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Galois Correspondence and Fourier Analysis
on Local Discrete Subfactors

Marcel Bischoff , Simone Del Vecchio and Luca Giorgetti

Abstract. Discrete subfactors include a particular class of infinite index
subfactors and all finite index ones. A discrete subfactor is called local
when it is braided and it fulfills a commutativity condition motivated by
the study of inclusion of Quantum Field Theories in the algebraic Haag–
Kastler setting. In Bischoff et al. (J Funct Anal 281(1):109004, 2021),
we proved that every irreducible local discrete subfactor arises as the
fixed point subfactor under the action of a canonical compact hypergroup.
In this work, we prove a Galois correspondence between intermediate
von Neumann algebras and closed subhypergroups, and we study the
subfactor theoretical Fourier transform in this context. Along the way,
we extend the main results concerning α-induction and σ-restriction for
braided subfactors previously known in the finite index case.
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1. Introduction

The first surprising result which came out of the theory of subfactors is that
the Jones index [55], a number which measures the relative size of an infinite-
dimensional “continuous” tracial factor (a von Neumann algebra endowed with
a nonzero tracial state and whose center consists only of the scalar multiples
of the identity) inside another factor of the same type can only take discrete
values between 1 and 4, and every value above 4. Another unexpected fact
which appeared soon after, and which gives an intuition on the previously
mentioned breakthrough, is that all possible inclusions of such factors can be
described by some kind of symmetry “group-like” object (finite when the index
is finite) of the bigger factor, solely determined by the relative position of the
smaller factor.

This point of view has been adopted by Ocneanu [83], who introduced an
invariant for finite index finite depth II1 subfactors, which he called paragroup
and which he used to give a list (later proven to be a complete list as a con-
sequence of Popa’s classification theorem [86]) of all possible subfactors with
index less than 4. An abstract paragroup, see also [38], is a generalization of a
(finite) group together with its unitary representations, where the underlying
sets are replaced by a pair of graphs and the group composition law is replaced
by the concatenation of paths. In the subfactor context, the paragroup is de-
signed to describe the collection of higher relative commutants of the subfactor
arising from the iterated Jones basic construction. The higher relative com-
mutants can also be equivalently described in the language of Popa’s standard
λ-lattices [87] and Jones’ planar algebras [56], or categorically as hom spaces
in the 2-C∗-category (with two objects N and M) of M-M, M-N , N -M and
N -N bimodules generated by the standard M-N bimodule ML2MN of the
subfactor N ⊂ M. Throughout this paper, we mainly deal with irreducible
subfactors, namely with those having trivial relative commutant N ′∩M = C1.

As already mentioned by Ocneanu [83] in the finite index finite depth
setting, the two easiest non-group families of examples of paragroups are given
by quantum groups and by quotients of groups by non-normal subgroups.
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The first family corresponds to subfactors with depth 2, namely those
such that the 3-steps relative commutant N ′ ∩ M2 is a factor, where N ⊂
M ⊂ M1 ⊂ M2 is the beginning of the Jones tower. More precisely, assuming
irreducibility and depth 2, there is a finite-dimensional Kac algebra (a Hopf *-
algebra) in the finite index case [29,74,99], or a Woronowicz compact quantum
group (in the von Neumann algebraic sense [68,103]) in the infinite index
case (assuming the existence of a normal faithful conditional expectation) [39,
50], acting on M such that N is the fixed point subalgebra. For depth 2
subfactors, the intermediate algebras P sitting in N ⊂ P ⊂ M are also known
to correspond to “subgroups” of the quantum group associated with N ⊂ M,
via a Galois-type correspondence [51,81,102].

In this paper, continuing the analysis of [7,14], we consider subfactors
which are somehow orthogonal to those with depth 2, and which include the
second family of examples of paragroups mentioned above (quotients of groups
by non-normal subgroups are in fact double coset hypergroups). These sub-
factors are called local and they appear naturally in the algebraic formulation
of Quantum Field Theory [49]. They are orthogonal to depth 2 subfactors in
the sense that a subfactor which is both local and depth 2 is necessarily a
classical compact group fixed point subfactor. Roughly speaking, a subfactor
is local if the tensor C∗-category generated by the N -N bimodule N L2MN is
braided and if an additional commutativity constraint involving the Pimsner–
Popa bases [88] and the braiding holds. Assuming irreducibility and locality,
in the finite index case there is a finite hypergroup (in the sense of [98]) acting
on M and having N as the fixed point subalgebra [14]. In the infinite in-
dex case (assuming a regularity condition called discreteness in [51]) the same
holds for a compact hypergroup [7]. The subfactor theoretical hypergroup is
easy to define. As a set, it consists of all extreme (in the sense of convex sets)
N -bimodular unital completely positive maps from M to M. By definition, it
contains the N -fixing *-automorphisms of M, and hence, it can be regarded
as a collection of “generalized gauge symmetries” of N ⊂ M acting on M by
ucp maps. We denote it by K(N ⊂ M).1

The purpose of this paper is twofold. On the one hand, we prove a Galois-
type correspondence between the intermediate subalgebras P sitting in N ⊂
P ⊂ M and the closed subhypergroups H of K(N ⊂ M). On the other hand,
we study the subfactor theoretical Fourier transform (mainly in the case of
local discrete subfactors), we relate it to the hypergroup theoretical Fourier
transform and we prove classical inequalities and uncertainty principles.

In Sect. 2, we review some basics of subfactor theory with emphasis on ir-
reducible type III subfactors. We also recall the results from [7] which we need
in the following sections. In particular in Sect. 2.5, assuming that N ⊂ M is
discrete and local, we recall the identification of the 2-steps relative commu-
tant M′ ∩ M2 with the abelian von Neumann algebra of essentially bounded
functions on K(N ⊂ M) with respect to the Haar measure (Proposition 2.23).

1In the finite index case, the hypergroup structure of K(N ⊂ M) is completely determined
by the 2-steps relative commutants N ′ ∩ M1 and M′ ∩ M2 together with the subfactor
theoretical Fourier transform, cf. Sect. 6.
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We also recall the identification of the convex set of N -bimodular ucp maps
M → M, denoted by UCPN (M), with the probability Radon measures on
K(N ⊂ M) (Theorem 2.21).

In Sect. 3, we extend the definitions of α-induction and σ-restriction, in-
troduced in [8,76] based on an idea of Roberts [60,93], from finite to infinite
index discrete subfactors. For later use, we prove the “main formula” for α-
induction (Theorem 3.6) and the ασ-reciprocity theorem (Theorem 3.7) for
local discrete subfactors. These results should be compared with those con-
tained in [105] for subfactors arising from strongly additive pairs of conformal
nets.

In Sect. 4, we show that if N ⊂ M is discrete and local and P sits in
between N ⊂ P ⊂ M, then P ⊂ M is also discrete and local (Theorem 4.5).
Note that the intermediate inclusion P ⊂ M is harder to treat than N ⊂
P, in the sense that it does not even admit in general (in the absence of
discreteness and locality) a normal faithful conditional expectation. See [51,
102] and references therein.

In Sect. 5, we show the Galois-type correspondence between intermediate
algebras P and closed subhypergroups H of K(N ⊂ M). Given H, the associ-
ated P is given by the H-fixed point subalgebra MH . Given P, the associated
H is the set of extreme P-fixing ucp maps M → M. The two maps are each
other’s inverse and H = K(P ⊂ M) (Theorem 5.2).

In Sect. 6, we study the Fourier transform for local discrete subfactors,
possibly with infinite index, and for the associated compact hypergroups. The
Fourier transform for subfactors (and for the associated paragroups) has been
introduced by Ocneanu [84] in the finite index finite depth II1 subfactor set-
ting. Since then, it has been a cornerstone in the analysis of subfactors. More
recently, is has been extensively studied for finite index subfactors and planar
algebras [53], for Kac algebras [78] and locally compact quantum groups [54],
proving a number of inequalities and uncertainty principles which generalize
classical results from the Fourier analysis on groups. See [52] for a concise de-
scription of the program. In the type III setting, the Fourier transform can
be naturally defined for infinite index subfactors as well. It is a linear map
running between the 2-steps relative commutants M′ ∩M2 and N ′ ∩M1. We
denote it by F : M′ ∩ M2 → N ′ ∩ M1.

In Sect. 6.1, we extend the subfactor theoretical Fourier transform to
the complex vector space generated by all N -bimodular ucp maps M → M
(Proposition 6.9), denoted by SpanC(UCPN (M)), in which the natural domain
of definition of the Fourier transform M′ ∩M2 embeds. We regard this vector
space as a non-commutative analogue of the complex bounded Radon measures
associated with the subfactor. The composition and a notion of adjoint in
SpanC(UCPN (M)) [2] provide natural candidates for a convolution and an
adjoint of “noncommutative measures.”

In the subsequent sections, we assume in addition that N ⊂ M is dis-
crete and local. In Sect. 6.2, we identify the Fourier transform on N ⊂ M
with the ordinary hypergroup theoretical Fourier transform on K(N ⊂ M).
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In Sect. 6.3, we show Parseval’s identity (Proposition 6.23) and Hausdorff–
Young’s inequality (Proposition 6.28). In Sect. 6.4, we introduce an additional
multiplication (called convolution and denoted by x ∗ y) and an involution
operation (denoted by x�) on the von Neumann algebra M′ ∩ M2. These op-
erations are mapped by the Fourier transform to the ordinary product and
adjoint of bounded linear operators, F(x∗y) = F(x)F(y) and F(x�) = F(x)∗,
but they are not defined by these relations, namely x ∗ y := F−1(F(x)F(y))
and x� := F−1(F(x)∗), as it is usually done for finite index subfactors / pla-
nar algebras. Indeed, the inverse Fourier transform F−1 is globally defined
on N ′ ∩ M1 if and only if the index is finite. Instead, they are defined by
means of the embedding of M′ ∩ M2 into SpanC(UCPN (M)) which corre-
sponds to the embedding of L∞(K(N ⊂ M), μK) into the Radon measures
on K(N ⊂ M) given by f �→ f dμK (Remark 6.8), where μK is the Haar
measure. In Sect. 6.5, we show Young’s inequality for the convolution (Propo-
sition 6.43). In Sect. 6.6, we show the inversion formula (Proposition 6.47)
and a Donoho–Stark uncertainty principle (Proposition 6.49) for the Fourier
transform.

2. Preliminaries

Here we recall some basics of subfactor theory [43,59,64]. We shall focus on
inclusion of infinite factors, mainly type III, with finite or infinite index.

2.1. The Canonical Endomorphism

Let N ⊂ M be a subfactor acting on a separable Hilbert space H. Denote
by B(H) the set of bounded linear operators on H. Throughout this paper,
we shall mainly be interested in irreducible subfactors, i.e., N ′ ∩ M = C1.
Here N ′ is the commutant of N in B(H) and 1 is the identity operator on
H sitting in both N and M. If M acts standardly on H, i.e., if it admits a
cyclic and separating vector, and if N and M are infinite factors, by a result
of Dixmier–Maréchal [32] there are jointly cyclic and separating vectors for N
and M in H. We recall below the definition of Longo’s [70] canonical and dual
canonical endomorphism:

Definition 2.1. Let ξ ∈ H be jointly cyclic and separating for N and M.
Denote by JN ,ξ, JM,ξ, or simply JN , JM, the respective modular conjugations.
Denote by jN := Ad JN ,ξ, jM := Ad JM,ξ the adjoint actions on B(H). Let

γ(x) := jN (jM(x)), x ∈ M.

Let also θ := γ�N .

It is easy to see that γ ∈ End(M) and θ ∈ End(N ). They depend on
the choice of ξ only up to conjugation with a unitary in N , and thus, their
unitary equivalence class is canonical for the subfactor. γ is called the canonical
endomorphism and θ the dual canonical endomorphism.

The canonical endomorphism gives a convenient way of describing the
Jones tower/tunnel [55] in the infinite factor setting. Let M1 := jM(N ′) be
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the Jones extension of M given by N . Then, jN (jM(M1)) = N . The chosen
vector ξ is cyclic and separating for M1 as well and JM1 = JMJN JM, as
JN = JN ′ , and hence, JMJM1 = JN JM. Setting γ1(x) := jM(jM1(x)) for
every x ∈ M1, we have that γ1 ∈ End(M1), γ = γ1�M, and

θ(N ) ⊂ γ(M) ⊂ γ1(M1) = N ⊂ M ⊂ M1

is the beginning of the Jones tower/tunnel. Moreover, θ(x) = jγ(M)(jN (x))
for every x ∈ N .

In the following, we shall often distinguish between N and its embedded
image into M.

Definition 2.2. Let ι : N → M be the inclusion morphism of N into M.
Denote by ῑ : M → N the morphism defined by ῑ := ι−1γ. The definition is
well posed since γ(M) is contained in ι(N ).

With this notation,

γ = ιῑ, θ = ι−1 ◦ γ ◦ ι = ῑι.

The morphism ῑ is called a conjugate of the inclusion morphism ι [72],
[69, Sec. 2.2]. Note that ῑ is not a conjugate in the 2-categorical sense of the
conjugate equations [44,77], unless the index of N ⊂ M (to be defined below)
is finite. Note also that if N = M, then ῑ = ι−1.

2.2. Conditional Expectations

We recall the definition of conditional expectation, see [97] and references
therein. A conditional expectation from M onto N is a linear map E : M → M
such that E(M) ⊂ ι(N ) and
(i) E(1) = 1. (unitality)

(ii) E(M+) ⊂ M+, where M+ is the positive cone of M. (positivity)
(iii) E(ι(y)xι(z)) = ι(y)E(x)ι(z) for every x ∈ M and y, z ∈ N .

(N -bimodularity)
It follows that E2 = E and E(M) = ι(N ). Moreover, ‖E‖ = 1, where

‖E‖ is the bounded linear operator norm of E on M as a Banach space, and
E is *-preserving and completely positive.

We shall also use the notation E : M → N ⊂ M and denote by E(M,N )
the set of normal (continuous in the ultraweak operator topology) faithful
(E(x∗x) = 0 for x ∈ M implies x = 0) conditional expectations from M onto
N . The following terminology is due to [41].

Definition 2.3. A subfactor N ⊂ M is called semidiscrete if E(M,N ) is not
empty.

If M is a II1 factor, then every subfactor is semidiscrete. Our motivation
for studying semidiscrete subfactors in the type III setting is given by the
analysis of nets of local observables [76].

Let E ∈ E(M,N ). Choose a unit vector Ω ∈ H which is cyclic and sepa-
rating for M and such that the associated state is E-invariant, i.e., (Ω, xΩ) =
(Ω, E(x)Ω) for every x ∈ M. The Jones projection, defined by eN xΩ := E(x)Ω
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for every x ∈ M, depends only on E and on the positive cone of Ω [63, Lem.
A]. If Ω is chosen in the same positive cone with respect to M of the jointly
cyclic and separating vector ξ, then JM,Ω = JM,ξ and

M1 = jM(N ′) = 〈M, eN 〉.
We recall the following crucial representation result for conditional ex-

pectations in the infinite factor setting [71, Prop. 5.1]. Let γ and θ be the
canonical and dual canonical endomorphism.

Proposition 2.4. Every E ∈ E(M,N ) admits a Connes–Stinespring represen-
tation in H:

E = ι(w)∗γ( · )ι(w)

where w ∈ N is an isometry in Hom(idN , θ) :=
{
y ∈ N : yx = θ(x)y for every

x ∈ N}
, thus ww∗ ∈ Hom(θ, θ) = θ(N )′ ∩ N , and γ−1

1 (ww∗) ∈ N ′ ∩ M1 is a
Jones projection for E.

Remark 2.5. Assuming irreducibility of N ⊂ M, namely N ′ ∩ M = C1, then
E(M,N ) is either empty or it consists of a single element E. If the factors are
infinite, the isometry w ∈ Hom(idN , θ) associated with E is also unique (up
to a phase factor).

For every E ∈ E(M,N ), there is an associated operator-valued weight
E−1 : N ′ → M′ ⊂ N ′ in the sense of [47,48] (a possibly unbounded analogue
of a conditional expectation), characterized by Kosaki [62] using the spatial
derivative [27]. E−1 is normal faithful and semifinite. It is basically never
unital, unless N = M.

Definition 2.6. E is said to have finite index if E−1 is finite (bounded and
everywhere defined). The subfactor N ⊂ M has finite index if for some (hence
for all) E ∈ E(M,N ), E−1 is finite.

Its value on the identity operator is denoted by Ind(E) := E−1(1) [62,
Thm. 2.2]. Moreover, Ind(E) = λ1 with λ ∈ [1,∞] and with the same quanti-
zation behavior below the value 4 as the Jones index with respect to the trace
[62, Thm. 5.4], [55].

Let Ê := jME−1jM : M1 → M ⊂ M1 be the operator-valued weight
dual to E, in general only normal faithful and semifinite. Discreteness [51],
which is equivalent to Popa’s quasi-regularity [89], e.g., when N is type II1

[58, Prop. 3.22], amounts to a further regularity condition on Ê. This regularity
condition is always fulfilled when the index is finite.

Definition 2.7. A subfactor N ⊂ M is called discrete if it is semidiscrete and
if some (hence all) E ∈ E(M,N ) are such that the restriction of Ê to N ′ ∩M1

is semifinite.

The following characterization of discreteness is a consequence of [36,
Prop. 5.2, 5.5], cf. [7, Prop. 2.5]. We recall it in the special case of irreducible
subfactors.
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Proposition 2.8. Let N ⊂ M be an irreducible semidiscrete subfactor, with N ,
M infinite factors. Then, N ⊂ M is discrete if and only if there is a family
{ψi}i ⊂ M fulfilling the following two conditions:
(i) ψ∗

i eN ψi are nonzero mutually orthogonal projections,
∑

i ψ∗
i eN ψi = 1

in the strong operator topology, and E(ψiψ
∗
i ) = 1. (Pimsner–Popa basis

condition)
(ii) ψi ∈ Hom(ι, ιρi) := {y ∈ M : yι(x) = ι(ρi(x))y for every x ∈ N}, where

ρi ∈ End(N ). (charged fields condition)

Remark 2.9. Condition (i) means that {ψi}i is a Pimsner–Popa basis for
N ⊂ M with respect to the unique expectation E [88,90]. The condition
E(ψiψ

∗
i ) = 1 is in general not included in the definition of Pimsner–Popa ba-

sis. It guarantees the uniqueness of the Pimsner–Popa expansion. Condition
(ii) is an intertwining condition. The terminology charged field comes from
the analysis of DHR (after Doplicher–Haag–Roberts) superselection sectors in
algebraic Quantum Field Theory [31,33].

Note that each ρi is a subendomorphism of θ, in symbols ρi ≺ θ, as wi :=
ῑ(ψ∗

i )w is an isometry in Hom(ρi, θ) := {y ∈ N : yρi(x) = θ(x)y for every x ∈
N}. Moreover, θ =

⊕
i ρi, namely θ =

∑
i wiρi( · )w∗

i , as
∑

i wiw
∗
i = 1. The ρi

in the above proposition can be chosen to be irreducible, namely Hom(ρi, ρi) =
C1, and with finite tensor C∗-categorical dimension [77].

In fact by [51, Sec. 3], assuming discreteness and irreducibility of N ⊂ M,
every irreducible subendomorphism ρ ≺ θ has finite dimension d(ρ). The mul-
tiplicity nρ of ρ in θ (the number of subendomorphisms in a direct sum de-
composition of θ unitarily equivalent to the same ρ) is also finite and bounded
above by the square of the dimension, nρ ≤ d(ρ)2.

Notation 2.10. Let α, β : N → M be two unital *-homomorphisms between
the von Neumann algebras N and M. Let Hom(α, β) := {y ∈ M : yα(x) =
β(x)y for every x ∈ N} be the vector space of intertwiners between α and β.
We shall also write Hρ := Hom(ι, ιρ) for the spaces of charged fields associated
with ρ ≺ θ.

Of particular importance in this paper are the hom spaces Hom(γ, γ) =
γ(M)′ ∩ M and Hom(θ, θ) = θ(N )′ ∩ N . They are, respectively, isomorphic
(via the canonical endomorphisms) to M′ ∩ M2 and N ′ ∩ M1, where N ⊂
M ⊂ M1 ⊂ M2 is the beginning of the Jones tower.

2.3. Braided and Local Subfactors

Being braided is additional structure on a subfactor. The study of this structure
is motivated for instance by the applications to algebraic Quantum Field The-
ory [8,19,25,40,73,92,106], where the braiding is the DHR braiding [31,42,45].

Let N ⊂ M be an irreducible discrete subfactor, with N , M type III.
Denote by C ⊂ End(N ) the rigid C∗-tensor category with finite direct sums and
subobjects generated by the irreducible (hence finite dimensional) components
of θ. See, e.g., [37] for the notion of tensor category and [6,18,46] for the
unitary/C∗ case. A unitary braiding on C is a family of unitaries {ερ,σ ∈
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Hom(ρσ, σρ)}ρ,σ∈C which is natural (it fulfills ερ′,σ′sρ(t) = tσ(s)ερ,σ for every
s ∈ Hom(ρ, ρ′), t ∈ Hom(σ, σ′)) and compatible with the tensor structure
(it fulfills the so-called hexagonal diagrams). We also write ε+

ρ,σ := ερ,σ and
ε−
ρ,σ := ε∗

σ,ρ for the braiding and its opposite.

Definition 2.11. The subfactor N ⊂ M is called braided if C admits a unitary
braiding.

Locality for discrete subfactors [7, Def. 2.16], in the finite index setting
also called chiral locality [8,12] or commutativity of the associated Q-system
[18, Def. 4.20], amounts to a relation between the given braiding on C and
the algebraic structure of the subfactor. By [7, Lem. 2.17], locality for discrete
subfactors can be formulated as follows:

Definition 2.12. The subfactor N ⊂ M is called local if it is braided (with
braiding {ερ,σ}ρ,σ∈C) and if

ι(ε±
σ,ρ)ψ

′ψ = ψψ′

for every ψ ∈ Hρ, ψ′ ∈ Hσ and ρ, σ ≺ θ irreducible. One can equivalently
choose ε+

σ,ρ or ε−
σ,ρ.

2.4. Compact Hypergroups and Their Actions

In [7,14], we associated with an irreducible local discrete subfactor N ⊂ M a
canonical compact hypergroup K(N ⊂ M) acting on M by unital completely
positive maps. The fixed point subalgebra MK coincides with N [14, Thm.
4.11], [7, Thm. 5.7]. When the subfactor has in addition depth 2, the hyper-
group turns out to be a classical compact group [14, Cor. 1.2], [7, Thm. 7.5].
Thus, one can say that K(N ⊂ M) describes the subfactor by means of its
“generalized gauge symmetries.”

We now recall the definition of abstract compact hypergroup adopted in
[7, Def. 3.2]. For finite sets, it boils down to the purely algebraic notion of
finite hypergroup [98], [14, Def. 2.3].

Definition 2.13. Let K be a compact Hausdorff space. Denote by P (K) the
convex space of probability Radon measures on K, by C(K) the algebra of
continuous functions on K and by δx the normalized Dirac measure concen-
trated in x. K is called a compact hypergroup if it is equipped with a biaffine
operation, called convolution:

P (K) × P (K) → P (K), (μ, ν) �→ μ ∗ ν,

with an involution K → K,x �→ x�, and with an identity element e ∈ K
fulfilling the following:
(i) P (K) is a monoid with involution with respect to ∗, �, δe, where the

involution is defined on probability measures by μ�(E) := μ(E�) for every
Borel set E ⊂ K.

(ii) The involution x �→ x� is continuous and the map:

(x, y) ∈ K × K �→ δx ∗ δy ∈ P (K)

is jointly continuous with respect to the weak* topology on measures.
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(iii) There exists a (unique) faithful probability measure μK , called a Haar
measure on K, such that for every f, g ∈ C(K) and y ∈ K it holds

∫

K

f(y ∗ x)g(x) dμK(x) =
∫

K

f(x)g(y� ∗ x) dμK(x),
∫

K

f(x ∗ y)g(x) dμK(x) =
∫

K

f(x)g(x ∗ y�) dμK(x),

where

f(x ∗ y) := (δx ∗ δy)(f) =
∫

K

f(z) d(δx ∗ δy)(z).

Remark 2.14. A compact hypergroup in the sense of the previous definition is
also a locally compact hypergroup in the sense of [65, Def. 2.1] with K compact.
When K is metrizable, it is a compact quantum hypergroup in the sense of [28,
Def. 4.1] with C(K) commutative. Furthermore, this definition sits in between
the widely studied notions of DJS hypergroup (after Dunkl–Jewett–Spector)
[13] and of hypercomplex system [17].

The subfactor theoretical hypergroup [7, Def. 4.48, Thm. 4.51] is defined
as follows:

Definition 2.15. Let N ⊂ M be an irreducible local discrete type III subfactor.
Let UCPN (M) be the convex set of N -bimodular (automatically normal and
faithful) unital completely positive maps M → M. The subfactor theoretical
hypergroup as a set is defined by

K(N ⊂ M) := Extr(UCPN (M))

where Extr denotes the subset of extreme points.

The convolution in K(N ⊂ M) corresponds to the composition of ucp
maps. The involution is given by a notion of adjoint of φ ∈ UCPN (M) with
respect to an E-invariant state on M:

Definition 2.16. Let Ω ∈ H be a cyclic and separating unit vector for M such
that the associated state ω = (Ω, ·Ω) on M is E-invariant. The Ω-adjoint of
φ, denoted by φ�, is the unique (when it exists) ucp map on M such that

(xΩ, φ(y)Ω) = (φ�(x)Ω, yΩ) (2.1)

for every x, y ∈ M.

Lemma 2.17. The involution φ �→ φ� does not depend on the choice of ω.

Proof. It follows from [7, Prop. 3.8]. �

Remark 2.18. The Ω-adjointability of φ ∈ UCPN (M), i.e., the existence of
φ�, is guaranteed by the discreteness and locality of N ⊂ M, see [7, Lem.
4.22] and cf. also Remark 6.5. The independence of φ� on ω for N -bimodular
ucp maps can also be checked directly, in full generality and without using the
uniqueness of the hypergroup theoretical involution.
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The identity in K(N ⊂ M) is the trivial automorphism idM of M. The
Haar measure on K(N ⊂ M), denoted by μE , corresponds to the unique
normal faithful conditional expectation E in E(M,N ).

We also recall the definition of action of an abstract compact hypergroup
K on a von Neumann algebra M given in [7, Def. 5.1]. Let Ω be a cyclic and
separating unit vector for M.

Definition 2.19. Let K be a compact hypergroup. Denote by UCP�(M,Ω) the
set of Ω-adjointable ucp maps on M, cf. [7, Def. 2.5]. An action of K on M
by Ω-adjointable ucp maps is a continuous map:

α : K → Extr(UCP�(M,Ω))

where UCP�(M,Ω) is equipped with the pointwise weak operator topology,
such that the lift to probability Radon measures α̃ : P (K) → UCP�(M,Ω),
defined by

(α̃(μ))(x) :=
∫

K

(α(k))(x) dμ(k), μ ∈ P (K), x ∈ M
where the integral is in the weak sense, is an involutive monoid homomorphism:

α̃(μ1) ◦ α̃(μ2) = α̃(μ1 ∗ μ2), α̃(μ)� = α̃(μ�), α̃(δe) = id .

For compact groups, the previous definition boils down to an ordinary
action by automorphisms.

2.5. Duality Theorem and Dominated UCP Maps

The first non-trivial part of [7, Thm. 4.51], which states that K(N ⊂ M) ful-
fills the requirements of Definition 2.13, is to show that the extreme points are
closed (hence compact). This follows as a consequence of the duality theorem
[7, Thm. 4.34], which implies in particular that K(N ⊂ M) is homeomorphic
to the Gelfand spectrum of a commutative unital separable C∗-algebra, de-
noted by C∗

red(N ⊂ M) [7, Def. 4.19]2 and canonically associated with the
subfactor. Thus, K(N ⊂ M) is compact metrizable and

C∗
red(N ⊂ M) ∼= C(K(N ⊂ M)). (2.2)

From now on, we shall denote K(N ⊂ M) simply by K.

Notation 2.20. Denote by B(K) the Borel σ-algebra in K. Let M(K,B(K))
be the vector space of complex bounded Radon measures on K. In this nota-
tion, the probability measures P (K) considered in the previous section can be
denoted by P (K,B(K)). Let L∞(K,μE) be the algebra of essentially bounded
measurable functions on K with respect to the Haar measure.3

Recall the duality theorem [7, Thm. 4.34], which is the main technical
result in [7] and from which (2.2) follows by restricting to the extreme points:

2C∗
red(N ⊂ M) is obtained as a norm closure of a *-algebra Trig(N ⊂ M) defined in the

type III setting [7] analogously to a corner of the Popa–Shlyakhtenko–Vaes generalized tube
*-algebra [91] in the type II1 setting.
3In Sect. 6, we shall use the notation P (K), M(K), L∞(K), respectively, for UCPN (M),
SpanC(UCPN (M)) and Hom(γ, γ). The reason is explained in the remainder of this section.
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Theorem 2.21. Let N ⊂ M be an irreducible local discrete type III subfactor.
There is an affine homeomorphism denoted by

φ �→ μφ

between UCPN (M) equipped with the pointwise weak operator topology and the
state space of C∗

red(N ⊂ M), denoted by S(C∗
red(N ⊂ M)), equipped with the

weak∗ topology.

We shall not need in this paper the exact definition of μφ, nor of C∗
red(N ⊂

M). We will need instead the following two propositions proven in [7, Prop.
4.42] and [7, Prop. 4.44]:

Proposition 2.22. The map φ �→ μφ extends to a linear bijection:

SpanC(UCPN (M)) → (C∗
red(N ⊂ M))∗

onto the continuous dual of C∗
red(N ⊂ M).

By the Riesz–Markov theorem,

UCPN (M) ∼= P (K,B(K)), SpanC(UCPN (M)) ∼= M(K,B(K)). (2.3)

As we recall in more detail in Sect. 6, there is a Radon–Nikodym theorem
for completely positive maps [5], see also [14,85]. It implies that every φ ∈
UCPN (M) dominated by E (in the sense that dE − φ is completely positive
for some d > 0) is of the form

φ = ι(w)∗xγ( · )ι(w) (2.4)

for some positive operator x ∈ Hom(γ, γ) = γ(M)′ ∩ M. Recall that E =
ι(w)∗γ( · )ι(w) by Proposition 2.4.

Thus, Hom(γ, γ) can be viewed as the algebra of bounded densities asso-
ciated with N -bimodular ucp maps M → M which are dominated by E. The
following proposition states that Hom(γ, γ) is identified with the von Neumann
algebra L∞(K,μE) via (2.3) and (2.4).

Proposition 2.23. Let f �→ xf be the map defined on positive functions f ∈
L∞(K,μE) such that

∫
K

f dμE = 1 by considering the unique positive operator
xf ∈ Hom(γ, γ) such that ι(w)∗xf ι(w) = 1 and

f dμE = μφxf

where φxf
:= ι(w)∗xfγ( · )ι(w).

Then, f �→ xf extends to a normal *-isomorphism from L∞(K,μE) onto
Hom(γ, γ). In particular, Hom(γ, γ) is a commutative von Neumann algebra,
isometrically isomorphic to L∞(K,μE).

Under this identification,

μE(g) =
∫

K

g dμE = E(xg)

for every g ∈ L∞(K,μE).
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3. α-Induction for Discrete Subfactors

The operations of α-induction and σ-restriction have been introduced in [76]
and further studied in [8–12,23]. The idea comes from Roberts’ cohomological
description of superselection sectors in algebraic Quantum Field Theory [60,
93]. If N ⊂ M is a braided type III subfactor with finite index, α-induction
and σ-restriction provide a way of defining endomorphisms of M starting from
endomorphisms of N and vice versa. We refer to [12, Sec. 3.3] for the definitions
in the finite index subfactor context. In the possibly infinite index setting, they
have been studied in [105] in the context of subfactors coming from strongly
additive pairs of conformal nets and used in [20,22,24] to investigate structural
properties of inclusions of nets of local observables. We refer to [21, Sec. 2] for
the definition of α-induction using cocycles.

In this section, we define α-induction and σ-restriction for braided dis-
crete subfactors and study their properties and mutual relations in the local
case.

Definition 3.1. Let N ⊂ M be a braided discrete type III subfactor. Let C ⊂
End(N ) and {ε±

ρ,σ}ρ,σ∈C be as in Sect. 2.3. For every ρ ∈ C, define its α-
induction by

α±, N⊂M
ρ := ῑ−1 ◦ Ad ε±

ρ,θ ◦ ρ ◦ ῑ

where ῑ is the conjugate of the inclusion, θ is the dual canonical endomorphism
and ε±

ρ,θ is defined by ε±
ρ,θ :=

∑
i wiε

±
ρ,ρi

ρ(wi)∗. The sum converges in the strong
operator topology and θ =

∑
i wiρi( · )w∗

i is a direct sum decomposition of θ
into irreducible subendomorphisms ρi ∈ C with wi isometries.

For every ρ ∈ End(M), define its σ-restriction by

σN⊂M
ρ := ῑ ◦ ρ ◦ ι.

We shall omit the apices N ⊂ M and simply write α±
ρ and σρ, when no

confusion arises.

Clearly, σρ ∈ End(N ) and t ∈ Hom(ρ1, ρ2), ρ1, ρ2 ∈ End(M), implies
ῑ(t) ∈ Hom(σρ1 , σρ2). The following properties of α-induction are well known
in the finite index case [8,12]. First, note that Ad ε±

ρ,θ ◦ ρ ◦ ῑ(M) ⊂ ῑ(M), see
[35, Lem. 7.3], hence α±

ρ are well defined and α±
ρ ∈ End(M).

Lemma 3.2. Let ρ ∈ C, then

(1) α±
ρ both extend ρ, namely α±

ρ ι = ιρ.
(2) ρ �→ α±

ρ is functorial, namely t ∈ Hom(ρ1, ρ2), ρ1, ρ2 ∈ C, implies ι(t) ∈
Hom(α±

ρ1
, α±

ρ2
).

Proof. Observe first that ε±
ρ,θ ∈ Hom(ρθ, θρ). Thus, (1) follows as in the finite

index case. To show (2), recall that by discreteness of N ⊂ M [51, Lem. 3.8],
M is generated as a von Neumann algebra by ι(N ) and by the charged fields
ψ′ ∈ Hτ associated with the irreducibles τ ≺ θ. By (1), α±

ρ preserves ι(N ). By
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naturality of the braiding, α±
ρ (ψ′) = ι(ε∓

τ,ρ)ψ
′. Thus, (2) follows by observing

in addition that

ι(t)ι(ε∓
τ,ρ1

)ψ′ = ι(tε∓
τ,ρ1

)ψ′

= ι(ε∓
τ,ρ2

)ι(τ(t))ψ′

= ι(ε∓
τ,ρ2

)ψ′ι(t).

�

Remark 3.3. Other properties of α-induction such as α±
ρσ = α±

ρ α±
σ , α±

ρ⊕σ =

α±
ρ ⊕ α±

σ , α±
ρ̄ = α±

ρ and d(α±
ρ ) = d(ρ) now follow as in the finite index case,

cf. [8, Sec. 3], [18, Sec. 4.6].

For the remainder of this section, assume that the subfactor is in addition
local.

Lemma 3.4. Let N ⊂ M be an irreducible local discrete type III subfactor.
For every irreducible ρ ≺ θ, the space of charged fields Hρ coincides with
Hom(idM, α±

ρ ) and the linear map:

Hom(α±
ρ , idM) → Hom(ρ, θ)

t �→ ῑ(t)w

is a bijection.

Proof. The map sends Hom(α±
ρ , idM) to Hom(ρ, θ) and it is injective because

ῑ(t)w = 0 implies ι(w∗ῑ(t∗t)w) = E(t∗t) = 0, and hence, t = 0 by faithfulness
of E. We only have to show surjectivity. Let s ∈ Hom(ρ, θ). By [36, Lem. 6.15],
which relies only on discreteness, there is a charged field ψ ∈ Hρ such that

ῑ(ψ∗)w = s.

Since ψ∗ ∈ H∗
ρ = Hom(ιρ, ι) and ιρ = α±

ρ ι by the extension property of α-
induction, ψ∗ has the desired intertwining property on ι(N ). By naturality of
the braiding, α±

ρ (ψ′) = ι(ε∓
τ,ρ)ψ

′ for every other ψ′ ∈ Hτ , τ ≺ θ. By locality,
we get

ψ∗α±
ρ (ψ′)∗ = ψ∗ψ′∗ι(ε±

ρ,τ ) = ψ′∗ψ∗. (3.1)

By discreteness, ι(N ) and the charged fields ψ′ generate M as a von Neumann
algebra, and hence, we conclude that ψ∗ ∈ Hom(α±

ρ , idM). This shows that
Hρ = Hom(idM, α±

ρ ) and surjectivity. �

Remark 3.5. A version of the equality Hρ = Hom(idM, α±
ρ ) appears also in

[105, Cor. 3.9 (2)] in the context of DHR endomorphisms and strongly additive
pairs of conformal nets [105, Sec. 3].

The following is a generalization of the “main formula” for α-induction
[8, Thm. 3.9] to local discrete subfactors. Note that the proof is different from
the original one when the index is infinite. The same statement is proven in
[105, Thm. 3.8] in the context of possibly infinite index subfactors coming from
strongly additive pairs of conformal nets.



Vol. 23 (2022) Galois Correspondence and Fourier Analysis 2993

Theorem 3.6. Let N ⊂ M be an irreducible local discrete type III subfactor.
For every ρ, σ ∈ C, the linear map:

Hom(α±
ρ , α±

σ ) → Hom(ρ, θσ)

t �→ ῑ(t)w

is a bijection.

Proof. Observe first that Lemma 3.4 holds also with ρ ∈ C replacing ρ ≺
θ irreducible. Indeed, every ρ ∈ C can be written as a finite direct sum of
irreducibles ρi in C, i = 1, . . . , n, i.e., ρ =

∑
i wiρi( · )w∗

i , where the wi form
a Cuntz algebra of isometries. If ρi is not a subendomorphism of θ, for some
i, i.e., Hom(ρi, θ) = {0}, then Hρi

= {0}, cf. [36, Lem. 6.15], [51, Prop. 3.2].
Indeed, let ψ ∈ Hρi

, then ῑ(ψ∗)w ∈ Hom(ρi, θ) = {0}. Hence, E(ψψ∗) =
ι(wῑ(ψψ∗)w) = 0, which implies ψ = 0 by faithfulness of E. Moreover, Hρ =⊕

i Hρi
and Hom(ρ, θ) =

⊕
i Hom(ρi, θ) as vector spaces; namely, every ψ ∈

Hρ and v ∈ Hom(ρ, θ) can be written uniquely as ψ =
∑

i ι(wi)ψi and v =∑
viw

∗
i , with ψi ∈ Hρi

and vi ∈ Hom(ρi, θ).
The analogous of (3.1) holds, namely

ψ∗α±
ρ (ψ′)∗ =

∑

i

ψ∗
i ι(w∗

i )ψ′∗ι(ε±
ρ,τ )

=
∑

i

ψ∗
i ψ′∗ι(τ(w∗

i )ε±
ρ,τ )

=
∑

i

ψ∗
i ψ′∗ι(ε±

ρi,τw∗
i )

=
∑

i

ψ′∗ψ∗
i ι(w∗

i ) = ψ′∗ψ∗

for every ψ′ ∈ Hτ , τ ≺ θ, by locality and naturality of the braiding. Thus,
ψ ∈ Hom(idM, α±

ρ ). Moreover, the map t �→ ῑ(t)w respects the direct sum
decompositions, namely

ῑ(ψ∗)w = ῑ

(
∑

i

ψ∗
i ι (w∗

i )

)

w

=
∑

i

ῑ(ψ∗
i )θ(w∗

i )w

=
∑

i

ῑ(ψ∗
i )ww∗

i .

The map sends Hom(α±
ρ , α±

σ ) to Hom(ρ, θσ). Injectivity follows as in the proof
of Lemma 3.4. To show surjectivity, we consider the following diagram:

Hom(α±
ρσ̄, idM) Hom(ρσ̄, θ)

Hom(α±
ρ , α±

σ ) Hom(ρ, θσ).
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The vertical arrows are the isomorphisms given by Frobenius reciprocity, as
α±

ρσ̄ = α±
ρ α±

σ̄ and α±
σ̄ is a conjugate of α±

σ . Let s ∈ Hom(ρ, θσ) and choose a
solution rσ ∈ Hom(idN , σ̄σ), r̄σ ∈ Hom(idN , σσ̄) of the conjugate equations
for σ and σ̄. Then, θ(r̄∗

σ)s ∈ Hom(ρσ̄, θ) with ρσ̄ ∈ C. By the argument above
generalizing Lemma 3.4, there is an element t ∈ Hom(α±

ρσ̄, idM) such that
ῑ(t)w = θ(r̄∗

σ)s. By α±
ρ ι = ιρ, we have that tι(ρ(rσ)) ∈ Hom(α±

ρ , α±
σ ). To

complete the proof, we show that

ῑ(tι(ρ(rσ)))w = ῑ(t)θ(ρ(rσ))w

= ῑ(t)wρ(rσ)

= θ(r̄∗
σ)sρ(rσ)

= θ(r̄∗
σσ(rσ))s = s

by the conjugate equation r̄∗
σσ(rσ) = 1; hence, the diagram commutes and

surjectivity is proven. �

We conclude this section by showing a version of ασ-reciprocity [8, Thm.
3.21], [10, Prop. 3.3] for local discrete subfactors.

Theorem 3.7. Let C ⊂ End(N ) be as in Theorem 3.6. For every ρ, σ ∈ C and
β ∈ End(M) such that β ≺ α±

σ , the linear map:

Hom(α±
ρ , β) → Hom(ρ, σβ)

t �→ ῑ(t)w

is a bijection.

Proof. The map sends Hom(α±
ρ , β) to Hom(ρ, σβ) and it is injective as in the

proof of Lemma 3.4. To show surjectivity, choose an isometry v ∈ Hom(β, α±
σ )

and observe that ῑ(v) ∈ Hom(σβ , θσ) where we used the fact that σα±
σ

=
θσ. Let s ∈ Hom(ρ, σβ), thus ῑ(v)s ∈ Hom(ρ, θσ), and consider the following
diagram:

Hom(α±
ρ , α±

σ ) Hom(ρ, θσ)

Hom(α±
ρ , β) Hom(ρ, σβ).

v∗ · ῑ(v) ·

By Theorem 3.6, there is an element t ∈ Hom(α±
ρ , α±

σ ) such that ῑ(t)w = ῑ(v)s.
Thus, v∗t ∈ Hom(α±

ρ , β) and it fulfills ῑ(v∗t)w = ῑ(v∗)ῑ(v)s = s, which shows
surjectivity. �

4. Intermediate Inclusions

In this section, let N ⊂ M be an irreducible local discrete type III subfactor
and let P be an intermediate von Neumann algebra, namely N ⊂ P ⊂ M.
We show that N ⊂ P and P ⊂ M are both discrete and local. Note that
in general, without assuming locality of N ⊂ M, the intermediate inclusion
P ⊂ M is not even semidiscrete in general [51,102].
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Denote by ιN⊂M, ιN⊂P and ιP⊂M, respectively, the inclusion morphisms
of N ⊂ M, N ⊂ P and P ⊂ M. Similarly for the conjugate morphism ῑ, for
the canonical and dual canonical endomorphism γ and θ, for the conditional
expectation E and the associated isometry w.

Lemma 4.1. The inclusions N ⊂ P and P ⊂ M are semidiscrete, i.e., they
admit a normal faithful conditional expectation. Moreover, they are both irre-
ducible and P is a type III factor.

Proof. The restriction of EN⊂M to P, denoted by EN⊂P : P → N ⊂ P, is
clearly a normal faithful conditional expectation onto N . The existence of a
normal faithful conditional expectation EP⊂M : M → P ⊂ M follows by com-
bining a deep result of Izumi–Longo–Popa [51, Thm. 3.9] with a consequence
of locality [7, Prop. 2.19]. The rest is immediate. �

Remark 4.2. The intermediate conditional expectation EN⊂P is just the re-
striction of EN⊂M to P. The other intermediate conditional expectation EP⊂M
is absorbed by EN⊂M, namely EN⊂MEP⊂M = EN⊂M, because EN⊂M =
EN⊂PEP⊂M by uniqueness, as N ⊂ M is irreducible, and E2

P⊂M = EP⊂M.

Lemma 4.3. The subfactor N ⊂ P is discrete and local.

Proof. It follows from [102, Thm. 2.7], where it is shown that θN⊂P ≺ θN⊂M.
Thus, the rigid C∗-tensor category generated by the irreducible components
of θN⊂P is a subcategory of C. In particular, it is unitarily braided with the
same braiding. By choosing ψ′ ∈ Hom(ιN⊂P , ιN⊂Pτ) for every τ ≺ θN⊂P , we
get a complete system of charged fields. �

Proposition 4.4. Let N ⊂ M and P as before. For every ρ ≺ θN⊂M and
β ≺ θP⊂M, the linear map:

Hom(α±,N⊂P
ρ , β) → Hom(ρ, σN⊂P

β )

t �→ ῑN⊂P(t)wN⊂P

is a bijection.

Proof. The map t �→ ῑN⊂P(t)wN⊂P sends Hom(α±,N⊂P
ρ , β) to Hom(ρ, σN⊂P

β ).
It is injective because the expectation EN⊂P is faithful. To show surjectivity,
let s ∈ Hom(ρ, σN⊂P

β ) and choose an isometry v ∈ Hom(β, θP⊂M). Then,
ῑN⊂P(v)s ∈ Hom(ρ, θN⊂M), where we used the fact that σN⊂P

θP⊂M = θN⊂M.
By Lemma 3.4, there is a charged field ψ ∈ Hom(idM, α±,N⊂M

ρ ) such that
ῑN⊂M(ψ∗)wN⊂M = ῑN⊂P(v)s.

By Lemma 4.1, the intermediate inclusion P ⊂ M is semidiscrete. Let
wP⊂M be the unique isometry in Hom(idP , θP⊂M) associated via the Connes–
Stinespring representation with the unique expectation EP⊂M. To conclude
the proof, we show that ῑP⊂M(ψ∗)wP⊂M ∈ Hom(α±,N⊂P

ρ , θP⊂M) and that
v∗ ῑP⊂M(ψ∗)wP⊂M ∈ Hom(α±,N⊂P

ρ , β) is sent to s by the map t �→ ῑN⊂P(t)



2996 M. Bischoff et al. Ann. Henri Poincaré

wN⊂P . Consider the following diagram:

Hom(α±,N⊂M
ρ , idM) Hom(ρ, θN⊂M)

Hom(α±,N⊂P
ρ , θP⊂M)

Hom(α±,N⊂P
ρ , β) Hom(ρ, σN⊂P

β ).

v∗ ·

ῑN⊂P(v) ·

For every p ∈ P, compute

ῑP⊂M(ψ∗)wP⊂M α±,N⊂P
ρ (p) = ῑP⊂M(ψ∗ιP⊂M(α±,N⊂P

ρ (p)))wP⊂M

= ῑP⊂M(ψ∗α±,N⊂M
ρ (ιP⊂M(p)))wP⊂M

= ῑP⊂M(ιP⊂M(p)ψ∗)wP⊂M
= θP⊂M(p) ῑP⊂M(ψ∗)wP⊂M

provided we show that ιP⊂Mα±,N⊂P
ρ = α±,N⊂M

ρ ιP⊂M. The latter equality is
readily proven by first taking p ∈ ιN⊂P(N ), namely p = ιN⊂P(n) for some
n ∈ N , and computing

α±,N⊂M
ρ (ιP⊂M(p)) = α±,N⊂M

ρ (ιN⊂M(n))

= ιN⊂M(ρ(n))

= ιP⊂M(ιN⊂P(ρ(n)))

= ιP⊂M(α±,N⊂P
ρ (p)).

Secondly, take p = ψ′ ∈ Hom(ιN⊂P , ιN⊂Pτ) for τ ≺ θN⊂P and observe that
ιP⊂M(ψ′) belongs to Hom(ιN⊂M, ιN⊂Mτ). By naturality of the braiding,

α±,N⊂M
ρ (ιP⊂M(ψ′)) = ιN⊂M(ε∓

τ,ρ) ιP⊂M(ψ′)

= ιP⊂M(ιN⊂P(ε∓
τ,ρ)ψ

′)

= ιP⊂M(α±,N⊂P
ρ (ψ′)).

The subfactor N ⊂ P is discrete [102, Thm. 2.7], and thus, ιN⊂P(N ) and the
charged fields ψ′ generate P as a von Neumann algebra. Hence, ιP⊂Mα±,N⊂P

ρ =
α±,N⊂M

ρ ιP⊂M as desired.
To conclude the proof, set t := v∗ ῑP⊂M(ψ∗)wP⊂M ∈ Hom(α±,N⊂P

ρ , β)
and compute

ῑN⊂P(t)wN⊂P = ῑN⊂P(v∗ ῑP⊂M(ψ∗)wP⊂M)wN⊂P
= ῑN⊂P(v∗) ῑN⊂M(ψ∗) ῑN⊂P(wP⊂M)wN⊂P
= ῑN⊂P(v∗) ῑN⊂M(ψ∗)wN⊂M
= ῑN⊂P(v∗) ῑN⊂P(v) s = s

by observing that ῑN⊂P(wP⊂M)wN⊂P ∈ N , that it is an isometry and it
belongs to Hom(idN , θN⊂M), and by uniqueness of the conditional expectation
EN⊂M and of its associated isometry wN⊂M. �
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Theorem 4.5. Let N ⊂ M be an irreducible local discrete type III subfactor.
For every intermediate von Neumann algebra N ⊂ P ⊂ M, the subfactors
N ⊂ P and P ⊂ M are type III irreducible discrete and local.

Proof. By Lemmas 4.1 and 4.3, it remains only to show that P ⊂ M is discrete
and local.

To show discreteness of P ⊂ M, observe first that θP⊂M admits a direct
sum decomposition into irreducibles. This is because Hom(θP⊂M, θP⊂M) ∼=
P ′ ∩ MP

1 , where MP
1 := JMP ′JM is the Jones extension of M given by

P, and P ′ ∩ MP
1 ⊂ N ′ ∩ MN

1 , where MN
1 := JMN ′JM, and N ′ ∩ MN

1

is a direct sum of finite matrix algebras by irreducibility and discreteness of
N ⊂ M [51, Thm. 3.3]. We have to show that the irreducible components
β ≺ θP⊂M have finite dimension. By applying Proposition 4.4 to β ≺ θP⊂M,
and ρ ≺ σN⊂P

β ≺ σN⊂P
θP⊂M = θN⊂M irreducible, hence d(ρ) < ∞, we have that

the linear bijection:

Hom(α±,N⊂P
ρ , β) → Hom(ρ, σN⊂P

β )

guarantees the existence of isometries in Hom(β, α±,N⊂P
ρ ). Thus, β ≺ α±,N⊂P

ρ

and

d(β) ≤ d(α±,N⊂P
ρ ) = d(ρ) < ∞.

To show locality of P ⊂ M, take ψ1 ∈ Hom(ιP⊂M, ιP⊂Mβ1), ψ2 ∈
Hom(ιP⊂M, ιP⊂Mβ2) for β1, β2 ≺ θP⊂M irreducible, together with the previ-
ously mentioned isometries t1 ∈ Hom(β1, α

±,N⊂P
ρ1

), t2 ∈ Hom(β2, α
±,N⊂P
ρ2

) for
ρ1 ≺ σN⊂P

β1
, ρ2 ≺ σN⊂P

β2
irreducible. Recall that both ρ1, ρ2 ≺ θN⊂M. Con-

sider the relative braiding between β1 and β2 introduced in [10, Lem. 3.11],
namely

ε±,rel
β1,β2

:= t∗2 α∓,N⊂P
ρ2

(t∗1) ιN⊂P(ε±
ρ1,ρ2

)α±,N⊂P
ρ1

(t2) t1

which is independent of the choice of ρ1, ρ2 and t1, t2. The finite index assump-
tion made in [10] is in fact not needed, only discreteness is needed, cf. [11, Sec.
2]. By Corollary [10, Cor. 3.13], the family {ε±,rel

β1,β2
∈ Hom(β1β2, β2β1), β1, β2 ≺

θP⊂M} extends to a unitary braiding on the rigid C∗-tensor category gener-
ated by the irreducible components of θP⊂M. We have to show that

ιP⊂M(ε±,rel
β1,β2

)ψ1ψ2 = ψ2ψ1

for every ψ1, ψ2 as above. Denote for short ιP⊂M by ι and compute

ι(ε±,rel
β1,β2

)ψ1ψ2 = ι(t∗2 α∓,N⊂P
ρ2

(t∗1) ιN⊂P(ε±
ρ1,ρ2

)α±,N⊂P
ρ1

(t2) t1)ψ1ψ2

= ι(β2(t1))∗ι(t2)∗ιN⊂M(ε±
ρ1,ρ2

) ι(t1)ψ1 ι(t2)ψ2

= ι(β2(t1))∗ι(t2)∗ι(t2)ψ2 ι(t1)ψ1

= ψ2ψ1

where we used the fact that ι(t1)ψ1 ∈ Hom(ιN⊂M, ιN⊂Mρ1), ι(t2)ψ2 ∈
Hom(ιN⊂M, ιN⊂Mρ2), locality of N ⊂ M and t∗1t1 = 1, t∗2t2 = 1. Thus,
the proof is complete. �



2998 M. Bischoff et al. Ann. Henri Poincaré

5. Galois Correspondence

Combining Theorem 4.5 with [7, Thm. 4.51], we give a Galois-type correspon-
dence between intermediate von Neumann algebras N ⊂ P ⊂ M and closed
subhypergroups of K(N ⊂ M) considered in Definition 2.15. The following
definition should be compared with [13, Def. 1.5.1] in the DJS hypergroup
setting.

Definition 5.1. Let K be a compact hypergroup in the sense of Definition 2.13.
A closed subhypergroup of K is a closed subset H ⊂ K which is closed under
the operations of K, namely δx ∗δy ∈ P (H), x� ∈ H for every x, y ∈ H, e ∈ H,
and which admits a Haar measure in P (H) fulfilling (iii) in Definition 2.13.

Recall that K(N ⊂ M) acts faithfully and minimally on M [7, Def. 5.1,
Thm. 5.7] and that the fixed point subalgebra MK(N⊂M) coincides with N .

Theorem 5.2. Let N ⊂ M be an irreducible local discrete type III subfactor.
Denote K(N ⊂ M) simply by K. There is a bijective correspondence between
the intermediate von Neumann algebras N ⊂ P ⊂ M and the closed subhy-
pergroups H ⊂ K given by

H �→ MH , P �→ {φ ∈ K : φ�ι(P) = idP}
such that H = K(P ⊂ M).

Proof. Given an intermediate von Neumann algebra P, by Theorem 4.5, P ⊂
M is discrete and local. Let H := {φ ∈ K : φ�ι(P) = idP}. Then, H =
K(P ⊂ M). Indeed, every φ ∈ H is an extreme point of UCPP(M), and thus,
φ ∈ K(P ⊂ M). Vice versa, every φ ∈ K(P ⊂ M) is extreme in UCP(M) by
[7, Lem. 4.49], thus in UCPN (M), and φ ∈ H. It follows that H is a closed
subhypergroup of K with the same convolution and involution on probability
measures and with the same identity element. Indeed, δφ1 ∗ δφ2 ∈ P (H) for
every φ1, φ2 ∈ H, as the convolution is defined by the composition of ucp
maps, and φ1 ◦ φ2 ∈ UCPP(M) if φ1, φ2 ∈ K(P ⊂ M). Moreover, every
EN⊂M-invariant state on M is also EP⊂M-invariant by Remark 4.2, thus by
Lemma 2.17 the involution on K(P ⊂ M) as defined in Definition 2.16 agrees
with the involution of K restricted to H.

Vice versa, given a closed subhypergroup H, by definition it acts faith-
fully and minimally on M. Let P := MH . Again by Theorem 4.5 and by
the uniqueness statement for compact hypergroup actions [7, Prop. 5.4], we
conclude that H = K(P ⊂ M) �

Remark 5.3. The previous theorem generalizes the Galois correspondence es-
tablished in [14, Prop. 4.13] from finite to infinite index subfactors.

It generalizes also [51, Thm. 3.15] from minimal actions of compact
groups to hypergroups, as every compact group fixed point irreducible sub-
factor MG ⊂ M is local with respect to the symmetric braiding coming from
Rep(G) [7, Prop. 9.3].
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6. Fourier Transform

Let ξ ∈ H be a jointly cyclic and separating unit vector for N and M. Denote
by γ ∈ End(M), θ ∈ End(N ) and γ1 ∈ End(M1) the associated canonical
endomorphisms as in Sect. 2.1.

Recall that the beginning of the Jones tower/tunnel in the infinite factor
setting reads:

θ(N ) ⊂ γ(M) ⊂ γ1(M1) = N ⊂ M ⊂ M1.

The subfactor theoretical Fourier transform has been introduced in the
finite index type II1 setting by Ocneanu [83], [84, Sec. II.7]. It can be defined
using Jones projections and conditional expectations in the tower [15, Def.
2.16], [95, Sec. 3], or graphically in the language of planar algebras as a map
running between n-box spaces [16, Sec. 3]. We shall be interested in the case
n = 2. We recall below the description of 2-box spaces (and in the next section
of the Fourier transform) in terms of the canonical endomorphisms. Note that
the Fourier transform in the infinite factor setting is defined naturally for
semidiscrete subfactors, not necessarily discrete nor with finite index.

Let H := ML2MN be the standard M-N bimodule associated with
N ⊂ M. Let H̄ be the conjugate N -M bimodule. Denote by � the Connes
fusion relative tensor product [96]. Then, H̄ �M H ∼= N L2MN ∼= N θL

2N N
in the notation of [69, Sec. 2.2] and H �N H̄ ∼= ML2M1M ∼= MγL2MM. Cf.
[15, Prop. 3.1, 3.2] and [57, Thm. 2.50], [30, Thm. 5.4] in the type II1 setting.
The bimodule intertwiner algebras are then identified with the higher (in this
case 2-step) relative commutants:

HomN -N (H̄ �M H, H̄ �M H) ∼= Hom(θ, θ)

HomM-M(H �N H̄,H �N H̄) ∼= Hom(γ, γ)

where Hom(γ, γ) = γ(M)′ ∩ M and Hom(θ, θ) = θ(N )′ ∩ N by definition.

6.1. Extension of the Fourier Transform to UCP Maps

In this section, let N ⊂ M be an irreducible semidiscrete (E(M,N ) �= ∅)
type III subfactor. Denote by E the unique element in E(M,N ). Recall the
notation UCPN (M) for the N -bimodular ucp maps M → M.

Notation 6.1. For ease of notation, we omit ι symbols and write either just
γ(= ιῑ) or θ(= ῑι) in place of ῑ when applied either to elements in M or in
ι(N ), identified with N .

Definition 6.2. The subfactor theoretical Fourier transform4 is defined by

F : Hom(γ,γ) → Hom(θ, θ)

x �→ θ(w)∗γ(x)w.

As observed in [82, Sec. 3] for irreducible semidiscrete and not necessarily
depth 2 subfactors:

4It is graphically described by a 90◦-rotation: x ∈ Hom(ιῑ, ιῑ) �→ ῑι(w∗)ῑ(x)w ∈ Hom(ῑι, ῑι)
as w ∈ Hom(idN , ῑι).
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Proposition 6.3. The subfactor theoretical Fourier transform F is injective.

For every φ ∈ UCPN (M), define Vφ as the closure of the operator:

VφyΩ = φ(y)Ω, y ∈ M (6.1)

where Ω ∈ H is a cyclic and separating unit vector for M such that the
associated state ω = (Ω, ·Ω) on M is E-invariant. In particular, VE is the
Jones projection eN for N ⊂ M with respect to E. As in [80, Sec. 2], [7, Sec.
2.5], it follows that Vφ ∈ B(H), ‖Vφ‖ = 1 and VφΩ = Ω.

Lemma 6.4. The operator Vφ depends only on φ and on the positive cone of
Ω.5

Proof. The proof of [63, Lem. A], which shows that the Jones projection of
E depends only on the positive cone, adapts to an arbitrary N -bimodular
φ. �

Assume for the moment that N ⊂ M is in addition discrete and local, see
Remark 6.5. Then, Vφ ∈ N ′ ∩ M1. Indeed, φ is N -bimodular by assumption,
thus Vφ ∈ N ′, and Vφ = JM,ΩVφJM,Ω holds because φ is automatically Ω-
adjointable [7, Lem. 4.22] in the sense of Definition 2.16, thus Vφ ∈ M1. In
fact, JM,ΩVφ = VφJM,Ω is equivalent to Ω-adjointability [2, Sec. 6], [7, Sec.
2.5].

Note that φ� is N -bimodular when φ is N -bimodular. Moreover,

Vφ1◦φ2 = Vφ1Vφ2 , Vφ� = V ∗
φ . (6.2)

Remark 6.5. As observed in [7, Lem. 4.22], every N -bimodular ucp map φ :
M → M is Ω-adjointable under the weaker condition aρ = 1Hρ

for every
irreducible ρ ≺ θ, where the operators aρ are introduced in [51, Sec. 3]. This
condition is implied, for example, by discreteness and locality [7, Prop. 2.19]
and by finiteness of the index [51, Sec. 3]. In these cases Vφ ∈ N ′ ∩ M1.

If φ ∈ SpanC(UCPN (M)), namely if φ =
∑

j αjφj with αj ∈ C, φj ∈
UCPN (M), then Vφ defined as in (6.1) is bounded and it belongs to N ′ ∩M1.
It holds Vφ =

∑
j αjVφj

, the Ω-adjoint operation (2.1) extends antilinearly,
and the properties stated in (6.2) continue to hold.

Definition 6.6. We define the Fourier transform on the complex span of N -
bimodular ucp maps M → M as follows:

F̂ : SpanC(UCPN (M)) → Hom(θ, θ)

φ �→ γ1(Vφ)

as γ1(N ′ ∩ M1) = θ(N )′ ∩ N = Hom(θ, θ).

Proposition 6.7. The map F̂ is injective.

5From now on, the vectors Ω and ξ will be chosen in the same positive cone with respect to
M.
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Proof. The vector Ω is separating for M, and Vφ = Vφ′ implies φ(y)Ω = φ′(y)Ω
for every y ∈ M. �

For every x ∈ Hom(γ, γ) positive and such that w∗xw = 1, let φx :=
w∗xγ(·)w ∈ UCPN (M). Note that w∗xw is a multiple of 1 whenever x ∈
Hom(γ, γ). Then, φx is dominated by E, namely dE−φx is completely positive
with d := ‖x‖ > 0. Moreover, every φ ∈ UCPN (M) dominated by E is of the
form φ = φx by an L∞ version of the Radon–Nikodym theorem for completely
positive maps [5, Prop. 1.4.2], [85, Prop. 5.4], [14, Prop. A.5]. More generally,
every x ∈ Hom(γ, γ) can be written as x =

∑
k αkxk with αk ∈ C, xk positive

and w∗xkw = 1. Then, φx := w∗xγ(·)w ∈ SpanC(UCPN (M)).

Remark 6.8. If N ⊂ M is discrete and local, by Proposition 2.23, Hom(γ, γ) ∼=
L∞(K,μE) and

x ∈ Hom(γ, γ) �→ φx

corresponds to the embedding of functions f ∈ L∞(K,μE) into measures
dominated by μE , namely to f �→ f dμE . Positive operators are mapped to
positive measures, the condition w∗xw = 1 corresponds to

∫
K

f dμE = 1.

The following proposition states that F̂ extends the subfactor theoretical
Fourier transform:

Proposition 6.9. F̂ extends F from Hom(γ, γ) to SpanC(UCPN (M)):

F̂(φx) = F(x).

Proof. Let v1 ∈ M1 be as in [76, Sec. 2.5], namely v′ : nξ → nΩ, n ∈ N and
v1 := AdJM,ξ

(v′). We have v1v
∗
1 = eN , v1 ∈ Hom(idM1 , γ1) and γ1(v1) = w.

We have to show that

γ1(Vφx
) = θ(w)∗γ(x)w

or equivalently

Vφx
= w∗xv1.

Note that v1Ω = wΩ since w∗v1Ω = γ1(v∗
1)v1Ω = v1v

∗
1Ω = eN Ω = Ω. For

every y ∈ M, we have

w∗xv1yΩ = w∗xγ(y)v1Ω = w∗xγ(y)wΩ = φx(y)Ω

from which we get the claim. �

Remark 6.10. The proposition above holds for arbitrary semidiscrete subfac-
tors. The proof shows that Vφx

∈ N ′ ∩ M1 for every x ∈ Hom(γ, γ), without
the conditions mentioned in Remark 6.5.
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6.2. The Local Discrete Case: Fourier Transform on Measures

The subfactor theoretical Fourier transform F and its extension F̂ can be
defined for semidiscrete subfactors. Assume that N ⊂ M is discrete and local.
Then, by Proposition 2.22, SpanC(UCPN (M)) can be identified with the set of
complex bounded Radon measures M(K,B(K)) on the subfactor theoretical
hypergroup K. In this section, we check that F̂ defined on SpanC(UCPN (M))
agrees with the classical Fourier transform F defined on M(K,B(K)).

The hypergroup theoretical convolution and involution on probability
measures can be extended to M(K,B(K)), endowing it with the structure of
an involutive algebra, cf. [7, Rmk. 3.3].

Definition 6.11. A representation of a compact hypergroup K on a Hilbert
space Hπ (cf. [13, Def. 2.1.1]) is a unital involutive algebra homomorphism:

π : M(K,B(K)) → B(Hπ).

The representation is called continuous if its restriction to positive mea-
sures is continuous from the weak* topology on M(K,B(K)) to the weak
operator topology on B(Hπ).

Definition 6.12. Let F be the hypergroup theoretical Fourier transform (cf.
[104, Sec. 3]):

F : M(K,B(K)) →
⊕

π

B(Hπ)

μ �→
⊕

π

∫

K

π(k) dμ(k)

where the direct sum is over all unitary equivalence classes [π] of continuous
irreducible representations of K and π(k) := π(δk), k ∈ K.

Note that F depends on the choice of representative in each unitary equiv-
alence class and that different choices yield unitarily equivalent Fourier trans-
forms.

Remark 6.13. If Γ is a finite abelian group with an outer action on N , the
subfactor theoretical Fourier transform considered in Definition 6.2 for the
crossed product N ⊂ N � Γ = M corresponds in fact to the inverse of
the ordinary group theoretical Fourier transform. Namely to the map which
associates with a function f on the Pontryagin dual Γ̂ = G, the function
χ ∈ Γ �→ ∫

G
f(g)χ(g) dg instead of

∫
G

f(g)χ(g) dg. Hence, we may have used
the symbol F−1 in Definition 6.2 instead of F .

By [7, Thm. 6.4], each [π] admits a representative πρ on the space of
charged fields Hρ (whose dimension is finite and equal to the multiplicity nρ

of ρ ≺ θ) defined by

πρ : M(K,B(K)) → B(Hρ)

πρ(μ)ψ := φμ(ψ)

where μ �→ φμ is the identification of M(K,B(K)) with SpanC(UCPN (M)),
the inverse of the map φ �→ μφ of Proposition 2.22.
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Proposition 6.14. Let Hρ be endowed with the inner product (ψ1, ψ2) := E(ψ2ψ
∗
1)

and let Hom(ρ̄, θ) be endowed with the inner product (w1, w2) := w∗
1w2. For

every ψ ∈ Hρ, let ψ• := ψ∗r̄ρ ∈ Hρ̄ where r̄ρ ∈ Hom(idN , ρρ̄) is part of a
standard solution of the conjugate equations for ρ and ρ̄.

Then, the linear map:

ψ ∈ Hρ �→ γ(ψ•∗)w ∈ Hom(ρ̄, θ)

is a unitary intertwiner between the representation πρ acting on Hρ as above
and the representation Uρ acting on Hom(ρ̄, θ) as follows

Uρ(μ)γ(ψ•∗)w := γ(φμ(ψ•∗))w.

Proof. The map preserves the inner products on Hρ and Hom(ρ̄, θ), respec-
tively:

(γ(ψ•∗
1 )w, γ(ψ•∗

2 )w) = w∗γ(ψ•
1ψ•∗

2 )w

= E(ψ•
1ψ•∗

2 )

= E(ψ2ψ
∗
1) = (ψ1, ψ2)

where for the third equality we refer to [51, Sec. 3] and [7, Prop. 2.19].
It is surjective by [36, Lem. 6.15] and it intertwines the representations

πρ and Uρ, since

γ((πρ(μ)ψ)•∗)w = γ(φμ(ψ)•∗)w

= γ(φμ(ψ•∗))w

= Uρ(μ)γ(ψ•∗)w

where the second equality holds by N -bimodularity of φμ. �

Below, we choose the representatives of the unitary equivalence classes
of continuous irreducible representations of K to be the Uρ considered above
and we take the corresponding F.

Proposition 6.15.

F̂(φμ) = F(μ).

Proof. On the one hand, for every φ ∈ SpanC(UCPN (M)), ψ ∈ Hρ, m ∈ M,
and v1, Ω as in the proof of Proposition 6.9, we have

Vφψ∗v1mΩ = Vφψ∗γ(m)v1Ω

= Vφψ∗γ(m)wΩ

= φ(ψ∗)γ(m)wΩ

= φ(ψ∗)v1mΩ

from which Vφψ∗v1 = φ(ψ∗)v1, as Ω is cyclic for M. Thus,

F̂(φ)γ(ψ•∗)w = γ1(Vφ)γ(ψ•∗)w

= γ1(Vφψ•∗v1)

= γ(φ(ψ•∗))w.
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On the other hand, by Proposition 6.14 and [7, Prop. 5.5], for every
μ ∈ M(K,B(K))

F(μ)γ(ψ•∗)w =
∫

K

Uρ(k)γ(ψ•∗)w dμ(k)

=
∫

K

γ(φδk
(ψ•∗))w dμ(k)

= γ(φμ(ψ•∗))w

concluding the proof. �
6.3. Lp Spaces and Fourier Inequalities

For the remaining part of the paper, we assume that N ⊂ M is in addi-
tion discrete and local. By Proposition 2.23, Hom(γ, γ) is commutative and
*-isomorphic to L∞(K,μE).

Lemma 6.16. The functional x �→ w∗xw on Hom(γ, γ) coincides with the re-
striction of E to Hom(γ, γ), in particular it is a normal faithful state.

Proof. This observation is due to [82, Cor. 3]. Notice first that w∗xw and
E(x) are both numbers (scalar multiples of 1) for every x ∈ Hom(γ, γ). Thus,
w∗xw = w∗γ(x)w = E(x) follows. �
Notation 6.17. Denote L∞(K) := Hom(γ, γ) and M(K) := SpanC(UCPN (M)).
Denote also P (K) := UCPN (M).

Definition 6.18. Let L1(K), L2(K) and more generally Lp(K), 1 ≤ p < ∞, be
the completion of Hom(γ, γ) in the norm ‖x‖p := (w∗|x|pw)1/p = E(|x|p)1/p,
with |x| = (x∗x)1/2 ∈ Hom(γ, γ) the modulus of x. Let ‖x‖∞ := ‖x‖ be the
operator norm on Hom(γ, γ), or equivalently ‖x‖∞ := ‖x‖B(L2(K)).

Recall that if N ⊂ M is irreducible and discrete, by [51, Thm. 3.3],
Hom(θ, θ) is *-isomorphic to a von Neumann algebraic direct sum of matrix
algebras:

Hom(θ, θ) ∼=
⊕

[ρ]

Mnρ
(C)

where ρ runs over the inequivalent irreducible (hence with finite dimension
d(ρ)) subendomorphisms of θ =

⊕
ρ and nρ is the multiplicity of ρ in θ. The

index of the subfactor is finite if and only if the decomposition θ =
⊕

ρ has
finitely many summands.

Denote by Tr the canonical tracial weight on Hom(θ, θ) normalized such
that Tr(1Mnρ (C)) = nρd(ρ). Then, Tr is normal faithful and semifinite. Denote
by mTr its domain.

Definition 6.19. Let Lp(K̂), 1 ≤ p < ∞, be the completion of mTr in the norm
‖x‖p := Tr(|x|p)1/p, where |x| = (x∗x)1/2 ∈ mTr. Let L∞(K̂) := Hom(θ, θ)
with the operator norm in the GNS representation with respect to Tr, i.e.,
‖x‖∞ := ‖x‖B(L2(K̂))

, or equivalently ‖x‖∞ := ‖x‖ because Tr is normal faith-
ful and semifinite.
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For the classical (tracial) theory of non-commutative integration, we refer
to [79,100].

Remark 6.20. By the proof of [7, Lem. 7.3], if N ⊂ M is irreducible discrete
and local (or finite index, or if it fulfills the condition aρ = 1Hρ

where the
operators aρ are introduced in [51, Sec. 3]), then Tr on Hom(θ, θ) coincides
with γ ◦ Ê ◦γ−1

1 where Ê : M1 → M ⊂ M1 is the dual operator-valued weight
of E, here restricted to N ′ ∩ M1.

By [7, Prop. 4.15] the Fourier transform gives a one to one correspon-
dence between “trigonometric polynomials” ψ∗

ρ,rψ̄ρ,s in Hom(γ, γ) and “matrix
units” wρ,rw

∗
ρ,s in Hom(θ, θ). Namely,

F(ψ∗
ρ,rψ̄ρ,s) = wρ,rw

∗
ρ,s.

Trigonometric polynomials and matrix units are defined as follows:

Notation 6.21. Choose a Pimsner–Popa basis of charged fields {ψρ,r} for N ⊂
M (see Sect. 2.2) labeled by the inequivalent irreducible subendomorphisms
ρ ≺ θ and by a multiplicity counting index r = 1, . . . , nρ.

Matrix units are then defined by wρ,rw
∗
ρ,s where wρ,r := γ(ψ∗

ρ,r)w is an
isometry in Hom(ρ, θ). They have been exploited in [7, Sec. 4.1].

Trigonometric polynomials are defined by ψ∗
ρ,rψ̄ρ,s where ψ̄ρ,s is a so-

called dual field. Namely, ψ̄ρ,s := w∗
ρ,sm = w∗ῑ(ψρ,s)m where m :=

∑
ρ,r θ(wρ,r)

γ(ψρ,r) is only a formal sum when θ =
⊕

ρ is an infinite direct sum. In [7,
Sec. 2.4], it is shown that ψ̄ρ,s is a well defined operator in N and it belongs
to Hom(ῑ, ρῑ).

The matrix units are dense in Hom(θ, θ) ∼= ⊕
[ρ] Mnρ

(C) in the weak
operator topology, hence:

Proposition 6.22. The subfactor theoretical Fourier transform F has dense
range, i.e., in the previous notation, F(L∞(K)) is dense in L∞(K̂) in the
weak operator topology.

Proposition 6.23. (Parseval’s identity) The Hilbert spaces L2(K) with inner
product defined by completion of (x|y)L2(K) := w∗x∗yw = E(x∗y), x, y ∈
Hom(γ, γ), and the Hilbert space L2(K̂) with inner product defined by com-
pletion of (x|y)

L2(K̂)
:= Tr(x∗y), x, y ∈ mTr, are isomorphic via the Fourier

transform:

(x|y)L2(K) = (F(x)|F(y))
L2(K̂)

.

In particular,

‖x‖2 = ‖F(x)‖2.

Proof. By density, it is enough to check the equality of the two inner prod-
ucts on trigonometric polynomials ψ∗

ρ,rψ̄ρ,s and matrix units F(ψ∗
ρ,rψ̄ρ,s) =

wρ,rw
∗
ρ,s.
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The inner product on trigonometric polynomials in L2(K) reads:

w∗ψ̄∗
ρ,sψρ,rψ

∗
ρ′,r′ ψ̄ρ′,s′w = w∗ψ̄∗

ρ,sE(ψρ,rψ
∗
ρ′,r′)ψ̄ρ′,s′w

= δρ,ρ′δr,r′w∗m∗wρ,sw
∗
ρ,s′mw

= δρ,ρ′δr,r′w∗ ∑

σ′,t′
γ(ψ∗

σ′,t′)θ(w∗
σ′,t′)wρ,sw

∗
ρ,s′

∑

σ′′,t′′
θ(wσ′′,t′′)γ(ψσ′′,t′′)w

= δρ,ρ′δr,r′
∑

σ,t

E(ψ∗
σ,tψ

∗
ρ,s)E(ψρ,s′ψσ,t)

= δρ,ρ′δr,r′
∑

σ,t

E(ψ∗
ρ,sψ

∗
σ,t)E(ψσ,tψρ,s′)

= δρ,ρ′δr,r′
∑

σ′,σ′′,t′,t′′
E(E(ψ∗

ρ,sψ
∗
σ′,t′)ψσ′,t′ψ∗

σ′′,t′′

E(ψσ′′,t′′ψρ,s′))

= δρ,ρ′δr,r′E(ψ∗
ρ,sψρ,s′)

= δρ,ρ′δr,r′δs,s′d(ρ)

where we used the definition of the dual fields ψ̄ρ,s = w∗
ρ,sm with m =∑

σ,t θ(wσ,t)γ(ψσ,t), the intertwining and orthonormality properties wσ,r ∈
Hom(σ, θ), w∗

σ,rwσ′,r′ = δσ,σ′δr,r′1, the locality commutation relations ψρ,rψσ,t =
εσ,ρψσ,tψρ,r, the Pimsner–Popa expansion [7, Sec. 2.2] and the normalization
ψ∗

ρ,sψρ,s′ = δs,s′d(ρ)1 [7, Sec. 2.3].
The inner product on matrix units in L2(K̂) also reads:

Tr((wρ,rw
∗
ρ,s)

∗(wρ′,r′w∗
ρ′,s′)) = Tr(wρ,sw

∗
ρ,rwρ′,r′w∗

ρ′,s′)

= δρ,ρ′δr,r′ Tr(wρ,sw
∗
ρ,s′)

= δρ,ρ′δr,r′δs,s′d(ρ)

by the choice of normalization of Tr on Mnρ
(C). �

Remark 6.24. For irreducible discrete depth 2 subfactors, the statements of
the two previous propositions appear in [82, Thm. 17].
Proposition 6.25.

‖F(x)‖∞ ≤ ‖x‖1.

Proof. For positive elements x in Hom(γ, γ) normalized such that w∗xw = 1,
we have

‖F(x)‖∞ = ‖F̂(φx)‖∞ = ‖γ1(Vx)‖ = ‖Vx‖ = 1

by Proposition 6.9, and ‖x‖1 = 1 by definition. Thus, on positive elements
‖F(x)‖∞ = ‖x‖1.6 For an arbitrary element x in Hom(γ, γ), we need its iden-
tification with a function f in L∞(K,μE) and a modification of the Hahn-
Jordan decomposition theorem adapted to complex bounded measures. Let

6In the case of the classical Fourier transform, this holds as ‖f‖1 =
∫

f(x) dx = f̂(0) ≤
‖f̂‖∞ ≤ ‖f‖1 for positive f .
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f = ν|f | be the polar decomposition of f with ν ∈ L∞(K,μE), |ν| = 1. Let
νn ∈ L∞(K,μE) be a uniform (by boundedness) approximation of ν by simple
measurable functions [94, Thm. 1.17]. As |νn| → |ν| = 1, n → ∞, we can
divide and assume |νn| = 1 for every n. Define fn := νn|f | or equivalently
fn :=

∑
m νm

n χKm
n

|f | where νm
n runs over the finitely many different values of

each νn and χKm
n

is the characteristic function of Km
n := {k ∈ K : νn(k) =

νm
n }. Fixed n, the sets Km

n are pairwise disjoint and |f | = |fn| =
∑

m χKm
n

|f |.
Then,

‖F(fn)‖∞ = ‖
∑

m

νm
n F(χKm

n
|f |)‖∞ ≤

∑

m

‖χKm
n

|f |‖1 = ‖f‖1

and by ‖F(fn − f)‖∞ ≤ ‖fn − f‖∞,7 where the L∞-norms both coincide with
the operator norm in B(H), together with fn → f in L∞(K,μE) we get the
statement. �

Remark 6.26. The previous proposition is also a consequence of the identifi-
cation of the subfactor theoretical Fourier transform with the classical Fourier
transform on subfactor theoretical compact hypergroups, see Sect. 6.2. Note
that in the previous proof we only need the fact that Hom(γ, γ) is commuta-
tive, thus identified with functions on a probability space, not its hypergroup
structure.

Remark 6.27. The weaker bound ‖F(x)‖∞ ≤ ‖x‖2 can be proven without the
identification of Hom(γ, γ) with L∞(K,μE) as follows. By the C∗-identity, for
every x ∈ Hom(γ, γ) it holds

‖F(x)‖∞ = ‖F(x)F(x)∗‖1/2

= ‖θ(w)∗γ(x)ww∗γ(x)∗θ(w)‖1/2

≤ ‖θ(w)∗γ(xx∗)θ(w)‖1/2

= ‖γ(w∗xx∗w)‖1/2

= (w∗x∗xw)1/2 = ‖x‖2

because ww∗ is a projection, thus ww∗ ≤ 1, and 0 ≤ a ≤ b implies ‖a‖ ≤ ‖b‖,
because γ is isometric (unital is enough) and xx∗ = x∗x by commutativity.
The same proof holds for finite index irreducible subfactors, not necessarily
local. Indeed, by [77, Lem. 3.7], [18, Prop. 2.4], [44, Prop. 8.33], x �→ w∗xw
is a trace on Hom(γ, γ), which needs no longer be commutative. See also [53,
Prop. 4.7] for a proof of ‖F(x)‖∞ ≤ ‖x‖1 for arbitrary finite index irreducible
subfactors.

Thanks to the alternative description of Lp(K) and Lp(K̂) as complex
interpolation spaces [61,101], in the special case of tracial states and weights,
by [61, Thm. 1.2, Rmk. 3.4] (see references therein) and by Propositions 6.23
and 6.25 we get:

7The inequality ‖f̂‖∞ ≤ ‖f‖∞ holds in the case of the classical Fourier transform because
we are integrating with respect to a probability measure.
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Proposition 6.28 (Hausdorff–Young inequality).

‖F(x)‖p ≤ ‖x‖q

for 2 ≤ p ≤ ∞, 1 ≤ q ≤ 2 and 1/p + 1/q = 1.

Remark 6.29. The Hausdorff–Young inequality is a classical result for the
Fourier analysis on groups. Recent proofs of the inequality for DJS hyper-
groups appear in [34] for commutative hypergroups and in [66,67].

6.4. Involutions, Convolutions and Products

On the von Neumann algebra L∞(K)(= Hom(γ, γ)), we have the ordinary
unital *-algebra structure given by (1, ·, ∗), namely the unit operator, the mul-
tiplication and adjoint operations in B(H). Likewise on L∞(K̂)(= Hom(θ, θ)).
In the absence of a globally defined inverse subfactor theoretical Fourier trans-
form F−1 : Hom(θ, θ) → Hom(γ, γ) for infinite index subfactors, see Re-
mark 6.37, we use the embedding x ∈ L∞(K) �→ φx := w∗xγ( · )w ∈ M(K)(=
SpanC(UCPN (M))) to give L∞(K) a second *-algebra structure. In Proposi-
tion 6.35, we show that this second *-algebra structure has the right properties
with respect to F .

Definition 6.30. For φ1, φ2 ∈ M(K), let φ1 ∗ φ2 ∈ M(K) and φ�
1 ∈ M(K)

be the convolution and the involution of measures, defined, respectively, by
the composition of ucp maps φ1 ◦ φ2 and by the Ω-adjoint of φ1 considered in
Definition 2.16.

Definition 6.31. For x, y ∈ L∞(K), let x ∗ y := w∗xγ(y)w = w∗γ(y)xw ∈
L∞(K), namely the operator corresponding to φx ∗ φy, and let x� ∈ L∞(K)
be the operator corresponding to φ�

x.
We call x ∗ y convolution and x� involution in L∞(K).

Inside L∞(K̂) ∼= ⊕
[ρ] Mnρ

(C), one can consider the *-subalgebra of finite
rank operators denoted by Trig(N ⊂ M) in [7, Sec. 4.1]. Note that Trig(N ⊂
M) ⊂ mTr.

Remark 6.32. Recall the Pimsner–Popa basis of charged fields {ψρ,r} from
Notation 6.21. Let mρ,r ∈ Hom(θ, θ2) be defined by mρ,r := θ(wρ,r)γ(ψρ,r).
The formal sum m =

∑
ρ,r mρ,r (infinite when the index of the subfactor is

infinite) together with its formal adjoint m∗ play the role of comultiplication
and multiplication for the algebra object θ describing the extension N ⊂ M.

In [7, Thm. 4.13], it is shown that Trig(N ⊂ M) is an associative unital
(commutative by locality) *-algebra with the following operations:

Definition 6.33. For x, y ∈ Trig(N ⊂ M) ⊂ L∞(K̂), let x ∗ y := m∗aθ(b)m ∈
Trig(N ⊂ M) and x• := θ(w∗m∗)θ(a∗)mw = w∗m∗θ(a∗)θ(mw) ∈ Trig(N ⊂
M) be, respectively, the multiplication and the involution in Trig(N ⊂ M).
The unit is given by the Jones projection e := ww∗.

We call x ∗ y convolution and x• involution when x and y are thought of
as elements in L∞(K̂).
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Definition 6.34. Denote by Trig(K) the set of x ∈ L∞(K) such that F(x) ∈
Trig(N ⊂ M).

Trig(K) is dense in L∞(K) in the weak operator topology and in L2(K)
in the L2-norm topology. Moreover, Trig(K) = L∞(K) if and only if the
subfactor has finite index.

Proposition 6.35. For x, y ∈ Trig(K), we have

F(xy) = F(y) ∗ F(x), F(x∗) = F(x)•, F(1) = e

where note that xy = yx and F(y) ∗ F(x) = F(x) ∗ F(y).
For x, y ∈ L∞(K), we have

F(x ∗ y) = F(x)F(y), F(x�) = F(x)∗.

Proof. For the first two equalities, we refer to [7, Sec. 4.3]. The remaining
equalities follow by observing that

F(x ∗ y) = F̂(φx ∗ φy) = γ1(Vφx
Vφy

) = γ1(Vφx
)γ1(Vφy

) = F(x)F(y)

and

F(x�) = F̂(φ�
x) = γ1(V ∗

φx
) = γ1(Vφx

)∗ = F(x)∗

by Proposition 6.9. Moreover, F(1) = F̂(E) = γ1(v1v
∗
1) = ww∗ = e, where v1

is the isometry in M1 splitting the Jones projection v1v
∗
1 = eN as in the proof

of Proposition 6.9. �

Note that the equalities F(x ∗ y) = F(x)F(y) and F(1) = e can also be
checked directly, without passing to M(K), whereas the involution x� cannot
even be defined without it, to our knowledge.

Remark 6.36. Note that 1 ∈ Trig(K). Instead, the convolution unit for L∞(K)
is not always an operator in Hom(γ, γ). It is the Dirac measure id ∈ P (K)(=
UCPN (M)) whose Fourier transform F̂(id) = 1 sits in L∞(K̂) but not in
Trig(N ⊂ M), unless the subfactor has finite index.

Remark 6.37. If x ∈ Trig(K), the equality F(x�) = F(x)∗ can be promoted
to a definition of involution by means of the inverse subfactor theoretical
Fourier transform, x� := F−1(F(x)∗).8 Similarly for the convolution x ∗ y :=
F−1(F(x)F(y)). However, for infinite index subfactors, F−1 is only partially
defined on Hom(θ, θ) by the formal expression y �→ F−1(y) := M∗yγ(M),
where M := γ−1(m) and m is as above.

6.5. Convolution Inequalities

In this section, we investigate analytic properties of the convolution and invo-
lution operators in L∞(K): positivity and norm inequalities.

Lemma 6.38. If x, y ∈ L∞(K) are positive, then x ∗ y is positive.

8For finite index subfactors, it coincides with the 180◦-rotation of the diagram for x∗.
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Proof. It follows immediately from the definition x ∗ y = w∗xγ(y)w. Alterna-
tively, one can observe that if φz = w∗zγ( · )w, z ∈ L∞(K), is (completely)
positive on M, then z is positive. Indeed, if w∗zγ(t∗t)w is positive for every
t ∈ M, then (γ(t)wξ, zγ(t)wξ) ≥ 0 for every ξ ∈ H, and vectors of the form
γ(t)wξ are total in H by minimality of the Connes–Stinespring representation
of E. Thus, φx∗y = φx ∗ φy entails positivity of x ∗ y. �

Lemma 6.39. It holds w∗x�w = w∗x∗w = w∗xw for every x ∈ L∞(K).

Proof. Observe that w∗x�w = w∗x�γ(1)w = φx�(1) = φ�
x(1) = φx(1) where

the last equality follows from the definition of Ω-adjoint (Ω, φ�
x(1)Ω) = (φx(1)

Ω,Ω). �

Lemma 6.40. The involution x �→ x� in L∞(K) is an antilinear *-isomorphism.

Proof. If x, y ∈ Trig(K), the equalities (xy)� = x�y� and (x∗)� = (x�)∗ fol-
low from Proposition 6.35, by observing that (F(y) ∗ F(x))∗ = F(y)∗ ∗ F(x)∗

and (F(x)•)∗ = (F(x)∗)•, and by injectivity of the Fourier transform. 1� = 1
holds because id� = id. If x ∈ L∞(K), let xn ∈ Trig(K) such that xn → x
in the weak operator topology and ‖xn‖ ≤ ‖x‖ by Kaplansky’s density the-
orem. Then, φxn

→ φx in the pointwise weak operator topology, and by
the same argument as in [7, Rmk. 4.27], using ‖Vφxn

‖ ≤ ‖xn‖1 ≤ ‖xn‖,
it follows that φ�

xn
→ φ�

x in the pointwise weak operator topology. Thus,
(γ(t)wξ, x�

nγ(s)wη) → (γ(t)wξ, x�γ(s)wη) for every t, s ∈ M, ξ, η ∈ H. As ob-
served above, vectors of the form γ(t)wξ are total in H. Moreover, ‖x�

n‖ = ‖xn‖
for xn ∈ Trig(K) because

‖x�
n‖ = ‖x�

n‖B(L2(K))

= sup
ξ∈L2(K)

‖x�
nξ‖2‖ξ‖−1

2

= sup
ξ∈Trig(K)

‖x�
nξ�‖2‖ξ�‖−1

2

= sup
ξ∈Trig(K)

‖(xnξ)�‖2‖ξ�‖−1
2

= sup
ξ∈Trig(K)

‖xnξ‖2‖ξ‖−1
2 = ‖xn‖

by using that Trig(K) = Trig(K)� is dense in L2(K) and Lemma 6.39. We
conclude that x�

n → x� in the weak operator topology and (xy)� = x�y� and
(x∗)� = (x�)∗ hold for every x, y ∈ L∞(K). �

By Lemma 6.40, we have that

|x�|2 = (x�)∗x� = (x∗x)� = (|x|2)� = |x|�|x|� (6.3)

and thus |x�| = |x|�, as |x|� is positive by the proof of Lemma 6.38.

Lemma 6.41. It holds ‖x�‖p = ‖x‖p for every x ∈ L∞(K), 1 ≤ p ≤ ∞.
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Proof. The statement for p = ∞ follows by Lemma 6.40 and by the spectral
properties of the C∗-norm. For p = 2, we compute ‖x�‖2 = (w∗(x�)∗x�w)1/2 =
(w∗(x∗x)�w)1/2 = ‖x‖2 by Lemma 6.39. For p = 1, one can use (6.3). For
1 ≤ p < ∞, it follows by observing that (|x�|)p = (|x|�)p = (|x|p)�. Indeed,
x∗x is positive, thus the involution commutes with the real continuous func-
tional calculus of x∗x, in this case with the function y �→ yp/2, again by
Lemma 6.40. �

Lemma 6.42. For positive elements x ∈ L∞(K), it holds ‖x‖1 = φx(1) = ‖φx‖,
where ‖φx‖ is the norm of φx as a bounded linear operator on M.

More generally, if x ∈ L∞(K), it holds (‖x‖p)p = φ|x|p(1) = ‖φ|x|p‖ for
every 1 ≤ p < ∞ and ‖x‖∞ = inf{λ > 0 : E − λ−1φ|x| is completely positive}.

Proof. The statements for 1 ≤ p < ∞ follow immediately from the definitions
and from the positivity of φx and φ|x|p . For the last statement, it is enough
to observe that E − λ−1φ|x| = w∗(1 − λ−1|x|)γ(·)w is (completely) positive if
and only if 1 − λ−1|x| is positive, where the only if part follows by the proof
of Lemma 6.38. This is achieved for every λ > ‖|x|‖∞ = ‖x‖∞. �

Proposition 6.43. (Young inequality) If x, y ∈ L∞(K), then

‖x ∗ y‖r ≤ ‖x‖p‖x‖q

for 1 ≤ p, q, r ≤ ∞ such that 1/p + 1/q = 1/r + 1.

Proof. Let r = 1, p = 1, q = 1. Assume first that x and y are positive in
L∞(K), then by Lemmas 6.38 and 6.42 we have

‖x ∗ y‖1 = ‖φx∗y‖
= ‖φx ∗ φy‖
≤ ‖φx‖‖φy‖ = ‖x‖1‖y‖1.

For general x, y ∈ L∞(K), as in the proof of Proposition 6.25, let xn → x and
yk → y in the L∞-norm topology such that xn =

∑
m νm

n xm
n , |x| = |xn| =∑

m xm
n and yk =

∑
h μh

kyh
k , |y| = |yk| =

∑
h yh

k , the sums over m and h are
finite, νm

n , μh
k are complex phases and xm

n , yh
k are positive in L∞(K). Then

‖xn ∗ yk‖1 = ‖
∑

m,h

νm
n μh

k(xm
n ∗ yh

k )‖1 ≤
∑

m

‖xm
n ‖1

∑

h

‖yh
k‖1 = ‖x‖1‖y‖1

by the Minkowski inequality and the previous step. Moreover, xn ∗ yn =
w∗xnγ(yn)w → x∗y in the L∞-norm topology, hence in the L1-norm topology,
thus ‖x ∗ y‖1 ≤ ‖x‖1‖y‖1.
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Let r = ∞, p = 1, q = ∞. By, e.g., [79, eq. (25)], Propositions 6.23, 6.35
and Lemma 6.41, we get

‖x ∗ y‖∞ = sup
z∈L∞(K),‖z‖1≤1

|w∗(z∗(x ∗ y))w|

= sup
z∈L∞(K),‖z‖1≤1

|Tr(F(z)∗F(x ∗ y))|

= sup
z∈L∞(K),‖z‖1≤1

|Tr((F(x)∗F(z))∗F(y))|

= sup
z∈L∞(K),‖z‖1≤1

|Tr(F(x� ∗ z)∗F(y))|

= sup
z∈L∞(K),‖z‖1≤1

|w∗((x� ∗ z)∗y)w|

≤ sup
z∈L∞(K),‖z‖1≤1

‖x� ∗ z‖1‖y‖∞ ≤ ‖x‖1‖y‖∞

where in the last line we used the Hölder inequality and ‖x� ∗z‖1 ≤ ‖x�‖1‖z‖1.
By a symmetric argument, it follows also ‖x ∗ y‖∞ ≤ ‖x‖∞‖y‖1.

By complex interpolation [61, Thm. 1.2, Def. 3.1] among the two previous
cases, we get ‖x ∗ y‖p ≤ ‖x‖1‖y‖p and ‖x ∗ y‖p ≤ ‖x‖p‖y‖1 for 1 ≤ p ≤ ∞.

Let r = ∞ and p, q such that 1/p + 1/q = 1. As before, we get

‖x ∗ y‖∞ = sup
z∈L∞(K),‖z‖1≤1

|w∗((x� ∗ z)∗y)w|

≤ sup
z∈L∞(K),‖z‖1≤1

‖x� ∗ z‖p‖y‖q ≤ ‖x‖p‖y‖q

where we used again the Hölder inequality and the previously derived ‖x� ∗
z‖p ≤ ‖x�‖p‖z‖1. Thus, we have shown ‖x∗y‖∞ ≤ ‖x‖p‖y‖q for p, q such that
1/p + 1/q = 1.

Again by complex interpolation [61, Thm. 1.2, Def. 3.1] among the cases
r = ∞, 1/p + 1/q = 1, and r = p, q = 1, or r = q, p = 1, we get the general
statement. �

Remark 6.44. For x and y positive in L∞(K), it also holds

‖x ∗ y‖1 = (φx ∗ φy)(1)

= φx(1)φy(1) = ‖x‖1‖y‖1.

Corollary 6.45. The space L1(K) is a complex Banach algebra with involution.

Remark 6.46. This fact is known for locally compact KPC hypergroups [65,
Sec. 5], thus for subfactor theoretical compact hypergroups [7, Sec. 3], which
are contained in this class.

6.6. Inversion Formula and Uncertainty Principles

In this section, we prove the inversion formula for the subfactor theoreti-
cal Fourier transform and an uncertainty principle relating the size of the
support of x ∈ Hom(γ, γ) and of F(x) ∈ Hom(θ, θ). Recall the notation
L∞(K) = Hom(γ, γ) and L∞(K̂) = Hom(θ, θ). Recall also that Hom(θ, θ) ∼=
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⊕
[ρ] Mnρ

(C), where the sum runs over inequivalent irreducible ρ ≺ θ. For
x ∈ L∞(K), let

(F(x))(ρ) :=
∑

r,s=1,...,nρ

wρ,rw
∗
ρ,rF(x)wρ,sw

∗
ρ,s

=
∑

r,s=1,...,nρ

(w∗
ρ,rF(x)wρ,s)wρ,rw

∗
ρ,s

and ((F(x))(ρ))r,s := w∗
ρ,rF(x)wρ,s ∈ Hom(ρ, ρ) = C1. Thus, (F(x))(ρ) ∈

Mnρ
(C) for every ρ ≺ θ. The support of F(x), not to be confused with the

support projection of F(x) and denoted below by suppF(x), can be considered
to be the set of inequivalent irreducible ρ ≺ θ such that (F(x))(ρ) �= 0. Let
also χρ,r,s := ψ∗

ρ,rψ̄ρ,s ∈ L∞(K) be the trigonometric polynomials considered
in the proof of Proposition 6.23. By [7, Prop. 4.15] and Proposition 6.23,

(χρ,r,s|x)L2(K) = (wρ,rw
∗
ρ,s|F(x))

L2(K̂)

= Tr(wρ,sw
∗
ρ,rF(x))

= w∗
ρ,rF(x)wρ,s Tr(wρ,sw

∗
ρ,s)

= ((F(x))(ρ))r,sd(ρ)

Moreover, {d(ρ)−1/2χρ,r,s}ρ,r,s is an orthonormal basis of L2(K). Thus, we get
the following:

Proposition 6.47. (Inversion formula) If x ∈ L2(K), then

x =
∑

ρ,r,s

((F(x))(ρ))r,sχρ,r,s

where the sum converges in the L2-norm topology.

In the case of compact groups [26, Thm. 2.4] and compact DJS hyper-
groups [1, Thm. 4.1], from the inversion formula for the Fourier transform and
from Parseval’s identity one can derive the Donoho–Stark uncertainty princi-
ple:

1 ≤ μK(supp(f))
∑

ρ∈supp f̂

nρkρ (6.4)

where f �= 0 is a function in L2(K,μK) and f̂ is its Fourier transform, μK

is the Haar measure on the compact group or DJS hypergroup, nρ is the
dimension of the irreducible representation ρ, and kρ is its hyperdimension
[3,104]. Note that for compact groups nρ = kρ, and for subfactor theoretical
compact hypergroups nρ ≤ kρ = d(ρ) [7, Cor. 2.21, Thm. 6.5].

We prove a stronger version of the uncertainty principle (6.4) for local
discrete subfactors, similar to the stronger version proved in [4, Thm. 2] for
compact groups. The dimension of the representation nρ gets replaced with
the rank of the matrix (F(x))(ρ) ∈ Mnρ

(C). Using Propositions 6.23 and 6.25,
we reformulate and prove the stronger uncertainty principle following the same
argument used in [53, Thm. 5.2], [78, Prop. 3.3] and [75, Thm. 4.8], respectively,
for finite index subfactors, fusion bialgebras and Kac-type compact quantum
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groups. For an element x in a von Neumann algebra A ⊂ B(H), denote by [x]
its support projection, i.e., the smallest projection in B(H) such that x[x] = x.
Then, [x] ∈ A and [x] = [|x|].
Proposition 6.48. Denote by τ either the state x �→ w∗xw on L∞(K), i.e., the
restriction of E to Hom(γ, γ), or the tracial weight Tr on L∞(K̂). For every
x ∈ L∞(K), x �= 0, it holds

1 ≤ τ([x])τ([F(x)]).

Proof. Compute

‖F(x)‖∞ ≤ ‖x‖1

= τ(|x|[x])

≤ ‖x‖2‖[x]‖2

= ‖F(x)‖2‖[x]‖2

= τ([F(x)]F(x)∗F(x)[F(x)])1/2‖[x]‖2

≤ ‖F(x)‖∞τ([F(x)])1/2‖[x]‖2

= ‖F(x)‖∞τ([F(x)])1/2τ([x])1/2

where we used Proposition 6.25, the Cauchy–Schwarz inequality, Proposi-
tion 6.23 and the positivity of Tr. If x �= 0, i.e., if F(x) �= 0, dividing by
‖F(x)‖∞, we get the statement. �

In our case at hand, τ([x]) = E([x]) by Lemma 6.16, hence also τ([x]) =
μE([x]), and

τ([F(x)]) =
∑

ρ

d(ρ) rank((F(x))(ρ))

by our choice of normalization of Tr. As a consequence, we obtain the following
stronger version of the uncertainty principle (6.4):

Corollary 6.49. (Donoho–Stark uncertainty principle) For every x ∈ L∞(K),
x �= 0, it holds

1 ≤ μE([x])
∑

ρ∈supp F(x)

d(ρ) rank((F(x))(ρ)).
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