ2)

with σi ∈ XΛi,B, i = 1, 2. We distinguish two type of edges, E = EJ ∪ Eq, indeed two of

the three edges exiting from each site correspond to the left and downwards interactions

of strength J (in the set EJ), while the third corresponds to the self-interaction q (in the

set Eq).

In other words we associate to each edge e a weight

Je =

{
J if e ∈ EJ

q if e ∈ Eq

We can apply to our model the powerful connection between Ising model and Random

Cluster Model.
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Define Ω := {0, 1}E , for any ω ∈ Ω the edge e is opened (or present) if ω(e) = 1, let

η(ω) := {e ∈ E : ω(e) = 1}. We will assume periodic boundary conditions. Let k(ω)

denotes the number of connected components (or open clusters) of the graph (V, η(ω)).

Given now two parameters pJ , pq ∈ [0, 1], by defining

pe =

{
pJ if e ∈ EJ

pq if e ∈ Eq

we introduce the measure on Ω:

ΦpJ ,pq(ω) =
1

ZRC

{∏
e∈E

pω(e)
e (1− pe)1−ω(e)

}
2k(ω) (8)

with partition function

ZRC =
∑
ω∈Ω

{∏
e∈E

pω(e)
e (1− pe)1−ω(e)

}
2k(ω).

Following the general theory (see for instance [9]) we define now a coupling between

our pairs of configurations σ= (σ1, σ2) ∈ X 2
Λ and the random cluster by the following

probability mass on X 2
Λ × Ω:

µ(σ, ω) ∝
∏
e∈E

{
(1− pe)δω(e),0 + peδω(e),1δe(σ)

}
(9)

where

δe(σ) = δσ1
x=σ2

y
for e = (x, y), withx ∈ Λ1, y ∈ Λ2

We have the following result:

Proposition 1.2 If pJ = 1− e−2J and pq = 1− e−2q

1) the marginal on X 2
Λ of µ(σ, ω) is

µ1(σ) =
∑
ω∈Ω

µ((σ), ω) =
e−H(σ1,σ2)

Z
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2) the marginal on Ω of µ(σ, ω) is

µ2(ω) =
∑

σ∈X 2
Λ,B

µ(σ, ω) = ΦpJ ,pq(ω)

3) the conditional measure on X 2
Λ given ω is obtained by putting uniformly random spins

on entire clusters of ω. These spins are constant on given clusters, are independent

between clusters and each is uniformly distributed on the set {−1,+1}.

4) the conditional measure on Ω given σ is obtained by setting ω(e) = 0 if

δe(σ) = 0 and otherwise ω(e) = 1 with probability pJ (pq) for e ∈ EJ (e ∈ Eq).

We refer to the clear review by Grimmett [11] (see also [12]) of the Fortuin-Kasteleyn

construction [?],[?], and to the rich paper [?] for further developments. The coupling

between these two models is robust and of wide applicability, in particular in [11] the

infinite-volume random-cluster measure and phase transitions are widely discussed. With

this construction we can easily prove the existence of a phase transition in our model and

compute the correlation function and its strong anisotropy.

For any x, y ∈ V we will denote by {x ↔ y} the set of ω ∈ Ω for which there exists an

open path joining the vertex x with the vertex y.

2 Results

The measure π, even though not Gibbsian, turns out to be the marginal of a Gibbs measure

and inherits from it the thermodynamics. **da migliorare**

Theorem 2.1 The measure π, defined in (4), is not Gibbsian but it is the marginal of

the Gibbs measure on the hexagonal lattice

π2(σ1, σ2) :=
1

Z
e−H(σ1,σ2) with Z =

∑
(σ1,σ2)∈X 2

Λ

e−H(σ1,σ2). (10)

The following relations hold:
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1)

m := π
(∑

x∈Λ σx

|Λ|

)
= m2 := π2

(∑
x∈Λ1∪Λ2 σx

2|Λ|

)
2) Let π+ (π−) and π+

2 (π−2 ) be the previous measures with plus (minus) boundary

conditions, then for any x ∈ Λ

π±(σx) = π±2 (σ1
x) = ±ΦpJ ,pq(x

1 ↔ ∂Λ)

3)

π(σxσy) = ΦpJ ,pq(x
1 ↔ y1)

with the obvious notation x1, y1 ∈ Λ1.

It is well known that the Gibbs measure πG exhibits a phase transition at

JGc = tanh−1
(√

2− 1
)

= 0.441...

As far as the measure π is concerned, its critical behavior is described by the following:

Corollary 2.2 The critical equation relating the parameters J and q in the measure π is

given by the equation:

Jc(q) = tanh−1
(
− tanh q +

√
tanh2 q + 1

)
(11)

In particular

lim
q→∞

Jc(q) = JGc

and the curve Jc(q) (see figure ***) intersects the line J = q for J = tanh−1
(√

3
3

)
,

corresponding to the critical value of J in the homogeneous hexagonal lattice.

Note that the parameter q tunes the geometry of the system. Infact the limit q → 0

corresponds to erasing the q-edges obtaining, from the hexagonal lattice, independent

copies of 1-d Ising model. The opposite limit, q → ∞, corresponds to the collapse of the

hexagonal lattice into the square one, by identifying the sites connected by the q-edges.

The case J = q corresponds to the homogeneuous hexagonal graph.

The next and last result is about correlation functions and reflects the strong anisotropy
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of the model.

Theorem 2.3 If the parameters pJ and pq satisfy the following inequality

4pqpJ
1− pJ

< 1

then there exist two constants c2 < c1 such that for any integer ` ∈ (0, L)

π(σx′σy′) ≤ c2 < c1 ≤ π(σxσy)

where x′ = (0, 0), y′ = (`, `), x = (0, `), y = (`, 0).

3 Proof of the results

3.1 Proof of theorem 2.1

1)

m =
∑
(σ,τ)

∑
x∈Λ σx

|Λ|
· e
−H(σ,τ)

Z
=

1

2

∑
(σ,τ)

∑
x∈Λ(σx + τx)

|Λ|
· e
−H(σ,τ)

Z
= m2

where the second equality follows by the translation invariance of the lattice.

�

2)

π+(σx) =
∑
σ

∑
τ

σxπ
+(σ) =

∑
σ
σ1
xπ

+
2 (σ) = π+

2 (σ1
x) =

=
∑
ω∈Ω

∑
σ
µ(σ, ω)σ1

x

(
1x1↔∂Λ + 1x1=∂Λ

)
=

= ΦpJ ,pq(x
1 ↔ ∂Λ) +

∑
ω∈Ω

∑
σ

[
µ(σ, ω|ω)σ1

x1x1=∂Λ

]
ΦpJ ,pq(ω) =

= ΦpJ ,pq(x
1 ↔ ∂Λ)

since by proposition 1.2 the square bracket vanishes. The minus boundary conditions

can be treated in the same way.

�

3) The proof of point (3) can be obtained following the same argument.
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3.2 Proof of corollary 2.2

*** commenti Roberto su Cimasoni e cella elementare ***

Since the hexagonal lattice H induced by the interaction (1) is a planar, non-degenerate

locally-finite doubly periodic weighted graph we can use theorem 1.1 in [3] to derive the

following critical equation relating the parameters J and q in the measure π2

Jc(q) = tanh−1
(
− tanh q +

√
tanh2 q + 1

)
(12)

Observing that π2 and π have the same partition function Z we can also argue that the

same critical equation still applies for the measure π. This can be proved rigorously in

terms of the Random Cluster Model. By theorem 2.1 this result can be immediately

extended to the measure π.

�

3.3 Proof of theorem 2.3

Let γ ⊂ E be a path of open edges between two vertices x, y ∈ Λ. We introduce the

notation ω ⊃ γ to identify all the configurations ω ∈ Ω such that ω(e) = 1, ∀e ∈ γ. By

definition

ΦpJ ,pq(x↔ y) =
∑
γ:x↔y

∑
ω∈Ω :
ω⊃γ

ΦpJ ,pq(ω) =

=
1

ZRC

∑
γ:x↔y

(∏
e∈γ

pe

) ∑
ω′∈{0,1}E\γ

( ∏
e∈E\γ

pω
′(e)

e (1− pe)1−ω′(e)

)
2k(ω′∪γ) =

=
1

ZRC

∑
γ:x↔y

(∏
e∈γ

pe

)
Zγ′

where we express a configuration ω ⊃ γ in terms of the union between the path γ itself,

that is fixed, and a configuration ω′ ∈ {0, 1}E\γ and we introduce

Zγ′ =
∑

ω′∈{0,1}E\γ

( ∏
e∈E\γ

pω
′(e)

e (1− pe)1−ω′(e)

)
2k(ω′∪γ)
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Upperbound

Since k(ω) ≥ k(ω′ ∪ γ) we can state the following inequality for the partition function

ZRC ≥
∑
ω∈Ω

(∏
e∈γ

pω(e)
e (1− pe)1−ω(e)

)( ∏
e∈E\γ

pω(e)
e (1− pe)1−ω(e)

)
2k(ω⊃γ) =

=

(∏
e∈γ

∑
ω∈Ω

pω(e)
e (1− pe)1−ω(e)

)
Zγ′ = Zγ′

This observation implies

ΦpJ ,pq(x↔ y) ≤
∑
γ:x↔y

(∏
e∈γ

pe

)
(13)

***fino a qui x e y sono generici, da qui in poi x e y diventano proprio quelli del teorema***

Now let us suppose to slice the lattice H as in the figure (**see figure**). It is easy to see

that each path γ : x′ ↔ y′ crosses a fixed number of slices separating x′ and y′. We give

an upper bound for the sum in (13) in terms of possible crossing-paths η that start in x′

and stop in the slice which contains y′. Let d = d(x′, y′) be the classical distance between

x′ and y′ on the lattice. Note that each crossing-path is uniquely defined by the number

of crossed slices l, that coincides with the number of edges e ∈ Eq ∩ η, and by the set

of steps ηx′,y′ ⊂ η along the diagonal direction, or equivalently, along the edges e ∈ EJ .

Therefore we can write

ΦpJ ,pq(x
′ ↔ y′) ≤

∞∑
l=d

∑
ηx′,y′

(2pq)
l

( ∞∑
nl=1

pnlJ

)l
=

∞∑
l=d

∑
ηx′,y′

(2pq)
l

(
pJ

1− pJ

)l
=

=
∞∑
l=d

(
l
l+d
2

)(
2pqpJ
1− pJ

)l
≤
∞∑
l=d

(
4pqpJ
1− pJ

)l

The last sum converges if and only if the parameters pJ and pq satisfy the following

condition
4pqpJ
1− pJ

< 1

that is

4(1− e−2q)(1− e−2J) < 1

Lowerbound
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We introduce the diagonal path γ∗ in the figure (**see figure**) and γ̄ = γ∗ ∪ ∂γ∗. Let

d = d(x, y) be the classical distance between x and y on the lattice. Using Theorem (3.66)

in [12] we can give a lower bound for the correlation function as follows

ΦpJ ,pq(x↔ y) ≥ 1

ZRC

(∏
e∈γ∗

pe

) ∑
ω′′∈{0,1}E\γ̄

( ∏
e∈∂γ∗

(1− pe)

)( ∏
e∈E\γ̄

pω
′′(e)

e (1− pe)1−ω′′(e)

)
2k(ω′′)+1 =

=
1

ZRC

(∏
e∈γ∗

pe

)( ∏
e∈∂γ∗

(1− pe)

)
2ZE\γ̄ ≥

≥ 2

(∏
e∈γ∗

pe

)( ∏
e∈∂γ∗

(1− pe)

)
= 2e−4J(1− e−2J)de−2q(d+1) = c1

where ZE\γ̄ is the partition function of the Random Cluster Model defined on the graph

Hγ̄ = (V,E \ γ̄).

�
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