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Simple Summary: Methane from livestock is a contributor to greenhouse gases, which are responsible
for climate change. A large part of this methane comes from the digestive processes of ruminants.
This study looked at how research on methane emissions from livestock has changed over time. By
examining 1294 studies published between 1986 and 2024, this review identified key trends and topics
in the field. This study found that research in this area has increased significantly since 2005, with
most studies coming from Europe and North America, where livestock farming is widespread. The
research topics focused on ways to reduce emissions, such as changing animal diets and improving
farm practices. One of the most important findings is that while progress has been made, more
research is needed to better understand and reduce methane emissions. This knowledge could help in
reducing the environmental impact of livestock farming, leading to more sustainable food production
and helping to fight climate change.

Abstract: Methane (CH4) from livestock, particularly enteric CH4 emission (EME), is one contributor
to greenhouse gas emissions and climate change. This review analyzed 1294 scientific abstracts on
EME in ruminants from 1986 to May 2024, using Scopus® data. Descriptive statistics, text mining,
and topic analysis were performed. Publications on EME have risen significantly since 2005, with
the Journal of Dairy Science being the most frequent publisher. Most studies (82.1%) were original
research, with Northern Hemisphere countries leading in publication numbers. The most frequent
terms were “milk”, “cow”, and “diet”, while key research topics included greenhouse gas emissions
from livestock, diet composition, and prediction models. Despite progress, some areas like CH4

emission from animals need further investigation.

Keywords: ruminants; enteric methane; text mining; topic analysis; machine learning

1. Introduction

Methane (CH4), together with carbon dioxide (CO2) and nitrous oxide (N2O), are the
main greenhouse gases (GHGs) produced by the livestock sector. Greenhouse gas concen-
trations contribute to climate change and are responsible for the increase in temperature and
water scarcity [1]. Compared to pre-industrial levels, the global temperature has increased
by 1.5 ◦C [2], and changes in the natural hydrological cycle of water are occurring, such as
increases in intense precipitation, variations in the quantity and seasonal distribution of
precipitation, increases in sea levels in coastal communities, increased evapotranspiration,
and decreased soil moisture [1]. According to the FAO [3], livestock agrifood systems are
responsible for 12% of all anthropogenic GHG emissions, corresponding to 6.2 Gt CO2
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equivalent emissions (data referring to 2015). Total CH4 produced by the livestock sector
represents 54%, 31% is CO2, and 15% is N2O (data referring to 2015, FAO [3]). Methane
seems to have the greatest impact on the GHGs produced by the livestock sector since it
represents a major share of the GHGs, and the effect on global warming of CH4 is approxi-
mately 28 times that of CO2 [4]. Emissions of GHGs from the livestock sector can occur both
directly (through enteric fermentation and manure) and indirectly (through processing,
fertilization, feed production, etc.) [4]. Methane produced directly by manure represents
7.8% of the total CH4 derived from the livestock sector, while the CH4 derived from ru-
minal fermentations, called enteric CH4, is equal to 46% of the total CH4 emissions [3].
Significant variations in emission levels and/or intensity are noted among different species,
geographical areas, and production systems [5]. According to an FAO report [3], of the
six species of livestock animals responsible for producing GHGs, 62% comes from cattle,
8% from buffaloes, 4% from goats, 3% from sheep, and 23% from monogastric animals
(pigs and poultry) (Figure 1). Considering the production system, two-thirds of GHG
emissions is associated with meat production (67%), followed by milk production (30%)
and egg production (3%). A distinction must be made in ruminants: the greater production
of CH4 is derived from ruminal fermentation, whereas in monogastric systems, the main
contributors are feed production, land use change, and manure management.
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The demand for animal products (meat, milk, and eggs) is projected to grow by 20%
by 2050 compared to 2020 levels due to the world’s population growth and increasing
prosperity [3]. This increased demand leads to an inevitable increase in GHG emissions
from the livestock sector to satisfy the growing demand for proteins. Implementing
sustainable methods is essential for achieving reduced emissions and lessening the negative
effects of livestock systems on the environment. Methane emissions have a shorter average
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lifespan in the atmosphere than CO2 (~12 years versus hundreds of years, respectively),
which makes it an attractive improvement target for short-term gains in global warming
abatement [6]. Enteric CH4 is produced during enteric fermentation in ruminants by
anaerobic microorganisms collectively known as methanogens in the Archaea domain and
the phylum Euryarchaeota [7]. The CH4 produced by animals is affected by many factors: the
species, the production level and direction, the diet composition, the type of carbohydrates
present, the level of ingestion, the degree of lipids saturation, some environmental factors
such as temperature, and genetic factors such as feed conversion efficiency [8]. Searching
for feasible mitigation strategies is essential to reduce CH4 emissions and increase feed
efficiency. CH4 emissions from ruminants not only aggravate the global GHG effect but
can also cause energy losses in livestock, accounting for 3.9–10.7% of ingested metabolic
energy [9], representing one of the most important inefficiencies and economic losses in
ruminant production systems [10].

Recognizing the importance of this issue, the FAO has been actively studying methane
and mitigation strategies since 2005, when it began developing the Global Livestock En-
vironmental Assessment Model (GLEAM). The first version was released in 2010, and
GLEAM has since been continuously updated to enhance the accuracy of GHG emission
estimates across species, regions, and production systems. In addition to the FAO, nu-
merous researchers around the world are actively investigating innovative approaches
to reduce methane emissions. Simultaneously, the Intergovernmental Panel on Climate
Change (IPCC) has played a crucial role by providing global guidelines for estimating
emissions. In 2006, the IPCC published the 2006 Guidelines for National Greenhouse
Gas Inventories, which established standardized methods for calculating emissions from
agriculture, including livestock. These guidelines are continuously updated, with the most
recent update occurring in 2019, to incorporate advancements in estimating methane from
enteric fermentation and other agricultural sources [3].

The data mining approach, also known as text mining (TM), is useful for extracting
various information from large text databases [11]. Finding the most relevant words
in a text and identifying significant patterns in text data are the aims of TM analysis.
Text mining employs methods from computational statistics and machine learning [12].
Another type of text analysis is topic analysis (TA), which is a technique for identifying
hidden textual patterns and the structure of significant themes within record collections
using probabilistic models [12]. Quantitative analysis organizes knowledge on a specific
subject/topic/discipline and identifies the main trends in a specific sector [13]. This is
because the scientific literature contains potentially new knowledge [12]. Recently, in many
sectors, there has been a growing interest in this kind of text analysis. This is largely
attributable to the advancement of recent analysis techniques (e.g., using 4.3.1 R version,
3.7.0 Python version) and the availability of platforms that provide reference data (e.g.,
Scopus, Web of Science). Even in the livestock sector, several papers have recently been
published on several topics, from precision livestock farming [13] and automated milking
systems [14] to the well-being of several species, including beef cattle [15], horses [16], and
buffaloes [17], utilizing techniques such as text mining and topic analysis.

Enteric CH4 emission is a hot topic in the livestock sector, but no TM and TA study
has been conducted on it to date. For this reason, the goal of this review was to use TM
and TA techniques to describe the literature’s evolution and geographical distribution,
identifying the most investigated research topics and highlighting the knowledge gaps
regarding enteric CH4 emission from ruminants.
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2. Materials and Methods
2.1. Dataset

A bibliometric study of documents related to enteric methane emission (EME) in
ruminants using a bibliometric database of Elsevier©, namely, Scopus®, was carried out.
The topics were searched using keywords. Enteric methane (EM) AND another keyword
such as “emission,” “ruminants,” “cow,” “buffalo,” “sheep OR goat,” “additive,” and
“microbiome OR microbiota” were used in this research. The selected dates ranged from
1986 to May 2024. Several filters were added, including the selection of publications
from scientific fields like agricultural and biological sciences, environmental sciences,
biochemistry, genetics and molecular sciences, veterinary sciences, engineering, earth
sciences, and planetary sciences. Under these circumstances, 3624 records were generated.
Each search was exported as a Comma Separated Values file (Microsoft Excel®, v16.0,
Redmond, WA, USA); then, the files were merged into a single file containing 3624 lines.
Table 1 shows the total number of documents for each pair of keywords. The data were
arranged in a tabular manner using the Excel spreadsheet (Microsoft Excel®, v16.0), with
each record being shown in a row with its contents arranged in columns. The columns
contained information about the title, author, year of publication, affiliation, type of record
(e.g., article or review), source of publication (i.e., name of the journal), language, and
abstract. Screenings were conducted on this single file to eliminate documents that were
not in English, those in which the abstract was absent, those that misspelled “erratum,”
and, finally, those in which the author was absent. After this, duplicate documents were
eliminated. The articles dealing with rats, humans, manure, and soil were not included.
In vitro studies were included due to their significant importance.

Table 1. Bibliographic search strings for the text mining analysis on enteric methane emission in the
livestock sector carried out on titles, abstracts, and keywords of peer-reviewed literature in English
published between 1986 and May 2024.

Search Words Original No. of Records

Enteric Methane AND Emission 1711
Enteric Methane AND Ruminants 742

Enteric Methane AND Cow 612
Enteric Methane AND Sheep OR Goat 242

Enteric Methane AND Additive 221
Enteric Methane AND Buffalo 68

Enteric Methane AND Microbiome OR Microbiota 28

Total 3624

Finally, a manual screening of 1850 articles was performed. The screening process
involved reading each abstract carefully to evaluate the relevance of the study to our re-
view’s scope. The criteria for inclusion were as follows: (i) the article had to focus on enteric
methane emission (EME) from ruminants, (ii) the study needed to present experimental or
empirical data related to EME measurement, mitigation, or related environmental impacts
or be a review of published data, and (iii) the article had to focus on ruminant species (cattle,
sheep, goats, etc.). Articles were excluded if they did not focus on EME, were unrelated to
methane emissions in the livestock sector, or addressed monogastric species (pigs, poultry)
without reference to ruminants. Where abstracts did not provide enough detail, the full
article was reviewed to ensure proper inclusion or exclusion. Details regarding the exact
number of records downloaded from each research string, the eligibility procedure, and
the initial screening are displayed in the flow diagram (Figure 2).

A total of 1294 abstracts were selected, and descriptive statistics were performed on
these articles regarding the year of publication, country, and journal of publication using
Excel Pivot tables and graphics. Each record was associated with the nationality of the first
author, and this information was displayed on a world map.
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The dashed lines indicate the quantity of excluded records and the rationale behind their removal
from the study.

2.2. Text Mining

The TM technique transforms text into numerical data by emphasizing word fre-
quency distributions, allowing for the identification of primary terms and their correla-
tions within a data corpus. Text mining analysis was performed to identify the primary
terms in the data corpus and their correlations. Text mining analysis was performed with
the R studio environment [18] using a combination of functions in the package’s “tm”
(v. 0.7.11) [19], “snowball” (v. 0.7.1) [20], “ggplot2” (v. 3.4.4) [21], “dplyr” (v. 1.1.4) [22],
and “tidyverse” (v. 2.0.0) [23] (information about the packages used is provided in the
Supplementary Materials).

The abstracts of the 1294 selected documents were compiled into an Excel file. This file
contained two columns: one with the document’s progressive ID and another labeled “text”,
which contained the abstracts. Text mining was then performed using this dataset. Before
TM analysis, the three stages of pre-processing, tokenization, filtering, and stemming, were
conducted [24]. Tokenization involves splitting text into individual words or phrases and
converting these words to their base forms. This prevents counting the same word more
than once when it appears in various grammatical forms [25]. Tokenization and filtering
phases were conducted as follows:

• Convert text to lowercase;
• Remove strange symbols and punctuations (“@”, “/”, “*”);
• Remove numbers and extra white spaces;
• Remove common English language words such as articles, prepositions, and conjunc-

tions (e.g., “the,” “a,” “and,” “on,” “at,” etc.) as they provide little information about
the contents of the corpus;
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• Remove stop words: “emission,” “enteric,” “methane,” “buffalo,” “cow,” “sheep,”
“goat,” “ruminants,” “cattle,” “additive,” “microbiome,” “microbiota”.

In the final phase, text stemming was performed to reduce words to their root
forms, thereby standardizing word representation and enhancing the accuracy of word
frequency and association analysis. The words were then organized into a document-
term matrix (DTM), with terms arranged in columns and documents in rows. The term
frequency–inverse document frequency approach (TF-IDF) was used to give terms a rela-
tive weight [26]. This displays a term’s frequency adjusted for its total usage, highlighting
the word’s significance across a collection of texts. The words with the greatest relevance
(TF-IDF ≥ 9.5) were represented as a histogram, and a cloud of the most relevant words
was created using the word clouds website (https://www.wordclouds.com/, accessed on
30 August 2024). Finally, the association between words with TF-IDF ≥ 9.5 was explored.
The frequency of co-occurrence of word pairs was measured, considering a correlation of 1
when two words always appeared together. Associations with a coefficient of correlation
greater than 0.40 were considered significant.

2.3. Topic Analysis

Topic analysis is a methodology used to uncover semantic connections hidden within
documents. For the TA of our abstract corpus, we employed latent Dirichlet allocation
(LDA), a widely recognized approach for topic modeling analysis [27]. Using a Bayesian
probabilistic technique, words that frequently co-occurred in the documents to identify
thematic areas were analyzed. The words used in the TA were drawn from the titles,
keywords, and abstracts of the 1294 scientific literature records. The LDA function was
used with the Gibbs sampling option of the “topic models” package in R [28]. Since the
“optimal” number is typically unknown, multiple trials with varying numbers of topics
were conducted (e.g., 5, 7, 9). The perplexity index and log-likelihood harmonic means
were used to determine the appropriate number of topics. Nine topics were selected at the
end of the procedure because they produced the most logical outcomes, with more than 5%
of the papers in each topic. Each topic was represented as an individual bar histogram with
the probability of the first 10 words inside each topic (based on beta values). Once the right
number of topics was found, we proceeded with topic labeling based on the first 10 words
and evaluated the types of articles that fell back into each topic. An Excel spreadsheet
was used to provide descriptive statistics of the number of papers and the initial year of
publication for each topic.

3. Results
3.1. Descriptive Statistics

The distribution of the initial bibliographic search results by string on titles, ab-
stracts, and keywords is reported in Table 1. Most articles were related to the string
“enteric methane emission” (47%), followed by “enteric methane ruminants” (20%), “en-
teric methane cow” (17%), “enteric methane sheep and goat” (7%), “enteric methane
additive” (6%), “enteric methane buffalo” (2%), and, lastly, “enteric methane microbiome
or microbiota” (1%). After eliminating overlapping records and manually removing unnec-
essary ones, 1294 records were retained for further examination. The trend in the number
of publications per year from 1986 to May 2024 is reported in Figure 3. It can be seen how
publications on the subject began to grow from 2005 onwards, with an exponential increase
(R2 = 0.72). The literature search was conducted in May 2024, so the number of publications
related to this year is not complete.

https://www.wordclouds.com/
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Figure 3. Records from 1986 to 2024 of peer-reviewed scientific literature (n = 1294) pertaining to
EME in livestock sector. * The asterisk on the year 2024 indicates that results for that year are related
to the period from January to May.

Figure 4 shows the first 10 journals in which articles relating to EME were published.
In terms of percentages, the “Journal of Dairy Science, JDS” published 12.7% of the total
articles, followed by “Animal Feed Science and Technology, AFST” (7%), “Journal of Animal
Science, JAS” (6.3%), “Animals” (6.1%), “Animal Production Science, APS” (5.9%), “Animal”
(4.3%), “Livestock Science, LS” (2.3%), “Tropical Animal Health and Production, TAHP” (1.8%),
“Canadian Journal of Animal Science, CJAS” (1.6%), and, lastly, “Frontiers in Veterinary Science,
FVS” (1.5%). Regarding the types of documents, the most published on the subject were
original articles (82.1%), followed by reviews (10.5%) and conference papers (4.9%); the
rest were book chapters and short surveys (2.5%). The most cited article (932 citations) was
published in 2000 and concerned “Methane production by ruminants: Its contribution to
global warming” [29]; this was followed by a review published by Beauchemin et al. [30]
with 755 citations. The average number of citations of the 1294 documents was 24.9.
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Figure 5 illustrates how the 1294 scientific papers were distributed throughout the
continent according to the first author’s affiliation country. The number (and percentage) of
publications by continent was 369 (28.5%) from Europe, 271 (20.9%) from North America,
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253 (19.6%) from Asia, 182 (14.1%) from South America, 163 (12.6%) from Oceania, and 56
(4.3%) from Africa.
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Figure 6 shows a geographical map indicating the number of publications per country
(a darker color indicates a greater number of publications). The first countries with the
highest number of publications were then explored for each continent. Concerning Europe,
the countries with a greater number of publications were the United Kingdom (50), France
(46), and the Netherlands (41). For North America, the first two were the United States
(153) and Canada (117). India (101), China (57), and Indonesia (25) represented the top
three states with the highest number of publications in Asia. For South America, the top
three states were Brazil (82), Mexico (53), and Colombia (22). Australia (113) represented
the state with the highest number of publications in Oceania, followed by New Zealand
(50). Finally, as far as Africa was concerned, the greatest number of publications came from
South Africa (25), followed by Kenya (10) and Ethiopia (4).
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3.2. Text Mining

To determine which words in the data corpus were the most frequent, TM analysis
was carried out. Following the data pre-processing, 1288 root terms were kept from the
1294 documents that were chosen after sparseness was reduced (i.e., “rare words” were
excluded). “Rare words” were words that appeared only once or a few times in the
entire corpus. These words were excluded during data pre-processing to avoid noise
and improve the efficiency and effectiveness of the analysis. The results of the most
frequent root words with a weight over 9.5 of TF-IDF are reported in Figure 7. The weights
of the terms found (calculated as TF-IDF) ranged from 18.57 to 0.50. The word “milk”
achieved the greatest value (TF-IDF of 18.57). The other words with the highest TF-IDF
were “cow” (16.57), “diet” (13.76), “dmi” (12.10), “supplement” (11.81), “rumen” (11.54),
“predict” (11.48), “model” (11.16), “day” (11.07), “digest” (10.49), “dairi” (10.43), “nitrat ”
(10.35), “graze” (10.25), “concentr” (10.09), “measur” (9.97), “yield” (9.95), “energi” (9.76),
“increas” (9.75), “anim” (9.72), “emiss” (9.67), “intak” (9.64), “feed” (9.63), and “treatment”
(9.51). A word cloud with the most frequent terms is shown in Figure 8, in which the
size of the font is proportional to the TF-IDF of each term. Table 2 shows the correlations
between the most relevant terms (r ≥ 0.40) and the other terms in the matrix. The terms
“anim,” “concentr,” “dairi,” “day,” “diet,” “dmi,” “emiss,” “feed,” “intak,” “milk,” “nitrat,”
“rumen,” “supplement,” and “yield” did not show any correlation.

Animals 2024, 14, x FOR PEER REVIEW 9 of 24 
 

 

improve the efficiency and effectiveness of the analysis. The results of the most frequent 
root words with a weight over 9.5 of TF-IDF are reported in Figure 7. The weights of the 
terms found (calculated as TF-IDF) ranged from 18.57 to 0.50. The word “milk” achieved 
the greatest value (TF-IDF of 18.57). The other words with the highest TF-IDF were “cow” 
(16.57), “diet” (13.76), “dmi” (12.10), “supplement” (11.81), “rumen” (11.54), “predict” 
(11.48), “model” (11.16), “day” (11.07), “digest” (10.49), “dairi” (10.43), “nitrat ” (10.35), 
“graze” (10.25), “concentr” (10.09), “measur” (9.97), “yield” (9.95), “energi” (9.76), 
“increas” (9.75), “anim” (9.72), “emiss” (9.67), “intak” (9.64), “feed” (9.63), and 
“treatment” (9.51). A word cloud with the most frequent terms is shown in Figure 8, in 
which the size of the font is proportional to the TF-IDF of each term. Table 2 shows the 
correlations between the most relevant terms (r ≥ 0.40) and the other terms in the matrix. 
The terms “anim,” “concentr,” “dairi,” “day,” “diet,” “dmi,” “emiss,” “feed,” “intak,” 
“milk,” “nitrat,” “rumen,” “supplement,” and “yield” did not show any correlation. 

Table 2. Relationships between the most pertinent terms (TF-IDF ≥ 9.5) and the other terms in the 
corpus of 1294 records. 

Words (TF-IDF ≥ 9.5) Associated Words (Grade of Correlation ≥ 0.4) 
Cow Lactat (0.47) 

Model Error (0.46) 
Digest Nutrient (0.42) 
Energi Gross (0.46); Metaboliz (0.41) 
Graze Pastur (0.43) 

Increas Linear (0.45) 
Measur Chamber (0.41) 
Predict Error (0.50); Equat (0.47); Extant (0.42) 

The correlation grade is expressed in parentheses. The minimum grade of correlation was set as ≥ 
0.4. Because the text-stemming method reduced the words to their origins, words could be 
partially cut. 

 
Figure 7. Histogram representation of the most relevant words (stems) in the database (TF-IDF ≥ 
9.5). 
Figure 7. Histogram representation of the most relevant words (stems) in the database (TF-IDF ≥ 9.5).

Animals 2024, 14, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 8. Word cloud of the most frequent words (TF-IDF values ≥ 9.5) of the 1294 records included 
in this study. 

3.3. Topic Analysis 
The first 10 words of the nine topics are displayed in Figure 9. Table 3 shows a list of 

the nine topics, their nomenclature, the number of articles published (and relative 
percentage), and the year of first publication for each topic. The topic that showed the 
most documents was topic 9, “Greenhouse gas emission from livestock” (18.08%), 
followed by topic 6, “Diet composition” (13.45%); topic 8, “Prediction model” (11.28%); 
topic 4, “Supplement and additive” (10.97%); topic 5, “Ruminal fermentation” (10.20%); 
topic 3, “In vivo measurement system” (9.81%); topic 2, “Extensive farming system” 
(9.27%); topic 7, “Dairy production” (9.20%); and, finally, the topic that showed the lowest 
percentage of published documents was topic 1, “Methane emission-animal” (7.73%). 

 
Figure 9. Histograms showing the most relevant terms for each of the 9 topics in the latent Dirichlet 
allocation (LDA). The top 10 terms with the highest beta values are shown. beta = probability that a 
word corresponds to a certain topic. 

  

Figure 8. Word cloud of the most frequent words (TF-IDF values ≥ 9.5) of the 1294 records included
in this study.



Animals 2024, 14, 3158 10 of 24

Table 2. Relationships between the most pertinent terms (TF-IDF ≥ 9.5) and the other terms in the
corpus of 1294 records.

Words (TF-IDF ≥ 9.5) Associated Words (Grade of Correlation ≥ 0.4)

Cow Lactat (0.47)
Model Error (0.46)
Digest Nutrient (0.42)
Energi Gross (0.46); Metaboliz (0.41)
Graze Pastur (0.43)

Increas Linear (0.45)
Measur Chamber (0.41)
Predict Error (0.50); Equat (0.47); Extant (0.42)

The correlation grade is expressed in parentheses. The minimum grade of correlation was set as ≥0.4. Because the
text-stemming method reduced the words to their origins, words could be partially cut.

3.3. Topic Analysis

The first 10 words of the nine topics are displayed in Figure 9. Table 3 shows a
list of the nine topics, their nomenclature, the number of articles published (and relative
percentage), and the year of first publication for each topic. The topic that showed the
most documents was topic 9, “Greenhouse gas emission from livestock” (18.08%), followed
by topic 6, “Diet composition” (13.45%); topic 8, “Prediction model” (11.28%); topic 4,
“Supplement and additive” (10.97%); topic 5, “Ruminal fermentation” (10.20%); topic 3,
“In vivo measurement system” (9.81%); topic 2, “Extensive farming system” (9.27%); topic
7, “Dairy production” (9.20%); and, finally, the topic that showed the lowest percentage of
published documents was topic 1, “Methane emission-animal” (7.73%).
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Table 3. Topics obtained from latent Dirichlet allocation (LDA) analysis.

Topic Label of Topic Acronyms No. of Records per Topic (%) Year of First Publication

1 Methane emission-animal ME-A 100 (7.73%) 1998
2 Extensive farming system EFS 120 (9.27%) 2005
3 In vivo measurement system MS 127 (9.81%) 2001
4 Supplement and additive SA 142 (10.97%) 2006
5 Ruminal fermentation RF 132 (10.20%) 2006
6 Diet composition DC 174 (13.45%) 2005
7 Dairy production DP 119 (9.20%) 2005
8 Prediction model PM 146 (11.28%) 2005
9 Greenhouse gas emission from livestock GHGL 234 (18.08%) 1986

4. Discussion

This study aimed to evaluate the evolution of EME in the livestock sector through
a machine learning approach with TM and TA analysis methods from 1986 to May 2024.
The number of publications relating to EME in the livestock sector is growing. The first
published article was from Germany, dated 1986, and published by [31], who aimed to
provide an overview of the global CH4 production by people, domestic ruminants, and
wild ruminants. Those authors concluded that CH4 production by domestic and wild
animals contributed to about 15–25% of the total tropospheric CH4. Until 2004, publications
were fluctuating and limited. Starting from 2005, there was an increase in publications until
2019, in which the number of publications exceeded 100 articles/year. The rising number of
publications on EME reflects the growing interest in this potent GHG due to its significant
climate-altering effects, with a notable increase in attention since 2005. That year saw
the entry into force of the Kyoto Protocol signed in 1997 by approximately 40 developed
countries. The protocol sets binding targets for reducing GHGs for industrialized countries,
also referred to as developed countries. The main objective of the Kyoto Protocol was to
limit the increase in the global average temperature to less than 2 ◦C above pre-industrial
levels. Furthermore, the Kyoto Protocol paved the way for international negotiations and
agreements on climate change, including the annual Conference of the Parties (COP) under
the United Nations Framework Convention on Climate Change (UNFCCC). The COP serves
as the main decision-making body for global climate policy, where countries come together
to negotiate and make decisions and agreements to address climate change. Another
significant milestone in efforts to curb GHG emissions was the 2015 Paris Agreement. This
agreement outlined the goal of limiting the increase in the global average temperature to
well below 2 ◦C and aiming to keep it within 1.5 ◦C. The heightened focus of the scientific
community on addressing climate change and reducing GHG emissions, particularly from
EME, is evident in the surge of publications following 2005, with a peak coinciding with
the adoption of the Paris Agreement in 2015.

The largest number of publications was produced by the Journal of Dairy Science (JDS),
followed by Animal Feed Science and Technology (AFST), Journal of Animal Science (JAS), and
Animals. These journals’ research scopes are in the livestock sector, in particular relating to
dairy science (in the case of JDS); feeds, as in the case of AFST; and livestock much more
generally in the case of the last two journals (JAS and Animals). These journals reflected the
most common terms discovered with TM, namely, “milk”, “cow”, and “diet”, which will
be discussed later.

The geographical distribution of publications based on the first author showed that
the countries with the highest number of published articles corresponded to the Northern
Hemisphere, where there is the greatest production of anthropogenic GHGs [32]. Addi-
tionally, in these areas, there is a high number of farms, and there is a greater contribution
of funding for research in the livestock sector [32]. According to the FAO [3], regions
with high milk production include Europe, South Asia, and North America, whereas meat
production is concentrated in East Asia, Europe, and North and South America. According
to findings reported by [32], studies on EME measurement techniques were conducted
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predominantly in Europe (32%), followed by Oceania (23%), North America (20%), Asia
(15%), South America (9%), and Africa (1%). Additionally, Della Rosa et al. [32] highlighted
that most studies focused on cattle (64%) and sheep (22%), with only 7% involving goats,
5% involving buffalo, and 2% involving other ruminants such as alpaca, bison, llama, and
deer (Table 4). Their review findings partially align with our own, indicating a similar
distribution of focus in terms of the geographical regions studied.

Table 4. Continental animal CH4 measurement studies published from 1994 to 2018, adapted by [32].

Continent Studies (%) Species 1 EME Technique 2

Europe 32 Cattle, goat, sheep, and other RC, SF6, GF, and other
Oceania 23 Cattle, sheep, and other RC, SF6, GF, and other

North America 20 Cattle, goat, sheep, and other RC, SF6, and GF
Asia 15 Buffalo, cattle, goat, sheep, and other RC, SF6, GF, and other

South America 9 Cattle, goat, and sheep RC, SF6, and other
Africa 1 Cattle and goat SF6 and other

1 Other includes other species: alpaca, llama, deer, and bison; RC: respiration chamber; SF6: sulfur hexafluoride;
GF: GreenFeed; 2 other includes other techniques: face mask, sniffer, laser methane detector, and portable
accumulation chamber.

4.1. Text Mining

From TM analysis, the most frequent words were “milk”, followed by “cow”, “diet”,
and “dmi”, with TF-IDF higher than 12. It is not surprising that the word “milk” followed
by “cow” were the most common ones in our survey on EME in the livestock sector.
Looking at the world map of the countries in which most of the articles were published,
the same countries are the largest breeders and producers of cow milk, according to FAO
data [3]. The word “cow” is directly linked to EME as, among all the livestock species, cattle
represent the largest producers of GHGs (62%). As discussed before, the major component
of CH4 is given by enteric fermentation compared with monogastric animals. Methane
production can be expressed in three different ways: (i) CH4 production in liters or grams
per day; (ii) CH4 yield, defined as liters or grams of CH4 per kilogram of dry matter intake
(DMI); and (iii) CH4 intensity, defined as liters or grams of CH4 per kilogram of milk/meat
produced [33]. Therefore, the word “milk” could be related to the expression of the intensity
of EME.

The word “diet” represents the rations provided to animals. Diet plays an impor-
tant role in modulating the EME in ruminants. Indeed, among the top important terms
highlighted by the TM, terms related to nutrition emerged, such as “diet”, “supplement”,
“digest”, “graze”, and “concentr”. Several studies agreed that diet modulation remains the
most straightforward and inexpensive approach to lessen EME [34–36]. Methane output
could be lowered by 10% to 40%, depending on the type of feeding strategy interven-
tion [37]. Numerous feeding strategies for mitigating CH4 are currently in use. These
strategies can be summarized in three broad categories (adapted to [34]): (i) dietary supple-
mentation of feed additives that either directly block methanogens or change the metabolic
pathways, resulting in the reduction of the substrate for methanogenesis; (ii) improving the
quality of the forage and modifying the forage–concentrate ratio; and (iii) improving feed-
ing management. The word “dmi” (DMI—dry matter intake) is a very important acronym
in the context of EME since there is a strong correlation between DMI and EME [9,38–40].
Notably, multiple EME prediction models are based on DMI. Some studies [41,42] demon-
strated that DMI predicts CH4 production (g/d), with a coefficient of determination (R2)
of 0.60 and 0.64, respectively. Furthermore, as previously discussed, DMI is used as an
expression of CH4 yield (g of CH4/kg of DMI). It has been observed that this is a precise
method to evaluate how effective a mitigation strategy is, regardless of possible changes
in feed intake, given that feed intake is the main factor driving CH4 production [36]. To
confirm the above, following the word “dmi”, “predict” and “model” were found. Even
though the remaining words had a lower weight according to the TF-IDF analysis (<9.5),
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they were all noteworthy. By studying key factors such as cow diet, DMI, supplement
usage, and grazing management, it is possible to identify effective strategies to reduce
GHGs without compromising milk production or cattle health. Utilizing mathematical
models and predictive methods allows one to anticipate the impact of these strategies and
develop tailored solutions to mitigate increases of CH4 emissions. Furthermore, improving
the energy efficiency of cattle metabolism can decrease overall GHGs from the dairy and
meat industries.

4.2. Topic Analysis

From the TA, several expected topics emerged, ranging from ruminal fermentation
(RF) to CH4 measurement systems (MS), diet composition (DC), and topics representing
extensive farming systems (EFS). We were also expecting a topic for meat production
(just like the one that emerged for dairy production), but this could have been hidden
in the other topics. For example, the term “beef” was found in topic 2. The topic that
generically encompassed the subjects dealing with GHGs was the one that emerged before
the others (1986) and the one with the highest number of articles published (18.08%) in the
present survey. Topic 9 was generically defined as “greenhouse gas from livestock, GHGL”,
and the most important terms that emerged from the TA reflected this topic (“livestock,”
“strategi,” “greenhouse,” “ghg,” “mitig”). Furthermore, compared with the other eight, in
this topic, there was a large majority of reviews (32% of documents), probably because it
was very generic. This broad topic included studies that, indirectly, quantified EME, and
had, as their general objective, an estimation of the life cycle assessment (LCA) of livestock
supply chains. Initially, the studies on LCA focused on the primary sector, while only a
few included additional post-agricultural components (e.g., transport) in the analysis [43].
Life cycle assessments of several farming systems showed that on-farm emissions are the
largest contributor to the carbon footprint of dairy or beef supply chains [43–45]. The
carbon footprint, an indicator calculated with an LCA approach, evaluates the GHGs
associated with the life cycle of a product [44]. A cradle-to-grave LCA study on organically
farmed beef [44] reported that the greatest production of GHGs (75–89%) along the food
chain is associated with farms and that EME was the greatest source of GHG arising
directly from agricultural activities (47%), with certain variability due to the different types
of farming systems (conventional, organic) and/or methodological approaches adopted.
Thoma et al. [43] reported that even if a substantial majority of GHGs are derived from
enteric CH4, the impacts of the entire chain and supply chain can be reduced.

Topic 2 contained terms related to extensive farming systems (e.g., “graze,” “forag,”
“pasture,” and “grass”); hence, it was defined as “extensive farming system, EFS”. This topic
encompassed more than 9% of the publications considered in this review, representing the
fifth most important topic identified in the TA. Extensive farming systems likely warranted
a separate topic because they exhibit distinct characteristics that differentiate them from
other farming systems. Systems based on pasture constitute a substantial contributor to
GHG. Although grazing systems are widely utilized, there are difficulties in measuring
and reducing the CH4 emissions from these systems [46]. Furthermore, grazing systems
are one of the most significant habitats for CH4 exchange. Their CH4 budget comprises
two main sources: soil bacterial populations that, depending on the soil’s physical and
biological conditions, can either produce or consume CH4, and ruminants on pasture that
generate CH4 during the digestion of grass. Such systems are also considered inefficient and
associated with low animal performance, tending to increase the emission rate per unit of
products (CH4/kg of milk/meat) [47,48]. These issues are more pronounced in developing
and poor countries, such as African countries, which currently stand as some of the largest
GHG emitters [48]. In these regions, pasture is scarce, and what is available is often of
poor quality, resulting in digestive inefficiency and, consequently, increased emissions [49].
On the other hand, EFS is considered a potential GHG mitigation practice [50]. Although
extensive systems are recognized as carbon sinks, and silvopastoral systems can be effective
in protecting animals from extreme weather conditions [51], it has been observed that
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proper pasture management (e.g., adjusted grazing intensity, fire management, legume
or grass sowing, pasture fertilization) leads to soil carbon sequestration, averaging 1.76 t
CO2 ha−1 per year [52]. Agro-ecological factors, as well as historical and current farming
practices, significantly impact soil carbon sequestration rates [53]. The complexity of
interactions between soils, vegetation, grazing animals, and human interventions makes
it challenging to categorize them in farming management categories typically evaluated
in the scientific literature; thus, assessing the sequestration potential of grazing practices
remains one of the major challenges [53].

Topic 3 was one of the expected ones. Among the most important terms, the terms
“measur”, “animal”, “techniqu”, and “chamber” fell entirely within “in vivo measurement
systems, MS”. More than 9% of the selected articles were included in this topic. The trend
of publications has experienced some fluctuations over the years. The variations in the
number of publications over time could be linked to the introduction of new measurement
systems. For example, in 2010, the commercial GreenFeed (GF) system (C-Lock Inc., Rapid
City, SD, USA) was introduced. Since 2015, studies utilizing the GF system have been
conducted, but its adoption began around 2016, evidenced by a peak in publications during
that year. In 2016, within topic 3, over 45% of the studies were conducted using the GF
system. It is obvious that after the introduction of a new measurement system, many
studies seem to verify the actual efficiency of the instrument. Several techniques have been
developed to measure CH4 emissions from individual animals, despite the UNFCCC (1997)
stating that “comparable methodologies” should be used to compile a GHG inventory to
make national results comparable in a consistent manner [32]. Every technique has an
impact on the variability of EME, and different methodologies may add unpredictability to
national inventories and assessments of CH4 emissions [54,55].

To date, several methods are available to measure CH4 emissions from ruminants [56,57].
None of them is ideal, and each has pros and cons. The best approach will rely on the
goal, tools, expertise, time, and resources available to help manufacturers and researchers
develop and track effective CH4 mitigation techniques [56–58]. Although the number of
techniques available for EME measurements has increased during the last decade, res-
piration chambers (RC), sulfur hexafluoride (SF6) tracers, and GF automated emissions
monitoring systems are the most used. Della Rosa et al. [55] reviewed 397 studies pub-
lished between 1995 and 2018 and reported that the majority of EME measurements were
performed with RC (55%), followed by SF6 (38%) and, lastly, GF (7%). The remaining 6%,
mostly from Europe, comprised 2% face mask (FM), 2% sniffer (SNF), 1% laser methane
detector (LMD), and 1% portable accumulation chamber (PAC) (from Oceania) methods.

There is uncertainty in all measurement techniques due to random components such
as changes in animal diets, management practices, and environmental conditions. Current
methods still have the potential to over- or under-estimate the reference level of EME
in ruminants due to their random factors [58]. Furthermore, a source of variability is
attributed to different measurement procedures, which could be reduced using similar
settings and protocols within each technique [55]. The measurement of EME directly on
the animal, although with varying degrees of accuracy, is an expensive and burdensome
method [33,59] and, therefore, it is not feasible for large-scale routine measurements, an
essential requirement for genetic selection [33]. Given the need for cheaper, more rapid
methods to be used on a large scale, empirical methods for estimating EME have become
widespread [60]. Therefore, identifying proxies (e.g., indirect indicators or traits) that are
related to CH4 emissions, but that are easy and relatively cheap to record on a large scale,
are a much-needed alternative [33].

In topic 8, terms such as “model”, “predict”, “data”, “equat”, and “estim” were
highlighted, all terms related to EME estimation models using proxies. For this reason, this
topic was called “Prediction model, PM”. Since CH4 is the result of feed rumen fermentation
(the production of CH4 is related to feed intake and fermentability; [42,47]), most predictive
equations are based on DMI or metabolizable energy (ME) and gross energy (GE) intakes
and the amount of NDF/ADF ingested [42]. Several milk fatty acids (MFA) have been
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suggested as potentially useful for EME prediction [61–63]. However, predictive models
based on MFA were developed using a narrow range of diets and limited data [64]. Milk
fatty acids show a potentially effective proxy since fatty acids have common biochemical
pathways in the rumen with CH4 [64]. In particular, odd-chain and branched-chain fatty
acids have a strong relationship with the molar proportions of individual volatile fatty
acids (VFAs) in the rumen [61,63]. The fatty acids with greater proxy activity are C14:0 iso,
C15:0 iso, and C17:0, which are positively related to CH4 production [61,62]. Recently, in
a meta-analysis, Bougouin et al. [64] observed that the prediction equations considering
only MFA showed a higher mean square error in estimating CH4 emissions expressed
as production, yield, and intensity (65.1 g/day, 2.8 g/kg of DMI, and 2.9 g/kg of milk,
respectively) compared with more complex equations. The complex equations included
DMI, NDF, ethereal extract, days in milk, and body weight, for which the mean square
error in EME estimation was reduced (46.6 g/day, 2.6 g/kg of DMI, and 2.7 g/kg of milk,
respectively, for production, yield, and CH4 intensity). Jonker et al. [65] reported that DMI
has an effect of over 90% in the prediction of CH4 emissions.

Rumen size and feed retention time, according to Goopy et al. [66], are factors
that affect the CH4 yield as more rapid passage of the material from the rumen trans-
lates into a reduction in the time available to ferment the substrate. It was observed by
Nkrumah et al. [67] that the duration of feeding and the presence of animals in the feeder
were related to CH4 production, suggesting the influence of feeding behavior on circadian
patterns of CH4 production [68]. Other authors [69] studied rumination time in dairy
cows as a possible proxy for EME and observed that cows with high rumination activity
produced more milk, consumed more concentrate, and produced more CH4 than cows with
low rumination time. Identifying easily measurable proxies would allow for large-scale
data as with the advent of precision livestock farming it is now possible to physiologically
monitor (feeding time, rumination time, etc.) various parameters 24 h a day [70].

Topic 5 was defined as “Ruminal Fermentation, RF” because, looking at the words
highlighted by the beta probability of the LDA analysis, the most important words were
“rumen” followed, in order of importance, by “ferment,” “rumin,” “acid”, etc., all words
associated with RF. This topic encompassed numerous articles focused on in vitro trials.
Such trials play a pivotal role in studying EME by offering a controlled, efficient, and
targeted experimental approach to comprehensively understand and address EME.

The majority of methanogenesis takes place in the rumen, and a lesser proportion
(~13%) of CH4 is produced in the cecum and colon [71]. The microorganisms present in the
rumen degrade the feed, producing short-chain fatty acids (acetic, butyric, and propionic
acid), CO2, and metabolic hydrogen (H2). Short-chain fatty acids (SCFAs) are absorbed
through the rumen wall to provide energy. Methanogens, belonging to the Archaea do-
main, utilize H2 and CO2 to produce CH4 [72]. In this process, CO2 is the carbon source
and H2 is the main electron donor. Four moles of H2 can produce one mole of CH4 [73].
Methanogenesis is the main biochemical pathway to remove metabolic H2 to maintain
a very low concentration of H2 in the rumen and ensure proper feed digestion [29]. The
concentration of H2 affects the feed degradation rate. If the concentration of H2 increases,
the rate of feed degradation decreases. Methane emissions can be reduced by inhibiting H2
formation from fermentation or promoting alternative H2 pathways [73]. While methano-
genesis is predominantly driven by methanogenic bacteria, the correlation between EME
and the concentration of these bacteria appears ambiguous in several studies [33]. Some
investigations have uncovered significant positive relationships; others have found no
correlation between the concentration of methanogens and methanogenesis [74]. Addi-
tionally, Bouchard et al. [75] reported a reduction in methanogens without a significant
decrease in CH4 production. Methanogens are the dominant organisms in the rumen;
there are 106–108 cells/mL of methanogenic Archaea per ml of rumen fluid [76]. Other
microorganisms, such as protozoa, indirectly influence CH4 emissions by using substrates
(starch, cellulose, hemicellulose, pectin, and soluble sugar) to produce SCFAs and H2,
which are then converted into CH4 by methanogens [77].
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Methanogens are anaerobic organisms that thrive in environments with an optimal pH
ranging from 6.0 to 7.5 [73] and are known to be sensitive to low pH. Van Kessel et al. [78],
using ruminal fluid from fistulated cows fed two types of diets (high-forage or high-
concentrate), demonstrated that methanogenesis is pH-dependent, with complete inhibition
of CH4 production at pH values below 6.0, and highlighted that volatile fatty acids, such
as acetic acid, can directly affect the activity of methanogens at low pH levels. Despite
this sensitivity to low pH, methanogens may survive episodes of low ruminal pH through
changes in community structure or sequestration in protected microenvironments within
biofilms or protozoa [79], allowing them to persist and continue CH4 production under
otherwise inhibitory conditions. Although ruminal methanogens are inhibited by a pH
below 6.0 in vitro [78], CH4 production rates in vivo do not decrease when ruminal pH
drops to levels associated with subacute or acute ruminal acidosis (5.2–5.5) in beef cattle [79].
This suggests that there are additional factors, such as increased propionate formation
or passage rate, that contribute to lower EME in cattle fed high-grain diets compared to
high-forage diets. Therefore, reducing ruminal pH alone is not considered an effective CH4
mitigation strategy [30].

Diet is a pivotal factor in EME studies; indeed, one of the emergent topics (topic 6) was
precisely defined as “diet composition, DC”. The keywords that defined this topic were
“diet”, “fed”, “concentr”, “digest”, and “matter”. This topic represented the second most
important in the TA (with a percentage of articles exceeding 13%). Manipulating the diet
has the potential to reduce EME and consequently increase the feed efficiency of animals,
as CH4 production results in a loss of GE intake [80]. Some studies [81,82] demonstrated
that the basal diet has significant effects on EME. Additionally, as will be discussed later,
the composition of the basal diet has the potential to enhance the efficiency of certain
supplements in reducing EME, showing additive effects [83,84]. The term “concentr”,
which is the root of concentrate, emerged as a decidedly important term in this topic.
Increasing the proportion of concentrates is associated with increases in the starch content
in the diet.

The ability of starch to reduce CH4 emissions has long been recognized. Starch
fermentation produces propionic acid, providing an alternative H2 sink to methanogenesis.
Additionally, starch fermentation can lower ruminal pH, which can reduce the populations
of protozoa and methanogens [81]. However, starch is rapidly fermented in the rumen,
leading to high concentrations of VFAs and/or lactate, which increase the risk of acute or
sub-acute ruminal acidosis, so this is proven to be an unsustainable method in attempting
to reduce EME in ruminants [34]. The type of cereal and its processing technique can affect
the fermentation level and EME. In terms of cereal sources, both absolute CH4 production
and CH4 yield appear to follow the order of wheat and maize flakes < maize < barley, with
the ranking strongly dependent on the composition and extent of grain processing [85].
Processing methods of cereals (applying different combinations of heat, moisture, time,
and mechanical actions) can alter starch fermentation and ruminal pH. Hales et al. [86]
observed a 17% reduction in CH4 yield with a steam-flaked maize-based diet compared
to a dry-rolled maize-based diet in beef cattle. Herrera-Saldana et al. [87] showed that
increasing the processing degree (i.e., smaller particle sizes) of cereal grains increased
the rate of ruminal degradation of the grain and decreased ruminal pH. The inclusion of
concentrated feeds in the diet of ruminants (>40% of the diet) has the potential to reduce
CH4 intensity [47].

Forages represent a very important share in ruminant feeding, and their quality has
been shown to have a high potential for modulating CH4 emissions [35]. Different types
of forage can influence CH4 emissions due to differences in their chemical composition.
High-quality forage, such as young plants, has more readily fermentable carbohydrates and
less NDF, which increases digestibility and transit rate and can modify the fermentation
pathway and minimize the formation of CH4 [34,88]. In contrast, more mature forages
result in a greater loss of CH4, primarily due to an increase in the C:N ratio, which reduces
digestibility [89]. The improvement of organic matter digestibility (%) and the increase
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in protein content (g/kg DM) of grass silage was negatively associated with CH4 yield
(R2 = 0.74 and R2 = 0.36, respectively). In contrast, the NDF content (g/kg DM) showed
a positive relationship with CH4 yield both in grass silage (R2 = 0.44) and in maize silage
(R2 = 0.60) diets [35].

Applying current precision feeding techniques, it is possible to know the chemical
composition of the raw materials and total mixed rations in real time [90]. This could be a
rapid and advantageous method for predicting CH4 yield. Furthermore, it has been shown
that forage particle size can affect CH4 emissions per kg of DMI. For example, chopping or
pelleting forage can reduce EME per kg of DMI, as smaller particles are less degraded in the
rumen [91]. The meta-analysis by Arndt et al. [92] reported that mitigation strategies such
as decreasing grass maturity and reducing the dietary forage-to-concentrate ratio could
decrease CH4 intensity by 12% on average (range 9 to 17%).

Dietary lipid supplementation lowers CH4 emissions. This could include lower levels
of methanogen activity, smaller populations of protozoa, and less fermentation of ruminal
organic matter [80]. Eugène et al. [93] in their meta-analysis reported that adding lipids to
dairy cows’ diet decreased CH4 production by 0.305 g/kg of DMI for every 1% increase in
ether extract, and this was primarily due to the reduced DMI. Furthermore, unsaturated
fatty acid-rich lipids were subjected to biohydrogenation in the rumen, lowering the amount
of hydrogen available for the generation of methane [30].

It is generally recommended not to exceed 6–7% of lipids on a DM basis in the diet,
since greater levels can cause a depression in DMI, thus negating the benefits derived from
the increased energy density of the diet [94].

Della Rosa et al. [32] reported that in most studies on EME measurement systems,
72% tested supplements and/or additives. Topic 4 (“supplement and additive, SA”) was
characterized by the terms “supplement”, “addit”, “nitrat”, and “reduc”. Supplements or
additives include inhibitors that are added to an animal’s diet with the aim of reducing
CH4 formation. They act through different mechanisms [10,95]: (i) inhibition of CH4 pro-
duction by reacting with methyl-coenzyme M, which is involved in the last step of methane
formation; (ii) alternative H2 sinks that move hydrogen ions away from methanogenesis;
(iii) inhibition of methanogenic Archaea bacteria and reduction of the number of protozoa;
(iv) improved nitrogen metabolism; and (v) reduction in pH, increase in propionate, and
decrease in the acetate/propionate ratio. A variety of additives, including ionophores,
essential oils, nitrates, algae, and yeasts, were examined. Although many strategies have
been proposed for mitigating CH4, many others are in the very early stages of develop-
ment (e.g., phages, bacteriocins), have low mitigation potential (e.g., yeast, directly fed
bacterial microbes, saponins, ionophores), or are difficult to apply on-farm (e.g., protozoan
defaunation) [96].

According to Arndt et al. [92], sustainable strategies for enteric CH4 mitigation should
preferably avoid socioeconomic and environmental trade-offs and, ideally, increase produc-
tion yield per unit of input. This suggests that other than the reduction of enteric CH4 in
absolute terms (g of CH4/day), an additive must be evaluated for its effectiveness in modi-
fying animal performance, which, therefore, influences the yield of CH4. When choosing
the feed additive, in addition to effectiveness and efficiency, the toxicity and potential envi-
ronmental impacts/undesirable side effects must be considered [10]. Arndt et al. [92], in a
meta-analysis carried out on 480 studies considering 98 mitigation strategies, reported that
the most effective mitigation strategies in the context of “supplements” were CH4 inhibitors,
tanniferous fodder, electron sinks, oils and fats, and oilseeds. These strategies decreased
CH4 intensity by 17% on average (ranging from 12 to 32%) and daily CH4 emissions by
21% on average (ranging from 12 to 35%), without negatively affecting animal performance.
Among the CH4 inhibitors, 3-nitrooxypropanol (3-NOP) is the one that has shown the great-
est efficiency in CH4 abatement and the minimum effect on animal performance [92,97].
These compounds are specific inhibitors of methyl-coenzyme M reductase, an enzyme
involved in the CH4 formation of methanogenic Archaea in the terminal phase [98].
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The reduction of CH4 from 3-NOP varies with dosage [99,100] and depends on the
type of diet [82,97,99]. Increasing levels of 3-NOP in the diet decreased enteric CH4
emissions per unit of body weight, CH4/kg DMI, CH4/L of milk, and CH4/kg of digested
organic matter [82,101]. van Gastelen et al. [82] reported a greater reduction in CH4
intensity and yield with diets containing a higher starch content (based on corn silage)
when supplemented with 3-NOP compared to diets based on grass silage.

The long-term effects of 3-NOP administration in dairy cows have been evaluated. In
their year-long study covering all lactation phases, van Gastelen et al. [97] reported that 3-
NOP persistently decreased CH4 emissions, with a positive impact on milk fat and protein
yield, energy-corrected milk yield, and feed efficiency. 3-NOP is currently a commercial
product available to farmers. Indeed, in 2022, the DSM company received EU market
approval for Bovaer® for dairy cows, following a positive EFSA opinion confirming that
the product reduces enteric CH4 emissions from dairy cows and is safe for the animal and
the consumer. This was the first time the EU marketed a product as a feed additive for its
environmental benefits [102].

Topic 1 stood out from the others due to the presence of terms referring to animals
like “intake,” “animal,” “performance,” “weight,” and “group”, so it was defined as a
topic inherent to the interaction between EME and animal; for this reason, it was called
“methane emission-animal, ME-A”. Approximately 8% of the articles selected fell into this
topic. Generally, CH4 yield was reported to be affected by the level of intake, diet quality,
supplementation level [103], physiological state (lactating, non-lactating) [104,105], and
cattle class (beef, dairy) [81,106]. It has been suggested that CH4 emissions vary during
different physiological phases [105,107]. For example, CH4 levels have been reported to
increase by up to 35% from early to late lactation [38,108], and this increase was primarily
due to an increase in DMI, the main driver of CH4 production. Lyons et al. [107] measured
CH4 emissions in dairy cows at different times of lactation and reported an increase in CH4
yield (L/kg DMI) from the 5th to the 42nd week of lactation (32.2 vs. 36.7 L of CH4/kg of
DMI, respectively). Furthermore, it has been observed that the lactation phase affects the
level of reduction of EME by supplements. Adding 3-NOP to the rations of dairy cows,
van Gastelen et al. [97] observed a reduction, on average, of 16%, 20%, 16%, and 26% in the
CH4 yield (g/kg DMI) for the dry, early, mid, and late lactation diets, respectively. This
variability was partly attributed to the different compositions of the diets for the different
physiological phases and, more specifically, to the fiber content.

Oddy et al. [109] carried out a study on dairy sheep and reported that the main
determining factor of CH4 production and yield was DMI. However, they also identified
factors such as age, rumen volume, and pregnancy status as influential.

Dong et al. [110] further elucidated that the increase in EME with increasing age
is related to greater DMI. In contrast, Ramírez-Restrepo et al. [111] reported similar av-
erage CH4 yields between heifers and multiparous cows, both estimated with the SF6
technique (25.3 ± 0.52 and 24.1 ± 0.55 CH4/kg DMI for heifers and multiparous cows,
respectively) and measured in the RC (23.7 ± 0.66 and 23.6 ± 0.66 CH4/kg DMI for heifers
and multiparous cows, respectively), suggesting that there were no differences based on
age. In a recent study on grazing dairy cows, Salas-Riega et al. [112] reported that dry
cows produced less CH4 than lactating cows (266 and 325 g CH4/cow/day for dry and
lactating, respectively). Body weight (BW) also affects CH4 production. The effect of BW
can be attributed to the relationship between BW and intestinal capacity, since intestinal
volume is proportional to BW, thereby influencing DMI [113]. Animals with a higher BW
typically have a greater intestinal volume, enabling them to consume more dry matter. This
increased DMI is correlated with higher CH4 production.

Topic 7 was the topic linked to dairy production. The terms that emerged for topic
7 were “milk,” “cow,” “yield,” “dairi,” and “product” and, therefore, it was called “dairy
production, DP”. This topic included studies conducted on dairy ruminants, particularly
dairy cattle. Most studies on EME were conducted on dairy cows, as also confirmed by
the meta-analysis by Della Rosa et al. [32]. Those authors reported that 62% of studies
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conducted on Bos taurus were on dairy cattle (4% growing, 50% lactating, and 8% non-
lactating) and 38% involved beef cattle (35% growing and 3% mature). The terms found in
this topic have been discussed extensively previously.

5. Conclusions

The aim of this review was to analyze the literature referring to EME in the livestock
sector from 1986 to May 2024 using machine learning methods. A growing trend was
observed in the number of publications relating to EME, especially in response to the global
political interest in reducing global GHG emissions. At a geographical level, the publica-
tions reflect the major GHG-emitting countries, i.e., those in the Northern Hemisphere.
From the text mining results, terms strongly associated with EME emerged, covering
various aspects such as milk, cow, diet, DMI, supplement, model, measure, and animal.
The results of the topic analysis highlighted expected topics such as GHGs from livestock,
dairy production, diet composition, and ruminal fermentation, as well as unexpected
topics like extensive livestock farming. Other subjects, such as beef production or genetic
improvement, were evidently overshadowed by other themes.

Future Prospects

The future of EME research in the livestock sector is promising, with several key areas
for development. Research should continue across multiple fronts, emphasizing the need
for stronger connections between them. Increased funding from governments, all aiming
to identify effective strategies for reducing EME, presents significant opportunities for
advancement in this field.

First, diet optimization remains critical, focusing on innovative feed additives to re-
duce EME while maintaining animal health and production yield and quality. However,
the long-term use of these additives, including 3-NOP, raises concerns due to the limited
evidence available regarding their safety and efficacy over extended periods. Compre-
hensive studies are essential to assess the impact of these additives on livestock health
and their environmental effects. In addition, there should be a greater focus on precision
livestock farming. This approach can utilize phenotypic data to enhance EME estimation
and improve the quality of diets through precise analysis. By leveraging precision sys-
tems, researchers can implement modifications that optimize animal nutrition, ultimately
leading to more effective methane reduction strategies. Moreover, implementing more
manageable and precise methane measurement systems will allow for a more accurate
selection of individuals that emit less methane, enhancing breeding programs focused on
low-emission livestock. Integrating these areas of research will be crucial for advancing our
understanding of EME and developing sustainable solutions in the livestock sector. Collab-
oration among scientists, policymakers, and industry stakeholders will further enhance the
effectiveness of these efforts.
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