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Abstract 

 

Batteries are the key elements for the massive 

electrification of the transport sector. With the 

rapidly growing popularity of electric vehicles, it is 

becoming increasingly important to characterize the 

behavior of battery packs through fast and accurate 

numerical models, in order to support experimental 

activities. A coupled electro-thermal simulation 

framework is required, as it is the only way to 

realistically represent the interactions between real 

world battery pack performances and the vehicle-

level thermal management strategies. The purpose 

of this work is to pave the way for a comprehensive 

methodology for the development of a supporting 

modeling framework, to efficiently complement 

experiments in the optimal design and integration of 

battery packs.   

The full methodology consists of the following 

steps: i) an experimental analysis of the temperature 

and current dependence on various internal 

parameters of selected lithium-ion cells based on 

their electrochemical properties, ii) development 

and implementation of a battery cell electric model 

that takes into account the aforementioned 

dynamics and their dependencies; the electrical 

model is based on the Equivalent Circuit Model 

(ECM) and can be used to calculate the electrical 

output and losses of Li-ion cells as a function of 

state of charge and current; iii) development of a 

cell-level multi-domain computational framework 

for coupled electro-thermal simulations, based on 

state-of-the art CFD software tools; iv) validation 

and tuning of the multi-domain framework through 

ad-hoc designed experiments with controlled cell 

charge-discharge profiles and temperature 

measurement; v) extension of both the ECM and 

multi-domain approaches to full-scale battery packs, 

to be adopted for electric vehicle characterization 

under realistic driving conditions, with detailed 

battery thermal management. 

Results shown in the present paper cover steps i) to 

iv) and include a series of static and dynamic 

experimental tests with voltage response and 

temperature measurements performed on the 

selected Li-ion cells. It is shown that the proposed 

modeling tools can accurately predict the electro-

thermal behavior of the cells under static and 

dynamic current conditions. Most of the average 

relative errors between predicted values and test 

values obtained do not exceed 10%.  

 

 

Introduction 

 

Electric vehicles and stationary energy storage 

make extensive use of lithium-ion batteries (Li-

ions), which are crucial to the decarbonization of 

the transportation and energy industries [1].  In 

order to guarantee both safety and effectiveness, the 

real-time operation of the battery system must be 

monitored and controlled by a battery management 

system (BMS). A battery model is typically 

required to predict the dynamics of the system 

under various operating conditions in order to 

improve the functionality of the BMS [2]. 

Among different types of models, including 

electrochemical models, reduced order models and 

black-box models the equivalent circuit model 

(ECM) has been widely used for model-based real-

time parameter and state estimation of Li-ions [3].  

Improving the ECM's accuracy is important for the 

BMS and the battery system. First, a high ECM 

accuracy leads to accurate prediction of the battery's 

power capacity, which is a key parameter for real-

time power management of the battery system, e.g. 
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during EV's operation. Second, the ECM accuracy 

affects the estimation accuracy of the battery's 

internal power loss and heat generation, as well as 

the resulting temperature rise, which is key to 

ensuring proper thermal management [4]. 

Furthermore, alongside with fast and efficient 

electrical models, it is crucial to develop detailed 

multi-dimensional thermal modeling frameworks, to 

assist battery pack optimal design and the 

integration of the battery pack with the system-level 

thermal management. 

Within the context described above, the 

contribution of the present work can be summarized 

as: i) an experimental characterization of selected 

21700 Li-ion cells with comparable nominal energy 

densities and chemistries, in terms of current-

voltage-temperature dependence; ii) development 

and implementation of an ECM-based battery cell 

electric model, with the aim of capturing the 

aforementioned dynamics and their dependencies; 

the electrical model is intended to calculate the 

electrical output and losses of Li-ion cells as a 

function of state of charge and current; iii) 

development, calibration and testing of a cell-level 

computational approach for the detailed thermal 

behavior analysis of Li-ion cells, based on the state-

of-the art ANSYS® Fluent CFD package. 

The remainder of the paper is organized as follows: 

first, in the Materials and methods section, the 

experimental setup and test schedule are described, 

followed by the presentation of the electrical and 

thermal modeling framework and the related 

preliminary calibration activity. After that, the main 

results and findings from the comparison between 

models and experiments are shown in the Results 

and discussion section. Final remarks and 

suggestions for future developments are included in 

the Conclusions section. 

 

Materials and methods 

 
Battery experimental setup 

The battery test platform includes the bi-directional 

IT6000C series programmable DC tester, computer 

for user-machine interface and data storage, a 

switch board for cable connection, and the battery 

cells. The bi-directional programmable DC power 

supply combines two functions in one: source and 

sink with energy regeneration. The platform is 

capable of charge–discharge exposed in battery 

modules with a maximum voltage of 80 V at the 

frequency of 50/60 Hz and the maximum current is 

150 A and power of 5 kW. ITS5000 Test System 

software provides the users with an array of 

charge/discharge modes such as CC/CP/CR 

discharge mode and it can simulate constant voltage 

charge and constant current charge modes. 

Temperatures of the cells are measured with PT100 

temperature sensors clamped on the cell case. All 

experiments are performed at room temperature. 

National Instruments FP-RTD-122 module is used 

for battery surface temperature monitoring. During 

the charging/discharging, voltage, current, 

temperature of each cell is measured and recorded 

at a rate of one sample per second. 

 

 
 

Figure 1. Schematic of the measurement circuit for the lithium-ion cells with 
battery testing system. 

 Battery test schedule 

Three types of cylindrical lithium nickel–

manganese–cobalt oxide (LiNMC) cells are selected 

for cycle tests. They are: 1. INR21700-M50LT, 2. 

INR21700-50E and 3. INR21700-40T. Their key 

specifications are shown in Table 1.  

 
Table 1. Overview of cells investigated in this study  

Cell 
INR21700-

M50LT 

INR21700-

50E 

INR21700-

40T 

Origin commercial commercial commercial 

Chemistry NMC NMC NMC 

Vmin:Vmax [V] 2.5:4.2 2.5:4.2 2.5:4.2 

Nominal 

capacity [Ah] 
4.89 5 4 
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Geometry cylindrical cylindrical cylindrical 

D*H [mm] 21.1*70.2 20.3*70.8 21.0*70.1 

Mass [g] 68.2 69.0 67.0 

 

Two types of cell tests were performed to 

characterize the cell tested in this work. The first 

type comprised a constant current discharge and 

charge tests. The selected cell types are discharged 

each with 1C, 3C and 5C current to the discharge 

voltage limit specified by the cell manufacturer. The 

discharge and charge parameters are listed in Table 

2. The experimental data, i.e. voltage and surface 

temperature distributions profiles during different 

C-rate discharge rates, obtained from static tests 

were used to verify and validate the thermal and 

electric simulation models. The voltage, profiles for 

theses tests are presented in Figure 2 (a), (b) and (c). 

 
 

Figure 2. Plots showing SOC vs. terminal voltage a) 1 battery, b) 2 battery, c) 
3 battery during static discharge at environmental temperature of 25°C.  

The second type comprised a sequence of constant-

current discharge pulses. Discharge pulses of 1C 

were used. Between two adjacent test points in each 

characterization test the cells are charged or 

discharged to reach the desirable initial SOC values 

and rested of 120 min in each case to reach an 

electrical, chemical and thermal equilibrium 

condition [5], [6]. The voltage, current and SOC 

profiles for this test are presented in Figure 3 (a), 

(b) and (c). 

 
Table 2. Charging and discharging parameters of the cycle test. 

Cell 
INR21700-

M50LT 

INR21700-

50E 

INR21700-

40T 

Charging rate  1C 1C 1C 

Discharging rate 1C,3C,3C 1C,3C,3C 1C,3C,3C 

Charging cut-off 

voltage 
4.2 4.2 4.2 

Discharging cut-off 

voltage 
2.7 

2.7 2.7 
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Figure 3. Plots showing voltage, current and DoD vs. time for pulsed-current 

cell tests for the a) LGINR21700-M50LT, b) INR21700-50E and c) 

INR21700-40T cells during pulse discharge and environmental temperature of 
25°C.  

 

The datasets collected in the pulse characterization 

tests were used for the identification of model 

parameters and comparison in this paper, described 

in the next sections.  The goal is to have the cell 

model output resemble the cell terminal voltage 

under load as closely as possible, at all times, when 

the cell model input is equal to the cell current.  

 

Modeling framework 

Electric model structure 

 

A modelling approach based on equivalent circuit 

model (ECM) with n RC network is proposed to 

predict the battery electric performance 

characteristics [3]. In this study, the ECM uses 

parameters derived from experimental 

electrochemical characterizations, such  pulse 

charge and discharge curves [2], [6], [7]. The 

effects of battery SOC and current are covered 

explicitly in these models. In this study, however, 

the effect of ambient temperature is not captured.   

The ECM model is composed of three modules [7]: 

1) the open circuit voltage module 𝑣OCV, 2) the 

internal resistance module R0 and 3) the RC 

network module. 

The basic definition of SOC, battery model, and 

parameter identification algorithm are introduced 

first.  

The structure of the proposed model is shown in 

Figure 4 where 𝑣OCV indicates the open circuit 

voltage, 𝑣𝑇  and 𝑖 represent the battery terminal 

voltage and current (positive for charging and 

negative for discharging), respectively. T represents 

the ambient temperature. Denote 𝑛 as the number of 

RC networks.  𝑅0  is the ohmic internal resistance, 

𝑅𝑛  are the polarization internal resistances, and 𝐶𝑛 

are the polarization capacitances.  

 

 
 

Figure 4. Schematic diagram of SOC and temperature dependent battery ECM  

 

 

Let define 𝑖𝑗 , 𝑣𝑗 , 𝑗 = 1,2, … , 𝑛, as the current and 

overpotential across 𝑅𝑗. Assuming the RC 

parameters and the constant current between two 

data samples, where 𝛥𝑡 is the sampling interval in 

seconds, 𝑘 is the sample time and 𝜏𝑗 is the time 

constant, the dynamics of the RC networks in 

discrete form can be formulated as follows: 

 

𝑣𝑗[𝑘 + 1] = 𝑎𝑗𝑣𝑗[𝑘] + 𝑅𝑗(1 − 𝑎𝑗  )𝑖[𝑘], 𝑗 =

1,2, … , 𝑛   (1) 

where (
−𝛥𝑡

𝜏𝑗
)   and 𝜏𝑗 = 𝑅𝑗𝐶𝑗 

Further, the total voltage drop across all the RC 

networks can be expressed as:  

𝑣𝑅𝐶[𝑘] = ∑ 𝑣𝑗[𝑘]𝑛
𝑗=1       (2) 

The battery SOC and DOD are obtained using the 

widely employed coulomb counting method [9], 

[32]:  

𝑆𝑂𝐶[𝑘 + 1] = 𝑆𝑂𝐶[𝑘] +
𝛥𝑡 

3600𝑄
𝜂𝑏[𝑘]𝑖[𝑘] 

 (3) 

and   𝐷𝑂𝐷[𝑘] = 1 − 𝑆𝑂𝐶[𝑘]     
 

where 𝑄 in Ah the battery's nominal capacity at 25 

°C and 𝜂𝑏 is battery efficiency. Finally, the battery 

terminal voltage can be expressed as:  

 

𝑣𝑡[𝑘] = 𝑣𝑂𝐶𝑉[𝑘] + 𝑅0[𝑘]𝑖[𝑘] + 𝑣𝑅𝐶[𝑘] 

 (4) 

The parameters to be identified are 𝑅0 , 𝑅𝑛, 𝐶𝑛 and 

𝑣𝑂𝐶𝑉 .  The proposed method for ECM parameter 

identification considers the estimation of the 

resistance and capacitance values, as well as the 
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battery 𝑣OCV along the SOC breakpoints between 

0% and 100%, based on the pulse discharge tests 

presented in Figure 3. Each pulse provided separate 

information about 𝑣OCV, R0 and the circuit transients 

Rn and Cn. Based on the data in Figure 3 containing 

discharge pulses for each battery, the corresponding 

values of SOC that occurred before and after each 

pulse were determined. Further, the values of each 

circuit element were represented with lookup table 

versus the points of SOC.  

The estimation technique implemented curve fitting 

procedure using a linear system and optimization 

approaches, pulse-by-pulse.  

Model fit was judged by comparing root-mean-

squared estimation error (estimation error equals 

cell voltage minus model voltage). In this paper, it 

was considered just one ambient temperature and 

one discharge current (1C).  

 
Thermal model structure and validation 

 

For the detailed thermal modeling of the tested 

battery cells, the ANSYS® Fluent CFD package is 

adopted. The underlying approach is called Multi-

Scale Multi-Domain method [8], [9] and it requires 

the solution on a finite-volume grid of the following 

differential equations: 

 
𝜕𝜌𝐶𝑝𝑇

𝜕𝑡
− ∇ ∙ (𝜆∇𝑇) = 𝜎+|∇𝜙+|2 + 𝜎−|∇𝜙−|2 + 𝑆𝑡ℎ         

(5) 

∇ ∙ (𝜎+∇𝜙+) = −𝑆𝑒𝑙                                (6) 

∇ ∙ (𝜎−∇𝜙−) = 𝑆𝑒𝑙                                 (7) 

 

where 𝜙+, 𝜙− are phase potentials for the positive 

and negative electrodes, with 𝜎+, 𝜎− being their 

effective electric conductivities, respectively. The 

terms Sth and Sel represent thermal and electrical 

source terms, which might be related to 

electrochemistry, internal short-circuit and/or 

thermal abuse [8]. For the purposes of the present 

work, the source terms were evaluated through a 

polynomial fitting procedure [10], which allows to 

directly import experimental discharge curves 

including also environmental temperature effects. 

More in details, Sel and Sth are calculated as: 

 

𝑆𝑒𝑙 =
𝑄𝑛𝑜𝑚

𝑄𝑟𝑒𝑓∙𝑉𝑜𝑙
𝑌[𝑈 − 𝑉]                 (8) 

 

𝑆𝑡ℎ = 𝑆𝑒𝑙 [𝑈 − 𝑉 − 𝑇
𝑑𝑈

𝑑𝑇
]               (9) 

In Equations 8 and 9, Qnom is the nominal capacity 

of the currently simulated battery, Qref  is the 

capacity of the battery used to produce the reference 

discharge profiles, Vol is the current battery cell 

volume, V is the cell battery voltage and U, Y are 

functions derived by the model from the reference 

discharge profiles. 

 

Since the CFD model setup requires a detailed 

knowledge of the battery cell material composition 

and electrochemistry, a preliminary calibration step 

has been performed, based on the reference 21700 

LiNMC cell that has been thoroughly characterized 

in the experimental work of Waldmann et al. [11]. 

Table 3 collects the properties of each cell layer, 

which have been sourced from [11] and [12]–[14]. 

Note that properties are to be considered effective, 

taking into account the material porosity and the 

presence of the LiFP6 electrolyte. 

A 21x70 mm cylindrical domain has been realized, 

with Al and Cu metal caps at the positive and 

negative pole, respectively (Figure 5). Table 4 

shows the equivalent properties that have been 

derived from the Table 3 data and applied to the 

electrochemically active cell domain, together with 

some of the main simulation parameters. As a first 

step, discharge curves at three different C-rates have 

been extracted from [11], to calibrate the 

electrochemistry-thermal coupling within the Fluent 

model. Figure 6 shows the coherence between the 

discharge curves that are automatically fitted by the 

software and the original experimental trends. 

 
Table 3. Layer thicknesses and properties for the reference 21700 LiNMC 
battery cell [11]–[14]. 

Layer Cathode Anode 
Collector 

(C) 

Collector 

(A) 
Separator 

Material NMC Graphite Al Cu PP 

Thickness (m) 125 126 20 10 16 

Porosity (-) 0.29 0.48 - - 0.5 

 (kg/m3) 3749 1753 2719 8978 1119 

Cp (J/kg K) 1009 1178 871 381 1680 

 (W/m K) 2.11 5.8 202 388 0.2 

 (siemens/m) 125 200 3.54e+7 5.8e+7 - 
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Table 4. Physical and numerical parameters adopted for the simulations of the 
reference 21700 LiNMC cell (properties referred to the cell active zone). 

Parameter Units Value 

Nominal capacity (Ah) 2.457 

Nominal voltage (V) 3.6 

Cut-off voltage (upper) (V) 4.2 

Cut-off voltage (lower) (V) 2.7 

  (kg/m3) 2764 

Cp  (J/kg K) 1107 

  (W/m K) 17.6 

  (siemens/m) 1.256e+6 

  (siemens/m) 1.028e+6 

N. of computational cells - 15360 

Time step length (s) 1 

Time step sub-iterations - 5 

 

 

Figure 5. Representation of the computational domain adopted for the thermal 
simulations of the reference 21700 cell. 

Thermal simulations have been subsequently 

performed, assuming a convective boundary 

condition at the external walls with a heat transfer 

coefficient (HTC) of 10 W/m2K. The reference 

ambient temperature has been set to 25°C, as 

reported in the experiments. The HTC and ambient 

temperature are used to provide the correct heat flux 

at the boundaries, for the solution of the conductive 

energy equation (Eq. 5) within the battery solid 

domain. 

Results are shown in Figure 7, in terms of the 

maximum temperature reached within the cell 

active domain during the discharge runs. The 

agreement between the simulations and experiments 

is generally good, with a slight temperature 

overestimation returned by the numerical 

predictions (up to about 10% at the highest C-rate). 

It should be noted that several modeling 

uncertainties still persist, such as the effective value 

of the cell thermal capacity, as well as of the 

convective heat transfer coefficient. As such, the 

trend captured by the thermal modeling framework 

can be considered satisfactory and thus applicable 

to the main part of our study. 

 
Figure 6. Discharge curves comparison for the reference 21700 test cell. 

 
Figure 7. Maximum cell temperature comparison between Waldmann et al.’s 
experimental measurements and the 21700 test cell simulation. 

Results and discussion 

 

The comparison results between the two ECM 

models (Rint: n=0 and 3RC, n=3) at 25 °C for all 

tested cells and currents are shown in Figures 8-10.  

To quantify the difference between the experimental 

and estimated voltage, we used mean error analysis. 

The results reveal that at 1C both models perform 

well in terms of voltage vs. time at 25 °C.  

The mean absolute error between model and 

experiment is below 1%. Further, as shown in Table 

5, the simple 3RC model (n=3) based on the 

parameters predetermined by low current pulse test 

is relative better at 1C and can provide a higher 

accuracy than the Rint (n=0) model. This is 

expected because, apart from the SOC, the Rint 
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model is limited to purely ohmic response to a 

current pulse.  

As can be seen from Figures 8-10, the major 

deviations are observed for 3C and 5C.  In these 

cases model underestimates the real experimental 

values. Error is slightly reduced when using Rint 

model. Nevertheless, the voltage estimation 

accuracy is mostly below 10% in terms of mean 

error, which is comparable with the previously 

reported results [6], [15].  

 

 

 

 

 
 
Figure 8. Comparison of the experimental and modelling discharge curves for 
the INR21700-M50LT at discharge rates of 1, 3 and 5 C and an environmental 

temperature of 25°C. 
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Figure 9. Comparison of the experimental and modelling discharge curves for 
the INR21700-50E at discharge rates of 1, 3 and 5 C and an environmental 

temperature of 25°C 

 

 

 
 
Figure 10. Comparison of the experimental and modelling discharge curves 
for the INR21700-40T at discharge rates of 1, 3 and 5 C and an environmental 

temperature of 25°C 

 

 

 

Table 5. Charging and discharging parameters of the cycle test. 

Cell Mean error[%] Standard deviation[%] 

INR21700-M50LT   

Model n=0   

1C -0.45 0.74 

3C 0.89 1.45 

5C 7.86 2.57 

Model n=3   

1C 0.03 0.91 

3C 2.09 2.89 

5C 9.54 5.51 

INR21700-50E   

Model n=0   

1C 0.77 0.93 

3C 1.48 2.27 

5C 9.57 4.06 

Model n=3   

1C 0.79 0.94 

3C 1.48 2.47 

5C 9.48 4.53 

INR21700-40T   

Model n=0   

1C -0.94 0.39 

3C 2.30 0.84 

5C 4.73 2.52 

Model n=3   

1C -0.87 0.32 

3C 2.49 0.98 
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5C 5.03 2.91 

 

Thermal simulations of the selected battery cells are 

also performed, based on the previously presented 

and validate Fluent modeling framework. Similarly 

to what previously shown, experimental discharge 

profiles produced from our laboratory 

measurements are directly used by the software to 

calculate thermal sources. 

Figure 11 displays temperature vs. time profiles for 

the three investigated 21700 cells, comparing the 

experimental measurements with the Fluent thermal 

simulations performed to reproduce the static 

discharge tests. It should be noted that, in the 

absence of reliable data for the cell material 

composition and properties, the same battery 

simulation parameters previously adopted for the 

benchmark 21700 LiNMC cell have been applied 

here.  

Results show a good agreement between the 

experiments and numerical predictions at 1C, for all 

the cells considered. At 3C, predictions are still in 

good accordance with measurements for the two 

larger capacity cells, while the profiles start to 

diverge for the INR21700-40T cell. The divergence 

increases at 5C, whereas only a slight discrepancy 

appears for the LGINR21700-M50LT and 

INR21700-50E cells towards the end of the 

discharge runs. 

A possible explanation for the different behavior of 

the INR21700-40T cell is an inconsistency between 

the thermal properties of the benchmark 21700 

LiNMC cell and the actual properties of the cell 

tested. In that regard, the specific heat capacity Cp is 

expected to have a major role, while at the highest 

C rates also a more accurate estimation of the 

convective heat transfer between the cells and the 

surrounding air is likely to be beneficial. 

 
 

 
Figure 11. Temperature profiles obtained from the experiments and the Fluent 

thermal model for the a) LGINR21700-M50LT, b) INR21700-50E and c) 
INR21700-40T cells during discharge at 1, 3 and 5 C and with an 
environmental temperature of 25°C. 

 

Conclusions 

 

In the present paper, an ECM-based electrical 

model and a CFD-based thermal model have been 

developed for Li-ion NMC battery cells. The 

performances of both models have been compared 

against in-house experimental measurements made 

on three commercial 21700 NMC cells.  

The results and analysis presented have 

demonstrated that the proposed combined approach 

has sufficient ability for both voltage and 

temperature predictions. The ECM-based method 

has shown a good potential for real time battery 

monitoring on board of electric vehicles and for 

other energy storage applications. The CFD-based 

method for thermal predictions has shown 

satisfactory accuracy, provided that a good estimate 
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for the cell battery thermophysical properties is 

available. 

However, the terminal voltage-SOC relationship 

also changes with temperature, current and ageing. 

For the future work, the temperature and current 

effect on the model on battery temperature, SOC 

and voltage predictions will be investigated. 

Furthermore, a closer coupling between the 

developed electric model and multi-dimensional 

thermal simulation tools, such as the framework 

provided by the ANSYS® Fluent package, will be 

researched. 
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