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Abstract. Let G{K be a non-compact irreducible Hermitian symmetric
space of rank r and let NAK be an Iwasawa decomposition of G. By the
polydisc theorem, AK{K can be regarded as the base of an r-dimensional
tube domain holomorphically embedded in G{K. As every N -orbit in G{K
intersects AK{K in a single point, there is a one-to-one correspondence be-
tween N -invariant domains in G{K and tube domains in the product of r
copies of the upper half-plane in C. In this setting we prove a generalization of
Bochner’s tube theorem. Namely, an N -invariant domain D in G{K is Stein
if and only if the base Ω of the associated tube domain is convex and “cone
invariant”. We also obtain a precise description of the envelope of holomorphy
of an arbitrary holomorphically separable N -invariant domain over G{K.

An important ingredient for the above results is the characterization of
several classes of N -invariant plurisubharmonic funtions on D in terms of the
corresponding classes of convex functions on Ω. This also leads to an explicit
Lie group theoretical description of all N -invariant potentials of the Killing
metric on G{K.

1. Introduction

The classical Bochner’s tube theorem states that the envelope of holomorphy of
a tube domain Rn`iΩ in Cn is univalent and coincides with the convex envelope
Rn` i convpΩq. Moreover, there is a one-to-one correspondence between the class
of Rn-invariant plurisubharmonic functions on a Stein tube domain in Cn and
the class of convex functions on its base in Rn (cf. [Gun90]).

Here our goal is to obtain analogous results in the setting of an irreducible Her-
mitian symmetric space of the non-compact type, under the action of a maximal
unipotent group of holomorphic automorphisms.

Any such space can be realized as a quotient G{K, where G is a non-compact
real simple Lie group and K is a maximal compact subgroup of G. Let g “
n ‘ a ‘ k be an Iwasawa decomposition of g, where n is a maximal nilpotent
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subalgebra, a is a maximally split abelian subalgebra and k is the Lie algebra
of K. The integer r :“ dim a is by definition the rank of G{K.

Let NAK be the corresponding Iwasawa decomposition of G , where A :“
exp a and N :“ exp n. The group N acts on G{K by biholomorphisms and
every N -orbit in G{K intersects the smooth, real r-dimensional submanifold
A ¨ eK transversally in a single point.

As the space G{K is Hermitian symmetric, G contains r pairwise commuting
subgroups isomorphic to SLp2,Rq. The orbit of the base point eK P G{K under
the product of such subgroups is a closed complex submanifold of G{K which
contains A ¨eK and is biholomorphic to Hr, the product of r copies of the upper
half-plane in C. Moreover, every N -orbit in G{K intersects Hr in an Rr-orbit.

This fact is an analogue of the polydisk theorem and determines a one-to-one
correspondence between N -invariant domains in G{K and tube domains in Hr

(cf. Prop. 4.1 and Cor. 4.3). If D is an N -invariant domain in G{K, then it is
in terms of the base Ω of the associated tube domain in Hr that the properties
of N -invariant objects on D can be best described.

Define the cone

C :“

#

pRą0qr, in the non-tube case,

pRą0qr´1 ˆ t0u, in the tube case.

A set Ω Ă Rr is C-invariant if y P Ω implies y ` v P Ω, for all v P C. Our
generalizion of Bochner’s tube thorem is as follows

Theorem 4.9. Let G{K be a non-compact irreducible Hermitian symmetric
space of rank r. Let D be an N -invariant domain in G{K and let Rr ` iΩ be
the associated r-dimensional tube domain. Then D is Stein if and only if Ω is
convex and C-invariant.

We also show that a holomorphically separable, N -equivariant, Riemann do-
main over G{K is necessarily univalent (cf. Prop. 4.13). This implies the follow-
ing corollary.

Corollary 4.14. The envelope of holomorphy pD of an N -invariant domain D

in G{K is the smallest Stein domain in G{K containing D. The base pΩ of

the r-dimensional tube domain associated to pD is the convex, C-invariant hull
of Ω.

One approach to the proof of the above theorem uses smooth N -invariant
functions. There is a one-to-one correspondence between N -invariant functions
on D and functions on Ω, and such correspondence preserves regularity. An
important ingredient is the computation of the Levi form of a smooth N -invariant
function f : D Ñ R in terms of the Hessian and the gradient of the corresponding

function pf : Ω Ñ R. To this end, a simple pluripotential argument enables us to
exploit the restricted root decomposition of n (cf. Prop. 3.1 and Prop. 4.5).
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Then, in the smooth case, the proof of Theorem 4.9 is carried out by showing
that D is Levi pseudoconvex, and therefore Stein, if and only if the base Ω of
the associated tube domain is convex and C-invariant.

The general case follows from the smooth case by exhausting D with an in-
creasing sequence of Stein, N -invariant domains with smooth boundary. For
this we adapt a classical approximation method for convex functions on convex
domains to our C-invariant context.

In Section 6, an alternative proof of Theorem 4.9 is carried out by realizing
G{K as a Siegel domain and by combining some results from the theory of
normal J-algebras with some convexity arguments.

The aformentioned computation of the Levi form leads to a characterization of
smooth N -invariant plurisubharmonic functions on N -invariant domains in G{K
in terms of the corresponding functions on Ω. By classical approximation meth-
ods, a similar characterization is obtained for arbitrary N -invariant (strictly)
plurisubharmonic functions on D. In order to formulate such results we need the
following definition.

Let pf : Ω Ñ R be a function defined on a C-invariant domain in pRą0qr and

let C be the closure of the cone C. Then pf is C-decreasing if for every y P Ω

and v P C the restriction of pf to the half-line ty ` tv : t ě 0u is decreasing.

Theorem. (see Thm. 5.5) Let D be a Stein, N -invariant domain in a non-
compact, irreducible Hermitian symmetric space G{K of rank r and let Ω be
the base of the associated r-dimensional tube domain.

An N -invariant function f : D Ñ R is (strictly) plurisubharmonic if and only

if the corresponding function pf : Ω Ñ R is (stably) convex and C-decreasing.

It follows that every N -invariant plurisubharmonic function on D is continuous.

In fact, the above theorem holds true both in the smooth and non-smooth
context, and can be regarded as a generalization of the well known result for
Rn-invariant plurisubharmonic functions on tube domains in Cn (see Sect. 5 for
precise definitions and statements).

In the appendix, as an application of our methods we explicitly determine
all the N -invariant potentials of the Killing metric on G{K in a Lie group
theoretical fashion.

2. Preliminaries

Let G{K be an irreducible Hermitian symmetric space, where G is a real
non-compact semisimple Lie group and K is a maximal compact subgroup of
G. Let g and k be the respective Lie lagebras. Let g “ k ‘ p be the Cartan
decomposition of g with respect to k, with Cartan involution θ. Denote by
Bp ¨ , ¨ q both the Killing form of g and its C-linear extension to gC (which
coincides with the Killing form of gC).
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Let a be a maximal abelian subspace in p. The dimension of a is by definition
the rank r of G{K. Let g “ m‘a‘

À

αPΣ gα be the restricted root decomposition
of g determined by the adjoint action of a, where m denotes the centralizer of
a in k. For a simple Lie algebra of Hermitian type g , the restricted root system
is either of type Cr (if G{K is of tube type) or of type BCr (if G{K is not of
tube type), i.e. there exists a basis te1, . . . , eru of a˚ for which a positive system
Σ` is given by

Σ` “ t2ej, 1 ď j ď r, ek ˘ el, 1 ď k ă l ď ru, for type Cr,

Σ` “ tej, 2ej, 1 ď j ď r, ek ˘ el, 1 ď k ă l ď ru, for type BCr .

The roots 2e1, . . . , 2er form a maximal set of long strongly orthogonal posi-
tive restricted roots. The root spaces g2e1 , . . . , g2er are one-dimensional and one
can choose generators Ej P g2ej such that the slp2q-triples tEj, θEj, Aj :“
rθEj, Ejsu are normalized as follows

rAj, E
ls “ δjl2E

l, for j, l “ 1, . . . , r. (1)

Denote by I0 the G-invariant complex structure of G{K. We assume that I0pE
j´

θEjq “ Aj. By the strong orthogonality of 2e1, . . . , 2er, the vectors A1, . . . , Ar
form a B-orthogonal basis of a , dual to e1, . . . , er of a˚, and the associated
slp2q-triples pairwise commute.

Let g “ n ‘ a ‘ k be the Iwasawa decomposition subordinated to Σ`, where
n “ ‘αPΣ`g

α, and let G “ NAK be the corresponding Iwasawa decomposition
of G. Then S “ NA is a real split solvable group acting freely and transitively
on G{K. In particular, the tangent space to G{K at the base point eK can be
identified with the Lie algebra s “ n‘ a.

The map φ : sÑ p, given by φpXq :“ 1
2
pX ´ θXq, is an isomorphism of vector

spaces. As a consequence,

xX , Y y :“ BpφpXq , φpY qq “ ´1
2
BpX , θY q, (2)

for X, Y P s, defines a positive definite symmetric bilinear form on s. Moreover,
the map J : sÑ s, given by

JX :“ φ´1 ˝ I0 ˝ φpXq, (3)

defines a complex structure on s, such that φpJXq “ I0φpXq. The complex
structure J permutes the restricted root spaces of s (cf. [RoVe73]), namely

Ja “
r
à

j“1

g2ej , Jgej´el “ gej`el , Jgej “ gej . (4)

In order to obtain a precise description of J on s, we recall a few more facts. Let
gC “ hC‘

À

µP∆ gµ be the root decomposition of gC with respect to a maximally
split Cartan subalgebra h “ b ‘ a of g, where b is an abelian subalgebra of m.
Let σ be the conjugation of gC with respect to g. Let θ denote also the C-
linear extension of θ to gC. One has θσ “ σθ. Write Z :“ σZ, for Z P gC.
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As σ and θ stabilize h, they induce actions on ∆, defined by µ̄pHq :“ µpHq
and θµpHq :“ µpθpHqq, for H P h, respectively. Fix a positive root system
∆` compatible with Σ`, meaning that µ|a “ Repµq P Σ` implies µ P ∆`.
Then σ∆` “ ∆`.

Given a restricted root α P Σ, the corresponding restricted root space gα

decomposes into the direct sum of ordinary root spaces with respect to the Cartan
subalgebra h as follows

gα “
´

à

µP∆, µ “µ̄
Repµq“α

gµ ‘ gµ̄ ‘ gλ
¯

X g,

where λ P ∆ is possibly a root satisfying λ “ λ̄ “ α. The next lemma is obtained
by combining Lemma 2.2 in [GeIa21] with (3).

Lemma 2.1. (the complex structure J on s).
paq For j “ 1, . . . , r, let Aj P a and Ej P g2ej be elements normalized as in p1q.
Then JEj “ 1

2
Aj and JAj “ ´2Ej.

pbq Let X “ Zµ ` Zµ P gej´el, where µ P ∆` is a root satisfying Repµq “ ej ´ el
and Zµ P gµ (if µ̄ “ µ, we may assume Zµ “ Zµ and set X “ Zµ). Then
JX “ rEl, Xs P gej`el.
Let X “ Zµ ` Zµ P gej`el, where µ P ∆` is a root satisfying Repµq “ ej ` el
and Zµ P gµ (if µ̄ “ µ, we may assume Zµ “ Zµ and set X “ Zµ). Then
JX “ rθEl, Xs P gej´el.

pcq Let X “ Zµ ` Zµ P gej , where µ is a root in ∆` satisfying Repµq “ ej and
Zµ P gµ (as dim gej is even, one necessarily has µ̄ “ µq. Then JX “ iZµ` iZµ P

gej .

Remark 2.2. (a J-stable basis of s) In view of Lemma 2.1, one can choose a
J-stable basis of s, compatible with the restricted root decomposition.

paq As a basis of a‘Ja, take pairs of elements Aj, JAj “ ´2Ej, for j “ 1, . . . , r,
normalized as in p1q.

pbq As a basis of gej´el ‘ gej`el, take 4-tuples of elements

X “ Zµ
` Zµ, X 1

“ iZµ
` iZµ, JX “ rEl, Xs, JX 1

“ rEl, X 1
s, (5)

parametrized by the pairs of roots µ “ µ̄ P ∆` satisfying Repµq “ ej ´ el pwith no
repetitionq, with Zµ a root vector in gµ. For µ “ µ̄, one may assume Zµ “ Zµ

and take the pair X “ Zµ, JX “ rEl, Xs.

pcq As a basis of gej pnon-tube caseq, take pairs of elements

X “ Zµ
` Zµ, JX “ iZµ

` iZµ,

parametrized by the pairs of roots µ “ µ̄ P ∆` satisfying Repµq “ ej pwith no
repetitionq, with Zµ P gµ.
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The next lemma contains some identities which are needed in Section 3. Its
proof is essentially contained in [GeIa21], Lemma 2.4.

Lemma 2.3. Let µ P ∆` be a root satisfying Repµq “ ej´ el and let Zµ a root

vector in gµ. Let X “ Zµ ` Z
µ
P gej´el and JX “ rEl, Xs P gej`el. If µ “ µ,

let X 1 “ iZµ ` iZµ and JX 1 “ rEl, X 1s. Then

paq rJX,Xs “ rJX 1, X 1s “ sEj, for some s P R, s “ 0;

pbq rJX 1, Xs “ 0.

Let µ be a root in ∆`, with Repµq “ ej pnon-tube caseq and let Zµ be a root

vector in gµ. Let X “ Zµ ` Z
µ

and JX “ iZµ ` iZµ. Then

pcq rJX,Xs “ tEj, for some t P R, t “ 0.

3. The Levi form of an N-invariant function on G{K

Let G{K be a non-compact, irreducible Hermitian symmetric space of rank
r, and let G “ N exppaqK be an Iwasawa decomposition of G. Let D be an
N -invariant domain in G{K . Then D is uniquely determined by a domain D
in a by

D :“ N exppDq ¨ eK . (6)

Similarly, an N -invariant function f : D Ñ R is uniquely determined by the

function rf : D Ñ R, defined by

rfpHq :“ fpexppHqKq. (7)

The goal of this section is to express the Levi form, i.e. the real symmetric J-
invariant bilinear form

hf p ¨ , ¨ q :“ ´ddcfp ¨ , J ¨ q, (8)

of a smooth N -invariant function f on D, in terms of the first and second deriva-

tives of the corresponding function rf on D. This will enable us to characterize
smooth N -invariant strictly plurisubharmonic functions on a Stein N -invariant
domain D in G{K by appropriate conditions on the corresponding functions on
D (Prop. 3.1). As f is N -invariant, hf is N -invariant as well. Therefore it will be
sufficient to carry out the computation along the slice exppDq ¨ eK, which meets
all N -orbits.

For X P g, denote by rX the vector field on G{K induced by the left G-action.
Its value at z P G{K is given by

rXz :“ d
ds

ˇ

ˇ

s“0
exp sX ¨ z. (9)

Let X P gα, for α P Σ` Y t0u (here X P a, when α “ 0). If z “ aK, with

a “ expH and H P a, then the vector field rX can also be expressed as

rXz “ e´αpHqa˚X. (10)
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Set

b :“ BpA1, A1q “ . . . “ BpAr, Arq, (11)

which is a real positive constant only depending on the Lie algebra g.

Proposition 3.1. Let D be an N-invariant domain in G{K and let f : D Ñ R
be a smooth N-invariant function. Fix a “ expH, with H “

ř

j ajAj P D. Then,
in the basis of s defined in Remark 2.2, the form hf at z “ aK P D is given as
follows.

(i) The spaces a˚a, a˚Ja, a˚g
ej´el , a˚g

ej`el and a˚g
ej are pairwise hf -

orthogonal.

(ii) For Aj, Al P a one has

hf pa˚Aj, a˚Alq “ ´2δjl
B rf
Bal
pHq ` B2

rf
BajBal

pHq.

On the blocks a˚g
ej´el and a˚g

2ej the restriction of hf is diagonal and the only
non-zero entries are given as follows.

(iii) For X, X 1 P gej´el as in Remark 2.2(b), one has

hf pa˚X, a˚Xq “ ´2 }X}
2

b
B rf
Baj
pHq, hf pa˚X

1, a˚X
1q “ ´2 }X

1}2

b
B rf
Baj
pHq.

(iv) pnon-tube caseq For X P gej as in Remark 2.2(c), one has

hf pa˚X, a˚Xq “ ´2 }X}
2

b
B rf
Baj
pHq.

On the remaining blocks hf is determined by (4), the J-invariance of hf , (i) and
(iii) above.

Proof. Let f : G{K Ñ R be a smooth N -invariant function. The computation
of hf uses the fact that, for X P n, the function µX : G{K Ñ R, given by

µXpzq :“ dcfp rXzq, satisfies the identity

dµX “ ´ι
rXdd

cf, (12)

where dcf :“ df ˝ J (see [HeSc07], Lemma 7.1 and [GeIa21], Sect. 2). We begin

by determining dcfp rXzq, for X P n and z P G{K. By the N -invariance of f and
of J one has

dcfp rXn¨zq “ dcfp ČAdn´1Xzq , (13)

for every z P G{K and n P N . Thus it is sufficient to take z “ aK P exppDq¨eK.
Let H “

ř

ajAj P D and a “ expH. Then

dcfp rXzq “

#

1
2
e´2aj B

rf
Baj
pHq , for X “ Ej P g2ej

0 , for X P gα, with α P Σ`zt2e1, . . . , 2eru.
(14)
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The first part of equation (14) follows from (10) and Lemma 2.1 (a):

dcfppĂEjqzq “ e´2ejpHqdfpa˚JE
jq “ 1

2
e´2aj d

ds

ˇ

ˇ

s“0
rfpH ` sAjq “

1
2
e´2aj B

rf
Baj
pHq.

For the second part, let X P gα, with α P Σ`zt2e1, . . . , 2eru. Then JX P gβ, with
β P Σ`. By (10) and the N -invariance of f , one obtains the desired result

dcfp rXzq “ e´αpHq`βpHqdfpĄJXzq “ 0.

(i) Orthogonality of the blocks. Let X P gα and Y P gγ, where α P Σ`

and γ P t0u Y pΣ`zt2e1, . . . , 2eruq are distinct restricted roots (here Y P a, when
γ “ 0). Then JY P gβ, for some β P Σ`. By (10) and (12), one has

hf pa˚X, a˚Y q “ ´dd
cfpa˚X, a˚JY q “ ´e

αpHq`βpHqddcfp rXz, ĂJY zq

“ eαpHq`βpHqdµXpĂJY zq “ eαpHq`βpHq d
ds

ˇ

ˇ

s“0
µXpexp sJY ¨ zq

“ eαpHq`βpHq d
ds

ˇ

ˇ

s“0
dcfp rXexp sJY ¨zq “ eαpHq`βpHq d

ds

ˇ

ˇ

s“0
dcfp ČAdexpp´sJY qXz

q

“ eαpHq`βpHq d
ds

ˇ

ˇ

s“0
dcfp rXz ´ s ČrJY,Xsz ` ops

2qq

“ ´eαpHq`βpHqdcfp ČrJY,Xszq. (15)

The brackets rJY,Xs lie in gα`β. Since α “ γ, one sees that α`β “ 2e1, . . . , 2er.
Then, by (14), the expression (15) vanishes, proving the orthogonality of a˚g

α

and a˚g
γ, for all α and γ as above. The J-invariance of hf implies that a˚a is

orthogonal to a˚g
β, for all β P Σ`, and concludes the proof of (i).

Next we determine the form hf on the essential blocks.

(ii) The form hf on a˚a.

Let Aj, Al P a. Since JAl “ ´2El, one has

hf pa˚Aj, a˚Alq “ ´2ddcfpa˚E
l, a˚Ajq “ ´2e2elpHqddcfppĂElqz, pĂAjqzq

“ 2e2elpHqdµE
l
ppĂAjqzq “ 2e2elpHq d

dt

ˇ

ˇ

t“0
µE

l
pexp tAj ¨ zq

“ 2e2elpHq d
dt

ˇ

ˇ

t“0
dcfppĂElqexp tAj ¨zq,

which, by (14), becomes

“ 2e2elpHq d
dt

ˇ

ˇ

t“0
1
2
e´2elpH`tAjq B

rf
Bal
pH ` tAjq “ ´2 B

rf
Bal
pHqδlj `

B2
rf

BajBal
pHq.

This concludes the proof of (ii).

(iii) The form hf on a˚g
ej´el.

Let X, X 1 P gej´el be elements of the basis given in Remark 2.2 (b). Then
JX, JX 1 P gej`el . From (15), (14) and Lemma 2.3(a) one has

hf pa˚X, a˚Xq “ ´dd
cfpa˚X, a˚JXq

“ ´epej`elqpHqepej´elqpHqdcfp ČrJX,Xszq

“ ´e2ejpHq
´

sdcfppĂEjqzq

¯

“ ´ s
2
B rf
Baj
pHq , (16)
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for some s P Rzt0u. By Remark 6.4, one has s ą 0. By the comparison of
(16) with the formula obtained in Remark 7.2, one deduces the exact value of s,

namely s “ 4}X}2

b
. Therefore, one has

hf pa˚X, a˚Xq “ ´2 }X}
2

b
B rf
Baj
pHq, hf pa˚X

1, a˚X
1q “ ´2 }X

1}2

b
B rf
Baj
pHq,

as stated. From (15) and Lemma 2.3(b), one obtains hf pa˚X, a˚X
1q “ 0. From

(15), the skew symmetry of ddcf and the fact that 2pej ´ elq R Σ`, one obtains
hf pa˚X, a˚JXq “ hf pa˚X, a˚JX

1q “ 0, respectively. Finally, let X “ Zµ ` Zµ,
and Y “ Zν ` Zν be elements of the basis of gej´el given in Remark 2.2 (b), for
µ, ν P ∆` distinct roots satisfying ν “ µ, µ̄. Then, by (15) and Lemma 2.1(b)
one has

hf pa˚X, a˚Y q “ ´e
2ejpHqdcfp ČrJY,Xszq “ 0,

since no non-real roots in ∆ have real part equal to 2ej. This completes the proof
of (iii).

(iv) The Hermitian form hf on a˚g
ej .

Let X “ Zµ ` Zµ and JX “ iZµ ` iZµ be elements of the basis of gej given in
Remark 2.2 (c). Then, from (15) and Lemma 2.3 (c), one obtains

hf pa˚X, a˚Xq “ ´e
2ejpHqdcfp ČrJX,Xszq

“ ´e2ejpHqt dcfppĂEjqzq “ ´
t
2
B rf
Baj
pHq, (17)

for some t P Rzt0u. By Remark 6.4, one has t ą 0. By the comparison of
(17) with the formula obtained in Remark 7.2, one deduces the exact value of t,

namely t “ 4}X}2

b
and

hf pa˚X, a˚Xq “ hf pa˚JX, a˚JXq “ ´2 }X}
2

b
B rf
Baj
pHq.

Finally, let X “ Zµ ` Zµ and Y “ Zν ` Zν be elements of the basis of gej given
in Remark 2.2 (c), for µ, ν P ∆` distinct roots satisfying ν “ µ, µ̄. Then, by (15)
and Lemma 2.1(c) one has hf pa˚X, a˚Y q “ 0. This concludes the proof of (iv)
and of the proposition. �

Remark. The usual Levi form LC
f of f is given by LC

f pZ,W q “ 2phf pX, Y q `
ihf pX, JY qq, where Z “ X ´ iJX and W “ Y ´ iJY are elements of type p1, 0q.
One easily sees that LC

f is (strictly) positive definite if and only if hf is (strictly)
positive definite.
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4. N-invariant Stein domains in G{K

The main goal of this section is to characterize the Stein N -invariant do-
mains D in G{K in terms of an associated r-dimensional tube domain. We show
that D is Stein if and only if the base of the associated tube domain is convex
and satisfies an additional geometric condition, arising from the features of the
N -invariant plurisubharmonic functions on D.

At the end of the section we also prove a univalence result for N -equivariant
Riemann domains over G{K. As a by-product, a precise description of the enve-
lope of holomorphy of N -invariant domains in G{K follows.

Resume the notation introduced in Section 2. Denote by R :“ exp
`

‘ g2ej
˘

the unipotent abelian subgroup of G, isomorphic to Rr. The orbit of the base
point eK P G{K under the product of the r commuting SL2pRq’s contained in
G is the r-dimensional R-invariant closed complex submanifold of G{K

R exppaq ¨ eK.

By the Iwasawa decomposition of G, such manifold intersects all N -orbits in
G{K. Equivalently,

N ¨ pR exppaq ¨ eKq “ G{K.

The above facts together with the next proposition can be regarded as an
analogue, for the N -action, of the polydisk theorem (cf. [Wol72], p. 280). Denote
by H the upper half-plane in C, with the usual R -action by translations.

Proposition 4.1. The map L : Hr Ñ R exp a ¨ eK, defined by

px1 ` iy1, . . . , xr ` iyrq Ñ expp
ř

j xjE
jq expp1

2

ř

j lnpyjqAjqK ,

is an equivariant biholomorphism.

Proof. The map is clearly bijective and equivariant. To prove that is holomorphic,
it is sufficient to consider the rank-1 case. Computing separately

dLzJ d
dx

ˇ

ˇ

z
“ dLz ddy

ˇ

ˇ

z
“ d

dt

ˇ

ˇ

t“0
Lpx` ipy ` tqq “ d

dt

ˇ

ˇ

t“0
exppxEq expp1

2
lnpy ` tqAqK

“ d
dt

ˇ

ˇ

t“0
exppxEq exppp1

2
ln y ` t

2y
` opt2qqAqK “ pexppxEq expp1

2
ln yAqq˚

1
2y
A

and

JLz d
dx

ˇ

ˇ

z
“ J d

dt

ˇ

ˇ

t“0
Lpx` t` iyq “ J d

dt

ˇ

ˇ

t“0
expppx` tqEq expp1

2
ln yAqK

“ J d
dt

ˇ

ˇ

t“0
exppxEq expptEq expp1

2
ln yAqK

“ J d
dt

ˇ

ˇ

t“0
exppxEq expp1

2
ln yAq exppt Adexpp´ 1

2
ln yAqEqK

“ J exppxEq˚ expp1
2

ln yAq˚
1
y
E “ pexppxEq expp1

2
ln yAqq˚

1
2y
A,

we obtain the desired identity dLzJ d
dx

ˇ

ˇ

z
“ JdLz d

dx

ˇ

ˇ

z
, for all z P H. �
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Remark 4.2. The closed complex submanifold R exppaq ¨ eK can also be re-
garded as the local orbit of eK under the universal complexification RC of R.
Up to a traslation, L is the local RC-orbit map through eK.

As a consequence of the above biholomorphism we obtain a one-to-one corre-
spondence between Rr-invariant tube domains in Hr and N -invariant domains in
G{K. Denote by L : Rą0 ˆ . . .ˆ Rą0 Ñ a the diffeomorphism determined by L

Lpy1, . . . , yrq :“ 1
2

ř

j lnpyjqAj. (18)

Corollary 4.3. (N-invariant domains in G{K and tube domains in Cr).

(i) Let D “ N exppDq¨eK be an N-invariant domain in G{K and let R exppDq¨
eK be its intersection with the closed complex submanifold R exppaq ¨ eK . Then
the r-dimensional tube domain associated to D is by definition the preimage of
R exppaq ¨ eK under L, namely

Rr
` iΩ, where Ω :“ L´1pDq .

(ii) Conversely, a tube domain Rr` iΩ in Hr determines a unique N-invariant
domain

D “ N exppDq ¨ eK, where D “ LpΩq.

Remark 4.4. If D is Stein, then the associated tube domain Rr ` iΩ Ă Cr is
Stein, being biholomorphic to the Stein closed complex submanifold R exppDq ¨
eK of D. In particular, the base Ω is an open convex set in pRą0qr.

On the other hand, already in the case of the unit ball Bn in Cn, with n ą 1,
one can see that the base Ω of an N -invariant Stein subdomain D must be an
entire half-line, and cannot be just an arbitrary convex subset of Rą0.

The main goal of this section is to give a precise characterization of the convex
sets Ω Ă pRą0qr arising from N -invariant Stein domains D in G{K. As we shall
see, their shape is determined by the particular features of the Levi form of the

N -invariant functions on D, which involve both the Hessian and the gradient of rf
(cf. Prop. 3.1).

Let f : D Ñ R be an N -invariant plurisubharmonic function. Then f is

uniquely determined by the function rfpHq :“ fpexpH ¨ eKq on D (cf. (7)) and
also by the function

pfpyq :“ fpexppLpyqqKq “ rfpLpyqq (19)
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defined for y P Ω, as shown by the following commutative diagram

Ω

L
��

pf

!!B
BB

BB
BB

D
exp
��

rf // R

D

f
==|||||||

Since the N -action on D is proper and every N -orbit intersects transversally
the smooth slice exppLpΩqq¨eK in a single point, it is easy to check that the map

f Ñ pf is a bijection from the class C0pDqN of continuous N -invariant functions
on D and the class C0pΩq of continuous functions on Ω. By Theorem 4.1 in
[Fle78], such a map is also a bijection between C8pDqN and C8pΩq. Analogous

statements hold true for the map f Ñ rf .
Given a non-compact irreducible Hermitian symmetric space, define the cone

C :“

#

pRą0qr, in the non-tube case,

pRą0qr´1 ˆ t0u, in the tube case.
(20)

The next lemma characterizes the plurisubharmonicity of a smooth N -invariant

function f in terms of the corresponding functions rf and pf .

Proposition 4.5. Let D be an N-invariant domain in G{K and let f : D Ñ

R be a smooth, N-invariant, plurisubharmonic function. Then the following
conditions are equivalent:

(i) f is plurisubharmonic (resp. strictly plurisubharmonic) at z “ aK, with
a “ exppHq and H P D;

(ii) the form
´

´ 2δjl
B rf
Bal
pHq ` B2

rf
BajBal

pHq
¯

j,l“1,...,r
(21)

in Proposition 3.1(ii) is positive semidefinite (resp. positive definite) and

grad rfpHq ¨ v ď 0 (resp. ă 0), for all v P Czt0u;

(iii) the Hessian of pf is positive semidefinite (resp. positive definite) at y “
py1, . . . , yrq “ L´1pHq and

grad pfpyq ¨ v ď 0 (resp. ă 0), for all v P Czt0u. (22)

Proof. The equivalence piq ô piiq follows directly from Proposition 3.1.
piiq ô piiiq Since Lpy1, . . . , yrq “ p1

2
lnpy1q, . . . ,

1
2

lnpyrqq (see (18)), one has
rfpa1, . . . , arq “ pfpe2a1 , . . . , e2arq . Therefore

B rf
Baj
pa1, . . . , arq “ 2 B

pf
Byj

pe2a1 ,...,e2ar qe2aj (23)
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B2
rf

BajBal
pHq “ 4 B2

pf
ByjByl

pe2a1 ,...,e2ar qe2aje2al ` 4 B
pf

Byj
pe2a1 ,...,e2ar qe2ajδjl . (24)

By combining formulas (23) and (24) one obtains
`

4 B2
pf

ByjByl
e2aje2al

˘

j,l
“
`

B2
rf

BajBal
´ 2 B rf

Baj
δjl
˘

j,l
. (25)

Also, by (23), the same monotonicity conditions hold both for rf and for pf . �

Definition 4.6. A smooth function g : Rr Ñ R is convex (resp. stably convex)
if its Hessian is semidefinite (positive definite).

Remark 4.7. The above lemma shows that the function pf corresponding to a
smooth N -invariant plurisubharmonic function is not just an arbitrary smooth
convex function, but it must satisfy the additional monotonicity conditions (22).
(cf. Rem. 5.2).

Definition 4.8. A set Ω Ă Rr is C-invariant if y P Ω implies y ` C Ă Ω
Equivalently, if y P Ω implies y ` C Ă Ω, where C denotes the closure of C.

Theorem 4.9. Let G{K be a non-compact irreducible Hermitian symmetric
space and let D be an N-invariant domain in G{K. Then D is Stein if and
only if the base Ω of the associated tube domain is convex and C-invariant.

The proof of the above theorem is divided into two parts. If D has smooth
boundary, then the argument relies on the computation of the Levi form of
smooth, N -invariant functions on D (Prop. 3.1) and some elementary convex-
geometric properties of Ω.

In the general case, the proof of the theorem is obtained by realizing D as an
increasing union of Stein, N -invariant domains with smooth boundary.

Proof of Theorem 4.9: the smooth case. The rank-1 tube case is trivial,
since every R-invariant domain in the upper half-plane H is Stein. So we deal
with the remaining cases: the rank-one non-tube case and the higher rank cases.

We use the notation y “ py1, . . . , yrq, for elements in Rr. Let D Ă G{K
be a Stein, N -invariant domain with smooth boundary and let Rr ` iΩ Ă Cr

be its associated tube domain. Then Ω is a convex set with smooth boundary
(cf. Rem. 4.4). Assume by contradiction that Ω is not C-invariant, i.e. there exist
y P Ω and z P py`Cq X BΩ. By the convexity of Ω, the open segment from y to
z is contained in Ω. In addition, the vector v “ z´ y P C is transversal to the
tangent hyperplane TzBΩ and points outwards. Therefore, given a smooth local

defining function pf of BΩ near z, one has

B pf
Bv
pzq “ grad pfpzq ¨ v ą 0.
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In the tube case, the above inequality and (23) imply that B rf
Baj
pHq ą 0, for some

j P t1, . . . , r ´ 1u. Then, by Proposition 3.1 (iii), the Levi form of the corre-
sponding N -invariant function f is negative definite on the J-invariant subspace
a˚g

ej´el ‘ a˚g
ej`el of TaKpBDq, the tangent space to BD in aK. In the non-

tube case, one has B rf
Baj
pHq ą 0, for some j P t1, . . . , ru. By Proposition 3.1 (iv),

the Levi form of the corresponding N -invariant function f is negative definite
on the J-invariant subspace a˚g

ej of TaKpBDq. This contradicts the fact that f
is a defining function of the Stein N -invariant domain D and proves that Ω is
C-invariant.

Conversely, assume that Ω is convex and C-invariant. We prove that D is
Stein by showing that it is Levi-pseudoconvex, i.e. for all points aK P BD and
local defining functions f of D near aK, one has hf pX,Xq ě 0, for every tangent
vector X P TaKBD X JTaKBD, the complex tangent space to BD at aK.

Let z P BΩ and let aK “ Lpzq. Denote by W :“ TzBΩ the tangent space to
BΩ in z. One can verify that the complex tangent space to BD at aK is given by

a˚p
à

gej˘el ‘
à

gejq ‘ pL˚qzW ‘ JpL˚qzW.

Let v “ pv1, . . . , vrq be an outer normal vector to W in Rr. The C-invariance
and the convexity of Ω imply that vj ď 0, for j “ 1, . . . , r in the non-tube case,
and vj ď 0, for j “ 1, . . . , r ´ 1 in the tube case. Otherwise the space W would
intersect y ` C , for every y P Ω, yielding a contradiction.

Let pf be a smooth local defining function of Ω near z. By the convexity of

Ω, the Hessian Hessp pfqpzq is positive definite on W . Moreover, as the gradient

grad pfpzq is a positive multiple of v, one has B pf
Byj
pzq ď 0, for all j “ 1, . . . , r, in

the non-tube case, and B pf
Byj
pzq ď 0, for all j “ 1, . . . , r ´ 1, in the tube case.

Let f be the corresponding N -invariant local defining function of D near aK “

expLpzqK. By Proposition 4.5, the Levi form of f is positive definite on pL˚qzW‘
JpL˚qzW Ă a˚a‘ a˚Ja.

In addition, by (23) and Proposition 3.1, the Levi form of f is positive definite
on a˚p

À

gej˘el‘
À

gejq. As a result, D is Levi pseudoconvex in aK “ expLpzqK.
Since aK is an arbitrary point in BDXexp a¨eK and bothD and f areN -invariant,
the domain D is Levi-pseudoconvex and therefore Stein, as desired.

In order to prove Theorem 4.9 in the non-smooth case, we need some prelimi-
nary Lemmas.

Lemma 4.10. Let D be a domain in a Stein manifold, let D1 Ă D be a subdomain
with smooth boundary and let z P BDXBD1. If D1 is not Levi pseudoconvex in z,
then D is not Stein.

Proof. Under our assumption, there exists a one dimensional complex submani-
fold M through z in X with Mztzu Ă D1 ([Ran86], proof of Thm. 2.11, p. 56).
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This implies that D is not Hartogs pseudoconvex ([Ran86], Thm. 2.9, p. 54) and
in particular it is not Stein. �

For a domain Ω in Rr, denote by dΩ : Ω Ñ R the distance function from the
boundary (if z P Ω, then dΩpzq is by definition the radius of the largest ball
centered in z and contained in Ω). The next lemma is a known characterization
of convex domains.

Lemma 4.11. A proper subdomain Ω of Rr is convex if and only if the function
´ ln dΩ : Ω Ñ R is convex.

In what follows, for a fixed domain Ω in Rr, we denote

u :“ ´ ln dΩ.

Denote by Bρpyq the open ball of center y “ py1, . . . , yrq P Rr and radius ρ.
Fix a smooth, positive, radial function σ : Rr Ñ R (only depending on R2 “

}w}2), with support in B1p0q, such that σ1pR2q ă 0 and
ş

Rr σpwqdw “ 1. For
ε ą 0, define Ωε :“ ty P Ω : dΩpyq ą εu and uε : Ωε Ñ R by

uεpyq :“ 1
εr

ş

Rr upzqσp
z´y
ε
qdz “

ş

Rr upy ` εwqσpwqdw .

The functions uε are clearly smooth. Let ν : pRą0qr Ñ Rą0 be the stably convex
positive function given by νpyq :“

ř

j
1
yj

. Define vε : Ωε Ñ R by

vεpyq :“ uεpyq ` ενpyq .

Lemma 4.12. Let Ω be a convex, C-invariant domain in pRą0qr. Then the
following facts hold true:

(i) The domain Ωε is convex and C-invariant for every ε ą 0.

(ii) The smooth functions vε are stably convex and, for ε Œ 0, they decrease
to u uniformly on the compact subsets of Ω.

(iii) Let δε :“ ´ ln 3ε. The sublevel set rΩε :“ ty P Ωε : vεpyq ă δεu is convex
and C-invariant.

(iv) The boundary of rΩε in pRą0qr coincides with ty P Ωε : vεpyq “ δε u
and it is smooth.

(v) As n P N increases, the sequence of convex, C-invariant subdomains with

smooth boundary rΩ1{n exhausts Ω.

Proof. (i) Let y and y` v be elements of Ωε. Then Bεpyq and Bεpy ` vq are
contained in Ω and, by the convexity of Ω, the same is true for Bεpy ` tvq, for
every t P r0, 1s. This shows that Ωε is convex. Moreover, as Ω is C-invariant, if
Bεpyq is contained in Ω and v is an element of the cone C, then also the open
ball Bεpy ` vq is contained in Ω. This shows that Ωε is C-invariant.
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(ii) As u is convex, for y, y ` v P Ω and t P r0, 1s, one has

uεpy ` tvq :“

ż

Rr
upy ` tv ` εwqσpwqdw

ď

ż

Rr

`

p1´ tqupy` εwq ` tupy` εw` vq
˘

σpwqdw “ p1´ tquεpyq ` tuεpy` vq ,

showing that the smooth function uε is convex. Since ν is smooth and stably
convex, it follows that vε :“ uε ` εν is smooth and stably convex. Moreover,
as convexity implies subharmonicity, then the last part of statement (ii) follows
from [Hör94], Thm 3.2.3(ii), p.143.

(iii) Since the function vε is convex, then the domain rΩε is convex. In order to

show that rΩε is C-invariant, we prove that

vεpy ` vq ă vεpyq , (26)

for every y P Ωε and v P C. Since Ω is C-invariant, if for some y P Ω the ball
Brpyq is contained in Ω, then also the ball Brpy`vq is contained in Ω, for all v P C.
It follows that dΩpyq ď dΩpy` vq and consequently upy` v` εwq ď upy` εwq,
for all v P C. and w P B1p0q. One deduces that

uεpy ` vq “

ż

Rr
upy ` v ` εwqσpwqdw ď

ż

Rr
upy ` εwqσpwqdw “ uεpyq ,

for every y P Ωε, v P C. Since νpy ` vq ă νpyq, one concludes that vεpy ` vq ă

vεpyq, and rΩε is C-invariant, as desired.
(iv) For y close to BΩε “ tz P Ω : dΩpzq “ ε u, a rough extimate shows

that dΩpy ` εwq ă 3ε, for every w P B1p0q. Therefore vεpyq ą uεpyq ą ´ ln 3ε,

implying that the boundary of rΩε is contained in Ωε and it is given by BrΩε “

ty P Ωε : vεpyq “ δε u. Concerning the smoothness of BrΩε, the rank one case is
trivial. So assume r ą 1.

Let py P BrΩε. Set v :“ p1, . . . , 1q, in the non-tube case, and v :“ p1, . . . , 1, 0q,
in the tube case. Since v lies in the cone C, the inequality (26) implies that for
γ small enough the real function g : p´γ, γq Ñ R, defined by gptq :“ vεppy ` tvq,
is strictly decreasing. By the stable convexity of vε, it is also stricltly convex and
g1p0q ă 0. As g1p0q is a directional derivative of vε in py, the differential dvε|py does

not vanish and the boundary of rΩε is smooth.
(v) For m ą n , the inclusion Ω1{n Ă Ω1{m and the inequality v1{n ą v1{m

imply that rΩ1{n Ă
rΩ1{m. This concludes the proof of the lemma. �

Proof of Theorem 4.9: the general case. Let D be an arbitrary Stein, N -
invariant domain in G{K. By Remark 4.4, the base Ω of the associated tube
domain is necessarily convex. Assume by contradiction that Ω is not C-invariant
(cf. Def. 4.8 and (20)), i.e. there exist y P Ω and z P py ` Cq X BΩ. By the
convexity of Ω, the open segment from y to z is contained in Ω. Moreover, the
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vector v “ z´ y lies in the cone C and points to the exterior of Ω. Let Bεpyq be
a relatively compact ball in Ω and define

tmax :“ maxt t ą 0 : Bεpy ` tvq Ă Ω u .

Then there exists w P BBεpy ` tmaxvq X BΩ, and by construction

xw ´ py ` tmaxvq,vy ą 0.

This implies that the outer normal n :“ w´py` tvq to BBεpy` tmaxvq satisfies
nj ą 0, for some j P t1, . . . , ru in the non-tube case (resp. nj ą 0, for some
j P t1, . . . , r´1u, in the tube case). From the result of the theorem in the smooth
case, it follows that the N -invariant subdomain N exppLpBεpy ` tmaxvqqq ¨ eK,
with smooth boundary, is not Levi pseudoconvex in exppLpwqqK. Then Lemma
4.10 implies that D is not Stein, contradicting the assumption.

Conversely, assume that Ω is convex and C-invariant. By Lemma 4.12, the
domain D can be realised as the increasing union of N -invariant domains D1{n :“

N exppLprΩ1{nqq ¨ eK, where the open sets rΩ1{n Ă Rr are convex, C-invariant and
have smooth boundary. By the result of the theorem in the smooth case, the
domains D1{n are Stein and so is their increasing union D. This completes the
proof of the theorem. �

We conclude this section with a univalence result for Stein, N -equivariant,
Riemann domains over G{K.

Proposition 4.13. Any holomorphically separable, N-equivariant, Riemann do-
main over G{K is univalent.

Proof. Let Z be a holomorphically separable, N -equivariant, Riemann domain
over G{K . By [Ros63], Z admits an holomorphic, N -equivariant open embed-
ding into its envelope of holomorphy, which is a Stein N -equivariant, Riemann
domain over G{K . Hence, without loss of generality, we may assume that Z is
Stein.

Denote by π : Z Ñ G{K the N -equivariant projection and let πpZq “
N exppLpΩqq ¨ eK be the image of Z under π. Define Σ :“ exppLpΩqq ¨ eK

and rΣ :“ π´1pΣq. Note that rΣ is a closed submanifold of Z.

Claim. The map rφ : N ˆ rΣ Ñ Z, given by pn, xq Ñ n ¨ x, is a diffeomorphism.

Proof of the claim. Since Σ “ πpZq X exppaq ¨ eK is a closed real submanifold

of πpZq and π is a local biholomorphism, the restriction π|
rΣ : rΣ Ñ Σ is a local

diffeomorphism. Moreover one has the commutative diagram

N ˆ rΣ

Idˆpπ|
rΣ
q

��

rφ // Z

π
��

N ˆ Σ
φ// N expLpΩq ¨ eK
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where the maps Id ˆ pπ|
rΣq, φ and π are local diffeomorphisms. Hence so is the

map rφ.

To prove that rφ is surjective, let z P Z and note that πpzq “ n exppLpyqqK,

for some n P N and y P Ω. Then the element w :“ n´1 ¨ z P rΣ satisfies n ¨w “ z,

implying the surjectivity of rφ.

To prove that rφ is injective, assume that n ¨w “ n1 ¨w1, for some n, n1 P N and

w, w1 P rΣ. From the equivariance of π it follows that n ¨πpwq “ n1 ¨πpw1q. As φ
is bijective, it follows that n “ n1 and πpwq “ πpw1q. Thus w “ pn´1n1q ¨w1 “ w1,

implying the injectivity of rφ and concluding the proof of the claim.

Now, in order to prove the univalence of π, it is sufficient to show that the

restriction π|
rΣ : rΣ Ñ Σ of π to rΣ is injective. For this, consider the closed

complex submanifold R ¨ rΣ “ π´1pR ¨Σq of Z. As Z is Stein, so is R ¨ rΣ. Hence

the restriction π|R¨rΣ : R ¨ rΣ Ñ R ¨ Σ defines an R-equivariant, Stein, Riemann
domain over the Stein tube R ¨ Σ. As R is isomorphic to Rr, from [CoLo86]
it follows that π|R¨rΣ is injective. Hence the same is true for π|

rΣ and π, as
wished. �

Corollary 4.14. The envelope of holomorphy pD of an N-invariant domain D

in G{K is the smallest Stein domain in G{K containing D. More precisely, pD

is the tube domain with base pΩ, the convex C-invariant hull of Ω.

5. N-invariant psh functions vs. cvxdec functions

Let D be a Stein, N -invariant domain in a non-compact, irreducible Hermit-
ian symmetric space G{K of rank r and let Ω be the base of the associated
r-dimensional tube domain. Then Ω is a convex, C-invariant domain in pRą0qr

(Thm. 4.9). From Proposition 4.5 it follows that there is a one-to-one corre-
spondence between the class of smooth N -invariant plurisubharmonic functions
on D and the class of smooth convex functions on Ω satisfying an additional
monotonicity condition (cf. Rem. 4.7 and Rem. 5.2). In this section we obtain an
analogous result in the non-smooth context.

Let C be the closure of the cone defined in (20).

Definition 5.1. A function pf : Ω Ñ R is (strictly) C-decreasing if for every

y P Ω and v P Czt0u the restriction of pf to the half-line ty ` tv : t ě 0u is
(strictly) decreasing.

Remark 5.2. (i) A smooth function pf : Ω Ñ R is C-decreasing if and only if
gradfpyq ¨ v ď 0 for every y P Ω and v P Czt0u.
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(ii) A smooth, stably convex (cf. Def. 4.6) function pf : Ω Ñ R is C-decreasing
if and only if gradfpyq ¨ v ă 0, for every y P Ω and v P Czt0u. This follows
from the fact that the directional derivatives gradfpyq ¨ v of a stably convex,

C-decreasing function pf never vanish. In particular pf is automatically strictly
C-decreasing.

In view of the above observations, we define the following classes of functions:

- ConvDec8,`pΩq: smooth, stably convex, C-decreasing functions on Ω,

- ConvDec8pΩq: smooth, convex, C-decreasing functions on Ω,

- Psh8,`pDqN : smooth, N -invariant, strictly plurisubharmonic functions on D,

- Psh8pDqN : smooth, N -invariant, plurisubharmonic functions on D.

Proposition 4.5 established a one-to-one correspondence between ConvDec8,`pΩq
and Psh8,`pDqN , as well as between ConvDec8pΩq and Psh8pDqN . The next
goal is to extend such correspondences beyond the smooth context.

Let ph : Ω Ñ R be the smooth, stably convex, strictly C-decreasing function

phpyq :“
ř

j
1
yj
, for y “ py1, . . . , yrq P Ω, (27)

and let h be the N -invariant strictly plurisubharmonic function on D associated

to ph.

Definition 5.3. A function pf : Ω Ñ R is stably convex and C-decreasing if
every point in Ω admits a convex C-invariant neighborhood W and ε ą 0 such

that pf ´ εph is a convex, C-decreasing function on W .

Definition 5.4. An N-invariant function f : D Ñ R is strictly plurisubhar-
monic if every point in D admits an N-invariant neighborhood U and ε ą 0
such that f ´ εh is an N-invariant plurisubharmonic function on U (see also
[Gun90], Vol. 1, Def. 1, p. 118).

In the smooth context the above notions coincide with the ones introduced
earlier. Denote by

- ConvDec`pΩq: stably convex and C-decreasing functions on Ω;

- ConvDecpΩq: convex, C-decreasing functions on Ω;

- Psh`pDqN : strictly plurisubharmonic, N -invariant functions on D;

- PshpDqN : plurisubharmonic, N -invariant functions on D.

The next theorem summarizes our results.

Theorem 5.5. Let D be a Stein N-invariant domain in a non-compact, irre-

ducible Hermitian symmetric space G{K of rank r. The map f Ñ pf is a bijection
between the following classes of functions
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(i) Psh8,`pDqN and ConvDec8,`pΩq,
(ii) Psh8pDqN and ConvDec8pΩq,
(iii) Psh pDqN and ConvDecpΩq,
(iv) Psh`pDqN and ConvDec`pΩq.

In particular, N-invariant plurisubharmonic functions on D are necessarily con-
tinuous.

Proof. (i) and (ii) follow from Proposition 4.5 and Remark 5.2.
(iii) Let f be a function in Psh pDqN . Since the restriction of f to the embedded
r-dimensional Stein tube domain R exppLpΩqq ¨ eK – Rr ˆ iΩ (cf. Cor. 4.3) is

plurisubharmonic and R-invariant, then pf is necessarily convex. Assume by

contradiction that pf is not C-decreasing. Then there exists s P R such that the

sublevel set t pf ă su is not C-invariant. By Theorem 4.9, the corresponding N -
invariant domain tf ă su is not Stein. Since G{K is biholomorphic to a Stein
domain in Cn and f is plurisubharmonic, this contradicts [Car73], Thm. B,

p. 419. Hence pf belongs to ConvDecpΩq, as claimed.
In order to prove the converse, as in the previous section, for ε ą 0 consider

the convex C-invariant set Ωε :“ ty P Ω : dΩpyq ą εu . For pf in ConvDecpΩq ,

let pfε : Ωε Ñ R be the function

pfεpyq :“
ş

Rr
pfpy ` εwqpσpwqdw ` εph ,

where ph is the function given in (27) and pσ : Rr Ñ R is a smooth, positive,
radial function (only depending on R2 “ }w}2), with support in B1p0q, such
that pσ1pR2q ă 0 and

ş

Rr pσpwqdw “ 1. Arguments analogous to those used in

Lemma 4.12 show that the functions pfε are in ConvDec8,`pΩεq. Then (i) implies
that the corresponding functions fε belong to Psh8,`pDqN and consequently
f belongs to Psh pDqN .
(iv) follows directly from the definition of Psh`pDqN and of ConvDec`pΩq.

Finally, from the inclusions

ConvDec`pΩq Ă ConvDecpΩq Ă C0pΩq
Y Y

ConvDec8,`pΩq Ă ConvDec8pΩq

it follows that all the above functions on Ω are continuous, and so are the corre-
sponding N -invariant plurisubharmonic functions on D. �

6. The Siegel domain point of view

The goal of this section is to present an alternative characterization of Stein
N -invariant domains in an irreducible Hermitian symmetric space G{K, realized
as a Siegel domain.
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Denote by S “ NA the real split solvable group arising from the Iwasawa
decomposition of G subordinated to Σ`. With the complex structure J described
in (3) and the linear form f0 P s

˚ defined by f0pXq :“ BpX,Z0q, where Z0 P Zpkq
is the element inducing the complex structure on p, the Lie algebra s “ n‘a of S
has the structure of a normal J-algebra (see [GPSV68] and [RoVe73], Sect. 5, A).

This means in particular that ωpX, Y q :“ ´f0prX, Y sq is a non-degenerate
skew-symmetric bilinear form on s and that the symmetric bilinear form xX, Y y :“
´f0prJX, Y sq is the J-invariant positive definite inner product on s defined in (2).

The adjoint action of a on s decomposes s into the orthogonal direct sum of
the restricted root spaces. Moreover, the adjoint action of the element A0 “
1
2

ř

j Aj P a decomposes s and n as

s “ s0 ‘ s1{2 ‘ s1, nj “ nX sj

where

s0 “ a‘
à

1ďjălďr

gej´el , s1{2 “ ‘
1ďjďr

gej , s1 “ ‘
1ďjďr

g2ej‘
à

1ďjălďr

gej`el . (28)

Let E0 :“
ř

Ej. The orbit
V :“ Adexp s0E0 (29)

is a sharp convex homogeneous selfadjoint cone in s1 and

F : s1{2 ˆ s1{2 Ñ s1 ` is1, F pW,W 1
q “

1

4
prJW 1,W s ´ irW 1,W sq,

is a V -valued Hermitian form, i.e. it is sesquilinear and F pW,W q P V , for all
W P s1{2. The Hermitian symmetric space G{K is realized as a Siegel domain in
sC1 ‘ s1{2 as follows

DpV, F q “ tpZ,W q P s1 ‘ is1 ‘ s1{2 | ImpZq ´ F pW,W q P V u.

If s1{2 “ t0u then G{K is of tube type, otherwise it is of non-tube type. The group
S acts on DpV, F q by the affine transformations

pZ,W q ÞÑ pAdsZ ` a` 2iF pAdsW, bq ` iF pb, bq, AdsW ` bq, (30)

where s P exp s0, a P s1, and b P s1{2. Recall that Ja “ ‘jg
2ej , (cf. (4)) and

denote by Ja` the positive octant in Ja. One easily verifies that if E P Ja`,
then Adexp aE “ Ja`. This and the fact that S acts freely and transitively on
DpV, F q imply that every N -orbit meets the set Ja` is a unique point.

Let D be an N -invariant domain in a symmetric Siegel domain. Then

D “ tpZ,W q P DpV, F q | ImpZq ´ F pW,W q P VDu,

where VD is an Adexp n0-invariant open subset in V , determined by

iVD :“ D X iV.

The r-dimensional set
VD :“ VD X Ja

`,
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intersects every N -orbit of D in a unique point, and it is the base of an r-
dimensional tube domain in Ja‘ iJa. The map R exp a ¨ eK Ñ R exp a ¨ piE0, 0q

expp
ř

j xjE
jq expp1

2

ř

k lnpykqAkqK ÞÑ piAdexpp 1
2

ř

k lnpykqAkq
E0 `

ř

j xjE
j, 0q

is the inverse of the map L of Proposition 4.1 (cf. Cor. 4.3).
Let C be the cone defined in (20). Then the characterization of N -invariant

Stein domains in a symmetric Siegel domain can be formulated as follows.

Proposition 6.1. Let D be an N-invariant domain in an irreducible symmetric
Siegel domain. Then D is Stein if and only if VD is convex and C-invariant.

In order to prove the above proposition, we need some preliminary results. For
this we separate the tube and the non-tube case.

The tube case. Denote by convpVDq the convex hull of VD in s1. Since VD is
Adexp n0-invariant and the action is linear, then also convpVDq is Adexp n0-invariant.
Denote by p : s1 Ñ Ja the projection onto Ja, parallel to ‘gej`el . Denote by

pE1
q
˚, . . . , pEr

q
˚ (31)

the elements in the dual n˚ of n, with the property that pEjq˚pElq “ δjl and
pEjq˚pXαq “ 0, for all Xα P gα, with α P Σ`zt2e1, . . . , 2eru.

Lemma 6.2. One has

(i) Let E “
ř

xkE
k P Ja`, where xk P Rą0. Then

ppAdexp n0Eq “ E ` Cr´1.

In particular, pErq˚pAdexp tXEq “ xr, for all X P n0 and t P R.

(ii) Let X P gej´el. Then rrEl, Xs, Xs “ sEj, for some s P Rą0.

(iii) One has ppconvpVDqq “ convpppVDqq.

Proof. (i) Let E P Ja` and let h0 P exp n0, where n0 “ ‘
1ďiăjďr

gei´ej . By

Theorem 4.10 in [RoVe73], for every 1 ď i ă j ď r there exists a basis tEp
iju of

gei´ej , with coordinates txpijup, such that

pEiq˚pAdh0Eq “ xip1`
ř

p, jąi
pxpijq

2q

(formula (4.13) in [RoVe73]). Since i ă r, one has ppAdexpXEq “ E ` Cr´1, as
claimed. In particular the rth coordinate of E does not vary under the Adexp n0-
action.

(ii) Let X P gej´el . Then exp tX P exp n0 and the curve

Adexp tXE0 “ exp adtXpE0q “ E0 ` trX,E
ls ` t2

2
rX, rX,Elss, t P R,

is contained in V . By Lemma 2.3 (a), its projection onto Ja is given by

ppAdexp tXE0q “ pE
jq˚pAdexp tXE0qE

j “ p1` t2

2
sqEj,
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for some s P R, s “ 0. Now (i) implies that 1 ` t2

2
s ą 0, for all t P R. Therefore

s ą 0, as claimed.

(iii) We prove the two inclusions. By the linearity of p, the set ppconvpVDqq is
convex and contains ppVDq. Hence, ppconvpVDqq Ą convpppVDqq. Conversely, let
z P convpVDq. Then there exist t0 P p0, 1q and x, y P VD such that z “ t0x` p1´
t0qy. Since ppzq “ t0ppxq ` p1´ t0qppyq, one has ppconvpVDqq Ă convpppVDqq. �

The non-tube case. Denote by rp : sC1 ‘ s1{2 Ñ iJa the projection onto iJa
parallel to s1 ‘ ip‘g

ej`elq ‘ s1{2.

Lemma 6.3. Let E P Ja`. Then rppN ¨ piE, 0qq “ ipE ` Crq.

Proof. The N -orbit of the point piE, 0q P sC1 ‘ s1{2 is given by

N ¨ piE, 0q “ S1{2S1Adexp n0piE, 0q “ pa` ipAdexp n0E ` F pb, bqq, bq, (32)

where a P s1 and b P s1{2. By (32) and Lemma 6.2 (i), one has rppN ¨ piE, 0qq “

ipE`Cr´1`p̃pF ps1{2, s1{2qqq. Since in the symmetric case trJb, bs, b P s1{2u “ Ja`,

it follows that p̃pN ¨ piE, 0qq “ ipE ` Crq, as claimed. �

Remark 6.4. (a) Statement (i) in Lemma 6.2 explains why in Prop.3.1 (iii) no

conditions appear on Bf̃
Bar

.

(b) Statement (ii) in Lemma 6.2 and the fact that F pb, bq “ rJb, bs, for b P s1{2,

takes values in Ja`, explain why the real constants s and t in Lemma 2.3(a)(b)
and later in Proposition 3.1(iii)(iv) are strictly positive.

Proof of Proposition 6.1. The tube case. An N -invariant domain D in a
symmetric tube domain DpV q is itself a tube domain with base the Adexp n0-
invariant set VD. Hence all we have to prove is that VD is convex if and only if
VD is convex and VD ` Cr´1 Ă VD.

Assume that VD is convex. Then VD is convex, being the intersection of VD with
the positive octant Ja`. To prove that VD is C-invariant, let E “

ř

j xjE
j P VD,

where xj ą 0, and let X P gej´el be a non-zero element. For every t P R,

Adexp tXE “ E ` txlrX,E
ls ` 1

2
t2xlrX, rX,E

lss

lies in VD and, by the convexity assumption, so does E ` 1
2
t2xlrX, rX,E

lss “

E ` t2sxlE
j, where s ą 0 (cf. Lemma 6.2 (ii)). This argument applied to all

j “ 1, . . . , r ´ 1 and the convexity of VD show that VD ` Cr´1 Ă VD, as desired.
Conversely, assume that VD convex and C-invariant. We prove the convexity of

VD by showing that convpVDq Ă VD. From Lemma 6.2 (ii) and the C-invariance
of VD, one has

ppVDq “ ppAdexp n0VDq “ VD ` Cr´1 Ă VD.
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Moreover, from Lemma 6.2 (iii), the above inclusion and the convexity of VD, one
has

convpVDq X Ja Ă ppconvpVDqq “ convpppVDqq Ă VD.

Finally, from the Adexp n0-invariance of convpVDq it follows that

convpVDq “ Adexp n0pconvpVDq X Jaq Ă Adexp n0VD “ VD.

This completes the proof of the proposition in the tube case.

The non-tube case. Let D be an N -invariant domain in a Siegel domain
DpV, F q. Denote by convpDq the convex hull of D in sC1 ‘ s1{2. As N acts on D
by affine transformations, also convpDq is N -invariant.

If D is Stein, then D X tW “ 0u is a Stein tube domain in sC1 with base VD.
By the result for the tube case and Lemma 6.3, VD is convex and VD ` Cr Ă VD.

Conversely, assume that VD is convex and C-invariant, i.e. VD ` Cr Ă VD (see
Def. 4.8). We are going to prove that D is convex. By Lemma 6.3, one has

rppDq “ rppN ¨ VDq “ ipVD ` Crq Ă iVD.

Moreover,
convpDq X iJa Ă rppconvpDqq “ convprppDqq Ă iVD.

By the N -invariance of convpDq, one obtains

convpDq “ N ¨ pconvpDq X iJaq Ă N ¨ iVD “ D.

Hence D is convex and therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). This
concludes the proof of the proposition. �

Remark. The assumption VD`Cr Ă VD implies VD`Cr´1 Ă VD and in particular
VD is convex. This means that if D Ă DpV, F q is Stein, then the tube domain
D X tW “ 0u is Stein. The converse may not hold true, as VD “ Adexp n0VD

convex does not imply VD ` Cr Ă VD.

7. Appendix: N-invariant potentials for the Killing metric.

Let G{K be a non-compact, irreducible Hermitian symmetric space. The
Killing form B of g, restricted to p, induces a G-invariant Kähler metric on
G{K, which we refered to as the Killing metric. In this section we exhibit an
N -invariant potential of the Killing metric and the associated moment map in a
Lie theoretical fashion. All the N -invariant potentials of the Killing metric are
detemined in Remark 7.5.

Let f : G{K Ñ R be a smooth N -invariant function. The map µ : G{K Ñ n˚,
defined by

µf pzqpXq :“ dcfp rXzq, (33)

for X P n, is N -equivariant (cf. (13)). If f is strictly plurisubharmonic, then it
is referred to as the moment map associated with f .
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Proposition 7.1. Let z “ naK P G{K, where n P N , a “ expH P A and
H “

ř

j ajAj P a. Let b be the constant defined in (11).

piq The N-invariant function ρ : G{K Ñ R defined by

ρpnaKq :“ ´1
2

řr
j“1BpH, Ajq “ ´

b
2
pa1 ` ¨ ¨ ¨ ` arq ,

is a potential of the Killing metric.

piiq The moment map µρ : G{K Ñ n˚ associated with ρ is given by

µρpnaKqpXq “ ´
b
4

řr
j“1 e

´2ajpEjq˚pAdn´1Xq “ BpAdn´1X,AdaZ0q , (34)

where X P n, and the pEjq˚ are defined in (31).

Proof. (i) Let naK P G{K, where a “ expH and H “
ř

j ajAj. The function

rρ : a Ñ R associated to ρ is given by rρpHq “ ´1
2

řr
j“1ajBpAj, Ajq (cf. (7)). In

order to obtain (i), we first prove the identities (34). By (33) and (14), one has

µρpaKqpXq “ dcρp rXaKq “ ´
b
4

řr
j“1 e

´2ajpEjq˚pXq. (35)

By (2), one has

pEjq˚pXq “ BpX, θEjq{BpEj, θEjq “ 2BpX, 1
2
pEj ` θEjqq{BpEj, θEjq.

Since

b :“ BpAj, Ajq “ BpI0Aj, I0Ajq “ BpEj ´ θEj, Ej ´ θEjq “ ´2BpEj, θEjq

and Z0 “ S0 `
1
2

ř

j E
j ` θEj, for some S0 P m (cf.[GeIa21], Sect. 2), one obtains

´b
4

řr
j“1 e

´2ajpEjq˚pXq “ ´b
2

řr
j“1 e

´2aj BpX, 1
2
pEj ` θEjq{BpEj, θEjq

“
řr
j“1 BpX, Ada

1
2
pEj ` θEjqq “ BpX, Ada Z0q ,

and (34) follows from the N -equivariance of µρ.

Next we are going to show that on pˆ p one has

hρp a˚¨ , a˚¨ q “ Bp ¨ , ¨ q. (36)

Every X P s decomposes as X “ pX ´ φpXqq ` φpXq P k‘ p (see Sect. 2). Since
the projection φ : sÑ p is a linear isomorphism, (36) is equivalent to

hρpa˚X, a˚Y q “ hρpa˚φpXq, a˚φpY qq “ B
`

φpXq, φpY q
˘

“ ´1
2
B
`

X, θY
˘

, (37)

for all X, Y in s . By Proposition 3.1(i), it is sufficient to consider X, Y both
in the same block a˚a, a˚g

ej´el , and a˚g
2ej .

Let Aj, Al P a, be as in (1). Then, by (ii) of Proposition 3.1, one has

hρpa˚Aj, a˚Alq “ δjlBpAl, Alq “ BpAj, Alq .

Let X, Y P gα, with α “ ej ´ el or α “ ej. Then JY P gβ, for β “ ej ` el or
β “ ej, respectively. From (15) and (i) one obtains

hρpa˚X, a˚Y q “ ´e
αpHq`βpHqdcρp ČrJY,Xszq
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“ ´eαpHq`βpHqBprJY,Xs, AdaZ0q. (38)

From the invariance properties of the Killing form B , the decomposition of X
and JY in k‘ p and the identity φpJ ¨q “ I0φp¨q (cf. (3)), one has

BprJY,Xs, AdaZ0q “ BpAda´1rJY,Xs, Z0q “ e´pαpHq`βpHqqBprJY,Xs, Z0q

“ e´pαpHq`βpHqq pBprJY ´ φpJY q, X ´ φpXqs, Z0q `BprφpJY q, φpXqs, Z0qq

“ e´pαpHq`βpHqqBprZ0, φpY qs, φpXqs, Z0q “ e´pαpHq`βpHqqBpφpXq, rZ0, rZ0, φpY qssq

“ ´e´pαpHq`βpHqqBpφpXq, φpY qq “ 1
2
e´pαpHq`βpHqqBpX, θY q.

It follows that

hρpa˚X, a˚Y q “ ´
1
2
B
`

X, θY
˘

, (39)

as desired. This concludes the proof of (i).

(ii) The identity (39) implies that the N -invariant function ρ is strictly plurisub-
harmonic. Hence µρ is the moment map associated to ρ. �

Remark 7.2. Combining (16) and (17) in Proposition 3.1 with (37), we obtain
the exact value of the positive quantities s and t

s “ 4}X}2

b
, for X P gej´el , and t “ 4}X}2

b
, for X P g2ej .

Remark 7.3. The map µG : G{K Ñ g˚ given by µGpgKqp¨q :“ BpAdg´1 ¨ , Z0q

is a moment map for the G-action on G{K. The moment map µρ in (ii) of
Proposition 7.1 can be obtained by restricting µGpnaKq to n. Namely, for X P n
and naK P G{K one has

µρpnaKqpXq “ µGpnaKqpXq “ BpAdpnaq´1 X ,Z0q.

In the next remark, all possible N -invariant potentials of the Killing metric are
determined.

Remark 7.4. Let ρ : G{K Ñ R be the potential of the Killing metric given in
Proposition 7.1 and let σ be another N-invariant potential. Let pρ and pσ be the
corresponding functions on pRą0qr defined in (19).

(a) In the non-tube case, one has pσ “ pρ ` d, and therefore σ “ ρ ` d, for
some d P R;

(b) In the tube case, one has pσpyq “ pρpyq ` cyr ` d, for c, d P R. In particular

σpn exppLpyqqKq “ ρpn exppLpyqqKq ` cyr ` d,

where n P N , y “ py1, . . . , yrq P pRą0qr, and c, d P R.
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Proof. Let f :“ σ´ρ be the difference of the two potentials. Then f is a smooth

N -invariant function on G{K such that ddcfp¨, J ¨q ” 0. Let pf : Ω Ñ R be the
associated function.
(a) In the non-tube case, by Proposition 3.1 (iv) and (23), the function pf satis-

fies B pf
Byj
” 0, for all j “ 1, . . . r. Hence pf is constant on pRą0qr and f is constant

on G{K.

(b) In the tube case, from Proposition 3.1, (25) and (23), it follows that B pf
Byj
” 0,

for all j “ 1, . . . r´1, and B2
pf

By2
r
” 0 . Hence pf is an affine function of the variable

yr . Equivalently, pσpyq “ pρpyq ` cyr ` d, for c, d P R, as claimed. �

Remark 7.5. Let DpV, F q be a symmetric Siegel domain. Then the Bergman ker-
nel function Kpz, zq is N-invariant and lnKpz, zq is a potential of the Bergman
metric. As both the Killing and the Bergman metric are G-invariant, they differ
by a multiplicative constant. It follows that lnKpz, zq is a multiple of one of the
N-invariant potentials of the Killing metric described in the above remark.

Example 7.6. As an application of Remark 7.5, we compute all N-invariant
potentials of the Killing metric for the upper half-plane in C and for the Siegel
upper half-plane of rank 2.

(a) Let G “ SLp2,Rq and let G{K be the corresponding Hermitian symmetric
space. Fix an Iwasawa decomposition NAK of G. Since b “ 8 and r “ 1, then
the potential of the Killing metric given in Proposition 7.1 is

ρpnaKq “ ´4a1 and pρpy1q “ ρpexpLpy1qKq “ ln 1
y2
1
.

Realize G{K as the upper half-plane H “ tz P C | Impzq ą 0u, i.e. the orbit
of i P C under the SLp2,Rq-action by linear fractional transformations. Fix

N “

"ˆ

1 m
0 1

˙

: m P R
*

and A “

"ˆ

ea1 0
0 e´a1

˙

: a1 P R
*

,

and let tx1 ` iy1 P C : y1 ą 0u be tube associated to G{K. Since

x1 ` iy1 Ñ exppx1E
1q expp1

2
ln y1A1q ¨ i “ x1 ` iy1

(cf. Prop. 4.1), then the potential ρ on H reads as ρpzq “ ln 1
pImzq2

.

If σ : H Ñ R is an arbitrary N-invariant potential of the Killing metric, then
by Remark 7.5

σpzq “ ln 1
pImzq2

` cImz ` d, c, d P R.

(b) The Siegel upper half-plane of rank 2

P “ tW “ S ` iT PMp2, 2,Cq | tW “ W, T ą 0u,
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of 2 ˆ 2 complex symmetric matrices with positive definite imaginary part, is
the orbit of iI2 under the action by linear fractional transformations of the real
symplectic group Spp2,Rq. Fix the Iwasawa decomposition such that

N “

"ˆ

n m
0 tn´1

˙*

, A “

"ˆ

a 0
0 a´1

˙*

,

where n is unipotent, n tm is symmetric and a “

ˆ

ea1 0
0 ea2

˙

, with a1, a1 coor-

dinates in a with respect to the basis defined in Lemma 2.2.
As b “ 12, the potential of the Killing metric defined in Proposition 7.1 is given

by

ρpnaKq “ ´6pa1 ` a2q and pρpy1, y2q “ ρpexpLpy1, y2qKq “ ln 1
py1y2q3

.

A matrix S ` iT P P can be expressed in a unique way as

na ¨ iI2 “ n ¨

ˆ

ie2a1 0
0 ie2a2

˙

.

If T “

ˆ

t1 t3
t3 t2

˙

, a simple computation shows that e2a1 “ t1´t
2
3{t2 and e2a2 “ t2.

Hence y1 “ t1 ´ t
2
3{t2, y2 “ t2 and ρpS ` iT q “ ln 1

pt1t2´t23q
3 .

If σ is an arbitrary N-invariant potential of the Killing form, then by Re-
mark 7.5

σpS ` iT q “ ln 1
pt1t2´t23q

3 ` ct2 ` d, for some c, d P R.
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